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Abstract—Ocean studies are crucial to many scientifc dis-
ciplines. Due to the diffculty in probing the deep layers of 
the ocean and the scarcity of data in some of the oceans, the 
scientifc community relies heavily on ocean simulation models. 
Ocean modeling is complex and computationally intensive, and 
improving the performance of these models will greatly advance 
and improve the work of ocean scientists. This paper presents 
a detailed exploration of the acceleration of the Regional Ocean 
Model System (ROMS) software with the latest Intel Xeon Phi 
x200 architectures. 

Both shared-memory and distributed-memory parallel com-
puting models are evaluated. Results show run time improve-
ments of nearly a factor of 16 compared to a serial imple-
mentation. Further experiments and optimizations, including the 
use of a GPU acceleration model, are discussed and results are 
presented. 

I. INTRODUCTION 

The Regional Ocean Modeling System (ROMS) is an open-
source, free-surface, primitive equation ocean model used 
by the scientifc community for a diverse range of applica-
tions [1]. ROMS employs sophisticated numerical techniques, 
including a split-explicit time-stepping scheme that treats the 
fast barotropic (2D) and slow baroclinic (3D) modes separately 
for improved effciency [2]. ROMS also contains a suite 
of data assimilation tools, that allow the user to improve 
the accuracy of a simulation by incorporating observational 
data. These tools are based on four-dimensional variational 
methods [3], which generate reliable results, but require more 
computational resources than without any assimilation of data. 

In the roughly ffteen years since ROMS has been available, 
the microprocessor industry has relied on parallelism rather 
than clock speeds to improve program performance. In order 
for the numerical model to provide desired accuracy with 
reasonable performance, implementations of ROMS currently 
exist to take advantage of two popular parallel computing 
paradigms. A shared-memory model using OpenMP enables 
ROMS to take advantage of modern multi-core processors, 
and a distributed-memory model using MPI provides access 
to the computing power of multi-node clusters. ROMS uses 
a course-grained parallelization paradigm which partitions the 
computational grid into tiles. Each tile is then operated on by 
different parallel threads. 

The ability to increase the problem size to obtain fner-grain 
resolution and more precise results is limited by computing 
performance, even on modern computing systems. This is 

particularly true when performing data assimilation, where 
the run-time can be orders of magnitude larger than non-
assimilating runs, and where accuracy of a simulation is 
critical. 

Recent research has shown some success with implementa-
tions of ROMS that target massively parallel accelerators: in-
cluding the initial version of the Intel Xeon Phi [4], and using 
NVIDIA’s CUDA framework for Graphics Processing Units 
(GPUs) [5], [6]. These accelerators, including GPUs, are well 
suited to many high-performance compute applications. They 
allow general purpose computation in a massively parallel 
fashion. GPUs support fast double-precision calculations and 
error correcting memories, allowing calculations that require 
high degrees of accuracy to run with performance that can 
exceed shared-memory implementations using multi-core CPU 
architectures. However, one factor that limits the performance 
of GPUs and other accelerators is the communication cost 
between the host processor and the accelerator. 

Another factor that limits the use of accelerators with 
ROMS is a signifcant amount of source code refactoring 
to manipulate the internal data structures and procedures of 
ROMS to be compatible with the software models that the 
accelerators require. Feedback from domain experts on prior 
research with NVIDIA’s CUDA framework suggests that many 
users of ROMS don’t want to, and sometimes are unable to, 
fully comprehend the underlying computer architecture when 
designing or tuning their models in ROMS. Users of ROMS 
that are able to make this investment are often unwilling to, 
as the software refactoring can make the ROMS source code 
less portable to different computing platforms. 

A. Contributions 

The contributions of this paper are twofold. First, the per-
formance of ROMS is thoroughly characterized on a modern, 
massively-parallel architecture, an Intel Xeon Phi x200 series 
processor. Only the existing parallel paradigms of ROMS are 
utilized, along with intelligent compiler optimizations, that 
require zero modifcations to the ROMS source code. Second, 
we explore the use of the OpenACC parallel computing 
paradigm to target modern GPUs with the minimal amount 
of source refactoring. 
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B. Outline 

This paper is organized as follows. Section II presents 
necessary background on ROMS, the Intel x200 architecture, 
and OpenACC. Section III discusses related work, and Sec-
tion IV presents our experimental methodology, along with a 
discussion of the results. Section V contains our conclusions. 

II. BACKGROUND 

A. ROMS 

ROMS has a modern and modular code base, consisting 
of approximately 400,000 lines of Fortran 90/95 code. The 
shared-memory option follows OpenMP 2.0. The distributed-
memory option allows data exchange between nodes using 
MPI. Both of these parallel paradigms are integrated in the 
same code base, though only one may be used at any given 
time. The parallel paradigm is selected at compile-time. 

During the execution of ROMS applications, run time 
measurements are logged and reported. This information es-
sentially profles the application, providing both absolute and 
relative timings for each of the major modules utilized during 
execution. For the application studied in this paper, the Model 
2D Kernel is where the large majority of run time is spent, 
with over 48% of execution time occurring in that module. 
The implementation of this module is parallelized using both 
OpenMP and MPI, and is the target of the OpenACC ex-
periments performed in this work. Profle data for the serial 
execution of ROMS is shown in Figure 1. 
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A l l o c a t i o n and a r r a y i n i t i a l i z a t i o n . . . . . . . . . . 3 . 235 ( 0 .0009 \%) 
Ocean s t a t e i n i t i a l i z a t i o n . . . . . . . . . . . . . . . . . . . 1 . 230 ( 0 .0004 \%) 
Reading o f i n p u t d a t a . . . . . . . . . . . . . . . . . . . . . . . . 0 . 276 ( 0 .0001 \%) 
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Computa t ion o f g l o b a l i n f o r m a t i o n i n t e g r a l s . . 6675 .357 ( 1 .9195 \%) 
Wr i t i n g o f o u t p u t d a t a . . . . . . . . . . . . . . . . . . . . . . . 403 .165 ( 0 .1159 \%) 
Model 2D k e r n e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168419 .839 ( 48 . 4280 \%) 
2D/ 3D coup l i ng , v e r t i c a l m e t r i c s . . . . . . . . . . . . . 1111 .320 ( 0 .3196 \%) 
Omega v e r t i c a l v e l o c i t y . . . . . . . . . . . . . . . . . . . . . . 1175 .540 ( 0 .3380 \%) 
Equa t i on o f s t a t e f o r s e a w a t e r . . . . . . . . . . . . . . . 981 .042 ( 0 .2821 \%) 
3D e q u a t i o n s r i g h t−s i d e t e rms . . . . . . . . . . . . . . . . 11489 .107 ( 3 .3036 \%) 
3D e q u a t i o n s p r e d i c t o r s t e p . . . . . . . . . . . . . . . . . . 32995 .365 ( 9 .4876 \%) 
P r e s s u r e g r a d i e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4641 .079 ( 1 .3345 \%) 
Harmonic mixing o f t r a c e r s , S−s u r f a c e s . . . . . . . 2758 .494 ( 0 .7932 \%) 
Harmonic s t r e s s t e n s o r , S−s u r f a c e s . . . . . . . . . . . 4452 .490 ( 1 .2803 \%) 
C o r r e c t o r t ime−s t e p f o r 3D momentum . . . . . . . . . . 60498 .191 ( 17 . 3959 \%) 
C o r r e c t o r t ime−s t e p f o r t r a c e r s . . . . . . . . . . . . . . 24289 .857 ( 6 .9844 \%) 

T o t a l : 340314 .755 97 .8553 

A l l p e r c e n t a g e s a r e w i th r e s p e c t t o t o t a l t ime = 347773 .577 
. . . 

Fig. 1. ROMS internal profling data for serial execution 

B. The Xeon Phi x200 Architecture 

It is now possible to avoid the CPU–Coprocessor communi-
cation bottleneck on a massively-parallel architecture. Exper-
iments are performed to quantify the performance of ROMS 
on the new Intel Many Integrated Core (MIC) architecture, 
now named Xeon Phi [7]. The newest Intel Xeon Phi x200 
series processor is self-booting, and includes integrated on-
package memory for signifcantly higher memory bandwidth 
than off-chip memory modules. The cores on the Xeon Phi 

each support four simultaneous threads, and are tiled in pairs. 
Each core has two 512-bit vector units, and 32 MB of 
L2 cache shared across a tile. The tiles are linked to each 
other using a 2D mesh interconnect, which connects to the 
memory controllers far memory (up to 384 GB capacity and 
90 GB/sec) and to high bandwidth stacked near memory (up 
to 16 GB of capacity and 400 GB/sec). Different modes of 
memory addressing allow the use of the combined memory 
as a single address space or using the near memory as an 
L3 cache. This on-package interconnect allows the Xeon Phi 
to be a stand-alone accelerator that doesn’t need to be tied 
to a regular CPU to do useful work. The architecture also 
eliminates the communication cost between the processor and 
accelerator. Because the architecture uses the same instruction 
set as Intel Xeon CPUs, it allows the use of common parallel 
programming paradigms, including OpenMP and MPI. This 
means that the original ROMS code can run with no changes. 
This is a great advantage compared to using CUDA for an 
NVIDIA GPU architecture that requires extensive changes in 
the code to get optimal performance. However, to achieve 
maximum performance, one must make full use of the vector 
processors and other optimizations. 

The ability to run four hardware thread contexts simulta-
neously per core allows fexibility in the thread scheduling 
for OpenMP applications, and process scheduling for MPI 
applications. While having multiple threads or processes per 
core is allowed, contention for shared resources may degrade 
performance if too many threads or processes are running 
on a core. The Intel MPI Library and OpenMP run-times 
provide mechanisms to bind MPI ranks and OpenMP threads 
to specifc cores [8]. Experiments were performed using from 
one to four hardware threads per core to determine the optimal 
combinations of MPI ranks and OpenMP threads for ROMS 
on this architecture. 

C. OpenACC 

The performance speed up achieved by using the Intel 
compiler and hardware is compared with an optimization of 
the ROMS code using a GPU. 

Programming for heterogeneous computer systems has been 
an area of interest for many years for acceleration of scientifc 
computations. This research has resulted in the development of 
several low-level APIs including CUDA [9], OpenCL [10], and 
OpenACC [11]. Programming these APIs can take time and 
usually requires some level of expertise to develop correct and 
optimized implementations. From these options, OpenACC 
is the only pragma directive-based programming language 
designed to allow easier development for a variety of hard-
ware accelerators that include GPUs from different vendors, 
multicore architectures, and FPGAs. The goal of OpenACC 
is to improve the execution time of existing code written in 
Fortran, C or C++, by adding different pragma directives to 
the code that will allow it to run on the available accelerator. 
OpenACC allows programmers to quickly develop for new 
architectures without the need to understand much of the hard-
ware or the need to learn new vendor specifc programming 



languages. However, since the compiler will make most of the 
decisions, the performance is usually lower than what can be 
obtained by using hardware-specifc programming languages 
and compilers. 

OpenACC support is provided by a number of vendors and 
is defned by an open standard [11]. Since ROMS is written 
in Fortran, using OpenACC is a viable option. ROMS is a 
complex code with hundreds of different fles and procedures. 
Finding which specifc procedures are parallelizable is not 
a simple task. As discussed earlier in the profling results, 
the primary computational bottleneck in ROMS is the Model 
2D Kernel, which is responsible for more than 48% of the 
sequential execution time. This is the function optimized in 
this research. The Model 2D Kernel is implemented mainly in 
the fle step2d.f90, which consists on a series of for-loops 
that are possible to accelerate using OpenACC directives. 

In OpenACC, segments of code to be offoaded to the 
accelerator can be specifed using the syntax !$acc for or 
!$acc kernel, which is similar to how OpenMP pragmas 
are described [12]. 

III. RELATED WORK 

Other researchers have investigated the performance of 
ROMS on Intel Xeon Phi coprocessor accelerators. 

Yalavarthi and Kaginalkar present an early attempt to 
understand the performance of the ROMS model using a 
hybrid cluster super-computer with 51392 nodes, each node 
consisting of one Intel Xeon E5-2697v2 CPU and two Intel 
Xeon Phi 7110P coprocessors [4]. The article compares three 
different programming models of the architecture; host (where 
the program runs on just the CPU with MPI ranks on the host 
cores), native (where the program runs on just the coprocessor 
with MPI ranks residing on the coprocessor cores), and sym-
metric (where the CPU and accelerator communicate with each 
other using MPI). Their results show that host delivers better 
results, most probably due to the lack of hybrid parallelism in 
ROMS, preventing the use of shared-memory and distributed-
memory parallelism at same time. They leave for future work 
vectorization and offoad modes. 

Bhaskarin and Guarav analyze ROMS and the issues im-
pacting its performance on a Xeon Phi coprocessor, and 
introduce an iterative optimization strategy that results in a 2x 
speed-up in performance when comparing the base-line code 
with a native mode on the Xeon Phi [13]. The improvement 
requires extensive changes in the code that are applied to all 
source fles, not just the main bottleneck of ROMS (the Model 
2D Kernel). The optimizations mainly consist of padding 
loop rows for better data alignment, fattening nested if-else 
statements, optimizing the tile size hyperparameter, and using 
large page sizes to avoid Translation Look-aside Buffer (TLB) 
misses. 

Reuter et al. introduce a multi-platform scaling investigation 
for OpenMP parallelization of the UTBEST3D ocean simu-
lator [14]. They compare the performance of an Intel Xeon 
versus an IBM Power6 and an Intel Xeon Phi coprocessor 
using only shared-memory parallelism. They conclude that the 

Intel Xeon CPUs produce the best run time results. The run-
times achieved with the Intel Xeon Phi coprocessors where 
not satisfactory due mainly to the low clock rate of the cores 
and lack of vectorization on the code. 

To the best of our knowledge, this paper is the frst to 
investigate the performance of ROMS on the Intel Xeon Phi 
x200 architecture. 

IV. RESULTS 

In this section, experimental results are presented. Results 
are divided into experiments run on the Xeon Phi using Intel’s 
compiler technology, and the use of OpenACC on an NVIDIA 
GPU using the Portland Group’s (PGI) compiler technology. 

A. Intel Xeon Phi Experiments 

With the exception of the vectorization results below, all 
experiments are run with parameters that are common for 
research-level uses of ROMS. The three-dimensional grid con-
tains 321x640x32 grid points (the Lm, Mm, and N parameters, 
respectively). The simulation duration is fve days, with a time 
step of 30 seconds. 

In the experiments, ROMS is running the Upwelling ap-
plication to compare execution time of ROMS in shared-
memory versus distributed-memory on one Xeon Phi x200 
system, while also exploiting vectorization and automatic 
parallelization features available in the Parallel Studio XE 
Cluster edition of Intel’s compiler suite, version 2017.0.035. 
The operating system is CentOS Linux release 7.3.1611. 

Building ROMS requires the use of the NetCDF library, 
which in turn requires the HDF5 library. These support li-
braries had to be compiled using the same Intel compiler that 
ROMS is built with. The build procedure and environmental 
setup required to compile ROMS, NetCDF, and HDF5 is not 
well documented for the Intel Xeon Phi x200 architecture, due 
to its short time being available. While not included in this 
paper, the authors can share this procedure with those that are 
interested. 

Simulations are run on an Intel Xeon Phi 7210 processor 
with 64-cores (256 threads), each with a 1.3 GHz clock speed. 
Total system memory is 112 GB (96 GB far memory, 16 GB 
near memory). ROMS was tested using all available parallel 
paradigms. The serial implementation on the Xeon Phi took 
approximately 96 hours to complete. For reference, results 
are also compared to serial performance of identical ROMS 
simulations on a high-performance Intel Xeon E5-2690v2 
CPU with a clock speed of 3.00 GHz. 

1) Vectorization: The Intel compiler suite has automatic 
vectorization on by default, and the largest vector size sup-
ported by the underlying architecture is selected using the 
-Xhost compiler option. No changes to the source are 
required to enable vectorized computations, but the compiler 
must be conservative in its analysis to ensure that automatic 
optimizations are correct. Explicit vectorization is also allowed 
through the use of Single-Instruction-Multiple-Data (SIMD) 
pragmas, and this may yield better performance than automatic 
analysis. 



Fig. 2. Simulation speedup compared to serial implementations 

The effect of vectorization was measured on a small data 
set. Without vectorization, the Upwelling model of ROMS 
took 658.9 seconds, and the same experiment with automatic 
vectorization enabled took 599.6 seconds, a 10% speedup. 

Since vectorization is a level of parallelism that is orthog-
onal to other parallel computing paradigms such as OpenMP 
and MPI, automatic vectorization is left enabled in all subse-
quent results presented here. 

2) OpenMP: ROMS was compiled and run using the 
OpenMP parallel execution model. Experiments were run 
using various thread affnity settings, and for 64, 128, and 256 
threads. The optimal OpenMP thread confguration for these 
experiments was 128 threads with balanced thread affnity. 
This confguration had a runtime that was 7.6 times faster 
than the sequential implementation on the Xeon Phi x200, 
and 2.8 times faster than the sequential Xeon CPU run time. 
These results are not completely intuitive, as it is diffcult for 
the ROMS user to know where the tradeoff is between fully 
using the computational resources of the architecture while 
still avoiding contention for resources. 

3) MPI: In a separate set of experiments distinct from 
the OpenMP tests, ROMS was compiled and run with the 
MPI parallel execution model. Numbers of processes from 
16 to 256 were tested, incrementing by powers of two. For 
numbers of processes less than or equal to 32, one process 
was scheduled per tile on the Xeon Phi, to prevent processes 
from sharing the L2 cache on each tile. For 64 processes, 
one process was scheduled per core, while for 128 and 256 
processes, two and four processes were scheduled per core 

respectively. The optimum confguration identifed from these 
experiments was 32 processes with one process per tile. This 
confguration resulted in a run time speedup of 15.8 compared 
to the sequential Xeon Phi implementation, and a factor of 5.9 
compared to the sequential Xeon CPU run time. Again, this 
result in not intuitive, and doesn’t correlate to the OpenMP 
experiments. 

Table I shows the execution times of the OpenMP and 
MPI experiments. As can be seen, the distributed-memory 
MPI implementation performs better than the shared-memory 
OpenMP one. This by itself is not completely unexpected, as 
the two paradigms are implemented differently within ROMS, 
and parallelize different portions of the simulation. Results 
also show that there is resource contention resulting in a 
slowdown when multiple processes run on a single core for 
distributed MPI, but there is advantage to sharing up to two 
threads per core for OpenMP. 

Figure 2 shows the speedup of each simulation experiment 
compared to a serial implementation on the Xeon Phi, and a 
serial implementation on an Intel Xeon CPU. The performance 
advantage of the Xeon Phi processor is signifcant, allowing 
faster turn-around on simulations on a compute system that 
is similar in cost, size, and energy usage to a standard high-
performance workstation. 

4) Automatic Parallelization: Based on the OpenMP and 
MPI experiments, it can be seen that the optimal number 
of threads for the shared-memory OpenMP implementation 
is greater than the optimal number of processes for the 
distributed-memory MPI implementation. This presented a 



TABLE I 
EXECUTION TIMES 

# Processes/Threads 
Paradigm 

256 
MPI 

128 
MPI 

64 
MPI 

32 
MPI 

16 
MPI 

256 
OMP 

128 
OMP 

64 
OMP 

1 
Serial 

Time (sec.) 42174 30337 26695 22029 28959 55045 45884 48735 347789 

question as to whether the MPI implementation could beneft 
from some amount of automatic shared-memory paralleliza-
tion. 

The Intel compiler can be given commands to attempt to 
automatically parallelize the source code, usually by targeting 
loops where it can be guaranteed that each iteration of the 
loop is independent. If such a guarantee cannot be made 
using static analysis, the compiler will not parallelize the loop. 
The compiler fags used in these experiments are shown in 
Figure 3. 

1 −p a r a l l e l 
2 −par−num−t h r e a d s =2 
3 −par−a f f i n i t y = b a l a n c ed 
4 −par−s chedu l e−au t o 
5 −par−run t ime−c o n t r o l 3 

Fig. 3. Intel compiler fags to enable automatic parallelization with two 
threads 

Experiments were run to attempt automatic parallelization in 
addition to the MPI implementation of ROMS. Two threads per 
MPI process were created, and the performance was measured. 
Figure 4 shows the run times for each of the experiments, with 
16, 32, and 64 MPI processes. 

Results from these experiments show that in no case was 
automatic parallelization able to improve performance com-
pared to single-threaded MPI processes. This is most likely 
due to overhead created in the scheduling and management 
of threads, and possibly some additional resource contention. 
What is interesting is that 32 MPI processes, each with two 
threads, outperformed 64 MPI single-threaded processes. This 
is another non-intuitive result, as the total number of running 
threads is the same. 

B. OpenACC 

As discussed in Section II, OpenACC allows the user to 
insert simple pragmas around sections of parallel code to 
offoad those computations to an accelerator. 

The experimental platform used for OpenACC tests in-
cluded an NVIDIA GTX TITAN X GPU, an Intel i7 CPU, 32 
GB RAM, running Ubuntu Linux 14.04 LTS as the operating 
system. 

In the experiments done in this research, just adding the 
pragmas actually caused a slow-down of execution time of 
the ROMS simulation by approximately 12%. Usually, a 
slowdown is due to data transfer between the CPU and device 
(GPU). In some cases, these data transfers are unnecessary, 
and can be explicitly eliminated by adding specifc information 
about which data should be used for input, output or both and 

which data should be transferred to the GPU. These data di-
rectives were also inserted, but performance was still degraded 
with OpenACC compared to the serial implementation. 

These results are in line with the performance results seen 
in related work running ROMS using the Xeon Phi as a 
coprocessor. Data transfer is expensive in ROMS because 
some of the data arrays are very large. This result is also in 
line with the experimental results attempting to automatically 
parallelize sections of the ROMS code. ROMS may have some 
data dependencies in loop iterations that the compiler can’t 
resolve. 

An additional attempt to use OpenACC was made by 
targeting existing regions of shared-memory parallelism in 
ROMS, and converting OpenMP pragmas to OpenACC al-
ternatives. After transforming several of the OpenMP Parallel 
pragmas into pragmas in OpenACC, this solution had better 
performance than the original sequential code, but just by 
1%. The original OpenMP implementation far outperformed 
the OpenACC implementation identifed in this work. These 
transformations weren’t a trivial task to implement. 

V. CONCLUSION 

This paper presents the frst performance evaluation of the 
ROMS ocean modeling software package on the Intel Xeon 
Phi x200 architecture, and compares that performance to using 
OpenACC to run portions of ROMS on a modern GPU. 

Extensive experimentation was done to identify an optimal 
parallel computing model, and confguration of the number 
of parallel threads and processes for ROMS. Shared-memory 
OpenMP implementations, distributed-memory MPI imple-
mentations, and accelerated OpenACC implementations are 
quantitatively compared. 

The best performing confguration was found to be the 
use of 32 MPI processes, one process running per tile on 
the x200 architecture, with automatic vectorization enabled, 
and automatic parallelization disabled. This implementation 
was found to be a factor of 15.8 times faster than the serial 
implementation on the Xeon Phi, and 5.9 times faster than the 
serial implementation on a modern high-performance Xeon 
CPU. 

A signifcant conclusion to draw from this research is that 
excellent parallel performance is possible for users of ROMS 
with absolutely no modifcations to the ROMS source code. 
Tuning performance of other accelerated computing models, 
including OpenACC in this work, and CUDA in prior work, 
takes weeks of effort, with no guarantee of performance 
improvement, and results in a code base that is much less 
portable than the original code. 



Fig. 4. Run times with and without automatic parallelization of MPI processes 

The improvements in the execution time of the ocean 
simulation tool will allow ocean scientists to use higher 
precision and more realistic models that should allow them to 
better understand and predict ocean currents, sea level changes, 
temperature, etc. 
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