
Lupo, et al. Enhancing regional ocean modeling simulation performance
with the Xeon Phi architecture. OCEANS 2017. June 2017, pp 1-6

Enhancing Regional Ocean Modeling Simulation
Performance with the Xeon Phi Architecture

Chris Lupo and Maria Pantoja and Paul Choboter
California Polytechnic State University

San Luis Obispo, California, USA 93407
Email: {clupo,mpanto01,pchobote}@calpoly.edu

Abstract—Ocean studies are crucial to many scientifc dis-
ciplines. Due to the diffculty in probing the deep layers of
the ocean and the scarcity of data in some of the oceans, the
scientifc community relies heavily on ocean simulation models.
Ocean modeling is complex and computationally intensive, and
improving the performance of these models will greatly advance
and improve the work of ocean scientists. This paper presents
a detailed exploration of the acceleration of the Regional Ocean
Model System (ROMS) software with the latest Intel Xeon Phi
x200 architectures.

Both shared-memory and distributed-memory parallel com-
puting models are evaluated. Results show run time improve-
ments of nearly a factor of 16 compared to a serial imple-
mentation. Further experiments and optimizations, including the
use of a GPU acceleration model, are discussed and results are
presented.

I. INTRODUCTION

The Regional Ocean Modeling System (ROMS) is an open-
source, free-surface, primitive equation ocean model used
by the scientifc community for a diverse range of applica-
tions [1]. ROMS employs sophisticated numerical techniques,
including a split-explicit time-stepping scheme that treats the
fast barotropic (2D) and slow baroclinic (3D) modes separately
for improved effciency [2]. ROMS also contains a suite
of data assimilation tools, that allow the user to improve
the accuracy of a simulation by incorporating observational
data. These tools are based on four-dimensional variational
methods [3], which generate reliable results, but require more
computational resources than without any assimilation of data.

In the roughly ffteen years since ROMS has been available,
the microprocessor industry has relied on parallelism rather
than clock speeds to improve program performance. In order
for the numerical model to provide desired accuracy with
reasonable performance, implementations of ROMS currently
exist to take advantage of two popular parallel computing
paradigms. A shared-memory model using OpenMP enables
ROMS to take advantage of modern multi-core processors,
and a distributed-memory model using MPI provides access
to the computing power of multi-node clusters. ROMS uses
a course-grained parallelization paradigm which partitions the
computational grid into tiles. Each tile is then operated on by
different parallel threads.

The ability to increase the problem size to obtain fner-grain
resolution and more precise results is limited by computing
performance, even on modern computing systems. This is

particularly true when performing data assimilation, where
the run-time can be orders of magnitude larger than non-
assimilating runs, and where accuracy of a simulation is
critical.

Recent research has shown some success with implementa-
tions of ROMS that target massively parallel accelerators: in-
cluding the initial version of the Intel Xeon Phi [4], and using
NVIDIA’s CUDA framework for Graphics Processing Units
(GPUs) [5], [6]. These accelerators, including GPUs, are well
suited to many high-performance compute applications. They
allow general purpose computation in a massively parallel
fashion. GPUs support fast double-precision calculations and
error correcting memories, allowing calculations that require
high degrees of accuracy to run with performance that can
exceed shared-memory implementations using multi-core CPU
architectures. However, one factor that limits the performance
of GPUs and other accelerators is the communication cost
between the host processor and the accelerator.

Another factor that limits the use of accelerators with
ROMS is a signifcant amount of source code refactoring
to manipulate the internal data structures and procedures of
ROMS to be compatible with the software models that the
accelerators require. Feedback from domain experts on prior
research with NVIDIA’s CUDA framework suggests that many
users of ROMS don’t want to, and sometimes are unable to,
fully comprehend the underlying computer architecture when
designing or tuning their models in ROMS. Users of ROMS
that are able to make this investment are often unwilling to,
as the software refactoring can make the ROMS source code
less portable to different computing platforms.

A. Contributions

The contributions of this paper are twofold. First, the per-
formance of ROMS is thoroughly characterized on a modern,
massively-parallel architecture, an Intel Xeon Phi x200 series
processor. Only the existing parallel paradigms of ROMS are
utilized, along with intelligent compiler optimizations, that
require zero modifcations to the ROMS source code. Second,
we explore the use of the OpenACC parallel computing
paradigm to target modern GPUs with the minimal amount
of source refactoring.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219381233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:clupo,mpanto01,pchobote}@calpoly.edu

B. Outline

This paper is organized as follows. Section II presents
necessary background on ROMS, the Intel x200 architecture,
and OpenACC. Section III discusses related work, and Sec-
tion IV presents our experimental methodology, along with a
discussion of the results. Section V contains our conclusions.

II. BACKGROUND

A. ROMS

ROMS has a modern and modular code base, consisting
of approximately 400,000 lines of Fortran 90/95 code. The
shared-memory option follows OpenMP 2.0. The distributed-
memory option allows data exchange between nodes using
MPI. Both of these parallel paradigms are integrated in the
same code base, though only one may be used at any given
time. The parallel paradigm is selected at compile-time.

During the execution of ROMS applications, run time
measurements are logged and reported. This information es-
sentially profles the application, providing both absolute and
relative timings for each of the major modules utilized during
execution. For the application studied in this paper, the Model
2D Kernel is where the large majority of run time is spent,
with over 48% of execution time occurring in that module.
The implementation of this module is parallelized using both
OpenMP and MPI, and is the target of the OpenACC ex-
periments performed in this work. Profle data for the serial
execution of ROMS is shown in Figure 1.

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− P r o f i l e Data−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

N o n l i n e a r model e l a p s e d t ime p r o f i l e , Gr id : 01

A l l o c a t i o n and a r r a y i n i t i a l i z a t i o n 3 . 235 (0 .0009 \%)
Ocean s t a t e i n i t i a l i z a t i o n 1 . 230 (0 .0004 \%)
Reading o f i n p u t d a t a . 0 . 276 (0 .0001 \%)
P r o c e s s i n g o f i n p u t d a t a . 20 .523 (0 .0059 \%)
P r o c e s s i n g o f o u t p u t t ime ave r aged d a t a 20381 .832 (5 .8607 \%)
Computa t ion o f v e r t i c a l boundary c o n d i t i o n s . . 16 .813 (0 .0048 \%)
Computa t ion o f g l o b a l i n f o r m a t i o n i n t e g r a l s . . 6675 .357 (1 .9195 \%)
Wr i t i n g o f o u t p u t d a t a . 403 .165 (0 .1159 \%)
Model 2D k e r n e l . 168419 .839 (48 . 4280 \%)
2D/ 3D coup l i ng , v e r t i c a l m e t r i c s 1111 .320 (0 .3196 \%)
Omega v e r t i c a l v e l o c i t y . 1175 .540 (0 .3380 \%)
Equa t i on o f s t a t e f o r s e a w a t e r 981 .042 (0 .2821 \%)
3D e q u a t i o n s r i g h t−s i d e t e rms 11489 .107 (3 .3036 \%)
3D e q u a t i o n s p r e d i c t o r s t e p 32995 .365 (9 .4876 \%)
P r e s s u r e g r a d i e n t . 4641 .079 (1 .3345 \%)
Harmonic mixing o f t r a c e r s , S−s u r f a c e s 2758 .494 (0 .7932 \%)
Harmonic s t r e s s t e n s o r , S−s u r f a c e s 4452 .490 (1 .2803 \%)
C o r r e c t o r t ime−s t e p f o r 3D momentum 60498 .191 (17 . 3959 \%)
C o r r e c t o r t ime−s t e p f o r t r a c e r s 24289 .857 (6 .9844 \%)

T o t a l : 340314 .755 97 .8553

A l l p e r c e n t a g e s a r e w i th r e s p e c t t o t o t a l t ime = 347773 .577
. . .

Fig. 1. ROMS internal profling data for serial execution

B. The Xeon Phi x200 Architecture

It is now possible to avoid the CPU–Coprocessor communi-
cation bottleneck on a massively-parallel architecture. Exper-
iments are performed to quantify the performance of ROMS
on the new Intel Many Integrated Core (MIC) architecture,
now named Xeon Phi [7]. The newest Intel Xeon Phi x200
series processor is self-booting, and includes integrated on-
package memory for signifcantly higher memory bandwidth
than off-chip memory modules. The cores on the Xeon Phi

each support four simultaneous threads, and are tiled in pairs.
Each core has two 512-bit vector units, and 32 MB of
L2 cache shared across a tile. The tiles are linked to each
other using a 2D mesh interconnect, which connects to the
memory controllers far memory (up to 384 GB capacity and
90 GB/sec) and to high bandwidth stacked near memory (up
to 16 GB of capacity and 400 GB/sec). Different modes of
memory addressing allow the use of the combined memory
as a single address space or using the near memory as an
L3 cache. This on-package interconnect allows the Xeon Phi
to be a stand-alone accelerator that doesn’t need to be tied
to a regular CPU to do useful work. The architecture also
eliminates the communication cost between the processor and
accelerator. Because the architecture uses the same instruction
set as Intel Xeon CPUs, it allows the use of common parallel
programming paradigms, including OpenMP and MPI. This
means that the original ROMS code can run with no changes.
This is a great advantage compared to using CUDA for an
NVIDIA GPU architecture that requires extensive changes in
the code to get optimal performance. However, to achieve
maximum performance, one must make full use of the vector
processors and other optimizations.

The ability to run four hardware thread contexts simulta-
neously per core allows fexibility in the thread scheduling
for OpenMP applications, and process scheduling for MPI
applications. While having multiple threads or processes per
core is allowed, contention for shared resources may degrade
performance if too many threads or processes are running
on a core. The Intel MPI Library and OpenMP run-times
provide mechanisms to bind MPI ranks and OpenMP threads
to specifc cores [8]. Experiments were performed using from
one to four hardware threads per core to determine the optimal
combinations of MPI ranks and OpenMP threads for ROMS
on this architecture.

C. OpenACC

The performance speed up achieved by using the Intel
compiler and hardware is compared with an optimization of
the ROMS code using a GPU.

Programming for heterogeneous computer systems has been
an area of interest for many years for acceleration of scientifc
computations. This research has resulted in the development of
several low-level APIs including CUDA [9], OpenCL [10], and
OpenACC [11]. Programming these APIs can take time and
usually requires some level of expertise to develop correct and
optimized implementations. From these options, OpenACC
is the only pragma directive-based programming language
designed to allow easier development for a variety of hard-
ware accelerators that include GPUs from different vendors,
multicore architectures, and FPGAs. The goal of OpenACC
is to improve the execution time of existing code written in
Fortran, C or C++, by adding different pragma directives to
the code that will allow it to run on the available accelerator.
OpenACC allows programmers to quickly develop for new
architectures without the need to understand much of the hard-
ware or the need to learn new vendor specifc programming

languages. However, since the compiler will make most of the
decisions, the performance is usually lower than what can be
obtained by using hardware-specifc programming languages
and compilers.

OpenACC support is provided by a number of vendors and
is defned by an open standard [11]. Since ROMS is written
in Fortran, using OpenACC is a viable option. ROMS is a
complex code with hundreds of different fles and procedures.
Finding which specifc procedures are parallelizable is not
a simple task. As discussed earlier in the profling results,
the primary computational bottleneck in ROMS is the Model
2D Kernel, which is responsible for more than 48% of the
sequential execution time. This is the function optimized in
this research. The Model 2D Kernel is implemented mainly in
the fle step2d.f90, which consists on a series of for-loops
that are possible to accelerate using OpenACC directives.

In OpenACC, segments of code to be offoaded to the
accelerator can be specifed using the syntax !$acc for or
!$acc kernel, which is similar to how OpenMP pragmas
are described [12].

III. RELATED WORK

Other researchers have investigated the performance of
ROMS on Intel Xeon Phi coprocessor accelerators.

Yalavarthi and Kaginalkar present an early attempt to
understand the performance of the ROMS model using a
hybrid cluster super-computer with 51392 nodes, each node
consisting of one Intel Xeon E5-2697v2 CPU and two Intel
Xeon Phi 7110P coprocessors [4]. The article compares three
different programming models of the architecture; host (where
the program runs on just the CPU with MPI ranks on the host
cores), native (where the program runs on just the coprocessor
with MPI ranks residing on the coprocessor cores), and sym-
metric (where the CPU and accelerator communicate with each
other using MPI). Their results show that host delivers better
results, most probably due to the lack of hybrid parallelism in
ROMS, preventing the use of shared-memory and distributed-
memory parallelism at same time. They leave for future work
vectorization and offoad modes.

Bhaskarin and Guarav analyze ROMS and the issues im-
pacting its performance on a Xeon Phi coprocessor, and
introduce an iterative optimization strategy that results in a 2x
speed-up in performance when comparing the base-line code
with a native mode on the Xeon Phi [13]. The improvement
requires extensive changes in the code that are applied to all
source fles, not just the main bottleneck of ROMS (the Model
2D Kernel). The optimizations mainly consist of padding
loop rows for better data alignment, fattening nested if-else
statements, optimizing the tile size hyperparameter, and using
large page sizes to avoid Translation Look-aside Buffer (TLB)
misses.

Reuter et al. introduce a multi-platform scaling investigation
for OpenMP parallelization of the UTBEST3D ocean simu-
lator [14]. They compare the performance of an Intel Xeon
versus an IBM Power6 and an Intel Xeon Phi coprocessor
using only shared-memory parallelism. They conclude that the

Intel Xeon CPUs produce the best run time results. The run-
times achieved with the Intel Xeon Phi coprocessors where
not satisfactory due mainly to the low clock rate of the cores
and lack of vectorization on the code.

To the best of our knowledge, this paper is the frst to
investigate the performance of ROMS on the Intel Xeon Phi
x200 architecture.

IV. RESULTS

In this section, experimental results are presented. Results
are divided into experiments run on the Xeon Phi using Intel’s
compiler technology, and the use of OpenACC on an NVIDIA
GPU using the Portland Group’s (PGI) compiler technology.

A. Intel Xeon Phi Experiments

With the exception of the vectorization results below, all
experiments are run with parameters that are common for
research-level uses of ROMS. The three-dimensional grid con-
tains 321x640x32 grid points (the Lm, Mm, and N parameters,
respectively). The simulation duration is fve days, with a time
step of 30 seconds.

In the experiments, ROMS is running the Upwelling ap-
plication to compare execution time of ROMS in shared-
memory versus distributed-memory on one Xeon Phi x200
system, while also exploiting vectorization and automatic
parallelization features available in the Parallel Studio XE
Cluster edition of Intel’s compiler suite, version 2017.0.035.
The operating system is CentOS Linux release 7.3.1611.

Building ROMS requires the use of the NetCDF library,
which in turn requires the HDF5 library. These support li-
braries had to be compiled using the same Intel compiler that
ROMS is built with. The build procedure and environmental
setup required to compile ROMS, NetCDF, and HDF5 is not
well documented for the Intel Xeon Phi x200 architecture, due
to its short time being available. While not included in this
paper, the authors can share this procedure with those that are
interested.

Simulations are run on an Intel Xeon Phi 7210 processor
with 64-cores (256 threads), each with a 1.3 GHz clock speed.
Total system memory is 112 GB (96 GB far memory, 16 GB
near memory). ROMS was tested using all available parallel
paradigms. The serial implementation on the Xeon Phi took
approximately 96 hours to complete. For reference, results
are also compared to serial performance of identical ROMS
simulations on a high-performance Intel Xeon E5-2690v2
CPU with a clock speed of 3.00 GHz.

1) Vectorization: The Intel compiler suite has automatic
vectorization on by default, and the largest vector size sup-
ported by the underlying architecture is selected using the
-Xhost compiler option. No changes to the source are
required to enable vectorized computations, but the compiler
must be conservative in its analysis to ensure that automatic
optimizations are correct. Explicit vectorization is also allowed
through the use of Single-Instruction-Multiple-Data (SIMD)
pragmas, and this may yield better performance than automatic
analysis.

Fig. 2. Simulation speedup compared to serial implementations

The effect of vectorization was measured on a small data
set. Without vectorization, the Upwelling model of ROMS
took 658.9 seconds, and the same experiment with automatic
vectorization enabled took 599.6 seconds, a 10% speedup.

Since vectorization is a level of parallelism that is orthog-
onal to other parallel computing paradigms such as OpenMP
and MPI, automatic vectorization is left enabled in all subse-
quent results presented here.

2) OpenMP: ROMS was compiled and run using the
OpenMP parallel execution model. Experiments were run
using various thread affnity settings, and for 64, 128, and 256
threads. The optimal OpenMP thread confguration for these
experiments was 128 threads with balanced thread affnity.
This confguration had a runtime that was 7.6 times faster
than the sequential implementation on the Xeon Phi x200,
and 2.8 times faster than the sequential Xeon CPU run time.
These results are not completely intuitive, as it is diffcult for
the ROMS user to know where the tradeoff is between fully
using the computational resources of the architecture while
still avoiding contention for resources.

3) MPI: In a separate set of experiments distinct from
the OpenMP tests, ROMS was compiled and run with the
MPI parallel execution model. Numbers of processes from
16 to 256 were tested, incrementing by powers of two. For
numbers of processes less than or equal to 32, one process
was scheduled per tile on the Xeon Phi, to prevent processes
from sharing the L2 cache on each tile. For 64 processes,
one process was scheduled per core, while for 128 and 256
processes, two and four processes were scheduled per core

respectively. The optimum confguration identifed from these
experiments was 32 processes with one process per tile. This
confguration resulted in a run time speedup of 15.8 compared
to the sequential Xeon Phi implementation, and a factor of 5.9
compared to the sequential Xeon CPU run time. Again, this
result in not intuitive, and doesn’t correlate to the OpenMP
experiments.

Table I shows the execution times of the OpenMP and
MPI experiments. As can be seen, the distributed-memory
MPI implementation performs better than the shared-memory
OpenMP one. This by itself is not completely unexpected, as
the two paradigms are implemented differently within ROMS,
and parallelize different portions of the simulation. Results
also show that there is resource contention resulting in a
slowdown when multiple processes run on a single core for
distributed MPI, but there is advantage to sharing up to two
threads per core for OpenMP.

Figure 2 shows the speedup of each simulation experiment
compared to a serial implementation on the Xeon Phi, and a
serial implementation on an Intel Xeon CPU. The performance
advantage of the Xeon Phi processor is signifcant, allowing
faster turn-around on simulations on a compute system that
is similar in cost, size, and energy usage to a standard high-
performance workstation.

4) Automatic Parallelization: Based on the OpenMP and
MPI experiments, it can be seen that the optimal number
of threads for the shared-memory OpenMP implementation
is greater than the optimal number of processes for the
distributed-memory MPI implementation. This presented a

TABLE I
EXECUTION TIMES

Processes/Threads
Paradigm

256
MPI

128
MPI

64
MPI

32
MPI

16
MPI

256
OMP

128
OMP

64
OMP

1
Serial

Time (sec.) 42174 30337 26695 22029 28959 55045 45884 48735 347789

question as to whether the MPI implementation could beneft
from some amount of automatic shared-memory paralleliza-
tion.

The Intel compiler can be given commands to attempt to
automatically parallelize the source code, usually by targeting
loops where it can be guaranteed that each iteration of the
loop is independent. If such a guarantee cannot be made
using static analysis, the compiler will not parallelize the loop.
The compiler fags used in these experiments are shown in
Figure 3.

1 −p a r a l l e l
2 −par−num−t h r e a d s =2
3 −par−a f f i n i t y = b a l a n c ed
4 −par−s chedu l e−au t o
5 −par−run t ime−c o n t r o l 3

Fig. 3. Intel compiler fags to enable automatic parallelization with two
threads

Experiments were run to attempt automatic parallelization in
addition to the MPI implementation of ROMS. Two threads per
MPI process were created, and the performance was measured.
Figure 4 shows the run times for each of the experiments, with
16, 32, and 64 MPI processes.

Results from these experiments show that in no case was
automatic parallelization able to improve performance com-
pared to single-threaded MPI processes. This is most likely
due to overhead created in the scheduling and management
of threads, and possibly some additional resource contention.
What is interesting is that 32 MPI processes, each with two
threads, outperformed 64 MPI single-threaded processes. This
is another non-intuitive result, as the total number of running
threads is the same.

B. OpenACC

As discussed in Section II, OpenACC allows the user to
insert simple pragmas around sections of parallel code to
offoad those computations to an accelerator.

The experimental platform used for OpenACC tests in-
cluded an NVIDIA GTX TITAN X GPU, an Intel i7 CPU, 32
GB RAM, running Ubuntu Linux 14.04 LTS as the operating
system.

In the experiments done in this research, just adding the
pragmas actually caused a slow-down of execution time of
the ROMS simulation by approximately 12%. Usually, a
slowdown is due to data transfer between the CPU and device
(GPU). In some cases, these data transfers are unnecessary,
and can be explicitly eliminated by adding specifc information
about which data should be used for input, output or both and

which data should be transferred to the GPU. These data di-
rectives were also inserted, but performance was still degraded
with OpenACC compared to the serial implementation.

These results are in line with the performance results seen
in related work running ROMS using the Xeon Phi as a
coprocessor. Data transfer is expensive in ROMS because
some of the data arrays are very large. This result is also in
line with the experimental results attempting to automatically
parallelize sections of the ROMS code. ROMS may have some
data dependencies in loop iterations that the compiler can’t
resolve.

An additional attempt to use OpenACC was made by
targeting existing regions of shared-memory parallelism in
ROMS, and converting OpenMP pragmas to OpenACC al-
ternatives. After transforming several of the OpenMP Parallel
pragmas into pragmas in OpenACC, this solution had better
performance than the original sequential code, but just by
1%. The original OpenMP implementation far outperformed
the OpenACC implementation identifed in this work. These
transformations weren’t a trivial task to implement.

V. CONCLUSION

This paper presents the frst performance evaluation of the
ROMS ocean modeling software package on the Intel Xeon
Phi x200 architecture, and compares that performance to using
OpenACC to run portions of ROMS on a modern GPU.

Extensive experimentation was done to identify an optimal
parallel computing model, and confguration of the number
of parallel threads and processes for ROMS. Shared-memory
OpenMP implementations, distributed-memory MPI imple-
mentations, and accelerated OpenACC implementations are
quantitatively compared.

The best performing confguration was found to be the
use of 32 MPI processes, one process running per tile on
the x200 architecture, with automatic vectorization enabled,
and automatic parallelization disabled. This implementation
was found to be a factor of 15.8 times faster than the serial
implementation on the Xeon Phi, and 5.9 times faster than the
serial implementation on a modern high-performance Xeon
CPU.

A signifcant conclusion to draw from this research is that
excellent parallel performance is possible for users of ROMS
with absolutely no modifcations to the ROMS source code.
Tuning performance of other accelerated computing models,
including OpenACC in this work, and CUDA in prior work,
takes weeks of effort, with no guarantee of performance
improvement, and results in a code base that is much less
portable than the original code.

Fig. 4. Run times with and without automatic parallelization of MPI processes

The improvements in the execution time of the ocean
simulation tool will allow ocean scientists to use higher
precision and more realistic models that should allow them to
better understand and predict ocean currents, sea level changes,
temperature, etc.

REFERENCES

[1] ROMS. [Online]. Available: http://www.myroms.org
[2] A. F. Shchepetkin and J. C. McWilliams, “The Regional Oceanic

Modeling System (ROMS): A split-explicit, free-surface, topography-
following-coordinate oceanic model,” Ocean Modelling, vol. 9, no. 4,
pp. 347 – 404, 2005. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1463500304000484

[3] E. D. Lorenzo, A. M. Moore, H. G. Arango, B. D. Cornuelle,
A. J. Miller, B. Powell, B. S. Chua, and A. F. Bennett, “Weak
and strong constraint data assimilation in the inverse Regional
Ocean Modeling System (ROMS): Development and application
for a baroclinic coastal upwelling system,” Ocean Modelling,
vol. 16, no. 3-4, pp. 160 – 187, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1463500306000916

[4] S. Yalavarthi and A. Kaginalkar, “An early experience of regional
ocean modelling on Intel many integrated core architecture,” in 2014
21st International Conference on High Performance Computing (HiPC).
IEEE, 2014, pp. 1–6.

[5] J. Mak, P. Choboter, and C. Lupo, “Numerical ocean modeling and
simulation with CUDA,” in OCEANS 2011, MTS/IEEE KONA - Oceans

of Opportunity: International cooperation and partnership across the
Pacifc, September 2011.

[6] I. Panzer, S. Lines, J. Mak, P. Choboter, and C. Lupo, “High performance
regional ocean modeling with GPU acceleration,” in OCEANS 2013,
MTS/IEEE San Diego - An Ocean in Common, September 2013.

[7] Intel Xeon Phi Processor x200 Product Family Datasheet, Intel Corpo-
ration, 8 2016, rev. 001.

[8] Process and thread affnity for Intel c Xeon PhiTM

processors. [Online]. Available: https://software.intel.com/en-us/articles/
process-and-thread-affnity-for-intel-xeon-phi-processors-x200

[9] CUDA zone. [Online]. Available: https://developer.nvidia.com/
cuda-zone

[10] OpenCL.org: The community site. [Online]. Available: http://www.
opencl.org

[11] The OpenACC application programming interface. [Online]. Available:
http://www.openacc-standard.org

[12] OpenMP specifcation for parallel programming. [Online]. Available:
http://www.openmp.org/

[13] G. Bhaskaran and P. Gaurav, “Optimizing performance of ROMS on
Intel Xeon Phi,” Procedia Computer Science, vol. 51, pp. 2854 – 2858,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877050915012557

[14] B. Reuter, V. Aizinger, and H. Köstler, “A multi-platform scaling
study for an OpenMP parallelization of a discontinuous Galerkin
ocean model,” Computers and Fluids, vol. 117, pp. 325 – 335,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0045793015001759

http://www.sciencedirect.com/science/article
http://www.sciencedirect.com/science/article
http:http://www.openmp.org
http:http://www.openacc-standard.org
http:opencl.org
http://www
http:OpenCL.org
http:https://developer.nvidia.com
https://software.intel.com/en-us/articles
http://www.sciencedirect.com/science/article/pii/S1463500306000916
http://www.sciencedirect
http:http://www.myroms.org

