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ABSTRACT 
Computer architects have increased hardware parallelism 
and power efficiency by integrating massively parallel hard-
ware accelerators (coprocessors) into compute systems. Many 
modern HPC clusters now consist of multi-CPU nodes along 
with additional hardware accelerators in the form of graphics 
processing units (GPUs). Each CPU and GPU is integrated 
with system memory via communication links (QPI and 
PCIe) and multi-channel memory controllers. The increas-
ing density of these heterogeneous computing systems has 
resulted in complex performance phenomena including non-
uniform memory access (NUMA) and resource contention 
that make application performance hard to predict and tune. 
This paper presents the Topology Aware Resource Usability 
and Contention (TARUC) benchmark. TARUC is a modu-
lar, open-source, and highly configurable benchmark useful 
for profiling dense heterogeneous systems to provide insight 
for developers who wish to tune application codes for spe-
cific systems. Analysis of TARUC performance profiles from 
a multi-CPU, multi-GPU system is also presented. 

1. INTRODUCTION 
Non-uniform memory access (NUMA) as well as commu-

nication link bandwidth contention can reduce performance 
for applications used in heterogeneous computing system 
topologies. This paper presents TARUC, a new Topology 
Aware Resource Usability and Contention benchmark that 
utilizes memory and thread pinning techniques to provide 
detailed performance profiles of how system topology and 
usage patterns affect memory performance. The benchmark 
is tested on an x86 computing system and the results and 
experiences gained may be used to inform application devel-
opers about best practices for manual control of computing 
resources. 
While parallel computational performance has improved 

following the trend predicted by Moore’s Law, the band-
width of memory systems and the communication links that 
connect peripheral coprocessor cards to main memory or 
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network fabrics have both failed to match increasing demand 
for bandwidth [5, 7]. The existence of variable bandwidth 
and latency communication paths between CPUs, GPUs, 
main memory, and the network fabric has resulted in a hier-
archical communication topology along with NUMA. NUMA 
effects can result in longer latencies for critical path opera-
tions which in turn can reduce the overall performance of the 
application [8]. TARUC is designed to help HPC application 
developers understand system topology and potentially mit-
igate the effects that variable topologies have on application 
performance. 

The remainder of this paper is organized into the follow-
ing sections: 2) discussion of modern system level architec-
ture, 3) discussion of the design and implementation of the 
TARUC benchmark, 4) review of results acquired on a HPC 
test system, 5) related work on the topic of resource man-
agement of heterogeneous computing systems, 6) a summary 
of the most significant conclusions and topology trends and 
a review of continuing effort in this research area. 

2. BACKGROUND 
For this paper, we focus on x86-based microprocessor com-

puting systems that utilize coprocessor hardware to explore 
the architecture of densely packed computing systems. These 
systems comprise the majority of supercomputers [10]. 

2.1 NUMA 
One solution for scaling beyond a single CPU is to add 

multiple CPU sockets to a single computing system. Sepa-
rate DIMMs and corresponding memory management units 
(MMUs) are often provided for each CPU socket. To en-
sure cache and memory coherence, each CPU is connected 
together via a high-speed low-latency cache coherence link. 
One side effect is that some memory accesses require extra 
time/latency due to the cache coherence link. Cache co-
herency links are high bandwidth and low latency compared 
to other peripheral connections, but still fail to match ei-
ther the bandwidth or latency of having a single memory 
bus connection between main memory and CPUs. 

The effect of having memory spaces connected to cores 
with differing latency and bandwidth connections is called 
non-uniform memory access (NUMA). 

2.2 Modern x86 System Architecture 
Modern x86 computers typically consist of one or more 

CPUs, main memory, persistent storage, and a number of 
I/O interfaces. Each CPU integrates both memory control 
and high speed peripheral communication links onto a sin-
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gle package. Processors can contain multiple cores per pack-
age and multiple processing units per core in simultaneous 
multithreaded (SMT) architectures. The sharing of mem-
ory resources can be of concern in NUMA systems because 
of the potential for unbalanced memory usage where many 
cores access the memory or cache of a specific NUMA node. 
Figure 1 shows a basic x86 system with main memory, I/O, 
and multiple cores. 

Figure 1: An x86 Cache Coherent NUMA Machine 

For multiple CPU systems, cache coherency links are used 
to maintain the shared memory programming model guar-
anteed by today’s symmetric multiprocessing systems. QPI 
is utilized on Intel processors to connect the memory sub-
systems of two or more CPUs within a single machine. The 
bidirectional bandwidth of QPI ranges from 25-32GB/s [4]. 
Memory access on NUMA systems may require the request 
to travel from one CPU over the QPI bus to the MMUs of 
an adjacent processor. This transaction is transparent to 
the application, other than the performance reduction for 
repeated remote access. 
Peripheral devices such as NICs and GPU or Xeon Phi co-

processors may be attached via a PCIe connection. The cur-
rent generation PCIe 3.0 is a point-to-point communication 
link that can dynamically scale between 2, 4, 8, or 16 lanes 
between a single device and host. Each lane can carry out 
8.0GT/s (giga transfers per second) for a total bidirectional 
bandwidth of 32GB/s [6]. PCIe combined with integrated 
memory control hardware on the CPU allow for direct ad-
dress (DMA) of pinned memory by PCIe devices contained 
on node-local PCIe slots. 

2.3 Memory, Thread, and Process Management 
The Linux operating system allows for the setting of mem-

ory and thread management policy to control the hardware 
location of allocated resources. Manual control of the loca-
tion of thread or process execution can be carried out by 
modifying the thread’s individual hardware affinity. The 
allocation policy of memory can be set to firsttouch, bind, 
interleave, and nexttouch with each policy defining where a 
block of memory will be placed upon allocation or use. In 
the TARUC benchmark, the bind policy is used to ensure 
correct memory NUMA locations during tests. 

2.4 Programming Parallel Architectures 
A number of software libraries allow for the use of paral-

lel hardware through different software abstractions. Most 
significantly OpenMP, OpenAcc, OpenCL and CUDA pro-
vide some type of node-local software parallelism. TARUC 
uses OpenMP and CUDA to test heterogeneous systems for 
NUMA effects. This choice was made because of the flexi-

bility and vendor support for these libraries provided on our 
test systems. OpenMP enjoys widespread compiler support 
and relatively low overhead. Compiling with OpenMP is a 
matter of adding relevant threading directives, the header li-
brary declaration, and linking flags. For GPU functionality, 
the CUDA runtime API version 7.5 is utilized. CUDA was 
chosen because it provides thorough functionality including 
a variety of host-device memory management operations and 
has been optimized for the NVIDIA coprocessors present on 
our test systems. 

3. THE TARUC BENCHMARK 
The Topology Aware Resource Usability and Contention 

(TARUC) Benchmark consists of a number of micro-benchmarks 
used to measure communication and memory access band-
width within complex heterogeneous architectures. 
The TARUC benchmark examines NUMA and contention 

effects in the context of memory transfer and operation band-
width during single threaded and multithreaded memory 
migrations. Threads and memory resources are pinned to 
simulate specific resource utilization situations and mea-
sure performance influences. TARUC tests the effectiveness 
of memory types and copy methods in specific hardware 
allocation situations. Memory types include device mem-
ory, host pageable, host pinned, and host write-combined 
memories while migration methods include manual unified 
memory and asynchronous memory copies. In addition to 
built-in memory transfers, a variety of manual memory ac-
cess patterns including copy assignments and triads (copy-
/scale/add) are tested for throughput and latency. 

TARUC examines resource contention within the memory 
access pipeline by profiling simultaneous memory transfers 
and access operations between memory resources on differ-
ent computing resources. In contrast, NUMA effects and 
other overhead costs of utilizing different system memory 
types are examined in isolated, single-threaded allocations, 
transfers, and operations. 

TARUC supports analysis of NVIDIA GPUs using the 
CUDA runtime along with system topology detection and 
control through the HWLOC library. Host multi-threading 
is provided by calls to OpenMP parallel tasks. HWLOC 
also provides memory and thread resource pinning functions 
through integration with pthreads and libnuma, allowing 
isolation of individual computing resources within bench-
mark test cases. Each recorded micro-benchmark data set is 
automatically fed into graphing scripts that iteratively gen-
erate a variety of comparative plots for performance analysis. 
The entire benchmark may be run with a single command 
and tuning is provided through a simple input parameter 
file. The TARUC benchmark may be downloaded from the 
TARUC Bench GitHub repository located at the following 
URL: 

https://github.com/gabaker/TARUC Bench.git 

3.1 Specifcation 
The TARUC benchmark is defined by its feature set, soft-

ware and hardware requirements, and the individual micro-
benchmarks that implement the actual benchmark test cases. 

3.1.1 Features 

• GPU device management and control via CUDA and 
the NVIDIA Management Library (NVML), 
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• topology awareness of coprocessors, CPUs and mem-
ory systems via the portable Hardware Localitly (HWLOC) 
library, 

• test automation of all micro-benchmark tests, 

• verbose output including topology and GPU device in-
formation, 

• automated graphing of micro-benchmark test cases, 
and 

• cleanup and topology scanning scripts. 

3.1.2 Non-Features 
TARUC does not support the following: 

• NUMA effects from distributed shared-memory pro-
gramming, 

• GPUs or other coprocessors that do not contain NVIDIA 
chipsets, 

• hybrid CPU + GPU or embedded system on a chip 
(SoC) architectures that do not contain an NVIDIA 
chipset, 

• systems with non-Linux operating systems, and 

• NVIDIA coprocessors that do not support CUDA run-
time version 7.5 or newer with compute ability 3.5+. 

3.1.3 Requirements 
A complete set of hardware and software requirements for 

building and using TARUC can be found in [1]. 

3.2 Micro-Benchmarks 
In order to isolate resource contention and NUMA ef-

fects, TARUC is broken into four micro-benchmarks. These 
micro-benchmarks may be run in any combination or order. 
Each micro-benchmark dynamically creates a number of test 
cases at runtime based on the detected topology. 

3.2.1 Memory Overhead 
The memory overhead micro-benchmark measures alloca-

tion and deallocation cost for each memory type using var-
ious memory binding and thread pinning combinations to 
isolate NUMA effects caused by heterogeneous topology. A 
range of memory block sizes are timed if ranged test runs are 
enabled. All CPU socket and NUMA node combinations are 
tested for each of the three host memory types. Allocation 
and deallocations are timed consecutively for each memory 
type and block size step. For device memory allocations the 
cudaMalloc() function is timed for all GPU devices present 
within the test system after pinning the host thread to each 
CPU socket. 

3.2.2 Memory Bandwidth 
The memory transfer bandwidth micro-benchmark con-

sists of three individual sub-tests that focus on different 
types of automated memory transfers (copies) and commu-
nication pipelines. Host-to-host, host-device, and device-
to-device transfer bandwidth are all measured separately. 
For transfers involving host memory, pinned, pageable, and 
write-combined memory types are tested with varied mem-
ory access patterns. TARUC uses repeated, ascending and 

descending memory address access patterns to reduce caching 
effects. 

Each single-threaded memory migration task is executed 
while pinning the executing CPU thread to a specific CPU 
socket/core. For transfers involving host memory, each mem-
ory type and access pattern is measured for bandwidth and 
transfer time. Each host memory block is bound to a spe-
cific NUMA region to test for NUMA effects while measuring 
pipeline bandwidth. For device-only memory transfers, ad-
ditional memory copy types are considered including unified 
virtual addressing and direct peer-peer transfers. 

3.2.3 Non-Uniform Random Memory Access (NURMA) 
The NURMA micro-benchmark stresses streamed random 

memory access by using a large, dynamically defined stride 
gap to separate consecutive memory accesses. This allows 
the simulation of small, fixed-access strides like those present 
in certain stencil operations as well as larger pseudo-random 
memory access patterns. The main focus of this micro-
benchmark is understanding how NUMA situations affect 
random memory access patterns. 

3.2.4 Resource Contention 
The resource contention micro-benchmark has one test for 

each of the QPI, PCIe, and integrated multi-channel mem-
ory controller communication paths. Simultaneous memory 
transfers to different combinations of host and device mem-
ory systems are used to isolate each communication pipeline. 
Threads are pinned to various combinations of CPU cores 
while different devices are used as sources or destinations. 
In this micro-benchmark host-only, device-only, and host-
device transfers are measured. 

3.3 Design 
The TARUC benchmark suite consists of topology aware 

NUMA and resource contention micro-benchmarks as well as 
automated graphing scripts. A number of libraries are uti-
lized for topology detection and control including HWLOC, 
NVML, CUDA, and OpenMP. These libraries allow for host 
thread and memory pinning, GPU coprocessor management 
and computation offload, as well as hardware affinity detec-
tion for both host and device processing units. 

Figure 2 shows a block diagram of the TARUC benchmark 
at the software level. During benchmark initialization, the 
parameter values are read in from the input file and the 
system topology is detected via the SystemTopo class. A 
number of safety checks also occur during this phase to en-
sure benchmark parameters can be satisfied by system re-
sources. These checks include a verification of the availabil-
ity of NVIDIA GPUs as well as memory resources for large 
block allocations. 

After initialization, TARUC proceeds to the benchmark-
ing phase where each micro-benchmark is called in the or-
der indicated by the parameter file. Each micro-benchmark 
reads relevant parameters from the BenchParams class and 
then generates test cases depending on the provided param-
eters. Ranged and multithreaded memory access tests save 
data for various block sizes into a multi-dimensional C++ 
Vector. This data is processed to produce either a calcu-
lated bandwidth or transfer latency value for each vector 
entry. These processed values are then saved to CSV files 
within the results folder. 

Post-processing of ranged test data is carried out via Python 
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Figure 2: TARUC Benchmark Block Diagram 

graphing scripts, each of which utilizes NumPy for data 
scanning/storage and matplotlib for plot creation. Each 
micro-benchmark has a separate plotting script used to graph 
output data. TARUC can produce a large number of graphs 
that the user can evaluate. 
The sections below discuss the class interfaces for the Sys-

temTopo, BenchParams, and Timer classes. 

3.3.1 SystemTopo Class 
Hardware topology detection, thread scheduling and mem-

ory policy management functionality is integrated into the 
SystemTopo C++ class. This class combines NVIDIA Man-
agement Library (NVML), CUDA runtime API, and HWLOC 
functionality into a single interface. At instantiation, the 
SystemTopo class parses a generalized topology object tree 
provided by the HWLOC API as well as device information 
from the NVML and CUDA libraries. All system topology 
information is automatically detected after instantiation of 
the SystemTopo class object. HWLOC provides detailed in-
formation about the number of CPU sockets, NUMA nodes, 
cores, and processing units (PUs) as well as the sizes of 
cache and main memory. PCIe device location information 
is also available. The topology information is parsed into de-
vice statistics and relational information that is later used to 
manage thread affinity and memory policy. The CUDA run-
time API is then queried to provide basic device information 
including the size of memory resources and the functional-
ity of peer-to-peer support for GPU pairs. Finally, NVML is 
utilized to inform the SystemTopo class about the proximity 
of GPU devices to processing units. 

After the initialization phase, the class provides a num-
ber of memory, thread, and device management functions. 
These functions provide the ability to pin threads to ex-
ecution units including CPU sockets, cores or processing 
units. The HWLOC library provides this functionality on 
Linux systems through the modification of scheduler affinity. 
Memory can be directly allocated on any specified NUMA 
node (called memory binding), or the memory policy can 
be modified such that memory is placed on NUMA regions 
after being used (such as interleaving on first touch). 

3.3.2 BenchParams Class 
The BenchParams class is a storage and utility class for 

keeping track of all benchmark parameters. Because of the 
number of class variables and intended use within the TARUC 
benchmark, each parameter is made publicly accessible rather 
than abstracted via member access functions. Each value 
within the parameter file corresponds to a variable within 
the parameter class. 

Some of the available parameters include: minimum and 
maximum block sizes for the range tests, whether to test all 
GPUs in the system, whether to test all memory types, and 
if each socket should be included in the tests. There are 
many parameters available that determine the behavior of 
each test. Full discussion of all of TARUC’s parameters is 
omitted from this paper due to space considerations. 

3.3.3 Timer Class 
The Timer class is a C++ class that integrates host-based 

timing together with a CUDA event-based device timer. The 
timing object is instantiated with a single boolean value in-
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dicating the type of timing the user wishes to use. When the 
value is true, the chrono::high_resolution_clock stan-
dard library class is utilized to provide host-based timing 
functionality. The chrono class was chosen because of its 
nanosecond accuracy and simple programmer interface. If 
the value is set to false, then the timer relies on the CUDA 
event interface to provide timing results. While event tim-
ings come with a lower (millisecond) accuracy than the host 
timer, they provide the best mechanism that is capable of 
timing asynchronous CUDA API calls. To prevent syn-
chronization issues between different timers, a non-default 
CUDA stream is initialized and passed to event timing calls. 

4. BENCHMARK RESULTS 
Some of the more interesting results and insights from 

running TARUC on a high-performance test system are pro-
vided. These results quantify the importance of NUMA 
awareness and demonstrate potential uses for TARUC. Some 
insight based on experiences building the TARUC bench-
mark is also provided. The primary output from TARUC is 
performance profile graphs from each of the micro-benchmarks. 
This section presents a small subset of the graphs available. 
These graphs are useful for measuring the significance of 
NUMA effects on GPUs and host memory subsystems as 
well as doing comparative analysis of different GPU hard-
ware and topologies. 

4.1 Test System 
The test system consists of two Intel Xeon E5-2650 Sandy 

Bridge CPUs that have 8 discrete 2.0 GHZ cores, and 16 
processing units with hyperthreading enabled. Each CPU 
socket has 32 GB of attached RAM for a total of 64 GB of 
main memory. Cores have 32KB instruction and data L1 
caches and a 256 KB L2 cache. All cores on a single socket 
share 20 MB of L3 cache. Attached to the PCIe slots are 
four discrete GPUs: two Tesla K20Xm compute-class cards, 
one Tesla K40c, and one GeForce GTX Titan Black graph-
ics card. Each K20Xm and the Titan have 6GB of mem-
ory while the K40c GPU has 12 GB of memory. Each of 
the GPU memories have different memory clock frequencies 
resulting in varying memory access latency. The K20Xm, 
K40c and Titan GPUs have 2600 MHz, 3004 MHz, and 3500 
MHz memory clock rates, respectively. The test system pro-
vides a unique testing environment because different gener-
ation GPUs allow comparison of NUMA effects on different 
GPU hardware. Figure 3 shows a hardware overview of the 
test system. 

4.2 Profling Results 
The following sections contain the results of running the 

TARUC benchmark on the test system. These graphs are a 
subset of the graphs that are generated with TARUC. 

The parameters have been kept consistent over all the 
benchmarking systems to minimize variance in graph struc-
ture. The following parameters were used for the bench-
marking runs on all systems. Figure 4 below shows a sim-
plified list of test parameters. 

4.2.1 Memory Management Overhead 
The graphs of memory overhead tests are log-log scale 

graphs showing the elapsed time in microseconds of an al-
location of varied memory block sizes. Log scale graphs are 

useful for showing large variations in memory block sizes. 
However, log scale graphs can obscure overhead costs that 
are actually much larger than they appear. 

Three types of host memory are tested within the TARUC 
benchmark. Pageable, pinned, and write-combined memo-
ries are measured along with device memory located on each 
of the on-node GPUs. Memory allocations and deallocations 
are measured between 100B and 1.5GB. 

Figure 5 shows that allocations of non-local host memory 
result in a fixed overhead of 20-50%. This NUMA overhead 
decreases from its maximum as the block size increases past 
the inflection point of 1MB for non-pageable memories. This 
graph also shows that non-pageable memories have increased 
allocation overhead compared to pageable memory. 

Allocations of GPU memory have no significant effect 
when NUMA bindings are changed. The fixed overhead 
associated with the allocation of GPU memory over PCIe 
depends more on the hardware specifications of the specific 
GPU device. In particular, the memory clock frequency of 
the GPU seems to determine the relative performance of a 
specific GPU for memory allocation and deallocation oper-
ations. Figure 6 shows that the GTX Titan GPU has the 
lowest cost for block allocations likely as a result of it having 
the highest memory clock frequency. 

Figure 7 shows NUMA related effects in the deallocation 
of memory for the K20Xm GPU devices when the execut-
ing thread is pinned to the non-local CPU socket. This 
performance artifact can be clearly linked to NUMA as the 
K20Xm devices do not suffer from the performance degra-
dation when the thread is pinned to CPU 1 as shown in 
Figure 8. The two K20Xm GPUs are located on PCIe con-
nections attached to controllers on CPU 1 while the execut-
ing thread is run on CPU 0. This trend is significant, as it 
appears to be machine specific and only occurs for device 
memory deallocation events. 

It is interesting that there is a very clear point where at 
certain memory block sizes the noise dissipates as indicated 
near 10MB. We do not speculate why this performance ar-
tifact occurs due to the opaqueness of the CUDA runtime 
system. 

These graphs provide evidence that system performance 
can be influenced from hardware specific phenomena outside 
the control of the developer. It is essential that the per-
formance profile of the memory system be benchmarked to 
avoid wasting time on application debugging if performance 
results are other than what is expected. 

4.2.2 Memory Transfer Bandwidth 

Host-Host Block Memory Transfers. 
Host-Host memory bandwidth is measured using a single 

thread of execution pinned to various CPUs. This thread 
transfers memory from one memory block to another, each 
of which has an individual memory policy binding. The 
comparative effect of block size, memory and thread policy, 
and access pattern are presented. Each of the mentioned 
variables may change the effectiveness of caching at reducing 
NUMA effects. In particular, it is expected that small block 
sizes along with those that use repeated memory address 
ranges will experience less NUMA overhead due to caching. 
Figure 9 shows the change in execution time associated 

with exceeding the available space of each level of cache. The 
test uses cacheable paged memory with a repeated memory 
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Figure 3: Test System Architecture Overview 

1 T e s t A l l S o c k e t s : t r u e 
2 T e s t Ho st Mem Types : t r u e 
3 T e s t a l l D e v i c e s : t r u e 
4 T e s t A c c e s s P a t t e r n s : t r u e 
5 S u s t a i n e d T e s t s : t r u e 
6 # R e p e at e d S t e p s : 20 
7 Number S t e p s Per Magnitude : 10 
8 Overhead / Bandwidth Range : 10 − 1 5 0 0 0 0 0 0 0 0 ( b y t e s ) 
9 NURMA A c c e s s Gap/ S t r i d e : 657 ( d o u b l e s ) 

10 NURMA Ho s t Memory B l o c k S i z e : 2 0 0 0 0 0 0 0 0 ( d o u b l e s ) 
11 NURMA Range ( d o u b l e s ) : 1 0 , 1 0 0 0 0 0 0 0 ( min , max ) 
12 C o n t e n t i o n Memory B l o c k S i z e : 1 0 0 0 0 0 0 0 0 ( b y t e s ) 

Figure 4: TARUC Test Parameters 

Figure 5: Memory Allocation - Memory Bound To 
Node Zero 

address. Interestingly, the local memory transfer when the 
executing thread is local to the memory node provides the 
best performance only after the size of the memory block 
exceeds L3 cache size. 
Figure 10 shows the NUMA costs of different node bind-

ings when the executing thread is pinned to CPU 1. The 
worst case for NUMA binding overhead is a 15% reduction 
in bandwidth when a thread executes completely non-local 
memory transfers. The best performance is achieved when 

Figure 6: Memory Allocation - Thread Pinned To 
CPU Zero With All Devices 

both source and destination memory blocks remain local to 
the executing thread. Results also show a significant reduc-
tion in overhead if the destination memory block is on the 
same NUMA region as the executing thread’s CPU. This in-
dicates that cache write-back policy is slowed by having to 
write cache lines to non-local memory. The source block is 
never written which prevents it being marked as modified, 
and allows the cache line to be invalidated without being 
written back to main memory. Another result is that page-
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Figure 7: Memory Deallocation - Thread Pinned To 
CPU Zero With All Devices 

Figure 8: Memory Deallocation - Thread Pinned To 
CPU One With All Devices 

Figure 9: Host Memory Copy - Pageable Memory 
Bound To Node Zero With A Repeated Memory 
Address 

able and pinned memory benefit from cache despite the use 
of varied access patterns. 

To demonstrate that different memory address access pat-
terns do not significantly influence the presence of NUMA 

Figure 10: Host Memory Copy - Thread Pinned To 
CPU One And Pageable Host Memory With Linear 
Decreasing Memory Address 

within test runs, the total transfer time of each pattern is 
plotted for different thread pinning combinations. Figure 11 
shows that while there is a minor change in the overall ex-
ecution time of a memory copy for certain patterns, this 
change does not outweigh NUMA performance influences. 

Figure 11: Host Memory Copy - Memory Bound To 
Node Zero, Repeated Address, And Pinned Dest 
Memory 

Pageable memory seems to provide better performance 
than pinned memory on the test system. Figure 12 shows 
pinned memory performance and demonstrates a 50% re-
duction in bandwidth for non-local NUMA bindings. 

Host-Device Block Memory Transfers. 
Benchmarking memory copy bandwidth between GPU ac-

celerators and host memory involves timing CUDA runtime 
calls for various memory types. Asynchronous and syn-
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Figure 12: Host Memory Copy - Thread Pinned 
CPU One Using Repeated Memory Address And 
Pinned Memory 

chronous copy types are tested depending on the host mem-
ory type. Pinned and write-combined memories allow the 
runtime to use asynchronous copies between host and device 
memory spaces. Such copies remove the need to temporarily 
transfer memory to a pinned buffer before copying the block 
to the device. The test system demonstrated a 28% increase 
in bandwidth when using asynchronous runtime copies over 
the baseline pageable memory transfer (for the largest block 
sizes tested). 
NUMA effects on host-device memory transfers were of 

particular interest when the TARUC benchmark was devel-
oped. Different thread pinning and NUMA binding combi-
nations were tested for both asynchronous and synchronous 
copies. Removing direct thread involvement in the copy ends 
the need for the memory to be copied to a buffer that is lo-
cal to that executing thread. We see a significant bandwidth 
reduction when using pageable host memory for transfers in-
volving non-local memory. Figure 13 illustrates this effect. 
Transfers involving pinned and write-combined host memory 
are unaffected by NUMA locality of the host memory. 

Figure 13: Host-Device Memory Copy - Host 
NUMA Node One And K40c GPU Using Linear In-
creasing Memory Address 

Similar NUMA effects are demonstrated during transfers 
for all GPUs on the test system. Figure 14 illustrates that 
the most significant NUMA effect is the locality of memory 
to the executing host thread. When memory is non-local, 
the pageable host memory must be transferred before a host-
device transfer can be initiated. Differing GPUs also report 
varying host-device bandwidth. This shows that the differ-
ence in bandwidth is a result of different device hardware 
rather than NUMA effects. Bandwidth rather than latency 
is the limiting factor when non-pageable memory transfers 
are concerned. 

Figure 14: Device-To-Host Memory Copy - Thread 
Pinned To CPU Zero Using Pageable Host Memory 

Device-Device Block Memory Transfers. 
Direct device-device memory transfers allow the accelera-

tors to share data during synchronization events scheduled 
by a host thread. Direct transfers are desirable in situa-
tions where the host does not need intermediate application 
data in between time steps (or other incremental steps) of a 
run. If the host does not need intermediate step data then 
GPU devices can do direct transfers. Device-device trans-
fers reduce contention on the host memory system as well as 
the QPI bus. In TARUC, peer-peer and device-host-device 
transfers (shortened device-device) are tested. Both types 
of asynchronous transfers remove host thread involvement 
in the memory transfer. Device-device transfers involve an 
intermediate copy by the CUDA runtime to host memory 
before the memory block is copied to the destination GPU. 

The first test of device performance is internal device 
memory transfer bandwidth. In the case of Figure 15, intra-
device transfers are profiled. The actual memory system 
bandwidth is doubled because the bandwidth is measured 
from the perspective of the block being transferred. Intra-
device transfers involve a read and a write to different mem-
ory blocks within the same GPU. Measuring intra-node GPU 
memory bandwidth shows the difference in accelerator gen-
eration and type (consumer or compute class). 
Figures 16 and 17 show that peer transfers provide higher 

bandwidth for small to medium memory block transfer sizes, 
but underperform for some transfers of large device mem-
ory blocks. This result is contrary to expectation since peer 
transfers should allow for lower latency and higher band-
width when enabled. Instead, we see that For large block 
sizes there can be an advantage to using device-device mem-
ory transfers. The direction of the transfer can also influ-
ence the bandwidth. Transferring memory between the con-
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Figure 15: Intra-Device Memory Transfer - Thread 
Pinned To CPU Zero 

sumer class GTX Titan GPU and the compute class K40c 
is a clear demonstration of this effect. Something relating 
to hardware generation or optimization levels between the 
two cards reduces the performance when transferring from 
the K40c to the Titan GPU. This is consistent no matter 
which CPU core is pinned for the host thread. Bandwidth 
decreases are more significant during peer transfers (than 
device-device) for certain transfer directions when copying 
memory between different GPU models. 

Figure 17: Device-Device Memory Copy - Both 
K20Xm GPUs With Thread Pinned To CPU Zero 

NUMA. Small memory gap sizes mimic strided memory ac-
cess while larger gap sizes that exceed cache line width and 
page size mimic random memory access. If the gap size is 
reduced to zero, streamed memory transfer is simulated. 

Figure 18 illustrates that there is no significant difference 
in performance or NUMA impact on pinned versus pageable 
memory for streamed random access. Both types of memory 
demonstrate differences in performance for local and non-
local memory access. 

Figure 16: Device-Device Memory Copy - Titan 
And K40c GPUs With Thread Pinned To CPU Zero 

The K20Xm GPUs consistently show almost identical band-
width no matter the transfer direction. They also show the 
premature maxing of peer transfer bandwidth when com-
pared to device-device transfers of large enough block sizes. 

4.2.3 NURMA Latency 
The NURMA micro-benchmark is useful for understand-

ing how different memory access patterns are affected by 

Figure 18: NURMA Test - Thread Pinned to CPU 
One With All Memory Types And NUMA Bindings 

4.2.4 Resource Contention 

Local Memory Aggregate Bandwidth. 
In general, ideal real-world memory bandwidth will be 

achieved when the locality of memory access is maximized. 
To achieve ideal memory locality, threads should be pinned 
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to execution spaces where NUMA policy allocates memory. 
In the case of the local memory bandwidth test, memory 
is accessed from the local NUMA node for all executing 
threads. Figure 19 shows bandwidth scaling for single-node 
or multi-node memory situations. Bandwidth peaks when 
the number of simultaneous threads matches the number of 
memory channels connecting each CPU to its local mem-
ory space. This graph shows a bump in performance when 
oversubscribing threads to cores by 1.5x. This could be a 
result of the OS scheduling threads that are bottlenecked 
by memory transfers more efficiently. Once thread-to-core 
oversubscription exceeds 1.5x, there is a decrease in perfor-
mance to slightly below the bandwidth of the one thread to 
one core ratio. 

Figure 19: Local Memory Bandwidth - All NUMA 
Bindings And Memory Operation Types 

Inter-Socket QPI Contention. 
The worst case NUMA related contention occurs when si-

multaneously executing threads access host memory from 
adjacent NUMA regions. QPI links quickly saturate on 
the test system for inter-socket transfers. since they have 
a maximum bidirectional bandwidth roughly the same as a 
single 16x PCIe 3.0 connection. Figure 20 shows a roughly 
50% drop in bandwidth compared to maximum host mem-
ory bandwidth when QPI is saturated. 

Figure 20: Inter-Socket Host Memory Access Band-
width - All Directions And Memory Operation 
Types 

Host-Device PCIe Contention. 
To provide accurate assessment of PCIe contention, a system-

wide baseline of aggregate performance provides a reference 
for realistic bandwidth scaling of different GPU assignments. 
Figure 21 shows the aggregate PCIe bandwidth when all 
GPUs are copying memory simultaneously to and from local 
CPU memory. Bidirectional memory copies are measured 
to ensure pipeline saturation. Each GPU has two execution 
and memory copy engines, so this test is an oversubscription 
of 4x since each thread does a bidirectional transfer. 

Figure 21: Baseline PCIe Bandwidth - Four Threads 
Per GPU With Bidirectional Transfers, All Threads 
On Local CPUs 

Local assignment of GPUs to CPU memory is critical 
to maximize bandwidth because QPI bandwidth is signif-
icantly lower than host memory or the aggregate bandwidth 
of multiple PCIe connections. Moving half of the threads 
to a non-local CPU reduces the aggregate bandwidth by 
roughly 6 GB/S. This amounts to a 13% drop in overall 
bandwidth. For a system with less contention, aggregate 
bandwidth might be less affected making this test somewhat 
less valid. However, pipeline contention certainly does oc-
cur in balanced applications that utilize GPUs for computa-
tion when kernel operations synchronize with host memory. 
In previous tests it was determined that for asynchronous 
pinned memory host-device transfers, little in the way of 
NUMA effects exist when contention is not present. Page-
able memory transfers do not benefit from a lack of NUMA 
effects due to the need to transfer the pageable memory 
block to a local pinned buffer. Minimizing QPI contention 
is essential for maximizing bandwidth during synchroniza-
tion events. 

Figure 22 displays the per node host-device bandwidth 
of the test system when up to four threads per GPU are 
executing simultaneous transfers. Results show that node 
1 has slightly lower bandwidth than node 0, which verifies 
that that the GTX Titan and K40c have higher aggregate 
bandwidth than the two K20Xm GPUs. Because the K40c 
and the Titan are local to CPU 0, they have a direct higher 
bandwidth connection that does not travel over QPI. Al-
locating GPUs based on the locality of CPU resources is 
a viable option assuming memory is local to the executing 
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thread. Otherwise, allocating GPU resources based on the 
locality of memory the thread is using should be preferred. 
It is important to note that the per node transfer band-
width graph shows roughly the same performance reduction 
as partially non-local baseline bandwidth test. The perfor-
mance of both local memory bandwidth and aggregate PCIe 
bandwidth appears to be limited by the host memory sys-
tem for the test system rather than PCIe bandwidth. This 
is true for contended systems when all GPUs simultaneously 
execute bidirectional memory transfers. 

Figure 22: Per NUMA Node Aggregate PCIe Band-
width 

These results show that the TARUC benchmark can be 
used to profile a target hardware system to find the inflection 
points in bandwidth and execution time or possible hard-
ware specific performance artifacts. 

5. RELATED WORK 
The existence of NUMA effects and the necessity of de-

signing NUMA aware schedulers and algorithms has been 
well documented by a number of researchers. Research re-
lated to the material covered in this paper has mainly bench-
marked host memory contention via either synthetic mem-
ory kernels [2] or real applications [8]. 
The synthetic benchmarks addressed specific instances of 

NUMA effects in much the same way the host-based TARUC 
tests do by carrying out memory operations over a num-
ber of NUMA pinning situations. Application performance 
benchmark tests on NUMA systems generally utilize appli-
cation codes along with command line memory policy tools 
(such as hwloc-bind) to test poorly scheduled thread and 
memory binding combinations on overall application per-
formance. Some new architectural enhancements like large 
virtual page sizes have been demonstrated to negatively im-
pact the performance of certain applications on NUMA ma-
chines [3]. Additionally, some work has been carried out to 
develop a NUMA aware thread scheduler with knowledge of 
critical path operations. This type of scheduler has been 
shown to allow the deployment of near ideal thread schedul-
ing algorithms for NUMA machines [9]. 

Most of the previous research has not dealt with the ef-
fect NUMA has on coprocessor enabled systems. Previ-
ous NVIDIA conference presentations allude to NUMA ef-
fects on GPUs with the solution being to statically define 
GPU locality based on initial problem partitioning. Based 

on TARUC benchmark results on x86 systems, we observe 
that NUMA effects result in more complicated performance 
phenomenon than simple bandwidth or latency reductions. 
Both load balancing and NUMA awareness are required along 
with a system specific understanding of NUMA and con-
tention effects. In addition, few benchmarking tools have 
been developed to test the significance of on-node NUMA 
effects on differing systems. 
To the best of our knowledge, no publicly available tools 

that benchmark NUMA effects also take into account the 
significance of PCIe based coprocessors in addition to mea-
suring memory contention. 

6. CONCLUSIONS AND FUTURE WORK 
This paper presents the Topology Aware Resource Us-

ability and Contention (TARUC) benchmark that allows 
performance profiling of heterogeneous computing systems. 
TARUC consists of micro-benchmarks that demonstrate how 
NUMA and contention influence performance. These bench-
mark subtests address memory allocation and deallocation 
performance for a number of host and device memory types. 
Tests of host-host, host-device, and device-device pipeline 
bandwidth can be measured over various thread, memory 
type and memory binding combinations. In addition to 
streamed consecutive memory access, the non-uniform ran-
dom memory access (NURMA) micro-benchmark addresses 
other possible memory access patterns on memory perfor-
mance on NUMA machines. Contention micro-benchmark 
tests seek to stress system communication pipelines includ-
ing main memory, I/O links like PCIe and cache-coherence 
links like QPI. 

TARUC performance profiles were acquired from a test 
system containing four NVIDIA GPU devices. Our results 
show NUMA effects can have a significant impact on achieved 
memory performance, and that TARUC can be used as a 
guide for application developers who wish to tune the per-
formance of their application on a specific system. It is our 
hope that the TARUC benchmark will be useful for HPC ap-
plication developers for improving performance on complex 
heterogeneous NUMA systems. 

For future work we plan to measure communication and 
resource contention on Intel Xeon Phi Knights Landing sys-
tems, as they will present a new NUMA region in the form 
of High-Bandwidth Memory. 
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