
TARUC: A Topology-Aware Resource Usability and
Contention Benchmark

Gavin Baker
Sandia National Laboratory
Livermore, California 94550
gmbaker@sandia.gov

ABSTRACT
Computer architects have increased hardware parallelism
and power efficiency by integrating massively parallel hard-
ware accelerators (coprocessors) into compute systems. Many
modern HPC clusters now consist of multi-CPU nodes along
with additional hardware accelerators in the form of graphics
processing units (GPUs). Each CPU and GPU is integrated
with system memory via communication links (QPI and
PCIe) and multi-channel memory controllers. The increas-
ing density of these heterogeneous computing systems has
resulted in complex performance phenomena including non-
uniform memory access (NUMA) and resource contention
that make application performance hard to predict and tune.
This paper presents the Topology Aware Resource Usability
and Contention (TARUC) benchmark. TARUC is a modu-
lar, open-source, and highly configurable benchmark useful
for profiling dense heterogeneous systems to provide insight
for developers who wish to tune application codes for spe-
cific systems. Analysis of TARUC performance profiles from
a multi-CPU, multi-GPU system is also presented.

1. INTRODUCTION
Non-uniform memory access (NUMA) as well as commu-

nication link bandwidth contention can reduce performance
for applications used in heterogeneous computing system
topologies. This paper presents TARUC, a new Topology
Aware Resource Usability and Contention benchmark that
utilizes memory and thread pinning techniques to provide
detailed performance profiles of how system topology and
usage patterns affect memory performance. The benchmark
is tested on an x86 computing system and the results and
experiences gained may be used to inform application devel-
opers about best practices for manual control of computing
resources.
While parallel computational performance has improved

following the trend predicted by Moore’s Law, the band-
width of memory systems and the communication links that
connect peripheral coprocessor cards to main memory or

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy

 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030230

Chris Lupo
California Polytechnic State University

San Luis Obispo, California 93407
clupo@calpoly.edu

network fabrics have both failed to match increasing demand
for bandwidth [5, 7]. The existence of variable bandwidth
and latency communication paths between CPUs, GPUs,
main memory, and the network fabric has resulted in a hier-
archical communication topology along with NUMA. NUMA
effects can result in longer latencies for critical path opera-
tions which in turn can reduce the overall performance of the
application [8]. TARUC is designed to help HPC application
developers understand system topology and potentially mit-
igate the effects that variable topologies have on application
performance.

The remainder of this paper is organized into the follow-
ing sections: 2) discussion of modern system level architec-
ture, 3) discussion of the design and implementation of the
TARUC benchmark, 4) review of results acquired on a HPC
test system, 5) related work on the topic of resource man-
agement of heterogeneous computing systems, 6) a summary
of the most significant conclusions and topology trends and
a review of continuing effort in this research area.

2. BACKGROUND
For this paper, we focus on x86-based microprocessor com-

puting systems that utilize coprocessor hardware to explore
the architecture of densely packed computing systems. These
systems comprise the majority of supercomputers [10].

2.1 NUMA
One solution for scaling beyond a single CPU is to add

multiple CPU sockets to a single computing system. Sepa-
rate DIMMs and corresponding memory management units
(MMUs) are often provided for each CPU socket. To en-
sure cache and memory coherence, each CPU is connected
together via a high-speed low-latency cache coherence link.
One side effect is that some memory accesses require extra
time/latency due to the cache coherence link. Cache co-
herency links are high bandwidth and low latency compared
to other peripheral connections, but still fail to match ei-
ther the bandwidth or latency of having a single memory
bus connection between main memory and CPUs.

The effect of having memory spaces connected to cores
with differing latency and bandwidth connections is called
non-uniform memory access (NUMA).

2.2 Modern x86 System Architecture
Modern x86 computers typically consist of one or more

CPUs, main memory, persistent storage, and a number of
I/O interfaces. Each CPU integrates both memory control
and high speed peripheral communication links onto a sin-

305

c

http://dx.doi.org/10.1145/3030207.3030230
mailto:clupo@calpoly.edu
mailto:gmbaker@sandia.gov

gle package. Processors can contain multiple cores per pack-
age and multiple processing units per core in simultaneous
multithreaded (SMT) architectures. The sharing of mem-
ory resources can be of concern in NUMA systems because
of the potential for unbalanced memory usage where many
cores access the memory or cache of a specific NUMA node.
Figure 1 shows a basic x86 system with main memory, I/O,
and multiple cores.

Figure 1: An x86 Cache Coherent NUMA Machine

For multiple CPU systems, cache coherency links are used
to maintain the shared memory programming model guar-
anteed by today’s symmetric multiprocessing systems. QPI
is utilized on Intel processors to connect the memory sub-
systems of two or more CPUs within a single machine. The
bidirectional bandwidth of QPI ranges from 25-32GB/s [4].
Memory access on NUMA systems may require the request
to travel from one CPU over the QPI bus to the MMUs of
an adjacent processor. This transaction is transparent to
the application, other than the performance reduction for
repeated remote access.
Peripheral devices such as NICs and GPU or Xeon Phi co-

processors may be attached via a PCIe connection. The cur-
rent generation PCIe 3.0 is a point-to-point communication
link that can dynamically scale between 2, 4, 8, or 16 lanes
between a single device and host. Each lane can carry out
8.0GT/s (giga transfers per second) for a total bidirectional
bandwidth of 32GB/s [6]. PCIe combined with integrated
memory control hardware on the CPU allow for direct ad-
dress (DMA) of pinned memory by PCIe devices contained
on node-local PCIe slots.

2.3 Memory, Thread, and Process Management
The Linux operating system allows for the setting of mem-

ory and thread management policy to control the hardware
location of allocated resources. Manual control of the loca-
tion of thread or process execution can be carried out by
modifying the thread’s individual hardware affinity. The
allocation policy of memory can be set to firsttouch, bind,
interleave, and nexttouch with each policy defining where a
block of memory will be placed upon allocation or use. In
the TARUC benchmark, the bind policy is used to ensure
correct memory NUMA locations during tests.

2.4 Programming Parallel Architectures
A number of software libraries allow for the use of paral-

lel hardware through different software abstractions. Most
significantly OpenMP, OpenAcc, OpenCL and CUDA pro-
vide some type of node-local software parallelism. TARUC
uses OpenMP and CUDA to test heterogeneous systems for
NUMA effects. This choice was made because of the flexi-

bility and vendor support for these libraries provided on our
test systems. OpenMP enjoys widespread compiler support
and relatively low overhead. Compiling with OpenMP is a
matter of adding relevant threading directives, the header li-
brary declaration, and linking flags. For GPU functionality,
the CUDA runtime API version 7.5 is utilized. CUDA was
chosen because it provides thorough functionality including
a variety of host-device memory management operations and
has been optimized for the NVIDIA coprocessors present on
our test systems.

3. THE TARUC BENCHMARK
The Topology Aware Resource Usability and Contention

(TARUC) Benchmark consists of a number of micro-benchmarks
used to measure communication and memory access band-
width within complex heterogeneous architectures.
The TARUC benchmark examines NUMA and contention

effects in the context of memory transfer and operation band-
width during single threaded and multithreaded memory
migrations. Threads and memory resources are pinned to
simulate specific resource utilization situations and mea-
sure performance influences. TARUC tests the effectiveness
of memory types and copy methods in specific hardware
allocation situations. Memory types include device mem-
ory, host pageable, host pinned, and host write-combined
memories while migration methods include manual unified
memory and asynchronous memory copies. In addition to
built-in memory transfers, a variety of manual memory ac-
cess patterns including copy assignments and triads (copy-
/scale/add) are tested for throughput and latency.

TARUC examines resource contention within the memory
access pipeline by profiling simultaneous memory transfers
and access operations between memory resources on differ-
ent computing resources. In contrast, NUMA effects and
other overhead costs of utilizing different system memory
types are examined in isolated, single-threaded allocations,
transfers, and operations.

TARUC supports analysis of NVIDIA GPUs using the
CUDA runtime along with system topology detection and
control through the HWLOC library. Host multi-threading
is provided by calls to OpenMP parallel tasks. HWLOC
also provides memory and thread resource pinning functions
through integration with pthreads and libnuma, allowing
isolation of individual computing resources within bench-
mark test cases. Each recorded micro-benchmark data set is
automatically fed into graphing scripts that iteratively gen-
erate a variety of comparative plots for performance analysis.
The entire benchmark may be run with a single command
and tuning is provided through a simple input parameter
file. The TARUC benchmark may be downloaded from the
TARUC Bench GitHub repository located at the following
URL:

https://github.com/gabaker/TARUC Bench.git

3.1 Specifcation
The TARUC benchmark is defined by its feature set, soft-

ware and hardware requirements, and the individual micro-
benchmarks that implement the actual benchmark test cases.

3.1.1 Features

• GPU device management and control via CUDA and
the NVIDIA Management Library (NVML),

306

https://github.com/gabaker/TARUC_Bench.git

• topology awareness of coprocessors, CPUs and mem-
ory systems via the portable Hardware Localitly (HWLOC)
library,

• test automation of all micro-benchmark tests,

• verbose output including topology and GPU device in-
formation,

• automated graphing of micro-benchmark test cases,
and

• cleanup and topology scanning scripts.

3.1.2 Non-Features
TARUC does not support the following:

• NUMA effects from distributed shared-memory pro-
gramming,

• GPUs or other coprocessors that do not contain NVIDIA
chipsets,

• hybrid CPU + GPU or embedded system on a chip
(SoC) architectures that do not contain an NVIDIA
chipset,

• systems with non-Linux operating systems, and

• NVIDIA coprocessors that do not support CUDA run-
time version 7.5 or newer with compute ability 3.5+.

3.1.3 Requirements
A complete set of hardware and software requirements for

building and using TARUC can be found in [1].

3.2 Micro-Benchmarks
In order to isolate resource contention and NUMA ef-

fects, TARUC is broken into four micro-benchmarks. These
micro-benchmarks may be run in any combination or order.
Each micro-benchmark dynamically creates a number of test
cases at runtime based on the detected topology.

3.2.1 Memory Overhead
The memory overhead micro-benchmark measures alloca-

tion and deallocation cost for each memory type using var-
ious memory binding and thread pinning combinations to
isolate NUMA effects caused by heterogeneous topology. A
range of memory block sizes are timed if ranged test runs are
enabled. All CPU socket and NUMA node combinations are
tested for each of the three host memory types. Allocation
and deallocations are timed consecutively for each memory
type and block size step. For device memory allocations the
cudaMalloc() function is timed for all GPU devices present
within the test system after pinning the host thread to each
CPU socket.

3.2.2 Memory Bandwidth
The memory transfer bandwidth micro-benchmark con-

sists of three individual sub-tests that focus on different
types of automated memory transfers (copies) and commu-
nication pipelines. Host-to-host, host-device, and device-
to-device transfer bandwidth are all measured separately.
For transfers involving host memory, pinned, pageable, and
write-combined memory types are tested with varied mem-
ory access patterns. TARUC uses repeated, ascending and

descending memory address access patterns to reduce caching
effects.

Each single-threaded memory migration task is executed
while pinning the executing CPU thread to a specific CPU
socket/core. For transfers involving host memory, each mem-
ory type and access pattern is measured for bandwidth and
transfer time. Each host memory block is bound to a spe-
cific NUMA region to test for NUMA effects while measuring
pipeline bandwidth. For device-only memory transfers, ad-
ditional memory copy types are considered including unified
virtual addressing and direct peer-peer transfers.

3.2.3 Non-Uniform Random Memory Access (NURMA)
The NURMA micro-benchmark stresses streamed random

memory access by using a large, dynamically defined stride
gap to separate consecutive memory accesses. This allows
the simulation of small, fixed-access strides like those present
in certain stencil operations as well as larger pseudo-random
memory access patterns. The main focus of this micro-
benchmark is understanding how NUMA situations affect
random memory access patterns.

3.2.4 Resource Contention
The resource contention micro-benchmark has one test for

each of the QPI, PCIe, and integrated multi-channel mem-
ory controller communication paths. Simultaneous memory
transfers to different combinations of host and device mem-
ory systems are used to isolate each communication pipeline.
Threads are pinned to various combinations of CPU cores
while different devices are used as sources or destinations.
In this micro-benchmark host-only, device-only, and host-
device transfers are measured.

3.3 Design
The TARUC benchmark suite consists of topology aware

NUMA and resource contention micro-benchmarks as well as
automated graphing scripts. A number of libraries are uti-
lized for topology detection and control including HWLOC,
NVML, CUDA, and OpenMP. These libraries allow for host
thread and memory pinning, GPU coprocessor management
and computation offload, as well as hardware affinity detec-
tion for both host and device processing units.

Figure 2 shows a block diagram of the TARUC benchmark
at the software level. During benchmark initialization, the
parameter values are read in from the input file and the
system topology is detected via the SystemTopo class. A
number of safety checks also occur during this phase to en-
sure benchmark parameters can be satisfied by system re-
sources. These checks include a verification of the availabil-
ity of NVIDIA GPUs as well as memory resources for large
block allocations.

After initialization, TARUC proceeds to the benchmark-
ing phase where each micro-benchmark is called in the or-
der indicated by the parameter file. Each micro-benchmark
reads relevant parameters from the BenchParams class and
then generates test cases depending on the provided param-
eters. Ranged and multithreaded memory access tests save
data for various block sizes into a multi-dimensional C++
Vector. This data is processed to produce either a calcu-
lated bandwidth or transfer latency value for each vector
entry. These processed values are then saved to CSV files
within the results folder.

Post-processing of ranged test data is carried out via Python

307

Figure 2: TARUC Benchmark Block Diagram

graphing scripts, each of which utilizes NumPy for data
scanning/storage and matplotlib for plot creation. Each
micro-benchmark has a separate plotting script used to graph
output data. TARUC can produce a large number of graphs
that the user can evaluate.
The sections below discuss the class interfaces for the Sys-

temTopo, BenchParams, and Timer classes.

3.3.1 SystemTopo Class
Hardware topology detection, thread scheduling and mem-

ory policy management functionality is integrated into the
SystemTopo C++ class. This class combines NVIDIA Man-
agement Library (NVML), CUDA runtime API, and HWLOC
functionality into a single interface. At instantiation, the
SystemTopo class parses a generalized topology object tree
provided by the HWLOC API as well as device information
from the NVML and CUDA libraries. All system topology
information is automatically detected after instantiation of
the SystemTopo class object. HWLOC provides detailed in-
formation about the number of CPU sockets, NUMA nodes,
cores, and processing units (PUs) as well as the sizes of
cache and main memory. PCIe device location information
is also available. The topology information is parsed into de-
vice statistics and relational information that is later used to
manage thread affinity and memory policy. The CUDA run-
time API is then queried to provide basic device information
including the size of memory resources and the functional-
ity of peer-to-peer support for GPU pairs. Finally, NVML is
utilized to inform the SystemTopo class about the proximity
of GPU devices to processing units.

After the initialization phase, the class provides a num-
ber of memory, thread, and device management functions.
These functions provide the ability to pin threads to ex-
ecution units including CPU sockets, cores or processing
units. The HWLOC library provides this functionality on
Linux systems through the modification of scheduler affinity.
Memory can be directly allocated on any specified NUMA
node (called memory binding), or the memory policy can
be modified such that memory is placed on NUMA regions
after being used (such as interleaving on first touch).

3.3.2 BenchParams Class
The BenchParams class is a storage and utility class for

keeping track of all benchmark parameters. Because of the
number of class variables and intended use within the TARUC
benchmark, each parameter is made publicly accessible rather
than abstracted via member access functions. Each value
within the parameter file corresponds to a variable within
the parameter class.

Some of the available parameters include: minimum and
maximum block sizes for the range tests, whether to test all
GPUs in the system, whether to test all memory types, and
if each socket should be included in the tests. There are
many parameters available that determine the behavior of
each test. Full discussion of all of TARUC’s parameters is
omitted from this paper due to space considerations.

3.3.3 Timer Class
The Timer class is a C++ class that integrates host-based

timing together with a CUDA event-based device timer. The
timing object is instantiated with a single boolean value in-

308

dicating the type of timing the user wishes to use. When the
value is true, the chrono::high_resolution_clock stan-
dard library class is utilized to provide host-based timing
functionality. The chrono class was chosen because of its
nanosecond accuracy and simple programmer interface. If
the value is set to false, then the timer relies on the CUDA
event interface to provide timing results. While event tim-
ings come with a lower (millisecond) accuracy than the host
timer, they provide the best mechanism that is capable of
timing asynchronous CUDA API calls. To prevent syn-
chronization issues between different timers, a non-default
CUDA stream is initialized and passed to event timing calls.

4. BENCHMARK RESULTS
Some of the more interesting results and insights from

running TARUC on a high-performance test system are pro-
vided. These results quantify the importance of NUMA
awareness and demonstrate potential uses for TARUC. Some
insight based on experiences building the TARUC bench-
mark is also provided. The primary output from TARUC is
performance profile graphs from each of the micro-benchmarks.
This section presents a small subset of the graphs available.
These graphs are useful for measuring the significance of
NUMA effects on GPUs and host memory subsystems as
well as doing comparative analysis of different GPU hard-
ware and topologies.

4.1 Test System
The test system consists of two Intel Xeon E5-2650 Sandy

Bridge CPUs that have 8 discrete 2.0 GHZ cores, and 16
processing units with hyperthreading enabled. Each CPU
socket has 32 GB of attached RAM for a total of 64 GB of
main memory. Cores have 32KB instruction and data L1
caches and a 256 KB L2 cache. All cores on a single socket
share 20 MB of L3 cache. Attached to the PCIe slots are
four discrete GPUs: two Tesla K20Xm compute-class cards,
one Tesla K40c, and one GeForce GTX Titan Black graph-
ics card. Each K20Xm and the Titan have 6GB of mem-
ory while the K40c GPU has 12 GB of memory. Each of
the GPU memories have different memory clock frequencies
resulting in varying memory access latency. The K20Xm,
K40c and Titan GPUs have 2600 MHz, 3004 MHz, and 3500
MHz memory clock rates, respectively. The test system pro-
vides a unique testing environment because different gener-
ation GPUs allow comparison of NUMA effects on different
GPU hardware. Figure 3 shows a hardware overview of the
test system.

4.2 Profling Results
The following sections contain the results of running the

TARUC benchmark on the test system. These graphs are a
subset of the graphs that are generated with TARUC.

The parameters have been kept consistent over all the
benchmarking systems to minimize variance in graph struc-
ture. The following parameters were used for the bench-
marking runs on all systems. Figure 4 below shows a sim-
plified list of test parameters.

4.2.1 Memory Management Overhead
The graphs of memory overhead tests are log-log scale

graphs showing the elapsed time in microseconds of an al-
location of varied memory block sizes. Log scale graphs are

useful for showing large variations in memory block sizes.
However, log scale graphs can obscure overhead costs that
are actually much larger than they appear.

Three types of host memory are tested within the TARUC
benchmark. Pageable, pinned, and write-combined memo-
ries are measured along with device memory located on each
of the on-node GPUs. Memory allocations and deallocations
are measured between 100B and 1.5GB.

Figure 5 shows that allocations of non-local host memory
result in a fixed overhead of 20-50%. This NUMA overhead
decreases from its maximum as the block size increases past
the inflection point of 1MB for non-pageable memories. This
graph also shows that non-pageable memories have increased
allocation overhead compared to pageable memory.

Allocations of GPU memory have no significant effect
when NUMA bindings are changed. The fixed overhead
associated with the allocation of GPU memory over PCIe
depends more on the hardware specifications of the specific
GPU device. In particular, the memory clock frequency of
the GPU seems to determine the relative performance of a
specific GPU for memory allocation and deallocation oper-
ations. Figure 6 shows that the GTX Titan GPU has the
lowest cost for block allocations likely as a result of it having
the highest memory clock frequency.

Figure 7 shows NUMA related effects in the deallocation
of memory for the K20Xm GPU devices when the execut-
ing thread is pinned to the non-local CPU socket. This
performance artifact can be clearly linked to NUMA as the
K20Xm devices do not suffer from the performance degra-
dation when the thread is pinned to CPU 1 as shown in
Figure 8. The two K20Xm GPUs are located on PCIe con-
nections attached to controllers on CPU 1 while the execut-
ing thread is run on CPU 0. This trend is significant, as it
appears to be machine specific and only occurs for device
memory deallocation events.

It is interesting that there is a very clear point where at
certain memory block sizes the noise dissipates as indicated
near 10MB. We do not speculate why this performance ar-
tifact occurs due to the opaqueness of the CUDA runtime
system.

These graphs provide evidence that system performance
can be influenced from hardware specific phenomena outside
the control of the developer. It is essential that the per-
formance profile of the memory system be benchmarked to
avoid wasting time on application debugging if performance
results are other than what is expected.

4.2.2 Memory Transfer Bandwidth

Host-Host Block Memory Transfers.
Host-Host memory bandwidth is measured using a single

thread of execution pinned to various CPUs. This thread
transfers memory from one memory block to another, each
of which has an individual memory policy binding. The
comparative effect of block size, memory and thread policy,
and access pattern are presented. Each of the mentioned
variables may change the effectiveness of caching at reducing
NUMA effects. In particular, it is expected that small block
sizes along with those that use repeated memory address
ranges will experience less NUMA overhead due to caching.
Figure 9 shows the change in execution time associated

with exceeding the available space of each level of cache. The
test uses cacheable paged memory with a repeated memory

309

Figure 3: Test System Architecture Overview

1 T e s t A l l S o c k e t s : t r u e
2 T e s t Ho st Mem Types : t r u e
3 T e s t a l l D e v i c e s : t r u e
4 T e s t A c c e s s P a t t e r n s : t r u e
5 S u s t a i n e d T e s t s : t r u e
6 # R e p e at e d S t e p s : 20
7 Number S t e p s Per Magnitude : 10
8 Overhead / Bandwidth Range : 10 − 1 5 0 0 0 0 0 0 0 0 (b y t e s)
9 NURMA A c c e s s Gap/ S t r i d e : 657 (d o u b l e s)

10 NURMA Ho s t Memory B l o c k S i z e : 2 0 0 0 0 0 0 0 0 (d o u b l e s)
11 NURMA Range (d o u b l e s) : 1 0 , 1 0 0 0 0 0 0 0 (min , max)
12 C o n t e n t i o n Memory B l o c k S i z e : 1 0 0 0 0 0 0 0 0 (b y t e s)

Figure 4: TARUC Test Parameters

Figure 5: Memory Allocation - Memory Bound To
Node Zero

address. Interestingly, the local memory transfer when the
executing thread is local to the memory node provides the
best performance only after the size of the memory block
exceeds L3 cache size.
Figure 10 shows the NUMA costs of different node bind-

ings when the executing thread is pinned to CPU 1. The
worst case for NUMA binding overhead is a 15% reduction
in bandwidth when a thread executes completely non-local
memory transfers. The best performance is achieved when

Figure 6: Memory Allocation - Thread Pinned To
CPU Zero With All Devices

both source and destination memory blocks remain local to
the executing thread. Results also show a significant reduc-
tion in overhead if the destination memory block is on the
same NUMA region as the executing thread’s CPU. This in-
dicates that cache write-back policy is slowed by having to
write cache lines to non-local memory. The source block is
never written which prevents it being marked as modified,
and allows the cache line to be invalidated without being
written back to main memory. Another result is that page-

310

Figure 7: Memory Deallocation - Thread Pinned To
CPU Zero With All Devices

Figure 8: Memory Deallocation - Thread Pinned To
CPU One With All Devices

Figure 9: Host Memory Copy - Pageable Memory
Bound To Node Zero With A Repeated Memory
Address

able and pinned memory benefit from cache despite the use
of varied access patterns.

To demonstrate that different memory address access pat-
terns do not significantly influence the presence of NUMA

Figure 10: Host Memory Copy - Thread Pinned To
CPU One And Pageable Host Memory With Linear
Decreasing Memory Address

within test runs, the total transfer time of each pattern is
plotted for different thread pinning combinations. Figure 11
shows that while there is a minor change in the overall ex-
ecution time of a memory copy for certain patterns, this
change does not outweigh NUMA performance influences.

Figure 11: Host Memory Copy - Memory Bound To
Node Zero, Repeated Address, And Pinned Dest
Memory

Pageable memory seems to provide better performance
than pinned memory on the test system. Figure 12 shows
pinned memory performance and demonstrates a 50% re-
duction in bandwidth for non-local NUMA bindings.

Host-Device Block Memory Transfers.
Benchmarking memory copy bandwidth between GPU ac-

celerators and host memory involves timing CUDA runtime
calls for various memory types. Asynchronous and syn-

311

Figure 12: Host Memory Copy - Thread Pinned
CPU One Using Repeated Memory Address And
Pinned Memory

chronous copy types are tested depending on the host mem-
ory type. Pinned and write-combined memories allow the
runtime to use asynchronous copies between host and device
memory spaces. Such copies remove the need to temporarily
transfer memory to a pinned buffer before copying the block
to the device. The test system demonstrated a 28% increase
in bandwidth when using asynchronous runtime copies over
the baseline pageable memory transfer (for the largest block
sizes tested).
NUMA effects on host-device memory transfers were of

particular interest when the TARUC benchmark was devel-
oped. Different thread pinning and NUMA binding combi-
nations were tested for both asynchronous and synchronous
copies. Removing direct thread involvement in the copy ends
the need for the memory to be copied to a buffer that is lo-
cal to that executing thread. We see a significant bandwidth
reduction when using pageable host memory for transfers in-
volving non-local memory. Figure 13 illustrates this effect.
Transfers involving pinned and write-combined host memory
are unaffected by NUMA locality of the host memory.

Figure 13: Host-Device Memory Copy - Host
NUMA Node One And K40c GPU Using Linear In-
creasing Memory Address

Similar NUMA effects are demonstrated during transfers
for all GPUs on the test system. Figure 14 illustrates that
the most significant NUMA effect is the locality of memory
to the executing host thread. When memory is non-local,
the pageable host memory must be transferred before a host-
device transfer can be initiated. Differing GPUs also report
varying host-device bandwidth. This shows that the differ-
ence in bandwidth is a result of different device hardware
rather than NUMA effects. Bandwidth rather than latency
is the limiting factor when non-pageable memory transfers
are concerned.

Figure 14: Device-To-Host Memory Copy - Thread
Pinned To CPU Zero Using Pageable Host Memory

Device-Device Block Memory Transfers.
Direct device-device memory transfers allow the accelera-

tors to share data during synchronization events scheduled
by a host thread. Direct transfers are desirable in situa-
tions where the host does not need intermediate application
data in between time steps (or other incremental steps) of a
run. If the host does not need intermediate step data then
GPU devices can do direct transfers. Device-device trans-
fers reduce contention on the host memory system as well as
the QPI bus. In TARUC, peer-peer and device-host-device
transfers (shortened device-device) are tested. Both types
of asynchronous transfers remove host thread involvement
in the memory transfer. Device-device transfers involve an
intermediate copy by the CUDA runtime to host memory
before the memory block is copied to the destination GPU.

The first test of device performance is internal device
memory transfer bandwidth. In the case of Figure 15, intra-
device transfers are profiled. The actual memory system
bandwidth is doubled because the bandwidth is measured
from the perspective of the block being transferred. Intra-
device transfers involve a read and a write to different mem-
ory blocks within the same GPU. Measuring intra-node GPU
memory bandwidth shows the difference in accelerator gen-
eration and type (consumer or compute class).
Figures 16 and 17 show that peer transfers provide higher

bandwidth for small to medium memory block transfer sizes,
but underperform for some transfers of large device mem-
ory blocks. This result is contrary to expectation since peer
transfers should allow for lower latency and higher band-
width when enabled. Instead, we see that For large block
sizes there can be an advantage to using device-device mem-
ory transfers. The direction of the transfer can also influ-
ence the bandwidth. Transferring memory between the con-

312

Figure 15: Intra-Device Memory Transfer - Thread
Pinned To CPU Zero

sumer class GTX Titan GPU and the compute class K40c
is a clear demonstration of this effect. Something relating
to hardware generation or optimization levels between the
two cards reduces the performance when transferring from
the K40c to the Titan GPU. This is consistent no matter
which CPU core is pinned for the host thread. Bandwidth
decreases are more significant during peer transfers (than
device-device) for certain transfer directions when copying
memory between different GPU models.

Figure 17: Device-Device Memory Copy - Both
K20Xm GPUs With Thread Pinned To CPU Zero

NUMA. Small memory gap sizes mimic strided memory ac-
cess while larger gap sizes that exceed cache line width and
page size mimic random memory access. If the gap size is
reduced to zero, streamed memory transfer is simulated.

Figure 18 illustrates that there is no significant difference
in performance or NUMA impact on pinned versus pageable
memory for streamed random access. Both types of memory
demonstrate differences in performance for local and non-
local memory access.

Figure 16: Device-Device Memory Copy - Titan
And K40c GPUs With Thread Pinned To CPU Zero

The K20Xm GPUs consistently show almost identical band-
width no matter the transfer direction. They also show the
premature maxing of peer transfer bandwidth when com-
pared to device-device transfers of large enough block sizes.

4.2.3 NURMA Latency
The NURMA micro-benchmark is useful for understand-

ing how different memory access patterns are affected by

Figure 18: NURMA Test - Thread Pinned to CPU
One With All Memory Types And NUMA Bindings

4.2.4 Resource Contention

Local Memory Aggregate Bandwidth.
In general, ideal real-world memory bandwidth will be

achieved when the locality of memory access is maximized.
To achieve ideal memory locality, threads should be pinned

313

to execution spaces where NUMA policy allocates memory.
In the case of the local memory bandwidth test, memory
is accessed from the local NUMA node for all executing
threads. Figure 19 shows bandwidth scaling for single-node
or multi-node memory situations. Bandwidth peaks when
the number of simultaneous threads matches the number of
memory channels connecting each CPU to its local mem-
ory space. This graph shows a bump in performance when
oversubscribing threads to cores by 1.5x. This could be a
result of the OS scheduling threads that are bottlenecked
by memory transfers more efficiently. Once thread-to-core
oversubscription exceeds 1.5x, there is a decrease in perfor-
mance to slightly below the bandwidth of the one thread to
one core ratio.

Figure 19: Local Memory Bandwidth - All NUMA
Bindings And Memory Operation Types

Inter-Socket QPI Contention.
The worst case NUMA related contention occurs when si-

multaneously executing threads access host memory from
adjacent NUMA regions. QPI links quickly saturate on
the test system for inter-socket transfers. since they have
a maximum bidirectional bandwidth roughly the same as a
single 16x PCIe 3.0 connection. Figure 20 shows a roughly
50% drop in bandwidth compared to maximum host mem-
ory bandwidth when QPI is saturated.

Figure 20: Inter-Socket Host Memory Access Band-
width - All Directions And Memory Operation
Types

Host-Device PCIe Contention.
To provide accurate assessment of PCIe contention, a system-

wide baseline of aggregate performance provides a reference
for realistic bandwidth scaling of different GPU assignments.
Figure 21 shows the aggregate PCIe bandwidth when all
GPUs are copying memory simultaneously to and from local
CPU memory. Bidirectional memory copies are measured
to ensure pipeline saturation. Each GPU has two execution
and memory copy engines, so this test is an oversubscription
of 4x since each thread does a bidirectional transfer.

Figure 21: Baseline PCIe Bandwidth - Four Threads
Per GPU With Bidirectional Transfers, All Threads
On Local CPUs

Local assignment of GPUs to CPU memory is critical
to maximize bandwidth because QPI bandwidth is signif-
icantly lower than host memory or the aggregate bandwidth
of multiple PCIe connections. Moving half of the threads
to a non-local CPU reduces the aggregate bandwidth by
roughly 6 GB/S. This amounts to a 13% drop in overall
bandwidth. For a system with less contention, aggregate
bandwidth might be less affected making this test somewhat
less valid. However, pipeline contention certainly does oc-
cur in balanced applications that utilize GPUs for computa-
tion when kernel operations synchronize with host memory.
In previous tests it was determined that for asynchronous
pinned memory host-device transfers, little in the way of
NUMA effects exist when contention is not present. Page-
able memory transfers do not benefit from a lack of NUMA
effects due to the need to transfer the pageable memory
block to a local pinned buffer. Minimizing QPI contention
is essential for maximizing bandwidth during synchroniza-
tion events.

Figure 22 displays the per node host-device bandwidth
of the test system when up to four threads per GPU are
executing simultaneous transfers. Results show that node
1 has slightly lower bandwidth than node 0, which verifies
that that the GTX Titan and K40c have higher aggregate
bandwidth than the two K20Xm GPUs. Because the K40c
and the Titan are local to CPU 0, they have a direct higher
bandwidth connection that does not travel over QPI. Al-
locating GPUs based on the locality of CPU resources is
a viable option assuming memory is local to the executing

314

thread. Otherwise, allocating GPU resources based on the
locality of memory the thread is using should be preferred.
It is important to note that the per node transfer band-
width graph shows roughly the same performance reduction
as partially non-local baseline bandwidth test. The perfor-
mance of both local memory bandwidth and aggregate PCIe
bandwidth appears to be limited by the host memory sys-
tem for the test system rather than PCIe bandwidth. This
is true for contended systems when all GPUs simultaneously
execute bidirectional memory transfers.

Figure 22: Per NUMA Node Aggregate PCIe Band-
width

These results show that the TARUC benchmark can be
used to profile a target hardware system to find the inflection
points in bandwidth and execution time or possible hard-
ware specific performance artifacts.

5. RELATED WORK
The existence of NUMA effects and the necessity of de-

signing NUMA aware schedulers and algorithms has been
well documented by a number of researchers. Research re-
lated to the material covered in this paper has mainly bench-
marked host memory contention via either synthetic mem-
ory kernels [2] or real applications [8].
The synthetic benchmarks addressed specific instances of

NUMA effects in much the same way the host-based TARUC
tests do by carrying out memory operations over a num-
ber of NUMA pinning situations. Application performance
benchmark tests on NUMA systems generally utilize appli-
cation codes along with command line memory policy tools
(such as hwloc-bind) to test poorly scheduled thread and
memory binding combinations on overall application per-
formance. Some new architectural enhancements like large
virtual page sizes have been demonstrated to negatively im-
pact the performance of certain applications on NUMA ma-
chines [3]. Additionally, some work has been carried out to
develop a NUMA aware thread scheduler with knowledge of
critical path operations. This type of scheduler has been
shown to allow the deployment of near ideal thread schedul-
ing algorithms for NUMA machines [9].

Most of the previous research has not dealt with the ef-
fect NUMA has on coprocessor enabled systems. Previ-
ous NVIDIA conference presentations allude to NUMA ef-
fects on GPUs with the solution being to statically define
GPU locality based on initial problem partitioning. Based

on TARUC benchmark results on x86 systems, we observe
that NUMA effects result in more complicated performance
phenomenon than simple bandwidth or latency reductions.
Both load balancing and NUMA awareness are required along
with a system specific understanding of NUMA and con-
tention effects. In addition, few benchmarking tools have
been developed to test the significance of on-node NUMA
effects on differing systems.
To the best of our knowledge, no publicly available tools

that benchmark NUMA effects also take into account the
significance of PCIe based coprocessors in addition to mea-
suring memory contention.

6. CONCLUSIONS AND FUTURE WORK
This paper presents the Topology Aware Resource Us-

ability and Contention (TARUC) benchmark that allows
performance profiling of heterogeneous computing systems.
TARUC consists of micro-benchmarks that demonstrate how
NUMA and contention influence performance. These bench-
mark subtests address memory allocation and deallocation
performance for a number of host and device memory types.
Tests of host-host, host-device, and device-device pipeline
bandwidth can be measured over various thread, memory
type and memory binding combinations. In addition to
streamed consecutive memory access, the non-uniform ran-
dom memory access (NURMA) micro-benchmark addresses
other possible memory access patterns on memory perfor-
mance on NUMA machines. Contention micro-benchmark
tests seek to stress system communication pipelines includ-
ing main memory, I/O links like PCIe and cache-coherence
links like QPI.

TARUC performance profiles were acquired from a test
system containing four NVIDIA GPU devices. Our results
show NUMA effects can have a significant impact on achieved
memory performance, and that TARUC can be used as a
guide for application developers who wish to tune the per-
formance of their application on a specific system. It is our
hope that the TARUC benchmark will be useful for HPC ap-
plication developers for improving performance on complex
heterogeneous NUMA systems.

For future work we plan to measure communication and
resource contention on Intel Xeon Phi Knights Landing sys-
tems, as they will present a new NUMA region in the form
of High-Bandwidth Memory.

7. REFERENCES
[1] G. Baker. An emperical study of contention and

NUMA effects on heterogeneous computing systems.
Master’s thesis, California Polytechnic State
University, June 2016.

[2] L. Bergstrom. Measuring NUMA Effects With the
STREAM Benchmark. arXiv preprint
arXiv:1103.3225, 2011.

[3] F. Gaud, B. Lepers, J. Decouchant, J. Funston,
A. Fedorova, and V. Quéma. Large Pages May be
Harmful on NUMA Systems. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages
231–242, 2014.

[4] Intel. White paper: An Introduction to the Intel ̂ oA˝
QuickPath Interconnect. Technical report, Intel
Corporation, January 2009.

315

[5] P. Jacob, A. Zia, O. Erdogan, P. M. Belemjian, J.-W.
Kim, M. Chu, R. P. Kraft, J. F. McDonald, and
K. Bernstein. Mitigating Memory Wall Effects in
High-Clock-Rate and Multicore CMOS 3-D Processor
Memory Stacks. Proceedings of the IEEE,
97(1):108–122, 2009.

[6] J. Lawley. White paper: Understanding Performance
of PCI Express Systems. Technical report, XILINX,
October 2014.

[7] S. A. McKee. Reflections on the Memory Wall. In
Proceedings of the 1st conference on Computing
frontiers, page 162. ACM, 2004.

[8] K. Spafford, J. S. Meredith, and J. S. Vetter.
Quantifying NUMA and Contention Effects in
Multi-GPU Systems. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics
Processing Units, page 11. ACM, 2011.

[9] C. Su, D. Li, D. S. Nikolopoulos, M. Grove,
K. Cameron, and B. R. De Supinski. Critical
Path-Based Thread Placement for NUMA Systems.
ACM SIGMETRICS Performance Evaluation Review,
40(2):106–112, 2012.

[10] The Top500 List of Supercomputers.
http://www.top500.org. Accessed: 2016-4-14.

316

http://www.top500.org
http:http://www.top500.org

	Introduction
	Background
	NUMA
	Modern x86 System Architecture
	Memory, Thread, and Process Management
	Programming Parallel Architectures

	The TARUC Benchmark
	Specification
	Features
	Non-Features
	Requirements

	Micro-Benchmarks
	Memory Overhead
	Memory Bandwidth
	Non-Uniform Random Memory Access (NURMA)
	Resource Contention

	Design
	SystemTopo Class
	BenchParams Class
	Timer Class

	Benchmark Results
	Test System
	Profiling Results
	Memory Management Overhead
	Memory Transfer Bandwidth
	NURMA Latency
	Resource Contention

	Related Work
	Conclusions and Future Work
	References

