UV-Vis Characterization of Aromatic Content in Bio-oil Emily Bladorn¹, Asanga Padmaperuma²

(2) Pacific Northwest National Laboratory (1) STAR

Background:

- Bio-oil is an alternative source currently being studied for its use as an alternative and renewable transportation fuel.
- Lignin present in the biomass feedstock is converted to aromatics during the oil production.
- Absorbance of these functionalities can be used to quantify the aromatic content in bio-oils.
- UV-Vis is an inexpensive method by which specific target compounds can be quantified within a mixture.
- Beer-Lambert law can be used to quantify the amount of specific molecules within a sample based on absorption.
- The relationship between concentration of bio-oil mixture and the absorption of UV light is shown in Figure 1.
 - Linear response indicates that the unknown will obey the Beer-Lambert law.
 - Different oil types have different slops.

Sample Preparation:

- Unknown oils were prepared using fast pyrolysis (A), catalytic fast pyrolysis (B and C). For the samples B and C were prepared using different catalysts.
- Solutions were created by using a fixed amount of bio-oil and an increasing amount of Eugenol Standard. All samples were prepared by weight.

Results and Future Work:

- The calculated amount of aromatic groups in each bio-oil sample is summarized in the Table.
- It is possible with this method to quantify certain compounds within bio-oil by using the Beer-Lambert law.
- Further testing and repeated trials with each type of bio-oil is of importance for verifying the reproducibility of these results.
- As this method was tested with one standard, testing different compounds would be of interest. Bio-oil contains a vast number of compounds hence creating a need for development of a method to streamline the sample preparation and data collection.

• This plot illustrates why we can use colorimetric techniques to analyze bio-oil.

• We used the Standard Addition method for the analyses, which adds a known amount of a standard to a unknown mixture. The mixture contains the standard, so when plotted, the amount of target compound within the sample can be extrapolated.

A=sbc

A= Absorption ε= Molar Absorbtivity b= Path Length (cm) c= Concentration (mol/L)

Colorimetric Analysis:

Each sample was run on a SpectraMax M5 UV-Vis by Molecular Designs. Absorbance spectra were collected between 200-400 nm.

Sample ID	Aromatic content (Eugenol (mol/L)		Bio-	Bio-oil + Euge	
A1	4.32x10 ⁻⁵	l n n n n n n n n n n n n n n n n n n n	0.8 0.7		
A2	4.49x10 ⁻⁵	280	0.6		
A3	3.93x10 ⁻⁵	nce	0.5		
A4	4.46x10 ⁻⁵	orba	0.3		
B1	1.17x10 ⁻⁴	Abs	0.2 0.1		
C1	6.99x10 ⁻⁵	_5 (0 0 00E-05 0 00E+00	5 00F-05	

recommendations expressed in this material are those of the

