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Abstract—Increasingly System-On-A-Chip platforms which 
incorporate both microprocessors and re-programmable logic 
are being utilized across several fields ranging from the auto-
motive industry to network infrastructure. Unfortunately, the 
development tools accompanying these products leave much to 
be desired, requiring knowledge of both traditional embedded 
systems languages like C and hardware description languages 
like Verilog. We propose to bridge this gap with Twill, a 
truly automatic hybrid compiler that can take advantage of 
the parallelism inherent in these platforms. Twill can extract 
long-running threads from single threaded C code and distribute 
these threads across the hardware and software domains to more 
fully utilize the asymmetric characteristics between processors 
and the embedded reconfigurable logic fabric. We show that 
Twill provides a significant performance increase on the CHStone 
benchmarks with an average 1.63 times increase over the pure 
hardware approach and an increase of 22.2 times on average 
over the pure software approach while in general decreasing the 
area required by the reconfigurable logic compared to the pure 
hardware approach. 

I. INTRODUCTION

Increasingly it is becoming common for Field Pro-
grammable Gate Array (FPGA) manufacturers to embed mi-
croprocessors within the FPGA fabric. This allows developers 
on such systems to pick and choose which parts of their appli-
cation require the speedups achievable by being implemented 
in hardware while maintaining a faster development/debug 
cycle for majority of the (nontime-critical) code. 

The development cycle for these kinds of hybrid systems 
has thus been writing assembly, C or C++ code for the 
microcontroller and HDL code for the surrounding FPGA logic 
framework and then manually specifying the interface between 
the two code sections. While this paradigm gives the developer 
flexibility and control, the complexity of the HW/SW interface 
leads to many hard-to-debug errors in all but the simplest of 
systems. In turn this leads to longer development cycles and 
requires more experienced, specialized developers which often 
pushes many potential products to use less efficient solutions. 

A. Related Works

Several tools have been developed recently to assist with
this problem. Historically there have been two different ap-
proaches. One is to provide a run-time system of synchro-
nization and communication primitives to the developer so 
as to support inter processor-FPGA fabric communications in 
an abstract manner. For example, ReconOS [1] and hThreads 

[2] implement a real-time operating system (RTOS) where
OS primitives such as queues, semaphores, and the scheduler
are accessible in a uniform manner from both HW and SW
“threads”. In contrast, works by [3] and [4] provide uniform
APIs only for calling “functions” defined either in HW or in
SW from either the FPGA logic or from the microprocessor.
All of these run-time systems abstract away some or all of the
communication between the HW and SW but still require the
developer to write in both C and HDL and to explicitly set up
any parallelism.

The other approach is to implement or modify a compiler 
that both partitions the input code into HW/SW modules 
and then generates the communication and synchronization 
channels to tie everything together. Examples of these include 
LegUp [5,6], Spark [7], and Liquid Metal [8]. Liquid Metal 
introduces a new Java-based object-oriented language that 
allows the programmer to interact with object instances across 
the HW/SW divide but requires the programmer to keep track 
of which objects are where. 

LegUp and Spark both implement a compiler/translator 
for traditional C programs. LegUp was originally only an 
HDL translator but has recently added limited support for 
calling functions across the HW/SW divide. They have a 
basic automatic heuristic but encourage the programmer to 
annotate each function with whether that function should be 
implemented in HW or in SW. LegUp does not do any sort of 
Thread-Level Parallelism (TLP) but does implement a modulo-
scheduler for Instruction-Level Parallelism (ILP). Also, LegUp 
does not provide any primitives other than the function call for 
synchronization and communication which makes it extremely 
difficult for the programmer to implement truly parallel code. 

In contrast, Spark started with a similar system to LegUp 
and then focused on implementing code optimizations in order 
to achieve speedup. With complete control over the hardware, 
they were able to implement several different speculative-based 
optimizations with very little overhead. However, they focused 
almost entirely on ILP parallelization techniques at the expense 
of TLP parallelization. 

B. Twill

Twill is designed as a compiler to take single-threaded C
code as input, extract long running threads from that C code, 
transform some of the threads into hardware, and then provide 
a runtime communication system for a hybrid CPU/FPGA 
System-On-A-Chip. 
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Fig. 1: Twill Overview 

In this way Twill is able to take advantage of both ILP 
and TLP that may be present in the original source. Twill 
builds upon a great deal of previous work: Twill uses a 
modified version of Distributed Software Pipelining (DSWP) 
as first presented in [9] in order to find and extract long 
running threads. Twill relies upon LegUp for finding ILP in 
the extracted threads and for translating those threads into 
HDL. Finally, it uses a custom runtime system/RTOS heavily 
influenced by the hThreads project [2]. 

The major contribution of Twill is to integrate algorithms 
for ILP and TLP parallelism into an environment suitable 
for small, low-powered embedded systems. It combines the 
strengths of the hThreads/ReconOS systems with the abstrac-
tion provided by LegUp and Spark while exploiting a higher 
degree of the parallelism inherent in the input program. Thus, it 
is able to give very large performance speedups for these kinds 
of hybrid embedded systems without requiring the programmer 
to have any knowledge of HDL. 

The remainder of our paper is organized as follows: 

An overview of Twill is presented in Section II. Section 
III details the runtime architecture of Twill while Twill’s 
compiler implementation is described in IV. In Section V we 
discuss Twill’s performance results and finally in Section VI 
we conclude. 

II. OVERVIEW OF TWILL 

Twill conceptually consists of three different parts: the 
compiler, the software runtime system, and the hardware 
runtime system. An overview of how these fit together can 
be seen in Figure 1. 

1) Twill Compiler: The Twill compiler is described in 
detail in Section IV. Internally it is implemented as multiple 
LLVM [10] transform passes including a custom version of the 
DSWP algorithm [9] and then uses LegUp [5] to translate the 
hardware portions into Verilog. It also sets parameters for the 
statically defined primitives in both the software and hardware 
runtime systems. 

While conceptually the Twill compiler could be ANSI 
C compliant, it currently has the same limitations on the 

input C files as LegUp: no recursive functions or function 
pointers. While this simplifies our implementation, Section 
VI-A expands on how Twill could be extended to support these 
two constructs. 

2) Twill Software Runtime: The Twill software runtime is 
written in C and assembly. It contains an API for interfacing 
the processors with the hardware runtime. The Twill compiler 
generates C code for the processors with calls to these APIs in 
order to perform initialization, thread management, synchro-
nization, and communication. It is described in more detail in 
Section III. 

3) Twill Hardware Runtime: The Twill hardware runtime 
written in Verilog is based heavily off of the hThreads project 
[2]. It provides synchronization and communication primitives 
for the software and hardware threads. The generated Verilog 
modules from the Twill compiler include “calls” to the various 
hardware primitives to provide synchronization and communi-
cation with the other Verilog modules and the software threads 
running on the processors. Section III describes in depth the 
implementation details of the Twill hardware runtime. 

III. RUN-TIME ARCHITECTURE 

Twill’s runtime system is heavily influenced by the 
hThreads project [2]. The runtime system has several primi-
tives: semaphores, queues, software threads, hardware threads, 
and a simple scheduler. All of the primitives are statically con-
figured at compile time with the exception of software threads 
which can be dynamically created. Semaphores, queues, the 
scheduler, and the hardware threads are all implemented in the 
FPGA logic in Verilog. Hardware threads are able to interact 
with semaphores, queues, and the processor’s memory without 
interrupting the processor while software threads have minimal 
API wrappers to interact with the hardware primitives. The 
entire architecture overview is shown in Figure 2. 

The following subsections discuss the individual primitives 
after describing the bus addressing system. 

A. Bus Architecture 

There are two main communication busses in Twill’s run-
time system that tie all of the primitives together. The first bus, 
the Module Bus, is the main communications link between all 
of the primitives used for passing messages. The second bus, 

Fig. 2: Twill Run-Time Hardware Architecture Overview 



the Memory Bus, is tied to each of the hardware threads and 
the processor interface module and gives the hardware threads 
access to the processor’s memory space. The two busses are 
hierarchical with the Generate blocks shown in Figure 2 used 
to decrease the combinatorial logic at each stage allowing for 
higher clock frequencies. 

Both busses work on a message passing model. Each 
primitive is assigned a unique address for the busses. When a 
primitive needs to send a message, it signals to the bus arbiter 
and for each clock cycle the bus arbiter will specify which 
primitive has control over the bus along with that primitive’s 
bus message. This is designed in such a way that if there is 
no contention for the bus among the primitives, a primitive’s 
signal will be acknowledged and its message available on the 
very next clock cycle. Thus, the bus has a latency of one clock 
cycle and a throughput of one message per clock cycle. 

The bus arbiter is implemented as a modified priority 
decoder which always gives priority to the processor if it 
is signaling and then gives priority to any primitive sending 
a message to the processor and finally gives priority to the 
primitive who has been signaling for the longest number of 
clock cycles. This is because the processor interface with 
hardware tends to be the critical path since the processor 
is slower at executing instructions. Furthermore, since the 
processor generally takes longer to perform a task than the pure 
hardware threads, it tends to signal the bus less frequently and 
when it does the system is designed such that the processor’s 
pipeline should not be stalled at all waiting for the hardware 
primitive to respond. 

A message on the main message bus consists of the 
destination address, the 3-bit message operation, and a 32-bit 
data field. The destination address is variably sized depending 
on the number of primitives. There are five operations: give, 
take, start, stop, and ack. Most primitives only accept 
a subset of the operations and the effect of the operations 
vary depending on what type of primitive is located at the 
destination address. The primitive specific effects from these 
operations are described in the following sections. 

The memory bus uses the same model and timing char-
acteristics of the main bus but is used solely to allow the 
hardware threads to read and write processor memory. A write 
takes one cycle while a read takes two cycles assuming no bus 
contention. One hardware thread may read/write to this bus at 
once completely asynchronously from what the processor is 
doing. Writes to memory from either the processor or from 
the hardware threads take two cycles to appear in the other 
domain. 

B. Semaphores 

The semaphore primitives are basic counting semaphores. 
Each may have a different max count and starting counter. 
A give message to the semaphore will raise the semaphore 
while a take message corresponds to a lower. The data part 
of the message specifies how many times to raise or lower 
the semaphore. The semaphore will respond to the calling 
primitive’s address with an ack message when that primitive 
has successfully taken the semaphore. When the semaphore is 
not locked the ack message will occur immediately on the 
next clock assuming no bus contention. If the semaphore’s 

counter is already at zero then the semaphore will wait until 
a give message is received. The semaphore will then send 
ack messages first to the processor and then to the primitive 
that has been waiting the longest. In general, it is safe to send 
take messages to the semaphore from any primitive although 
it is not safe to send multiple take messages from the same 
primitive without receiving a corresponding ack message in 
between each message. 

With the above architecture, the sending thread will be 
blocked for one cycle for a raise operation and a minimum 
of two cycles for a lower operation. 

C. Queues 

The queue primitives are first-in-first-out (FIFO) queues. 
Each may have a different max length and be either 1 bit, 8 
bits, 16 bits, or 32 bits wide. The queues are asynchronous 
but assume that a single primitive is enqueueing data and 
a (potentially different) single primitive is dequeueing data. 
Thus a semaphore or other synchronization method between 
primitives must be used if more than one primitive is en-
queueing the data at once or more than one primitive is 
attempting to dequeue the data at once. A give message to 
the queue enqueues the message’s data field to the queue. An 
ack message will subsequently be sent back to the sender. A 
take message will cause the queue to send an ack message 
back to the sender with the dequeued value. Internally, the 
queues are implemented as a circular buffer with one more 
data element than the queue can hold. On enqueue operations, 
an ack message will be sent back to the sender immediately 
as long as the final data slot in the queue is empty. When 
the size+1 data slot is filled, an ack message will not be sent 
until a dequeue operation is performed. In this way the sending 
primitive is stalled if the queue is full. Similarly, if the queue 
is empty then the queue will only send the ack message for 
a dequeue operation after a give message is received. 

The synchronization overhead of enqueueing or dequeueing 
from a queue is thus a minimum of two cycles assuming no 
bus contention. 

D. Hardware Threads 

Hardware threads are user written or auto-generated HDL 
code that perform the desired computations. They have a sim-
ple interface to the HWInterface modules which deal with the 
specifics of communicating over the busses. For the hardware 
thread to perform any action, it sets the specified function 
code and the desired target along with any data parameters 
and then sends a pulse on a signal wire to the HWInterface. 
The HWInterface module then will latch in all the data and 
make the appropriate call. Note that the desired function code 
is just the equivalent to an enum where each function call 
has its own entry. The function code does not correspond 
to bus operation but uniquely specifies whether to perform 
an enqueue, dequeue, raise, lower, load, store, etc. operation. 
Furthermore, the desired target is not the same as the address 
but rather an index into a virtual array of the OS primitive 
implied by the function code. For example, passing zero as the 
desired resource to a raise call will raise the first semaphore 
while passing zero as the desired resource to an enqueue call 
will enqueue to the first queue. Multiple calls to different 



primitives may be made at once; the only constraint is that 
only one call may be initiated per cycle. 

Each call will “return” to the hardware thread by the 
hardware interface specifying the code and resource on the 
return wires along with any data that might have been returned 
on the incoming data wires. In this way one function call 
per cycle may return to the hardware thread. The operations 
that “return” immediately on the next clock cycle assuming 
no bus contention are memory store, semaphore raise, start 
thread, and stop thread. Operations that take multiple cycles 
are memory load, semaphore lower, enqueue, and dequeue. 
The HWInterface can also signal to the hardware thread that 
another thread started or stopped it asynchronously to any 
pending requests. 

The HWInterface module connecting the HWThread mod-
ules to the Generate HW Threads block in Figure 2 is 
responsible for managing all of the simultaneous requests and 
their response states. It is designed in such a way as to not 
add latency between the hardware thread’s operation request 
and sending messages out on the bus and thus the hardware 
thread has the minimum cycles listed in the other sections of 
synchronization overhead. 

There are several special system hardware threads that 
handle some system-related tasks. The first is the I/O manager 
which is connected to the serial port and all of the external 
interrupt pins, reset signals, LED’s, and switches. Other threads 
can send messages to this thread to interact with the I/O ports. 
Interrupts are forwarded with one clock cycle latency to the 
appropriate handler either in hardware or on the processor. 

The second special system hardware thread is the timing 
thread which is used to time all of the cycle counts referenced 
in Section V. The final special hardware thread is the sched-
uler. The scheduler is a simple round-robin scheduler for the 
software threads which can handle threads in both blocked 
and waiting states. Every period it will interrupt the processor 
with the new SW thread ID to switch to. It also snoops on the 
message bus looking for the active thread to become blocked 
in order to switch out threads. Since all of this logic is in 
hardware, the only critical-path cost on the processor is a single 
context-switch unlike traditional schedulers which require two 
context switches in addition to running the actual scheduling 
algorithm. 

E. Processor Interface 

The processor interface provides the method of connecting 
a variable number of Microblaze processors to the two busses. 
It is split into two parts: Verilog code that creates the actual 
connections and a C library that runs on each of the processors. 

The C library provides function APIs such as Enqueue(), 
RaiseSemaphore(), and StartThread(). It also provides an in-
terrupt controller that interfaces with the I/O hardware thread 
to pass interrupt sources to the proper SW thread’s interrupt 
routine. 

The communication between the C library and the hard-
ware module is implemented using a single Microblaze Stream. 
Streams are built into the Microblaze processor and act very 
similarly to the hardware queues described above. There are 
two instructions in the Microblaze ISA, put and get, that 

Fig. 3: Twill Compiler Tool Flow 

each take two cycles for their data to be transfered into or 
out of the FPGA logic. When the streams are full or empty 
they will stall the processor if the corresponding put or get 
instruction is executed. It takes two put/get instructions to 
pass a message to or from the processor interface. Thus since 
the processor interface is designed to mask as much of the 
hardware overhead as possible it takes five cycles for the 
processor to complete any operation with any of the hardware 
primitives. Because of the way the message bus priority works, 
the worst latency possible with processor messages is 4 + n 
cycles where n is the number of processors attached to the 
system. 

The hardware processor interface module has only one 
address on the main bus no matter how many processors there 
are. It internally queues and interleaves the processor opera-
tions, simulating any multiple requests to the same primitive 
from the processors. This was done to reduce the already 
large overhead of having the processor communicate with the 
hardware primitives. 

The processor interface also manages the memory between 
the processors and the hardware threads. Each processor has 
its own copy of the memory and the hardware threads share 
another copy. A simple write-update coherency scheme is used 
simply because of the small size of the memories used in 
the project. If the memories were larger a more sophisticated 
coherency scheme could be used if needed with little adverse 
effect on the overall architecture. 

IV. COMPILER ARCHITECTURE 

The runtime system was designed in order to optimize the 
DSWP algorithm [9] constraints and to simplify the Twill 
compiler pass. The compiler is a multi-stage patchwork of 
other work and custom compiler passes as seen in Figure 3. 

The first step is the standard LLVM [10] tool-flow. LLVM 
2.9 is used in order to have the LLVM IR directly compatible 
with the LegUp toolchain. After this a custom LLVM trans-
formation pass which implements a modified version of the 
DSWP algorithm is run. 



A. DSWP 

The DSWP algorithm [9] conceptually pipelines loops by 
building a complete Program Dependence Graph (PDG) of the 
loop and then partitioning it into separate threads such that data 
is forwarded in only one direction between the threads. This 
technique was chosen as the main source of TLP parallelism 
because the original authors discovered that it became more 
efficient as the simplicity of the processing cores increased 
and because the required low-level and low synchronization-
cost queues were relatively easy to create with control over 
the hardware. 

There are several algorithmic differences between our 
implementation and the implementation described in Ottoni 
et al.’s original paper [9] that we discuss below. 

1) Partitioning: Ottoni et al.’s implementation of DSWP 
used a very simple greedy heuristic where they essentially 
sorted each Strongly-Connected Component (SCC) in the PDG 
based on the sum of the estimated computation times for all 
the instructions in each SCC and then filled each partition 
from the list taking the longest running SCCs first. Note that 
not all SCCs are available in the list but only those whose 
dependencies have already been assigned a partition in order 
to ensure a pipeline between the threads would form. 

In Twill, we assign two different weights to each SCC. 
The hardware weight consists of the sum of the estimated 
cycle·area products that would result by translating each in-
struction into hardware. The software weight consists of the 
estimated number of cycles required to execute the instruction 
on a Microblaze processor. A sorted list of SCCs is maintained 
very similarly to the original algorithm where only SCCs with 
no dependencies are kept on the list. Whenever a new partition 
is started, the total hardware weight is compared to the total 
software weight of each SCC currently on the list. The new 
partition is then designated as a hardware or software thread 
accordingly and filled with the smallest SCCs on the list. A 
targeted percentage passed by the developer for the division 
of work between the hardware and software domains is used 
to decide when to start a new partition. 

2) Function Calls: Probably the biggest difference is that 
our implementation of DSWP operates on the function level 
rather than on the loop-level. While pipelining code outside 
of loops is of questionable benefit, it allows us to imple-
ment a key extension to the original DSWP algorithm. The 
original algorithm treated function calls as a single large-
latency instruction and thus would not pipeline any functions 
outside of the function containing the manually designated 
loop to pipeline. By extending the pipeline to the function 
level, our implementation treats function calls as zero latency 
instructions and then sets up a special dependence so that a 
sub-tree of threads will pipeline the called function. This sub-
tree of threads will reuse the existing threads in the current 
pipelining when there is no recursion involved. 

Therefore in our implementation, each function contains a 
“master” thread and zero or more “slave” threads. The thread 
that the call instruction is partitioned into becomes the master 
thread for the new function and is responsible for passing 
the arguments and receiving the returned result value. The 
other threads call the remaining slave versions of the function. 
All of the slave threads for that function do not accept any 

arguments for the function and instead will create standard 
enqueue/dequeue instruction pairs with the master thread 
only if the partitioner gives instructions to the slave thread 
requiring those arguments. 

Thus when a function call is found, the pipeline is rebuilt 
for that function based off of the thread with the call instruction 
and then the old pipeline resumes once the function call has 
finished. This does create situations where data must flow 
against the direction of the original pipeline which puts the 
queue latency on the critical path of the execution. It also 
potentially causes multiple versions of the same function to 
have to be translated into each hardware thread which increases 
the FPGA area required. To solve both problems, we move 
each function’s master and slave threads into separate threads 
as long as the various call-sites to each function cannot execute 
at the same time. Within a single function, this is determined 
by a simple conservative heuristic which requires all call sites 
to have an unbroken chain of dependencies between them in 
order to be considered non-overlapping. Semaphores are used 
to ensure the function is indeed non-overlapping if the function 
has call-sites in multiple functions. In practice most of the time 
functions that do have overlapping calls tend to be simple 
functions that the partitioner will not partition anyways and 
thus the above two problems are avoided a majority of the 
time. 

Furthermore, this method of resolving function calls poten-
tially switches which partitions of a function are placed into 
software and hardware. Thus the function calls are resolved as 
the last step in the custom DSWP algorithm and the entire 
algorithm is iterated upon with different partitioning target 
percentage and roles for the partitions of the particular function 
that is called. 

3) Conditional Control Dependencies: Since LLVM IR is 
in Single-Static-Assignment (SSA) form, some of the addi-
tional artificial conditional control dependencies introduced in 
the original paper are not implemented. The SSA form and its 
PHI nodes ensures that these scenarios cannot occur. However, 
there is an additional problem that LLVM’s implementation 
of PHI nodes introduces. In LLVM, the PHI nodes may 
assign a constant based off of the control flow entering the 
block. An example of this problem is illustrated in Figure 4. 
The problem occurs when the partition that contains the PHI 
node does not have any instructions in one of the preceding 
basic blocks: BB2, BB3, or BB4. In this case according to 
[9] those basic blocks would not be present in the partition 
and thus the resulting threads will not be correct. Intuitively, 
the PHI node is control dependent on the branches in BB1 
and BB3 but because of how LLVM handles PHI nodes it 
is not possible to forward the result of the branches using 
enqueue/dequeue instructions. Instead, we create a pair 
of fake dependencies between the PHI node and the branch 
instruction of every block that is associated with a constant. 
These dependency pairs can be seen in the dashed lines in 
Figure 4. This essentially forces the problematic branches and 
the PHI node to be on the same partition. 

4) Loop Matching: Another difference in our implementa-
tion is how loops are handled. In the original implementation 
only one loop was handled in each program. Since functions 
can have an arbitrary number of loops arranged in an arbitrary 
fashion, care must be taken to ensure the enqueue and 



Fig. 4: PHI Node Example Control Flow Graph: Solid edges 
represent the control flow while dashed edges represent the 
fake dependencies 

dequeue instructions are matched between loops properly. 
For each enqueue/dequeue pair we look at the loop struc-
ture and find the lowest loop in the original function that 
contains both the instruction whose result needs to be enqueued 
in the master thread (defined) and the instruction that uses 
the defined instruction in the slave thread (use). At this point 
there are four cases shown in Figure 5. Figure 5 (d) shows 
the basic case where the loops are well matched. Trivially, the 
enqueue instruction is inserted directly after the defined 
instruction while the dequeue instruction is inserted directly 
before the use instruction. 

For the case shown in Figure 5 (a), the enqueue in-
struction is inserted after the defined instruction while the 
enqueue instruction is inserted at the end of all of the use 
instruction’s loop preheader blocks. Similarly, for the case 
in Figure 5 (b) the dequeue instruction is inserted directly 
before the use instruction while the enqueue instruction is 
inserted at the beginning of all of the defined instruction 
loop’s exit blocks. In the case shown in Figure 5 (c) the 
enqueue instruction is inserted in all of the exit blocks while 
the dequeue instruction is inserted in all of the preheader 
blocks. Note that this will create asymmetric numbers of 
enqueue/dequeue instructions but will ensure that for any 
given control flow each loop iteration will have matching 
instruction numbers. 

Furthermore, for every enqueue/dequeue pair a simple 
flow algorithm is run on the lattice formed by the com-
mon dominator and post-dominator nodes of the use and 
defined instructions to ensure that every enqueue is 
matched with a corresponding dequeue. The flow algorithm 
places dummy enqueue and dequeue instructions as re-
quired such that enqueue instructions are as close to the 
dominator node as possible while dequeue instructions are 
as close to the post-dominator node as possible. 

d e f i n e d  f o r  ( )  {
. . .  d e f i n e d  
f o r  ( )  { }

use  . . .  
} use  

(a) use in a sub-loop of (b) define in a sub-loop of 
defined use 

f o r  ( )  {
d e f i n e d  

}
d e f i n e d  

. . .  
usef o r  ( )  {

use  
} (d) define and use in same 

loop 
(c) define and use in distinct 
loops 

Fig. 5: Enqueue/Dequeue Loop Matching Cases 

Even after doing a flow adjustment this leads to some 
edge cases where naively doing the above will break the code. 
Whenever the preheader blocks have successors other than the 
loop header or when the exit blocks have predecessors other 
than blocks within the loop control flow is broken. In these 
cases, special basic blocks not present in the original function 
must be created between the block outside of the loop and the 
blocks inside the loop. The dequeue/enqueue instruction 
is then placed into this block and the branches are adjusted 
accordingly. 

Another case where doing the above will break the code 
is if the use instruction is a PHI node and the dequeue 
instruction would be placed directly before the PHI node. In 
this case a new basic block not present in the original function 
is created on the control path between the basic block the PHI 
node is in and the basic block the defined instruction is in. 
The dequeue instruction is then placed in this basic block. 

5) Homogeneous Threads: The final major difference be-
tween the original DSWP implementation and our modified 
implementation is that since the threads are not going to be run 
on homogeneous cores, the thread partitioner creates uneven 
partitions. It also ensures that all allocations and deallocations 
across all of the function calls are on a single special thread 
since a single thread must be in charge in order to keep the 
heap in sync. 

B. HW/SW Splitting 

After the DSWP transformation is finished, the generated 
threads must be split from the single LLVM IR file into HW 
and SW components. This stage generates a different set of 
stand-alone LLVM IR for each individual HW thread and SW 
thread based off of the results from the DSWP partitioner. 
Currently the special memory management thread is forced to 
be in software to take advantage of the standard C library’s 
malloc/free although it would be straightforward to implement 
these two functions in hardware to allow hardware threads 
to manage the memory and to relax the requirement that all 
memory allocations must be on one thread. In practice, for 



media applications there are very few memory allocations 
inside the main computation loop which makes this limitation 
less problematic. 

The only other special requirement for the split is that 
the master for the main function is always implemented 
in the software so the processor drives the entire program 
execution which is required for many SOC systems. After 
these two threads have been assigned, the larger partition sizes 
are prepared for the hardware translation while the smaller 
partitions are put onto any remaining processor cores. Only 
one thread for each processor is assigned unless the threads 
can be demonstrated not to overlap in execution time so that 
context switches are avoided. 

Once the individual stand-alone LLVM IR files for each 
thread are generated, they are passed into the LLVM C backend 
for the software threads or into the LegUp Verilog backend for 
the hardware threads. 

C. LegUp Modifications 

We modified LegUp in several areas to interface with the 
Twill hardware runtime. First, the signals needed to interface 
with Twill’s hardware runtime system were added to all 
generated LegUp Verilog modules. The output signals for this 
interface are driven by a priority decoder and multiplexer com-
bination that allows the signals to be sourced from whichever 
sub-module is currently active in the generated LegUp state 
machine. 

All calls sites to the special functions of “Enqueue”, “De-
queue”, “Raise”, and “Lower” are replaced with the equivalent 
Twill runtime hardware signaling. Furthermore, all load and 
store instructions are replaced with the appropriate signaling 
for interfacing with the Twill runtime hardware memory oper-
ations. 

Several small modifications were made to how LegUp 
handles multiplies, division, memory blocks, and PLL blocks 
in order to use LegUp on Xilinx FPGAs rather than the 
originally supported Altera FPGAs. Thus, even though Twill 
has only been tested on Xilinx FPGAs the Twill tool-chain 
does support programming for Altera based FPGAs. 

D. Final Steps 

Once the LLVM IR has been broken into standalone parts, 
the threads designated for the processors are transformed into 
C with the default LLVM C backend while the hardware 
threads are transformed into Verilog with LegUp. At this point 
the Xilinx tools for SOC systems are used to build a bitstream 
for the FPGA. 

V. RESULTS 

All of the results presented were measured on a Xilinx 
XUPV5 board with a Virtex 5 FPGA. The runtime system has 
also been run on a Nexys 2 board with a Spartan 3E FPGA 
and a ZedBoard with a Zync-7000 SOC. All of the tests were 
run with only 8x32 sized queues and with one Microblaze 
processor. The Microblaze processor is configured to minimize 
its area according to the Xilinx tools to better simulate a 
constrained embedded system. All hardware modules including 
Microblaze are clocked at 100MHz. All HDL code for both 

LegUp and Twill was synthesized with the “optimize for 
performance” setting in the Xilinx ISE Project Navigator 
version 14.6. 

The CHStone benchmarks from [11] were used to compare 
Twill to both the pure software solution and the pure hardware 
solution. These benchmarks are relatively parallelizable and 
also are fully supported by LegUp so a baseline could be 
established. Note that DFAdd, DFDiv, DFMul, and DFSine 
CHStone benchmarks all utilize 64-bit values and thus were 
not included since Twill currently does not support larger than 
32-bit values. 

A. Twill DSWP Results 

A summary of the number of hardware threads, queues and 
semaphores created can be found in Table 6. Across all of the 
benchmarks, the partitioner generated a workload split of about 
75%-25% between the hardware threads and the software 
thread. The MIPS benchmark and SHA benchmarks both had 
all of their functions inlined and thus had no function calls to 
generate new threads. In contrast, the Blowfish benchmark had 
the largest number of functions that couldn’t be extracted into 
their own thread due to the nature of its optimized call graph. 

B. Area Analysis 

The runtime system is quite small, using on average across 
all of the tests 2-4% of the FPGA. Each HWInterface module 
takes up 44 Look Up Tables (LUTs). An 8x32 queue uses 65 
LUTs and one DSP block. Semaphores take up 70 LUTs with 
100 primitives on the bus. The processor interface takes up 24 
LUTs. The scheduler takes up 98 LUTs and two DSP blocks. 
Each of the two bus arbiters utilize 15 LUTs apiece. 

Table 7 shows the total number of FPGA blocks used by 
Twill compared against the same benchmark purely translated 
by LegUp. The Twill HWThreads column consists of only 
the number of LUTs that the LegUp translated HW threads 
take up. The Twill column includes the LUTs that the HW 
threads use along with the runtime system queues, semaphores, 
busses, and memory cache update system. Finally, the Twill + 
Microblaze column includes everything from the prior columns 
along with the LUTs used for the Microblaze soft processor. 
As can be seen the pure hardware size is always smaller than 
LegUp’s translation mainly due to less functionality existing 
in the hardware. Adding in the overhead of the runtime 
system puts Twill’s size on par with LegUp’s results which 
is reasonable particularly if a hard processor is being used 
rather than a soft one. On average, we see a modest 1.73 times 
area decrease in the space required by the HW Threads and a 

Benchmark # Queues # Semaphores #HWThreads 
MIPS 12 0 1 
ADPCM 328 0 5 
AES 100 0 3 
Blowfish 104 2 2 
GSM 65 0 3 
JPEG 576 3 6 
MPEG-2 47 0 4 
SHA 82 0 1 

Fig. 6: DSWP Results 



Benchmark LegUp Twill HWThreads Twill Twill + Microblaze 
MIPS 2101 1830 2318 3752 
ADPCM 16893 7182 28682 30116 
AES 16488 8302 15338 16772 
Blowfish 5872 3293 10493 11927 
GSM 7397 5888 11983 13417 
JPEG 31084 18443 56101 57535 
MPEG-2 16295 8116 13467 14901 
SHA 12956 7856 13352 14768 

Fig. 7: Number of LUTs used in FPGA logic for pure HW 
translation by LegUp and hybrid Twill implementation 

slight increase of 1.35 area increase when including the Twill 
runtime system. 

Aside from LUTs, LegUp makes use of BRAM memory 
blocks to pass arguments to functions and to handle arrays. 
Very few BRAM blocks are used in Twill’s HW threads while 
most benchmarks used 10-15 BRAM blocks with the pure 
LegUp synthesis. Microblaze uses 16 BRAM blocks regardless 
of what code is running which provides 32kB of instruction 
and data memory for the Microblaze processor. In addition, 
with the way that Twill’s memory management works almost 
all of the HW thread data is stored in the processor’s data 
memory segment instead of creating new blocks. This gives 
all benchmarks comparable numbers of BRAM blocks between 
LegUp’s pure HW translation and Twill’s hybrid translation. 

C. Power Analysis 

Figure 8 shows the power characteristics obtained through 
Xilinx’s power simulation tools. Twill is compared to LegUp’s 
pure HW translation normalized to the pure software imple-
mentation running on Microblaze. As expected, the pure HW 
translation has the best power performance followed by Twill 
and then the pure Microblaze implementation. This is because 
Microblaze is really power inefficient compared to a direct 
hardware implementation. With a hard processor it could be 
expected that Twill’s power consumption would be less than 
LegUp’s since it has to synthesize less hardware. On examining 
why Microblaze is so inefficient it appears that the majority of 
the power consumption comes from the multiple Phase-Lock 
Loops (PLLs) used internally. 

D. Performance Analysis 

Figure 9 shows the performance characteristics of Twill 
compared to LegUp’s pure HW translation normalized against 
running the benchmark directly on the Microblaze processor. 
In general Twill outperforms the pure hardware implementa-
tion since it can take advantage of TLP as well as ILP. Twill on 
average achieves a 1.63 times speedup over the pure hardware 
implementation on these benchmarks which are designed to 
be easily translatable into pure hardware. Twill also vastly 
outperforms a pure SW implementation on the Microblaze 
processor as expected by on average 22.2 times. This speedup 
comes from multiple sources: arithmetic operations such as 
multiply and divide are much faster in hardware, LegUp will 
schedule as many instructions as possible at the same time to 
exploit ILP, and Twill will run instructions on the processor 
at the same time as LegUp is executing its state machine in 
order to exploit TLP. 

Fig. 8: Power Consumption normalized to the pure Microblaze 
SW implementation measured using Xilinx’s power simulation 
tools 

Twill manages to only match the pure hardware speedup 
on the Blowfish benchmark. On closer inspection, it appears 
that Twill chose poor partitions for the hardware and software 
threads with each function call in the main loop transferring the 
master control between the hardware and software. This causes 
the function argument data to be sent back and forth several 
times between the hardware and software threads before any 
computation on the data is performed. Similarly, the return 
value alternates back and forth before finally being used in the 
next iteration of the loop. We modified the heuristic specifically 
for this benchmark to prevent this behavior and found a 1.89 
times speedup between the modified Twill implementation and 
the pure hardware implementation. This modified heuristic 
also decreased the number of queues from 92 to 34 which 
shows that our original heuristic for partitioning instructions 
into separate threads could use some improvement. 

LegUp appears to do a poor job at synthesizing the 
ADPCM benchmark compared to the other benchmarks. This 
interpretation is consistent among the area, power, and perfor-
mance results. Some of the constructs in this program appear 
to be quite difficult to synthesize which gives an advantage 
to Twill when it puts these parts on the processor. This is the 
only benchmark shown that utilizes division extensively which 
might be one of the contributing factors since LegUp was set 
up to use a simple serial divider for these tests. 

E. Partitioning Heuristic Effects on Performance 

We explored the effects of changing the targeted percentage 
of instructions to be placed into the partitions. Figures 10 
and 11 show the changes in performance and queue count 
modifying where this split point lies. As can be seen most 
clearly in Figure 10 there is a negative correlation between 
the number of queues required and the performance of Twill 
for a given benchmark. Furthermore, it seems that the even 
splits between the HW/SW domains perform the worst. This is 
probably because when the first half of most computations are 
computed in SW and then the intermediate results are passed to 
the HW in order to finish the computation the communication 
costs skyrocket while the amount of TLP exploited remains 
about the same. 



Fig. 9: Performance Speedups normalized to the pure SW 
implementation 

Fig. 10: Mips benchmark performance with various targeted 
partition split points 

Ottoni et al. found very similar results when they were 
experimenting with finding the optimal partitioning for a given 
loop. While they were very focused on balancing the work 
across threads in an optimal manner since they assumed 
homogeneous threads, they found that the greedy heuristic 
algorithm for partitioning is not particularly good at finding 
the optimal partition but often works “well enough”. That 
seems to be the case with Twill as well. While perhaps a more 
complicated heuristic could be used to achieve better results, 
Twill’s results show that its automatic thread extraction through 
partitioning can result in a significant performance increase 
without any programmer intervention. 

F. Queue Size and Latency 

One important result from the DSWP implementation de-
scribed Ottoni et al. [5] is that the algorithm was very resilient 
to large queue latencies and short queue sizes regardless of the 
benchmark run. This was achieved by never having the pipeline 
“flushed” except for at the very end of program execution. 
Our implementation of DSWP potentially flushes the pipeline 
much more frequently on function boundaries and so a similar 
experiment was conducted to determine the resiliency of Twill 
to hardware queue latencies and sizes. 

Figure 12 shows that while Twill’s resiliency depends 
upon the application, overall Twill is still fairly resilient. 
Compared to Ottoni et al.’s original implementation of the 

Fig. 11: Blowfish benchmark performance with various tar-
geted partition split points 

Fig. 12: Twill performance speedups normalized to runtime 
with 2 cycle queue latency 

DSWP algorithm, we have found a much bigger performance 
degradation as the queue latencies are increased. On average 
Ottoni et al. report a 10% slowdown with a queue latency 
of 100 while we found a 27% performance decrease on 
average with a queue latency of 128. As noted above, this 
is probably because of how Twill flushes the pipeline fairly 
frequently. In addition, the original paper only optimized a 
single long-running loop out of the entire program and thus 
any performance increase or slowdown effect will be magnified 
in our full program implementation. Thus we believe that our 
performance decrease is much closer to the original results 
than the data suggests. 

Figure 13 shows similar results for the queue sizes. Note 
that for the JPEG benchmark the 32 queue size did not 
fit on the FPGA. Ottoni et al. found that they received a 
slowdown of 6% when reducing the queue length from 32 to 
8. We found a comparable 9.7% slowdown when comparing 
our queue lengths of 32 and 8. As mentioned above, our 
slowdown/speedup results are probably exaggerated compared 
to the original results; in addition, we used 32-bit queues while 
the original paper used 8-bit queues. 

VI. CONCLUSION 

In this paper we presented a new hybrid SOC compiler 
and corresponding run-time system called Twill. Twill takes 
advantage of TLP and ILP in order to achieve a performance 



Fig. 13: Twill performance speedups normalized to runtime 
with length 8 queues 

speedup of 1.63 times over LegUp’s pure hardware translation 
even while reducing the amount of area needed for the re-
configurable logic. Twill achieves this by utilizing a modified 
version of DSWP to extract long-running threads from the 
input C source and then distributing these threads across the 
hardware/software divide in a hybrid CPU-FPGA SOC. 

A. Future Work 

As mentioned in Section II, Twill currently supports only 
a subset of the C language. Notably, recursion and function 
pointers are currently not supported. There is no conceptual 
reason preventing their implementation and we propose several 
methods to deal with them. Recursion is only a problem in 
hardware since there is no stack. The Twill DSWP implemen-
tation could be extended to support the concept of barriers. 
At each barrier point all threads would come to the same 
execution state such that all queues are empty. The recursive 
function calls represented by backedges in the call graph would 
then be protected by these barriers on either side with the 
master function call always being in software. In this way, the 
recursive functions or chain of functions could be parallelized 
as normal and then only at the recursion point would the 
pipeline be flushed and restarted. This would be slower than 
the equivalent code written as a loop but should still give 
reasonable speedups over the pure hardware implementation. 

A similar system could be used to handle function pointers 
as well. Everything up to the actual call instruction with the 
function pointer could be parallelized. Anytime a function 
pointer is assigned to a new function the code must be 
changed to assign the master DSWP function. The call could 
be protected with barriers with the software always having 
master control of the called function. Furthermore, the way 
Twill handles function calls would have to change slightly. 
Instead of having the calling function call all of the slave 
functions each master DSWP function would be responsible 
to start the slave functions. This would increase the overhead 
of function calls slightly but potentially could be limited with 
points-to analysis to only the functions that could be called 
through a function pointer. 

Another shortcoming of Twill is that it does not support 
larger than 32 bit data values to be passed inside of queues. 
This means that 64 bit data types and structures that are 
bigger than 32 bits are not supported currently by Twill. This 

shortcoming is relatively easy to overcome; one option is to 
enqueue/dequeue two or more values at a time and rebuild the 
resulting data structure or to simply use multiple queues to 
pass the data. 

Another aspect of Twill that can be improved is the parti-
tioning heuristic. As mentioned in Section V-D, the partitioning 
heuristic can have a huge impact on the final performance 
of the program. More research is needed into how different 
heuristics affect this performance and what the best heuristic 
is for various program types. 

Finally, Vachharajani et al. [12] extended the DSWP 
algorithm to be speculative. This allowed them to greatly 
increase the speedup gained by the original algorithm with 
a little hardware support. Since Twill has a large control 
over the hardware through the reconfigurable logic, it seems 
relatively straightforward to extend Twill’s DSWP algorithm 
to be speculative which should allow Twill to extract even 
more long-running threads and increase the amount of TLP 
parallelization that it can utilize. 
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