
Twill: A Hybrid Microcontroller-FPGA Framework
for Parallelizing Single-Threaded C Programs

Doug Gallatin, Aaron Keen, Chris Lupo, and John Oliver
Computer Engineering Program

California Polytechnic State University
San Luis Obispo, California 93407

Email: {dgallati, akeen, clupo, jyoliver}@calpoly.edu

Abstract—Increasingly System-On-A-Chip platforms which
incorporate both microprocessors and re-programmable logic
are being utilized across several fields ranging from the auto-
motive industry to network infrastructure. Unfortunately, the
development tools accompanying these products leave much to
be desired, requiring knowledge of both traditional embedded
systems languages like C and hardware description languages
like Verilog. We propose to bridge this gap with Twill, a
truly automatic hybrid compiler that can take advantage of
the parallelism inherent in these platforms. Twill can extract
long-running threads from single threaded C code and distribute
these threads across the hardware and software domains to more
fully utilize the asymmetric characteristics between processors
and the embedded reconfigurable logic fabric. We show that
Twill provides a significant performance increase on the CHStone
benchmarks with an average 1.63 times increase over the pure
hardware approach and an increase of 22.2 times on average
over the pure software approach while in general decreasing the
area required by the reconfigurable logic compared to the pure
hardware approach.

I. INTRODUCTION

Increasingly it is becoming common for Field Pro-
grammable Gate Array (FPGA) manufacturers to embed mi-
croprocessors within the FPGA fabric. This allows developers
on such systems to pick and choose which parts of their appli-
cation require the speedups achievable by being implemented
in hardware while maintaining a faster development/debug
cycle for majority of the (nontime-critical) code.

The development cycle for these kinds of hybrid systems
has thus been writing assembly, C or C++ code for the
microcontroller and HDL code for the surrounding FPGA logic
framework and then manually specifying the interface between
the two code sections. While this paradigm gives the developer
flexibility and control, the complexity of the HW/SW interface
leads to many hard-to-debug errors in all but the simplest of
systems. In turn this leads to longer development cycles and
requires more experienced, specialized developers which often
pushes many potential products to use less efficient solutions.

A. Related Works

Several tools have been developed recently to assist with
this problem. Historically there have been two different ap-
proaches. One is to provide a run-time system of synchro-
nization and communication primitives to the developer so
as to support inter processor-FPGA fabric communications in
an abstract manner. For example, ReconOS [1] and hThreads

[2] implement a real-time operating system (RTOS) where
OS primitives such as queues, semaphores, and the scheduler
are accessible in a uniform manner from both HW and SW
“threads”. In contrast, works by [3] and [4] provide uniform
APIs only for calling “functions” defined either in HW or in
SW from either the FPGA logic or from the microprocessor.
All of these run-time systems abstract away some or all of the
communication between the HW and SW but still require the
developer to write in both C and HDL and to explicitly set up
any parallelism.

The other approach is to implement or modify a compiler
that both partitions the input code into HW/SW modules
and then generates the communication and synchronization
channels to tie everything together. Examples of these include
LegUp [5,6], Spark [7], and Liquid Metal [8]. Liquid Metal
introduces a new Java-based object-oriented language that
allows the programmer to interact with object instances across
the HW/SW divide but requires the programmer to keep track
of which objects are where.

LegUp and Spark both implement a compiler/translator
for traditional C programs. LegUp was originally only an
HDL translator but has recently added limited support for
calling functions across the HW/SW divide. They have a
basic automatic heuristic but encourage the programmer to
annotate each function with whether that function should be
implemented in HW or in SW. LegUp does not do any sort of
Thread-Level Parallelism (TLP) but does implement a modulo-
scheduler for Instruction-Level Parallelism (ILP). Also, LegUp
does not provide any primitives other than the function call for
synchronization and communication which makes it extremely
difficult for the programmer to implement truly parallel code.

In contrast, Spark started with a similar system to LegUp
and then focused on implementing code optimizations in order
to achieve speedup. With complete control over the hardware,
they were able to implement several different speculative-based
optimizations with very little overhead. However, they focused
almost entirely on ILP parallelization techniques at the expense
of TLP parallelization.

B. Twill

Twill is designed as a compiler to take single-threaded C
code as input, extract long running threads from that C code,
transform some of the threads into hardware, and then provide
a runtime communication system for a hybrid CPU/FPGA
System-On-A-Chip.

Gallatin, et al. Twill: A hybrid microcontroller-FPGA framework for
parallelizing single-threaded C programs. IEEE International
Symposium on Parallel and Distributed Processing 2014.

mailto:jyoliver}@calpoly.edu

Fig. 1: Twill Overview

In this way Twill is able to take advantage of both ILP
and TLP that may be present in the original source. Twill
builds upon a great deal of previous work: Twill uses a
modified version of Distributed Software Pipelining (DSWP)
as first presented in [9] in order to find and extract long
running threads. Twill relies upon LegUp for finding ILP in
the extracted threads and for translating those threads into
HDL. Finally, it uses a custom runtime system/RTOS heavily
influenced by the hThreads project [2].

The major contribution of Twill is to integrate algorithms
for ILP and TLP parallelism into an environment suitable
for small, low-powered embedded systems. It combines the
strengths of the hThreads/ReconOS systems with the abstrac-
tion provided by LegUp and Spark while exploiting a higher
degree of the parallelism inherent in the input program. Thus, it
is able to give very large performance speedups for these kinds
of hybrid embedded systems without requiring the programmer
to have any knowledge of HDL.

The remainder of our paper is organized as follows:

An overview of Twill is presented in Section II. Section
III details the runtime architecture of Twill while Twill’s
compiler implementation is described in IV. In Section V we
discuss Twill’s performance results and finally in Section VI
we conclude.

II. OVERVIEW OF TWILL

Twill conceptually consists of three different parts: the
compiler, the software runtime system, and the hardware
runtime system. An overview of how these fit together can
be seen in Figure 1.

1) Twill Compiler: The Twill compiler is described in
detail in Section IV. Internally it is implemented as multiple
LLVM [10] transform passes including a custom version of the
DSWP algorithm [9] and then uses LegUp [5] to translate the
hardware portions into Verilog. It also sets parameters for the
statically defined primitives in both the software and hardware
runtime systems.

While conceptually the Twill compiler could be ANSI
C compliant, it currently has the same limitations on the

input C files as LegUp: no recursive functions or function
pointers. While this simplifies our implementation, Section
VI-A expands on how Twill could be extended to support these
two constructs.

2) Twill Software Runtime: The Twill software runtime is
written in C and assembly. It contains an API for interfacing
the processors with the hardware runtime. The Twill compiler
generates C code for the processors with calls to these APIs in
order to perform initialization, thread management, synchro-
nization, and communication. It is described in more detail in
Section III.

3) Twill Hardware Runtime: The Twill hardware runtime
written in Verilog is based heavily off of the hThreads project
[2]. It provides synchronization and communication primitives
for the software and hardware threads. The generated Verilog
modules from the Twill compiler include “calls” to the various
hardware primitives to provide synchronization and communi-
cation with the other Verilog modules and the software threads
running on the processors. Section III describes in depth the
implementation details of the Twill hardware runtime.

III. RUN-TIME ARCHITECTURE

Twill’s runtime system is heavily influenced by the
hThreads project [2]. The runtime system has several primi-
tives: semaphores, queues, software threads, hardware threads,
and a simple scheduler. All of the primitives are statically con-
figured at compile time with the exception of software threads
which can be dynamically created. Semaphores, queues, the
scheduler, and the hardware threads are all implemented in the
FPGA logic in Verilog. Hardware threads are able to interact
with semaphores, queues, and the processor’s memory without
interrupting the processor while software threads have minimal
API wrappers to interact with the hardware primitives. The
entire architecture overview is shown in Figure 2.

The following subsections discuss the individual primitives
after describing the bus addressing system.

A. Bus Architecture

There are two main communication busses in Twill’s run-
time system that tie all of the primitives together. The first bus,
the Module Bus, is the main communications link between all
of the primitives used for passing messages. The second bus,

Fig. 2: Twill Run-Time Hardware Architecture Overview

the Memory Bus, is tied to each of the hardware threads and
the processor interface module and gives the hardware threads
access to the processor’s memory space. The two busses are
hierarchical with the Generate blocks shown in Figure 2 used
to decrease the combinatorial logic at each stage allowing for
higher clock frequencies.

Both busses work on a message passing model. Each
primitive is assigned a unique address for the busses. When a
primitive needs to send a message, it signals to the bus arbiter
and for each clock cycle the bus arbiter will specify which
primitive has control over the bus along with that primitive’s
bus message. This is designed in such a way that if there is
no contention for the bus among the primitives, a primitive’s
signal will be acknowledged and its message available on the
very next clock cycle. Thus, the bus has a latency of one clock
cycle and a throughput of one message per clock cycle.

The bus arbiter is implemented as a modified priority
decoder which always gives priority to the processor if it
is signaling and then gives priority to any primitive sending
a message to the processor and finally gives priority to the
primitive who has been signaling for the longest number of
clock cycles. This is because the processor interface with
hardware tends to be the critical path since the processor
is slower at executing instructions. Furthermore, since the
processor generally takes longer to perform a task than the pure
hardware threads, it tends to signal the bus less frequently and
when it does the system is designed such that the processor’s
pipeline should not be stalled at all waiting for the hardware
primitive to respond.

A message on the main message bus consists of the
destination address, the 3-bit message operation, and a 32-bit
data field. The destination address is variably sized depending
on the number of primitives. There are five operations: give,
take, start, stop, and ack. Most primitives only accept
a subset of the operations and the effect of the operations
vary depending on what type of primitive is located at the
destination address. The primitive specific effects from these
operations are described in the following sections.

The memory bus uses the same model and timing char-
acteristics of the main bus but is used solely to allow the
hardware threads to read and write processor memory. A write
takes one cycle while a read takes two cycles assuming no bus
contention. One hardware thread may read/write to this bus at
once completely asynchronously from what the processor is
doing. Writes to memory from either the processor or from
the hardware threads take two cycles to appear in the other
domain.

B. Semaphores

The semaphore primitives are basic counting semaphores.
Each may have a different max count and starting counter.
A give message to the semaphore will raise the semaphore
while a take message corresponds to a lower. The data part
of the message specifies how many times to raise or lower
the semaphore. The semaphore will respond to the calling
primitive’s address with an ack message when that primitive
has successfully taken the semaphore. When the semaphore is
not locked the ack message will occur immediately on the
next clock assuming no bus contention. If the semaphore’s

counter is already at zero then the semaphore will wait until
a give message is received. The semaphore will then send
ack messages first to the processor and then to the primitive
that has been waiting the longest. In general, it is safe to send
take messages to the semaphore from any primitive although
it is not safe to send multiple take messages from the same
primitive without receiving a corresponding ack message in
between each message.

With the above architecture, the sending thread will be
blocked for one cycle for a raise operation and a minimum
of two cycles for a lower operation.

C. Queues

The queue primitives are first-in-first-out (FIFO) queues.
Each may have a different max length and be either 1 bit, 8
bits, 16 bits, or 32 bits wide. The queues are asynchronous
but assume that a single primitive is enqueueing data and
a (potentially different) single primitive is dequeueing data.
Thus a semaphore or other synchronization method between
primitives must be used if more than one primitive is en-
queueing the data at once or more than one primitive is
attempting to dequeue the data at once. A give message to
the queue enqueues the message’s data field to the queue. An
ack message will subsequently be sent back to the sender. A
take message will cause the queue to send an ack message
back to the sender with the dequeued value. Internally, the
queues are implemented as a circular buffer with one more
data element than the queue can hold. On enqueue operations,
an ack message will be sent back to the sender immediately
as long as the final data slot in the queue is empty. When
the size+1 data slot is filled, an ack message will not be sent
until a dequeue operation is performed. In this way the sending
primitive is stalled if the queue is full. Similarly, if the queue
is empty then the queue will only send the ack message for
a dequeue operation after a give message is received.

The synchronization overhead of enqueueing or dequeueing
from a queue is thus a minimum of two cycles assuming no
bus contention.

D. Hardware Threads

Hardware threads are user written or auto-generated HDL
code that perform the desired computations. They have a sim-
ple interface to the HWInterface modules which deal with the
specifics of communicating over the busses. For the hardware
thread to perform any action, it sets the specified function
code and the desired target along with any data parameters
and then sends a pulse on a signal wire to the HWInterface.
The HWInterface module then will latch in all the data and
make the appropriate call. Note that the desired function code
is just the equivalent to an enum where each function call
has its own entry. The function code does not correspond
to bus operation but uniquely specifies whether to perform
an enqueue, dequeue, raise, lower, load, store, etc. operation.
Furthermore, the desired target is not the same as the address
but rather an index into a virtual array of the OS primitive
implied by the function code. For example, passing zero as the
desired resource to a raise call will raise the first semaphore
while passing zero as the desired resource to an enqueue call
will enqueue to the first queue. Multiple calls to different

primitives may be made at once; the only constraint is that
only one call may be initiated per cycle.

Each call will “return” to the hardware thread by the
hardware interface specifying the code and resource on the
return wires along with any data that might have been returned
on the incoming data wires. In this way one function call
per cycle may return to the hardware thread. The operations
that “return” immediately on the next clock cycle assuming
no bus contention are memory store, semaphore raise, start
thread, and stop thread. Operations that take multiple cycles
are memory load, semaphore lower, enqueue, and dequeue.
The HWInterface can also signal to the hardware thread that
another thread started or stopped it asynchronously to any
pending requests.

The HWInterface module connecting the HWThread mod-
ules to the Generate HW Threads block in Figure 2 is
responsible for managing all of the simultaneous requests and
their response states. It is designed in such a way as to not
add latency between the hardware thread’s operation request
and sending messages out on the bus and thus the hardware
thread has the minimum cycles listed in the other sections of
synchronization overhead.

There are several special system hardware threads that
handle some system-related tasks. The first is the I/O manager
which is connected to the serial port and all of the external
interrupt pins, reset signals, LED’s, and switches. Other threads
can send messages to this thread to interact with the I/O ports.
Interrupts are forwarded with one clock cycle latency to the
appropriate handler either in hardware or on the processor.

The second special system hardware thread is the timing
thread which is used to time all of the cycle counts referenced
in Section V. The final special hardware thread is the sched-
uler. The scheduler is a simple round-robin scheduler for the
software threads which can handle threads in both blocked
and waiting states. Every period it will interrupt the processor
with the new SW thread ID to switch to. It also snoops on the
message bus looking for the active thread to become blocked
in order to switch out threads. Since all of this logic is in
hardware, the only critical-path cost on the processor is a single
context-switch unlike traditional schedulers which require two
context switches in addition to running the actual scheduling
algorithm.

E. Processor Interface

The processor interface provides the method of connecting
a variable number of Microblaze processors to the two busses.
It is split into two parts: Verilog code that creates the actual
connections and a C library that runs on each of the processors.

The C library provides function APIs such as Enqueue(),
RaiseSemaphore(), and StartThread(). It also provides an in-
terrupt controller that interfaces with the I/O hardware thread
to pass interrupt sources to the proper SW thread’s interrupt
routine.

The communication between the C library and the hard-
ware module is implemented using a single Microblaze Stream.
Streams are built into the Microblaze processor and act very
similarly to the hardware queues described above. There are
two instructions in the Microblaze ISA, put and get, that

Fig. 3: Twill Compiler Tool Flow

each take two cycles for their data to be transfered into or
out of the FPGA logic. When the streams are full or empty
they will stall the processor if the corresponding put or get
instruction is executed. It takes two put/get instructions to
pass a message to or from the processor interface. Thus since
the processor interface is designed to mask as much of the
hardware overhead as possible it takes five cycles for the
processor to complete any operation with any of the hardware
primitives. Because of the way the message bus priority works,
the worst latency possible with processor messages is 4 + n
cycles where n is the number of processors attached to the
system.

The hardware processor interface module has only one
address on the main bus no matter how many processors there
are. It internally queues and interleaves the processor opera-
tions, simulating any multiple requests to the same primitive
from the processors. This was done to reduce the already
large overhead of having the processor communicate with the
hardware primitives.

The processor interface also manages the memory between
the processors and the hardware threads. Each processor has
its own copy of the memory and the hardware threads share
another copy. A simple write-update coherency scheme is used
simply because of the small size of the memories used in
the project. If the memories were larger a more sophisticated
coherency scheme could be used if needed with little adverse
effect on the overall architecture.

IV. COMPILER ARCHITECTURE

The runtime system was designed in order to optimize the
DSWP algorithm [9] constraints and to simplify the Twill
compiler pass. The compiler is a multi-stage patchwork of
other work and custom compiler passes as seen in Figure 3.

The first step is the standard LLVM [10] tool-flow. LLVM
2.9 is used in order to have the LLVM IR directly compatible
with the LegUp toolchain. After this a custom LLVM trans-
formation pass which implements a modified version of the
DSWP algorithm is run.

A. DSWP

The DSWP algorithm [9] conceptually pipelines loops by
building a complete Program Dependence Graph (PDG) of the
loop and then partitioning it into separate threads such that data
is forwarded in only one direction between the threads. This
technique was chosen as the main source of TLP parallelism
because the original authors discovered that it became more
efficient as the simplicity of the processing cores increased
and because the required low-level and low synchronization-
cost queues were relatively easy to create with control over
the hardware.

There are several algorithmic differences between our
implementation and the implementation described in Ottoni
et al.’s original paper [9] that we discuss below.

1) Partitioning: Ottoni et al.’s implementation of DSWP
used a very simple greedy heuristic where they essentially
sorted each Strongly-Connected Component (SCC) in the PDG
based on the sum of the estimated computation times for all
the instructions in each SCC and then filled each partition
from the list taking the longest running SCCs first. Note that
not all SCCs are available in the list but only those whose
dependencies have already been assigned a partition in order
to ensure a pipeline between the threads would form.

In Twill, we assign two different weights to each SCC.
The hardware weight consists of the sum of the estimated
cycle·area products that would result by translating each in-
struction into hardware. The software weight consists of the
estimated number of cycles required to execute the instruction
on a Microblaze processor. A sorted list of SCCs is maintained
very similarly to the original algorithm where only SCCs with
no dependencies are kept on the list. Whenever a new partition
is started, the total hardware weight is compared to the total
software weight of each SCC currently on the list. The new
partition is then designated as a hardware or software thread
accordingly and filled with the smallest SCCs on the list. A
targeted percentage passed by the developer for the division
of work between the hardware and software domains is used
to decide when to start a new partition.

2) Function Calls: Probably the biggest difference is that
our implementation of DSWP operates on the function level
rather than on the loop-level. While pipelining code outside
of loops is of questionable benefit, it allows us to imple-
ment a key extension to the original DSWP algorithm. The
original algorithm treated function calls as a single large-
latency instruction and thus would not pipeline any functions
outside of the function containing the manually designated
loop to pipeline. By extending the pipeline to the function
level, our implementation treats function calls as zero latency
instructions and then sets up a special dependence so that a
sub-tree of threads will pipeline the called function. This sub-
tree of threads will reuse the existing threads in the current
pipelining when there is no recursion involved.

Therefore in our implementation, each function contains a
“master” thread and zero or more “slave” threads. The thread
that the call instruction is partitioned into becomes the master
thread for the new function and is responsible for passing
the arguments and receiving the returned result value. The
other threads call the remaining slave versions of the function.
All of the slave threads for that function do not accept any

arguments for the function and instead will create standard
enqueue/dequeue instruction pairs with the master thread
only if the partitioner gives instructions to the slave thread
requiring those arguments.

Thus when a function call is found, the pipeline is rebuilt
for that function based off of the thread with the call instruction
and then the old pipeline resumes once the function call has
finished. This does create situations where data must flow
against the direction of the original pipeline which puts the
queue latency on the critical path of the execution. It also
potentially causes multiple versions of the same function to
have to be translated into each hardware thread which increases
the FPGA area required. To solve both problems, we move
each function’s master and slave threads into separate threads
as long as the various call-sites to each function cannot execute
at the same time. Within a single function, this is determined
by a simple conservative heuristic which requires all call sites
to have an unbroken chain of dependencies between them in
order to be considered non-overlapping. Semaphores are used
to ensure the function is indeed non-overlapping if the function
has call-sites in multiple functions. In practice most of the time
functions that do have overlapping calls tend to be simple
functions that the partitioner will not partition anyways and
thus the above two problems are avoided a majority of the
time.

Furthermore, this method of resolving function calls poten-
tially switches which partitions of a function are placed into
software and hardware. Thus the function calls are resolved as
the last step in the custom DSWP algorithm and the entire
algorithm is iterated upon with different partitioning target
percentage and roles for the partitions of the particular function
that is called.

3) Conditional Control Dependencies: Since LLVM IR is
in Single-Static-Assignment (SSA) form, some of the addi-
tional artificial conditional control dependencies introduced in
the original paper are not implemented. The SSA form and its
PHI nodes ensures that these scenarios cannot occur. However,
there is an additional problem that LLVM’s implementation
of PHI nodes introduces. In LLVM, the PHI nodes may
assign a constant based off of the control flow entering the
block. An example of this problem is illustrated in Figure 4.
The problem occurs when the partition that contains the PHI
node does not have any instructions in one of the preceding
basic blocks: BB2, BB3, or BB4. In this case according to
[9] those basic blocks would not be present in the partition
and thus the resulting threads will not be correct. Intuitively,
the PHI node is control dependent on the branches in BB1
and BB3 but because of how LLVM handles PHI nodes it
is not possible to forward the result of the branches using
enqueue/dequeue instructions. Instead, we create a pair
of fake dependencies between the PHI node and the branch
instruction of every block that is associated with a constant.
These dependency pairs can be seen in the dashed lines in
Figure 4. This essentially forces the problematic branches and
the PHI node to be on the same partition.

4) Loop Matching: Another difference in our implementa-
tion is how loops are handled. In the original implementation
only one loop was handled in each program. Since functions
can have an arbitrary number of loops arranged in an arbitrary
fashion, care must be taken to ensure the enqueue and

Fig. 4: PHI Node Example Control Flow Graph: Solid edges
represent the control flow while dashed edges represent the
fake dependencies

dequeue instructions are matched between loops properly.
For each enqueue/dequeue pair we look at the loop struc-
ture and find the lowest loop in the original function that
contains both the instruction whose result needs to be enqueued
in the master thread (defined) and the instruction that uses
the defined instruction in the slave thread (use). At this point
there are four cases shown in Figure 5. Figure 5 (d) shows
the basic case where the loops are well matched. Trivially, the
enqueue instruction is inserted directly after the defined
instruction while the dequeue instruction is inserted directly
before the use instruction.

For the case shown in Figure 5 (a), the enqueue in-
struction is inserted after the defined instruction while the
enqueue instruction is inserted at the end of all of the use
instruction’s loop preheader blocks. Similarly, for the case
in Figure 5 (b) the dequeue instruction is inserted directly
before the use instruction while the enqueue instruction is
inserted at the beginning of all of the defined instruction
loop’s exit blocks. In the case shown in Figure 5 (c) the
enqueue instruction is inserted in all of the exit blocks while
the dequeue instruction is inserted in all of the preheader
blocks. Note that this will create asymmetric numbers of
enqueue/dequeue instructions but will ensure that for any
given control flow each loop iteration will have matching
instruction numbers.

Furthermore, for every enqueue/dequeue pair a simple
flow algorithm is run on the lattice formed by the com-
mon dominator and post-dominator nodes of the use and
defined instructions to ensure that every enqueue is
matched with a corresponding dequeue. The flow algorithm
places dummy enqueue and dequeue instructions as re-
quired such that enqueue instructions are as close to the
dominator node as possible while dequeue instructions are
as close to the post-dominator node as possible.

d e f i n e d f o r () {
. . . d e f i n e d
f o r () { }

use . . .
} use

(a) use in a sub-loop of (b) define in a sub-loop of
defined use

f o r () {
d e f i n e d

}
d e f i n e d

. . .
usef o r () {

use
} (d) define and use in same

loop
(c) define and use in distinct
loops

Fig. 5: Enqueue/Dequeue Loop Matching Cases

Even after doing a flow adjustment this leads to some
edge cases where naively doing the above will break the code.
Whenever the preheader blocks have successors other than the
loop header or when the exit blocks have predecessors other
than blocks within the loop control flow is broken. In these
cases, special basic blocks not present in the original function
must be created between the block outside of the loop and the
blocks inside the loop. The dequeue/enqueue instruction
is then placed into this block and the branches are adjusted
accordingly.

Another case where doing the above will break the code
is if the use instruction is a PHI node and the dequeue
instruction would be placed directly before the PHI node. In
this case a new basic block not present in the original function
is created on the control path between the basic block the PHI
node is in and the basic block the defined instruction is in.
The dequeue instruction is then placed in this basic block.

5) Homogeneous Threads: The final major difference be-
tween the original DSWP implementation and our modified
implementation is that since the threads are not going to be run
on homogeneous cores, the thread partitioner creates uneven
partitions. It also ensures that all allocations and deallocations
across all of the function calls are on a single special thread
since a single thread must be in charge in order to keep the
heap in sync.

B. HW/SW Splitting

After the DSWP transformation is finished, the generated
threads must be split from the single LLVM IR file into HW
and SW components. This stage generates a different set of
stand-alone LLVM IR for each individual HW thread and SW
thread based off of the results from the DSWP partitioner.
Currently the special memory management thread is forced to
be in software to take advantage of the standard C library’s
malloc/free although it would be straightforward to implement
these two functions in hardware to allow hardware threads
to manage the memory and to relax the requirement that all
memory allocations must be on one thread. In practice, for

media applications there are very few memory allocations
inside the main computation loop which makes this limitation
less problematic.

The only other special requirement for the split is that
the master for the main function is always implemented
in the software so the processor drives the entire program
execution which is required for many SOC systems. After
these two threads have been assigned, the larger partition sizes
are prepared for the hardware translation while the smaller
partitions are put onto any remaining processor cores. Only
one thread for each processor is assigned unless the threads
can be demonstrated not to overlap in execution time so that
context switches are avoided.

Once the individual stand-alone LLVM IR files for each
thread are generated, they are passed into the LLVM C backend
for the software threads or into the LegUp Verilog backend for
the hardware threads.

C. LegUp Modifications

We modified LegUp in several areas to interface with the
Twill hardware runtime. First, the signals needed to interface
with Twill’s hardware runtime system were added to all
generated LegUp Verilog modules. The output signals for this
interface are driven by a priority decoder and multiplexer com-
bination that allows the signals to be sourced from whichever
sub-module is currently active in the generated LegUp state
machine.

All calls sites to the special functions of “Enqueue”, “De-
queue”, “Raise”, and “Lower” are replaced with the equivalent
Twill runtime hardware signaling. Furthermore, all load and
store instructions are replaced with the appropriate signaling
for interfacing with the Twill runtime hardware memory oper-
ations.

Several small modifications were made to how LegUp
handles multiplies, division, memory blocks, and PLL blocks
in order to use LegUp on Xilinx FPGAs rather than the
originally supported Altera FPGAs. Thus, even though Twill
has only been tested on Xilinx FPGAs the Twill tool-chain
does support programming for Altera based FPGAs.

D. Final Steps

Once the LLVM IR has been broken into standalone parts,
the threads designated for the processors are transformed into
C with the default LLVM C backend while the hardware
threads are transformed into Verilog with LegUp. At this point
the Xilinx tools for SOC systems are used to build a bitstream
for the FPGA.

V. RESULTS

All of the results presented were measured on a Xilinx
XUPV5 board with a Virtex 5 FPGA. The runtime system has
also been run on a Nexys 2 board with a Spartan 3E FPGA
and a ZedBoard with a Zync-7000 SOC. All of the tests were
run with only 8x32 sized queues and with one Microblaze
processor. The Microblaze processor is configured to minimize
its area according to the Xilinx tools to better simulate a
constrained embedded system. All hardware modules including
Microblaze are clocked at 100MHz. All HDL code for both

LegUp and Twill was synthesized with the “optimize for
performance” setting in the Xilinx ISE Project Navigator
version 14.6.

The CHStone benchmarks from [11] were used to compare
Twill to both the pure software solution and the pure hardware
solution. These benchmarks are relatively parallelizable and
also are fully supported by LegUp so a baseline could be
established. Note that DFAdd, DFDiv, DFMul, and DFSine
CHStone benchmarks all utilize 64-bit values and thus were
not included since Twill currently does not support larger than
32-bit values.

A. Twill DSWP Results

A summary of the number of hardware threads, queues and
semaphores created can be found in Table 6. Across all of the
benchmarks, the partitioner generated a workload split of about
75%-25% between the hardware threads and the software
thread. The MIPS benchmark and SHA benchmarks both had
all of their functions inlined and thus had no function calls to
generate new threads. In contrast, the Blowfish benchmark had
the largest number of functions that couldn’t be extracted into
their own thread due to the nature of its optimized call graph.

B. Area Analysis

The runtime system is quite small, using on average across
all of the tests 2-4% of the FPGA. Each HWInterface module
takes up 44 Look Up Tables (LUTs). An 8x32 queue uses 65
LUTs and one DSP block. Semaphores take up 70 LUTs with
100 primitives on the bus. The processor interface takes up 24
LUTs. The scheduler takes up 98 LUTs and two DSP blocks.
Each of the two bus arbiters utilize 15 LUTs apiece.

Table 7 shows the total number of FPGA blocks used by
Twill compared against the same benchmark purely translated
by LegUp. The Twill HWThreads column consists of only
the number of LUTs that the LegUp translated HW threads
take up. The Twill column includes the LUTs that the HW
threads use along with the runtime system queues, semaphores,
busses, and memory cache update system. Finally, the Twill +
Microblaze column includes everything from the prior columns
along with the LUTs used for the Microblaze soft processor.
As can be seen the pure hardware size is always smaller than
LegUp’s translation mainly due to less functionality existing
in the hardware. Adding in the overhead of the runtime
system puts Twill’s size on par with LegUp’s results which
is reasonable particularly if a hard processor is being used
rather than a soft one. On average, we see a modest 1.73 times
area decrease in the space required by the HW Threads and a

Benchmark # Queues # Semaphores #HWThreads
MIPS 12 0 1
ADPCM 328 0 5
AES 100 0 3
Blowfish 104 2 2
GSM 65 0 3
JPEG 576 3 6
MPEG-2 47 0 4
SHA 82 0 1

Fig. 6: DSWP Results

Benchmark LegUp Twill HWThreads Twill Twill + Microblaze
MIPS 2101 1830 2318 3752
ADPCM 16893 7182 28682 30116
AES 16488 8302 15338 16772
Blowfish 5872 3293 10493 11927
GSM 7397 5888 11983 13417
JPEG 31084 18443 56101 57535
MPEG-2 16295 8116 13467 14901
SHA 12956 7856 13352 14768

Fig. 7: Number of LUTs used in FPGA logic for pure HW
translation by LegUp and hybrid Twill implementation

slight increase of 1.35 area increase when including the Twill
runtime system.

Aside from LUTs, LegUp makes use of BRAM memory
blocks to pass arguments to functions and to handle arrays.
Very few BRAM blocks are used in Twill’s HW threads while
most benchmarks used 10-15 BRAM blocks with the pure
LegUp synthesis. Microblaze uses 16 BRAM blocks regardless
of what code is running which provides 32kB of instruction
and data memory for the Microblaze processor. In addition,
with the way that Twill’s memory management works almost
all of the HW thread data is stored in the processor’s data
memory segment instead of creating new blocks. This gives
all benchmarks comparable numbers of BRAM blocks between
LegUp’s pure HW translation and Twill’s hybrid translation.

C. Power Analysis

Figure 8 shows the power characteristics obtained through
Xilinx’s power simulation tools. Twill is compared to LegUp’s
pure HW translation normalized to the pure software imple-
mentation running on Microblaze. As expected, the pure HW
translation has the best power performance followed by Twill
and then the pure Microblaze implementation. This is because
Microblaze is really power inefficient compared to a direct
hardware implementation. With a hard processor it could be
expected that Twill’s power consumption would be less than
LegUp’s since it has to synthesize less hardware. On examining
why Microblaze is so inefficient it appears that the majority of
the power consumption comes from the multiple Phase-Lock
Loops (PLLs) used internally.

D. Performance Analysis

Figure 9 shows the performance characteristics of Twill
compared to LegUp’s pure HW translation normalized against
running the benchmark directly on the Microblaze processor.
In general Twill outperforms the pure hardware implementa-
tion since it can take advantage of TLP as well as ILP. Twill on
average achieves a 1.63 times speedup over the pure hardware
implementation on these benchmarks which are designed to
be easily translatable into pure hardware. Twill also vastly
outperforms a pure SW implementation on the Microblaze
processor as expected by on average 22.2 times. This speedup
comes from multiple sources: arithmetic operations such as
multiply and divide are much faster in hardware, LegUp will
schedule as many instructions as possible at the same time to
exploit ILP, and Twill will run instructions on the processor
at the same time as LegUp is executing its state machine in
order to exploit TLP.

Fig. 8: Power Consumption normalized to the pure Microblaze
SW implementation measured using Xilinx’s power simulation
tools

Twill manages to only match the pure hardware speedup
on the Blowfish benchmark. On closer inspection, it appears
that Twill chose poor partitions for the hardware and software
threads with each function call in the main loop transferring the
master control between the hardware and software. This causes
the function argument data to be sent back and forth several
times between the hardware and software threads before any
computation on the data is performed. Similarly, the return
value alternates back and forth before finally being used in the
next iteration of the loop. We modified the heuristic specifically
for this benchmark to prevent this behavior and found a 1.89
times speedup between the modified Twill implementation and
the pure hardware implementation. This modified heuristic
also decreased the number of queues from 92 to 34 which
shows that our original heuristic for partitioning instructions
into separate threads could use some improvement.

LegUp appears to do a poor job at synthesizing the
ADPCM benchmark compared to the other benchmarks. This
interpretation is consistent among the area, power, and perfor-
mance results. Some of the constructs in this program appear
to be quite difficult to synthesize which gives an advantage
to Twill when it puts these parts on the processor. This is the
only benchmark shown that utilizes division extensively which
might be one of the contributing factors since LegUp was set
up to use a simple serial divider for these tests.

E. Partitioning Heuristic Effects on Performance

We explored the effects of changing the targeted percentage
of instructions to be placed into the partitions. Figures 10
and 11 show the changes in performance and queue count
modifying where this split point lies. As can be seen most
clearly in Figure 10 there is a negative correlation between
the number of queues required and the performance of Twill
for a given benchmark. Furthermore, it seems that the even
splits between the HW/SW domains perform the worst. This is
probably because when the first half of most computations are
computed in SW and then the intermediate results are passed to
the HW in order to finish the computation the communication
costs skyrocket while the amount of TLP exploited remains
about the same.

Fig. 9: Performance Speedups normalized to the pure SW
implementation

Fig. 10: Mips benchmark performance with various targeted
partition split points

Ottoni et al. found very similar results when they were
experimenting with finding the optimal partitioning for a given
loop. While they were very focused on balancing the work
across threads in an optimal manner since they assumed
homogeneous threads, they found that the greedy heuristic
algorithm for partitioning is not particularly good at finding
the optimal partition but often works “well enough”. That
seems to be the case with Twill as well. While perhaps a more
complicated heuristic could be used to achieve better results,
Twill’s results show that its automatic thread extraction through
partitioning can result in a significant performance increase
without any programmer intervention.

F. Queue Size and Latency

One important result from the DSWP implementation de-
scribed Ottoni et al. [5] is that the algorithm was very resilient
to large queue latencies and short queue sizes regardless of the
benchmark run. This was achieved by never having the pipeline
“flushed” except for at the very end of program execution.
Our implementation of DSWP potentially flushes the pipeline
much more frequently on function boundaries and so a similar
experiment was conducted to determine the resiliency of Twill
to hardware queue latencies and sizes.

Figure 12 shows that while Twill’s resiliency depends
upon the application, overall Twill is still fairly resilient.
Compared to Ottoni et al.’s original implementation of the

Fig. 11: Blowfish benchmark performance with various tar-
geted partition split points

Fig. 12: Twill performance speedups normalized to runtime
with 2 cycle queue latency

DSWP algorithm, we have found a much bigger performance
degradation as the queue latencies are increased. On average
Ottoni et al. report a 10% slowdown with a queue latency
of 100 while we found a 27% performance decrease on
average with a queue latency of 128. As noted above, this
is probably because of how Twill flushes the pipeline fairly
frequently. In addition, the original paper only optimized a
single long-running loop out of the entire program and thus
any performance increase or slowdown effect will be magnified
in our full program implementation. Thus we believe that our
performance decrease is much closer to the original results
than the data suggests.

Figure 13 shows similar results for the queue sizes. Note
that for the JPEG benchmark the 32 queue size did not
fit on the FPGA. Ottoni et al. found that they received a
slowdown of 6% when reducing the queue length from 32 to
8. We found a comparable 9.7% slowdown when comparing
our queue lengths of 32 and 8. As mentioned above, our
slowdown/speedup results are probably exaggerated compared
to the original results; in addition, we used 32-bit queues while
the original paper used 8-bit queues.

VI. CONCLUSION

In this paper we presented a new hybrid SOC compiler
and corresponding run-time system called Twill. Twill takes
advantage of TLP and ILP in order to achieve a performance

Fig. 13: Twill performance speedups normalized to runtime
with length 8 queues

speedup of 1.63 times over LegUp’s pure hardware translation
even while reducing the amount of area needed for the re-
configurable logic. Twill achieves this by utilizing a modified
version of DSWP to extract long-running threads from the
input C source and then distributing these threads across the
hardware/software divide in a hybrid CPU-FPGA SOC.

A. Future Work

As mentioned in Section II, Twill currently supports only
a subset of the C language. Notably, recursion and function
pointers are currently not supported. There is no conceptual
reason preventing their implementation and we propose several
methods to deal with them. Recursion is only a problem in
hardware since there is no stack. The Twill DSWP implemen-
tation could be extended to support the concept of barriers.
At each barrier point all threads would come to the same
execution state such that all queues are empty. The recursive
function calls represented by backedges in the call graph would
then be protected by these barriers on either side with the
master function call always being in software. In this way, the
recursive functions or chain of functions could be parallelized
as normal and then only at the recursion point would the
pipeline be flushed and restarted. This would be slower than
the equivalent code written as a loop but should still give
reasonable speedups over the pure hardware implementation.

A similar system could be used to handle function pointers
as well. Everything up to the actual call instruction with the
function pointer could be parallelized. Anytime a function
pointer is assigned to a new function the code must be
changed to assign the master DSWP function. The call could
be protected with barriers with the software always having
master control of the called function. Furthermore, the way
Twill handles function calls would have to change slightly.
Instead of having the calling function call all of the slave
functions each master DSWP function would be responsible
to start the slave functions. This would increase the overhead
of function calls slightly but potentially could be limited with
points-to analysis to only the functions that could be called
through a function pointer.

Another shortcoming of Twill is that it does not support
larger than 32 bit data values to be passed inside of queues.
This means that 64 bit data types and structures that are
bigger than 32 bits are not supported currently by Twill. This

shortcoming is relatively easy to overcome; one option is to
enqueue/dequeue two or more values at a time and rebuild the
resulting data structure or to simply use multiple queues to
pass the data.

Another aspect of Twill that can be improved is the parti-
tioning heuristic. As mentioned in Section V-D, the partitioning
heuristic can have a huge impact on the final performance
of the program. More research is needed into how different
heuristics affect this performance and what the best heuristic
is for various program types.

Finally, Vachharajani et al. [12] extended the DSWP
algorithm to be speculative. This allowed them to greatly
increase the speedup gained by the original algorithm with
a little hardware support. Since Twill has a large control
over the hardware through the reconfigurable logic, it seems
relatively straightforward to extend Twill’s DSWP algorithm
to be speculative which should allow Twill to extract even
more long-running threads and increase the amount of TLP
parallelization that it can utilize.

REFERENCES

[1] E. Lubbers and M. Platzner, “ReconOS: An RTOS supporting Hard
and Software Threads,” in Field-Programmable Logic and Applications,
2007, pp. 441–446.

[2] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. L. An-
drews, “Hthreads: A Computational Model for Reconfigurable Devices,”
in Field-Programmable Logic and Applications, 2006, pp. 1–4.

[3] S. Mahadevan, V. S. Gopinath, R. Lysecky, J. Sprinkle, J. W. Rozenblit,
and M. W. Marcellin, “Hardware/Software Communication Middleware
for Data Adaptable Embedded Systems,” in Engineering of Computer-
Based Systems, 2011.

[4] G. N. thi Huong and S. W. Kim, “Support of cross calls between a
microprocessor and FPGA in CPU-FPGA coupling architecture,” in
Symposium on Parallel and Distributed Processing, 2010, pp. 1–8.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Ander-
son, S. D. Brown, and T. S. Czajkowski, “LegUp: high-level synthesis
for FPGA-based processor/accelerator systems,” in Symposium on Field
Programmable Gate Arrays, 2011, pp. 33–36.

[6] A. Canis, J. Choi, B. Fort, R. Lian, Q. Huang, N. Calagar, M. Gort,
J. Qin, M. Aldham, T. Czajkowski, S. Brown, and J. Anderson, “From
Software to Accelerators with LegUp High-Level Synthesis,” in Int’l
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), 2013.

[7] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: a high-level syn-
thesis framework for applying parallelizing compiler transformations,”
in VLSI Design, 2003, pp. 461–466.

[8] S. S. Huang, A. Hormati, D. F. Bacon, and R. M. Rabbah, “Liquid
Metal: Object-Oriented Programming Across the Hardware/Software
Boundary,” in European Conference on Object-Oriented Programming,
2008, pp. 76–103.

[9] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic Thread
Extraction with Decoupled Software Pipelining,” in International Sym-
posium on Microarchitecture, 2005, pp. 105–118.

[10] C. Lattner and V. S. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation,” in Symposium on Code
Generation and Optimization, 2004, pp. 75–88.

[11] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone:
A benchmark program suite for practical C-based high-level synthesis,”
in IEEE International Symposium on Circuits and Systems, 2008, pp.
1192–1195.

[12] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni,
and D. I. August, “Speculative Decoupled Software Pipelining,” in
International Conference on Parallel Architectures and Compilation
Techniques, 2007, pp. 49–59.

