
A Heterogeneous Compute Solution for Optimized
Genomic Selection Analysis

Trevor DeVore, Scott Winkleblack, Bruce Golden, Chris Lupo
California Polytechnic State University

San Luis Obispo, California 93407
{tdevore, swinkleb, bgolden, clupo}@calpoly.edu

Abstract—This paper presents a heterogeneous computing
solution for an optimized genetic selection analysis tool, GenSel.
GenSel can be used to efficiently infer the effects of genetic
markers on a desired trait or to determine the genomic
estimated breeding values (GEBV) of genotyped individuals.
To predict which genetic markers are informational, GenSel
performs Bayesian inference using Gibbs sampling, a Markov
Chain Monte Carlo (MCMC) algorithm. Parallelizing this
algorithm proves to be a technically challenging problem
because there exists a loop carried dependence between each
iteration of the Markov chain. The approach presented in this
paper exploits both task-level parallelism (TLP) and data-level
parallelism (DLP) that exists within each iteration of the Markov
chain. More specifically, a combination of CPU threads using
OpenMP and GPU threads using NVIDIA’s CUDA paradigm is
implemented to speed up the sampling of each genetic marker
used in creating the model. Performance speedup will allow this
algorithm to accommodate the expected increase in observations
on animals and genetic markers per observation. The current
implementation executes 1.84 times faster than the optimized
CPU implementation.

Keywords-Genetic Selection, GPU, Heterogeneous computing,
Bayes methods, Monte Carlo methods, Markov processes

I. INTRODUCTION

This paper presents a heterogeneous compute solution for the
parallel optimization of GenSel, a genetic selection analysis
tool which analyzes the genotype (genetic markers) and phe-
notype (physical traits) of an animal and attempts to isolate
which of these markers contribute to a specific physical trait.
This is achieved by applying Bayesian inference to the data
set. This information can then be used, along with pedigree
information, to increase the likelihood of breeding an animal
with desirable traits. For example, breeding dairy cows with
high milk production.

A. Motivation

The field of Bioinformatics relies heavily on statistical analysis
of large quantities of data. Recently, the use of the Markov
Chain Monte Carlo (MCMC) family of statistical algorithms
has increased dramatically. As such, so has the desire to
optimize these algorithms and increase their performance.

One challenge with performing this type of analysis is the
quantity of data required to accurately predict what genetic

markers influence a physical trait. Currently, a typical analysis
by GenSel consists of approximately 50,000 genetic markers
with 200,000 observations for each marker. Looking forward,
the decreasing cost associated with performing genetic anal-
ysis is expected to increase the number of observations per
marker to around 1,000,000 [1]. The current implementation of
GenSel simply cannot scale to accommodate this. Optimizing
the underlying MCMC algorithm of GenSel is a necessity.

MCMC algorithms strongly resist parallelization as a method
for performance optimization. This class of algorithm does
not fall into the embarrassingly parallel category and data
dependence issues make it inherently iterative. However, if
designed around parallel programming principles it is possible
to achieve speedups of 10’s to 100’s of times [2]–[4] despite
the iterative nature of the chain.

This paper takes a different approach which can be applied
retroactively to MCMC based algorithms without requiring a
drastic redesign of the original algorithm. This is achieved
by exploiting smaller sections of parallelism that exist within
each iteration of MCMC. Each section of potential parallelism
that is identified is then mapped to the most beneficial parallel
programming paradigm. The overall idea behind this approach
is to reduce the runtime of every individual chain link, thereby
reducing the time it takes for the entire chain to complete.

B. Contributions

The optimized implementation described in this paper utilizes
heterogeneous compute methods to take advantage of CPU
multi-threading, GPU computing via CUDA, utilizing multiple
GPUs, pipelining, and single instruction multiple data (SIMD)
instructions on the CPU. First, utilizing multiple CPU threads
for the analysis improves the performance of course-grained
task-level parallelism (TLP). Due to data dependencies that
can occur between markers within one iteration of the chain,
only a small number of loop tasks can be executed in parallel.
This fits very nicely into the CPU threaded parallelization
model. Second, the use of GPUs to tackle areas of data-
level parallelism (DLP) is investigated. The Bayesian analysis
used in GenSel requires several matrix operations, the size
of which scales with the number of observations. This linear
algebra is performed for every genetic marker in every iteration
of MCMC. Performing this type of operation on the mas-
sively parallel GPU becomes beneficial for large matrices. For

DeVore, et al. A heterogeneous compute solution for 
optimized genomic selection analysis. 
Proceedings of the IEEE International 
Conference on Bioinformatics and Biomedicine. IEEE, 2014.



smaller matrices where the communication overhead between
the CPU and GPU is prohibitively expensive, the use of
SIMD instructions to optimize matrix operations is explored.
For increased parallelism and device utilization, kernel calls
(function calls on the GPU) are performed concurrently when
possible and computation is performed on multiple GPUs.

C. Outline

Section II presents background on the statistical analyses per-
formed in GenSel, along with the algorithm being optimized.
Related work is presented in Section III. The optimization
methodology is described in Section IV. Details of the im-
plementation are presented in Section V. The experimental
setup is described in Section VI and results are presented in
Section VII. Future work and conclusions are discussed in
Sections VIII and IX, respectively.

II. BACKGROUND

Bayesian inference is a form of statistical inference based
around Bayes theorem, as the name suggests. In brief, Bayes
theorem provides a methodology for updating beliefs based on
evidence, taking into account the probability of not only the
belief but also the evidence. The probability of the original
belief is known as the prior and the probability of the belief
given the evidence is known as the posterior.

This method of inference has found a wide variety of ap-
plications within the field of computer science. For example,
Bayesian inference is used in artificial intelligence [5], [6]
and spam filtering [7]. Recently, Bayesian inference has been
increasingly leveraged by those studying phylogenetics [3].

This statistical technique is a powerful tool capable of deliv-
ering accurate estimates of genomic effects while remaining
relatively straightforward to implement [1]. However, it is
not without its challenges. Directly implementing Bayesian
inference is problematic. For complex models there is no
closed form solution for computing the posterior. Furthermore,
the subset of solvable problems requires integrating over
many dimensions, which can make the necessary computation
infeasible.

One method of circumventing this problem, employed by
GenSel, is to use a Gibbs sampler. Gibbs samplers belong
to a class of algorithms known as Markov Chain Monte Carlo
(MCMC) methods. They provide a practical way of generating
empirical posterior distributions when the joint probability
distribution of the variables of interest is difficult to sample
directly.

In this application, each genetic marker can be viewed as a
variable contributing to the desired trait. A statistical model
is created that describes the mean effect of all markers on
the desired trait. Another distribution captures an estimate of
the error of the prediction. To construct these models, each
marker is evaluated and is included or excluded from the

model based on whether the marker meets or surpasses a
threshold value. The threshold is based on a fully-conditional
posterior variable [1]. This process is done repeatedly with the
resulting model from iteration i forming the base model for
iteration i+1, forming a chain. This algorithm represents the
basis for the research described in this paper.

Gibbs sampling allows for genomic selection analyses to be
performed in a reasonable compute time [1] but introduces
problems of its own. To arrive at the correct posterior distri-
bution using this technique requires repeated sampling until
the probability distribution converges. Determining how many
iterations it takes for a given distribution to converge proves to
be a non-trivial problem [8]. Also, samples at the beginning of
the chain are loosely correlated to the starting position, which
is problematic. To overcome this, the concept of “burn in” or
discarding the first portion of the chain is employed. MCMC
algorithms are notorious for being compute intensive and any
wasted computation only adds to the runtime.

MCMC algorithms are inherently serial in nature, making
them difficult to parallelize for performance gains, although
notable exceptions do exist [4]. The sequential nature of these
algorithms is a consequence of the data dependence that occurs
with the statistical model being produced in iteration i and con-
sumed in i+1. Additionally, the BayesC algorithm presented
in [1] contains an additional, conditional data dependence
between markers when building the model in each chain link.
This data dependence only occurs when a particular marker is
selected to be included in the current model or excluded from
the current model but was included in the previous model. This
is a key observation that makes a subset of the optimizations
presented in this paper possible.

III. RELATED WORKS

The emergence of MCMC algorithms into prominence coupled
with its large computing cost has led to many attempts at op-
timization. These attempts can be broadly classified under two
optimization strategies. One attempts to increase performance
by running multiple MCMCs concurrently; the other seeks to
parallelize a single MCMC run [9].

In the first strategy, multiple, shorter chains are run from
different starting points and convergence is determined by
comparing between and within sequence variance [10]. The
performance gains come from the shorter chain lengths and
the fact that each chain can be computed independently. The
drawbacks of this approach are that the burn in period, which
must be discarded, is repeated across multiple processes and
for each iteration that is kept, after the burn in period, several
more are discarded, a process known as thinning [11].

The second strategy recognizes the sequential, iterative nature
of each chain link and attempts to optimize the operations that
exist within each link. Consequently, by shrinking the amount
of time spent in each link of the chain, the overall duration
of the chain will be reduced even though it requires more



iterations. Within this strategy there are two sub-strategies
associated with exploiting task-level or data-level parallelism.

The most successful approaches exploit data-level parallelism
by utilizing GPU technology to parallelize general sampling
methods [2] or the evaluation of likelihoods [3]. The results
reported in research performing this type of optimization saw
performance increases with factors of 10s to 100s [2]–[4].

Exploiting task-level parallelism turns out to be less successful
than data-level parallelism in general. This is largely due
to the fact that there is a dependence between each chain
link which incurs major communication overhead due to
the need for global model parameter updates [4]. Although
some implementations have managed to achieve near linear
speedup [12].

The implementation discussed in this paper adopts the second
strategy of improving the performance of the overall chain by
shrinking the size of the links.

Leveraging GPU technology as a complete solution, as in [2]
or [4], proves to be problematic because of the additional
data dependence between markers when building each model
during each chain link. Additionally, this algorithm has prob-
lems with thread divergence (threads taking different execution
paths), which does not map well into the GPU paradigm.
Pre-computing the data responsible for control flow can solve
the problems with divergence. But, pre-computing this data
substantially reduces the amount of parallelizable code to
the point that communication overhead between the host and
device overshadows any performance improvement. Instead,
use of GPU technology is limited to performing large matrix
operations, which still provides a sizable speedup for very
large matrices.

The implementation strategy in this paper is to exploit the
varying levels of parallelism that exist within GenSel. By
correctly identifying regions of code that exhibit parallelism
and correctly associating these regions with the correct parallel
programming paradigm based on system architecture consider-
ations. This idea is set forth in [11] which mainly focuses more
efficient matrix operations on the CPU. Our work expands
the spectrum of parallelizable code and utilizes different tech-
nologies. This research illustrates that by exploiting several
small performance gains it is possible to achieve a sizable
performance improvement, without fundamental changes to
the underlying MCMC algorithm.

IV. METHODOLOGY

Regions of code that are parallelizable to varying degrees
are present throughout the GenSel application. The charac-
teristics of each region including the system architecture,
code divergence, the amount of data being processed, and
runtime, determine which parallel programming paradigm is
most appropriate for each parallelizable region. This section
briefly describes the strategies taken with GenSel.

For the GenSel application, a heterogeneous computing en-
vironment was selected. The differing levels of parallelism
offered by GPUs and CPUs make this environment well-
suited to this problem decomposition. For the specifics on the
hardware involved, refer to Section VI.

To exploit massive data-level parallelism, The GPU is utilized
for linear algebra operations, including dot products of large
vectors. Linear algebra tasks are high-performing on the GPU
due to the amount of data processed, and the independence of
each GPU thread.

To reduce the cost of transferring large vectors from the CPU
to the GPU, the implementation presented in this paper utilizes
a CUDA abstraction called a stream that allows for further
exploitation of concurrency. Every kernel call is associated
with a stream. A GPU device can have multiple streams
associated with it at runtime. One major benefit of streams
is, hardware permitting, they can be run concurrently. This
achieves a pipelining effect where data transfers from the CPU
to the GPU occur asynchronously and simultaneously with
other computations on the GPU, minimizing the cost of the
data transfer.

The ability to transfer data to and from the GPU simultane-
ously and asynchronously is important for performance. The
largest bottleneck with GPU computing is often moving data
between the CPU and GPU. By initiating data transfers as
early as possible, data can be transferred while other work is
being performed so that it is ready when needed.

CPU threads are better suited for independent or divergent
execution than GPU threads. Exploiting parallelism on the
CPU is most beneficial when the data transfer time to the
GPU would be greater than the CPU compute time, or when
the portion of code is highly divergent, or there is only a small
amount of parallelism present.

Modern CPUs take advantage of data level parallelism via vec-
torized instructions. These instructions help to bridge the gap
between GPU and CPU computing and make CPU computing
more efficient than scalar processors for larger sets of data.
The heterogeneous implementation described here utilizes all
of these forms of parallelism and concurrency in appropriate
regions of GenSel. Implementation details are discussed in the
following section.

V. IMPLEMENTATION

This section presents the various optimizations performed on
GenSel. Algorithm 1 gives an high level overview of the
original algorithm.

A. Chunking Loops With Sporadic Dependencies

Due to the statistics behind the selection of which markers
to include in the model, the loop dependency only occurs on
average every 10 iterations. This means that while it is not



Algorithm 1 Original Bayes Algorithm
1: for each marker do
2: compute probability marker is included in model
3: if marker is included in model then
4: compute mean genetic effect
5: compute error prediction variance
6: include marker in model
7: else
8: remove marker from model
9: end if

10: end for

possible to parallelize the entire loop, it is possible to compute
chunks of the loop at the same time to gain a performance
advantage. Algorithm 2 shows a restructured Bayes algorithm
that allows for increased parallelism in the computations.

Algorithm 2 New Bayes Algorithm
1: while markers processed < total number of markers do
2: for each marker in chunk do
3: compute probability marker is included in model
4: if marker is to be included in model then
5: set as terminating marker for chunk
6: end if
7: end for
8: begin precomputing next chunk’s dot products
9: initiate observation data transfer to GPUs

10: for each marker before terminal marker do
11: if marker is to be included in model then
12: compute mean effect
13: compute error prediction variance
14: include marker in model
15: else
16: remove marker from model
17: end if
18: end for
19: update markers processed
20: advance chunk to terminal marker
21: end while

In the first for loop, everything that is needed to determine
which markers from the chunk are going to be included in
the model is computed. The first marker that triggers the loop
carried dependence is marked as the terminating marker of the
chunk and the computed values of all following markers are
discarded; they are no longer valid because they are based on
the old model as opposed to the updated model. In the best
case scenario, the entire chunk is valid and no computations
are wasted, and in the worst case scenario, only one marker in
the chunk is valid and the rest must be discarded. The optimal
chunk size for a given system is determined partially on the
statistics behind GenSel and partially on the system itself. The
number of GPUs available is a large contributing factor in the
latter. Properly selecting a chunk size results in upwards of
85% of the computations being valid. This keeps runtimes
much closer to the best case than the worst case by keeping
wasted computation down.

Next, the bottom for loop is executed for every marker in
the chunk up to and including the terminating marker. This is
responsible for updating the current model. There is no wasted
computation associated with the second for loop. The GPU is
not leveraged for this portion of the algorithm. The inability to
predict which marker will be the terminal marker and transfer
times associated with moving the necessary data to the GPU
make the CPU better suited for the tasks. To increase efficiency
of the matrix operations on the CPU, SIMD instructions are
leveraged via the Eigen library [13].

Finally, the chunk is adjusted to the marker immediately
following the terminating marker. The process is repeated until
all the markers have been processed.

B. Algorithm Complexity Analysis

The computational complexity for Algorithm 2 is unchanged
from that of Algorithm 1. For all computational complexity
presented in this paper, n represents the input size in markers
and c represents the chunk size, which is a constant defined
by the user. The for loop in Algorithm 1 executes for each
marker, and each operation in the loop is computed in constant
time, and the algorithm is therefore O(n) runtime complexity.

The analysis for Algorithm 2 is slightly more complex. The
worst case occurs when every marker is included in the
model for every iteration. In this case, the first marker in the
chunk is the terminating marker but computation is performed
on all other markers. This leads to wasted computation in
the upper for loop. The second for loop only executes one
iteration in this case. The chunk size c is much less than the
number of markers n. This leads to a worst case computational
complexity shown in Equation 1.

O(n(c+ 1)) → O(n) (1)

In the best case, the terminating marker in every chunk is
the last marker. This occurs when no marker in the chunk
causes the data dependence or the final marker causes the data
dependence. In this case, the upper and lower for loops execute
c times and enclosing while loop is executed dn/ce times.
This leads to a best case computational complexity shown in
Equation 2.

O(
⌈n
c

⌉
(c+ c)) → O(n) (2)

The equivalent computational complexity between Algorithm
1 and Algorithm 2 indicates that any performance gains
observed are not due to significant algorithmic refactoring.

C. Multi-Threading

Both for loops in Algorithm 2 lend themselves nicely to
multi-threading. If the loop carried dependence is assumed
to not exist for the markers concerned, they can be executed



independently. This assumption is checked before any changes
are made to the model, as discussed in Subsection V-A.
Since the number of markers for each chunk is known before
execution, multi-threading principles are easy to apply. Each
marker could be assigned to its own CPU thread. However,
in practice one CPU thread managing each GPU is sufficient.
When the number of observations grows large, the bottleneck
becomes the computation performed by the GPU. Even with
the GPU pipelining optimization, discussed in Subsection V-F,
the CPU thread has sufficient time to perform all necessary
computations before the next kernel call it is responsible for
returns making multiple CPU threads per GPU unnecessary.
This optimization allows GenSel to benefit from parallelization
at both a data-level on the GPU and task-level on the CPU.

D. Parallelizing Dot Product Computation

The dot product computation performed to determine if a
marker is to be included in the current model is the most time
consuming portion of the algorithm. It is also one of the easiest
aspects to optimize by leveraging parallelism. Computing the
dot product of two vectors involves a large number of small
operations with no dependencies. The technology of choice
for this type of computation is the GPU. The large number of
cores on a GPU allows for each of these smaller operations
to occur simultaneously. By leveraging the cuBLAS linear
algebra library [14], dot products can be performed on the
GPU more quickly than on the CPU. Unfortunately, data must
be transferred over the PCIe bus to the GPU before any
computation can be done and back after it completes. This
adds additional overhead and makes the cuBLAS dot product
slower for smaller vectors. In this case, the size of the vector
scales with the number of observations being considered,
ensuring that the vectors will be sufficiently large. For the
current implementation, leveraging the GPU was found to be
advantageous when the number of observations was greater
than 150,000.

E. Precomputing Dot Products

Computations on the GPU execute asynchronously from the
CPU, allowing both to work at the same time. To take advan-
tage of this feature, GPU computations should be launched as
early as possible to maximize the amount of time the CPU and
GPU are both doing work. In Algorithm 2, as soon as the first
for loop terminates, all the information needed to compute the
next chunk of dot products is readily available. Therefore, for
efficiency, computation for the next chunk begins immediately.
By overlapping CPU and GPU computation, the amount of
time the CPU spends waiting for results is minimized.

F. Pipelining Kernel Calls

Making sure the GPU is saturated with work is extremely
important for maximum efficiency. To ensure the GPU is sat-
urated and executing as much work concurrently as possible,

all dot product kernel calls for a given chunk are executed
in separate streams. This signals to the GPU that the kernels
are independent and may be run concurrently. Often it is not
possible to run completely concurrently due to the limited
number of streaming multi-processors on the device. As a
result you get a pseudo pipelining effect. This helps to reduce
the latency of each kernel call.

G. Multi-GPU and Striping

Launching a batch of dot products to the GPU scales very
well when more GPUs are added. The current implementation
is designed to scale seamlessly to accommodate an arbitrary
number of GPUs. As the workload is spread across GPUs,
more computations can be completed in a shorter amount of
time, increasing throughput and decreasing the amount of time
the CPU must wait for the dot product results. Dividing the
marker index by the number of GPUs and using the remainder
as an index into the set of GPUs provides a simple and
effective way of load balancing calls.

Another benefit of utilizing multiple GPUs is data striping. For
dot product computations, each GPU only needs to be aware
of the observation vectors associated with the markers it is
being asked to perform computations for. The load balancing
scheme defined above makes it easy to know which data
is to be associated with which GPU. Therefore, the total
amount of data transferred to all the GPUs remains constant.
However, if the GPUs are located on different PCIe buses
there is additional data transfer bandwidth, leading to increased
performance.

H. Circular Buffering of Data on the GPU

One of the biggest drawbacks to GPU computing is the amount
of time it takes to transfer data across the PCIe bus. Optimally,
all of the data required for all computations would already be
on the GPU by the time computation begins. Unfortunately,
the comparatively large size of the observation vectors and
small size of GPU memory prohibits this, even when data is
striped across multiple GPUs. But, for the data sizes within
the scope of this paper, all data associated with the next
n chunks can be stored on the GPU. N is a configurable
value, allowing customization to the system in use. N should
be set large enough so the GPU does not have to wait to
begin computation but small enough to fit all the data on
the GPU. The n value used throughout this paper is 4, and
was determined experimentally to sufficiently prevent GPU
starvation.

The portion of the data associated with the next n chunks
needed by each GPU resides in a circular buffer on the
respective GPU. When a dot product is computed and is not
discarded, the data vector is replaced by the next vector. This
transfer is initiated by line 9 of Algorithm 2.

Holding the next several chunks worth of data on the GPU
has many benefits. First, it allows the current chunk’s worth



of dot products to be computed uninterrupted. Also, it allows
computation on the next chunk’s markers to begin immediately
without waiting for data to be transferred over.

I. Hiding Memory Transfers

In most applications that utilize the GPU, a large portion of
time is spent transferring memory back and forth between
the CPU and GPU. There are several known techniques
for amortizing this cost. One option is using asynchronous
memory transfers. These types of transfers return control to
the CPU immediately, instead of waiting for the transfer to
complete. This allows the CPU to do additional work while
the memory is transferring to the device. The GPU can also be
performing work while data is being transferred. Additionally,
all GPUs used in this paper have two copy engines, enabling
them to transfer data to and from the CPU simultaneously.

All memory transfers occur asynchronously to overlap data
transfer with execution as much as possible. To minimize or
eliminate the amount of time that the CPU is waiting on the
GPU or vice versa, they are performed as early as possible.
This optimization operating in conjunction with the data
buffering technique discussed in Subsection V-H effectively
eliminate the time the GPU is waiting for data to perform
its calculations. The initial transfer of data to the GPU is
done during the setup phase of the GenSel application. All
subsequent transfers occur while the CPU is updating the
current model and the GPU is precomputing the next chunk’s
dot products.

VI. EXPERIMENTAL SETUP

A. Test System

All performance measurements were performed on a single
system. The system has two Intel Xeon E5-2650 8-core CPUs
which run at 2.00 GHz and support hyper-threading. The
system has 64 GB of RAM. When generating results, three
GPUs were utilized; one NVIDIA Tesla K40 and two NVIDIA
K20Xs. The Tesla K40 has 2880 cores and 12 GB of memory
while the K20Xs have 2688 cores and 6 GB of memory. They
run at 745 MHz and 732 MHz respectively.

The following information describes the software environment
these experiments were conducted in. All source code was
compiled using GCC version 4.8.2 and CUDA 6.0, when
applicable. The NVIDIA driver version is 334.21. The system
was running Arch Linux with version 3.14.0 of the Linux
kernel.

B. Test Data

The goal of these optimizations is to help GenSel scale to
accommodate the rising amount of genotype information avail-
able in the future. Consequently, to perform relevant tests it
was necessary to generate simulated genotypic and phenotypic

data. For this purpose, a data generating program was created
that can create data sets with an arbitrary number of markers
and observations per marker. To make run times reasonable
for experimentation, data sets were limited to 10,000 markers.

C. Reference Implementation and Validation

The baseline CPU implementation makes use of the highly
optimized Eigen library [13]. The Eigen library leverages vec-
torized instructions, loop unrolling, and cache optimizations.

The baseline implementation was run on all of the generated
test data sets. The results of the analyses were compared
against the optimized heterogeneous computing solution to
confirm correctness. In addition, timing data was recorded
to be used as a point of comparison for benchmarking. The
timing data reported includes compute time (including data
transfer times) for the optimized baseline and heterogeneous
solution, system I/O time (e.g., disk) is excluded.

VII. RESULTS

This section presents the results of all the optimizations
performed on the heterogeneous compute solution. All results
presented represent the speedup relative to the highly opti-
mized baseline CPU implementation. The measured runtimes
do not include IO operations, such as reading in the geno-
typic and phenotypic data from disk, which is common to
both implementations. The runtimes include all computation
performed for the analysis including all bus transfers between
the CPU and GPU. When generating the runtimes all three
GPUs of the system were utilized, unless otherwise stated.
The chunk size was set to six markers concurrently and four
chunks worth of data was held in each GPU’s buffer.

Fig. 1 presents the overall speedup of the heterogeneous com-
pute solution for varying amounts of markers. As mentioned
earlier, the number of markers was limited to 10,000 for
the experiments. In the best case for these data sets a 1.84
times speedup is achieved over the optimized baseline CPU
implementation. These results demonstrate that the cutoff point
at which it becomes beneficial to use the GPU over the CPU is
about 150,000 markers. At that point the massive parallelism
offered by the GPU outstrips the CPUs ability to perform large
matrix operations. This cutoff is not constant. It varies based
on the number of GPUs used and the chunk size, as shown in
Figs. 2 and 3.

The tight clustering of the speedup data illustrates that the
optimizations performed are not proportional to the number of
markers and will scale to accommodate higher marker counts.
The primary factor governing how large the speedup can be
is the number of observations. This largely determines the
speedup of the calculations for any given marker because
the larger data size favors the GPU approach leveraged by
the optimized heterogeneous solution over the optimized pure
CPU approach. However, since all calculations for all mark-
ers cannot be performed in parallel, performance gains due



Fig. 1. Overall speedup with varied number of markers

TABLE I
RUNTIMES FOR 500 MARKER DATA SET

Number of CPU GPU SpeedupObservations Runtime (s) Runtime (s)
1,000 14 1,284 0.01

50,000 797 1,692 0.47
100,000 1,579 2,493 0.63
200,000 3,184 3,316 0.96
300,000 4,761 3,855 1.24
400,000 6,375 4,678 1.36
500,000 7,920 5,435 1.46

1,000,000 15,653 9,850 1.59

to coarse-grained parallelism are limited to the chunk size.
Chunking the calculations reduces the number of iterations
required to build the statistical model for one link in the
MCMC chain. The overall speedup offered by the hetero-
geneous solution is the product of the per marker speedup
times the amount of parallelism offered by the chunk size.
The amount of parallelism offered by chunking can be thought
of as a fixed quantity due to the statistical properties of the
problem. The per marker speedup does not vary by the number
of markers because it is based on the number of observations.
Thus, the speedup remains relatively constant as the number
of markers scales.

Table I shows the runtimes for the 500 marker case. The
runtimes scale as expected with respect to marker growth,
meaning the runtimes for the 1000 marker case are about two
times larger than the runtimes in Table I.

A. Tuning

Tuning a high performance application to its intended comput-
ing environment is critical and can have dramatic effects on
the performance of the application. In this case, there are two
main values that must be considered: the size of the per GPU
buffer and the chunk size. The GPU buffer size can easily
be statically determined by examining the amount of memory
available on all the GPUs. The current implementation creates
the same buffer size on all GPUs for simplicity. So, the
smallest memory size of the GPUs the user wishes to use

Fig. 2. Effect of different chunk sizes on speedup

becomes the limiting factor. For the GPUs in this work, 6 GB
is the smallest global memory size.

Tuning the chunk size is much more interesting due to the
many different contributing factors. For optimal performance,
several different aspects of the system must be considered:
the number of threads available on the system, the number
of GPUs connected, and if the GPUs share a common bus.
The other major contributing factor to tuning the chunk size
is the statistics behind GenSel. On average any given marker is
excluded with a probability of .95. Thus, for any given marker
the probability that it was included in the current iteration
or excluded but was included in the iteration immediately
previous is .90. Meaning, on average a data dependence will
occur one out of every ten markers. The optimal chunk size is
easily determined empirically. Fig. 2 demonstrates the effect
of different chunk sizes on the speedup of the application for
the 500 marker data set.

B. Scalability

The heterogeneous solution is designed to effortlessly scale
to leverage additional GPUs. It can be easily configured to



Fig. 3. Effect of scaling the number of GPUs utilized on speedup

leverage all or some of the GPUs available on the system.
GPUs can also be assigned priority giving the user control over
which GPUs are selected for use if they are not all utilized.

Fig. 3 illustrates the speedup as more devices are made visible
to the program. As mentioned in Section VI, the system used
for generating these results has one NVIDIA K40 and two
K20X GPUs available for use. When generating these results
the K40 was always used and the K20X GPUs were added as
the number of GPUs was scaled. The results presented are for
the 500 marker data set.

All of the results show a leveling-off of performance compared
to the baseline CPU implementation for large numbers of
observations. While the GPUs allow for massively parallel
computing, the amount of parallelism is finite. Once the
GPUs become saturated, no additional performance increase is
expected. As the number of cores per GPU increases, further
speedup is expected at larger numbers of observations.

VIII. FUTURE WORK

This paper focuses on optimizing GenSel for large data sets
both in terms of markers and observations. The optimizations
presented in this paper come at the expense of sacrificing
performance for smaller data sets. In the future, a heuristic
based on the number of observations and GPUs available
could be used to quickly select between implementations to
dynamically choose the best computational method.

GenSel has other opportunities for optimization. Those cov-
ered in this research have avoided fundamentally changing the
underlying algorithm. However, one of the most promising op-
timizations requires a shift to another form of Gibbs sampling.
Changing to block Gibbs sampling may enable processing
of larger subsections of markers than the current chunking
method.

IX. CONCLUSION

The process of optimizing genetic selection analysis for het-
erogeneous computing is explored. This research shows that

by identifying small regions of TLP and DLP that exist
within largely sequential algorithms, such as MCMC, the ac-
cumulated speedup can be significant, without fundamentally
changing the underlying MCMC algorithm. The optimizations
presented in this paper achieve a 1.84 times speedup. This
research will enable GenSel to scale in the future, and to
benefit from increasing hardware parallelism on both the CPU
and GPU.

ACKNOWLEDGMENTS

This research is/was supported by the USDA National Institute
of Food and Agriculture, AFRI competitive grants program
project 0227921.

REFERENCES

[1] D. Habier, R. L. Fernando, K. Kizilkaya, and D. J. Garrick, “Extension
of the Bayesian alphabet for genomic selection,” BMC bioinformatics,
vol. 12, no. 1, p. 186, 2011.

[2] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes, “On
the utility of graphics cards to perform massively parallel simulation
of advanced Monte Carlo methods,” Journal of Computational and
Graphical Statistics, vol. 19, no. 4, pp. 769–789, 2010.

[3] M. A. Suchard and A. Rambaut, “Many-core algorithms for statistical
phylogenetics,” Bioinformatics, vol. 25, no. 11, pp. 1370–1376, 2009.

[4] M. A. Suchard, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West,
“Understanding GPU programming for statistical computation: Studies
in massively parallel massive mixtures,” Journal of Computational and
Graphical Statistics, vol. 19, no. 2, 2010.

[5] C. Huang and A. Darwiche, “Inference in belief networks: A procedural
guide,” International Journal of Approximate Reasoning, vol. 15, no. 3,
pp. 225–263, 1996.

[6] G. F. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks,” Artificial intelligence, vol. 42, no. 2,
pp. 393–405, 1990.

[7] G. V. Cormack and T. R. Lynam, “Online supervised spam filter
evaluation,” ACM Transactions on Information Systems (TOIS), vol. 25,
no. 3, p. 11, 2007.

[8] A. E. Raftery, S. Lewis et al., “How many iterations in the Gibbs
sampler,” Bayesian statistics, vol. 4, no. 2, pp. 763–773, 1992.

[9] S. Brooks, “Markov chain Monte Carlo method and its application,”
Journal of the royal statistical society: series D (the Statistician), vol. 47,
no. 1, pp. 69–100, 1998.

[10] A. A. Béguin and C. A. Glas, “MCMC estimation and some model-
fit analysis of multidimensional IRT models,” Psychometrika, vol. 66,
no. 4, pp. 541–561, 2001.

[11] J. E. Gentle, W. Härdle, and Y. Mori, Handbook of computational
statistics. Springer, 2004.

[12] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic
inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp.
1572–1574, 2003.

[13] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[14] NVIDIA Corporation, “CUDA toolkit documentation – cuBLAS,”
http://docs.nvidia.com/cuda/cublas/, February 2014.




