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ABSTRACT 

Improving Introductory Computer Science Education with DRaCO 

Mike Dongyub Ryu 

 

Today, many introductory computer science courses rely heavily on a specific 

programming language to convey fundamental programming concepts. For 

beginning students, the cognitive capacity required to operate with the syntactic 

forms of this language may overwhelm their ability to formulate a solution to a 

program. 

We recognize that the introductory computer science courses can be more 

effective if they convey fundamental concepts without requiring the students to 

focus on the syntax of a programming language. To achieve this, we propose a 

new teaching method based on the Design Recipe and Code Outlining (DRaCO) 

processes. Our new pedagogy capitalizes on the algorithmic intuitions of novice 

students and provides a tool for students to externalize their intuitions using 

techniques they are already familiar with, rather than with the syntax of a specific 

programming language. We validate the effectiveness of our new pedagogy by 

integrating it into an existing CS1 course at California Polytechnic State University, 

San Luis Obispo. We find that the our newly proposed pedagogy shows strong 

potential to improve students’ ability to program. 
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Chapter 1 

INTRODUCTION 

In this chapter, we introduce our work with an illustration of the personal motivation 

that drives us to develop and present our work. 

1.1 Motivation 

Since its emergence as a unique discipline in early 1960s [1], computer science 

as a field of study never ceased to accelerate its growth. Today, the industry it has 

spawned is growing faster than all other industries [2]. It is undeniable that the 

contributions of computer science to the “widespread proliferation of emerging 

information and communication technologies” accelerated the coming of the 

Information Age in the early twenty-first century [3]. However, there has been 

limited advancement in the methods to teach such a discipline, even as other 

artifacts of computer science research have changed the world many times over 

within the past half-century. 

1.1.1 An Anecdote on Why 

To understand our motivation, it’s important to examine how programmers today 

found their beginning, why that paradigm hasn’t changed, and what programming 

really means in its most fundamental form. 

1.1.1.1 How We All Started 

Many established professionals in the field of computer science today probably 

remember their first few attempts at programming.  
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Regardless of whether it all started with a few lines of a C program that 

displayed out Hello, World! on the computer screen, or a few blocks snapped 

together in Scratch [4], many will agree that a prominent source of confusion 

originated from syntactic details of the first programming language they learned. 

The difference between brackets ([]) and parentheses (()) (in the case of the C 

program), or how Events blocks cannot be used within Control blocks (in the case 

of Scratch [5]), or the like, might seem obvious now. However, it’s likely that many 

of today’s professionals would admit to having had trouble understanding these 

syntax forms at first. 

While the computer science as a field has grown dramatically in complexity 

over the years, we still observe this pattern of students struggling with the syntax 

of a programming language in many introductory classrooms. Why is it that the 

early computing education has not yet escaped the pattern of, as Stephen Bloch 

has put it, “drowning the students with syntax” [6]? 

1.1.1.2 The Fundamental Definition of Programming 

Within the context of early computer science education, the abilities that most 

instructors aim to pass on to their pupils consist not of any particular syntax of a 

programming language, but rather the analytic skills that are required to solve 

challenging problems using an algorithmic process called programming. What, 

then, is programming? Is it not, in its most fundamental form, a process of planning 

out stages of execution for the solution to a given problem? If that were true, why 

do so many programmers recall struggling with the syntax of a language in 



 

 3 

introductory programming courses more prominently than they remember the 

challenges they faced in planning their solutions to algorithmic problems? 

With this, we aim to highlight that the beginning computer science students 

have strong and useful intuitions on algorithmic thinking, but their intuitions are 

often crippled by traditional teaching methods that inundate students’ cognitive 

capacities with syntax of an unfamiliar language. We illustrate this issue with an 

example provided in the following subsection. 

1.1.1.3 The Party Guest List Problem 

Imagine putting together a guest list for a big party. Perhaps the party we are 

throwing is very exclusive and we only want certain guests to attend, or we are 

simply generous hosts who would like to send thank-you notes later. In any case, 

we would want to make sure that each guest to our party only has one entry in the 

guest list, assuming no one we invite has the same name. This problem of 

checking for a duplicate entry in a list of names is simple enough to be asked of 

any student at a secondary level of education (middle or high school). 

Nevertheless, we have observed that when such a problem is asked in a 

programming course, the perceived difficulty of the problem seems to skyrocket.  

For instance, consider the following example of a guest list shown below: 

[Jess, Mike, Joy, Kyle, John, Toby, LaMarion, John, Joy] 

If we ask middle school students how they may go about making sure we only have 

each guest’s name appear only once in our guest list (again, assuming that all 

guests have unique names), they will not find it troublesome to draw up some sort 

of a plan on how to check for the name(s) that appear more than once. Perhaps 
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some of them will explain how they would look at each of the guest’s name that 

appears in the list and look for every other guests’ name to see if there is a match 

for a duplicate, which is a logically sound solution. 

However, if we ask the same exact question to introductory programming 

students who have recently learned about list and strings, we will easily find many 

of students who struggle to come up with an answer. Perhaps the programming 

language in use is too low-level to effectively represent the problem, or the 

students’ lack of proficiency with the language in use hinders their algorithmic 

thought process. This phenomenon is surprisingly easy to observe when assisting 

novice computer science students, even when the question does not require them 

to construct a working program to do so. 

We are not mandating that all tasks in a programming course be 

approached initially with middle-school-level intuitions. In fact, it is reasonable to 

assume that many intuitive thoughts from a middle school student may be logically 

insufficient or unsound for many programming tasks students at higher level 

institutions face. Instead, we are attempting to simply illustrate the lack of reliance 

on planning out stages of execution in the beginning students. If the middle school 

students had some intuitions on this simple problem, students at college-level must 

also have some intuitions, likely to be more mature and logically sound, shaped by 

the concepts they learned in the course so far. Nevertheless, we frequently 

observe only a small subset of the beginning students thinks through the whole 

problem and plan what they are about to code before they begin typing away.  
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Certainly, it is not unnatural for students in a computer programming course 

to want to jump into practicing the skills they are learning, which is utilizing a syntax 

of a programming language to construct a working program. Nonetheless, what 

many students fail to recognize is that prematurely attempting to construct a 

snippet of code on a computer often hinders the process of planning out stages of 

execution of a logically sound solution to the given problem.  

In terms of didactics in early computer science education, the importance 

of analytic skills and algorithmic thinking often dwarfs any significance in the act of 

learning and memorizing the syntax of some programming language. Nevertheless, 

we continue to observe alarming insufficiency in the efforts to harness the students’ 

existing intuition to grow into maturely developed analytic skills and algorithmic 

thinking. The algorithmic problems presented to the students in introductory 

courses—such as the one illustrated above—are perfect opportunities for the 

students to apply their intuition on the ‘process of planning out stages of execution 

for the solution to a given problem’ (the fundamental definition of programming 

stated earlier). However, many educators fail to make this connection abundantly 

clear to their pupils as majority of the novice students still continue to perceive any 

problem given in a programming course as something that must be solved by 

typing code in some syntax of a programming language they are not yet familiar 

with. 

1.1.1.4 Our Motivation 

We want a framework in which the members of an introductory computer science 

classroom can effectively utilize their existing intuitions on programming to derive 
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and refine the core computer programming concepts. With such a framework, 

teaching and learning computer programming shall be feasible with minimal 

floundering caused by the syntax of any programming language. 

1.1.2 Traditional Computer Science Education and Its Shortcomings 

Here, we introduce Sally Fincher’s 1999 publication that inspired our motivation. 

In it, Fincher briefly describes the origin of traditional computer science education 

as the acquisition of “the languages and techniques of programming for a specific 

purpose.” She explains that most of those who initially learned how to program 

were “scientists, engineers, and mathematicians” [7]. For the most part, they did 

not care much for the complexities involved in programming as a discipline. They 

simply wanted to use computer programs as tools to solve their domain-specific 

problems, and it was sufficient for them to quickly pick up the syntax of a 

programming language and move on. 

Contrastingly, Fincher identifies the modern computer science educators 

“no longer teach programming in order to get the computer to do something, but 

as a transferable skill in its own right” [7]. That is, when we teach programming in 

today’s classrooms, we do emphasize the complexities in the discipline of 

programming more than the scientific, engineering, or mathematic problems we 

solve with it. She claims that the traditional teaching methods that follow how those 

scientists learned it—“via syntax, through the vehicle of a single language”—is 

limiting, because the “students get bogged down in the specifics of the chosen 

form” [7]. 
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As Fincher demonstrates in her work, the limitations of traditional pedagogy 

in computer science were well recognized nearly three decades ago. However, 

despite some efforts to address the shortcomings and improve the effectiveness 

of the traditional methods in the past, mainstream introductory computer science 

courses at higher education institutions have not yet escaped the curricula that 

inevitably lead students to flounder, in varying degrees, in the syntax of a language 

students are not familiar with. 

1.2 Outline of the Following Chapters 

Here, we outline the subsequent chapters and provide brief previews of their 

content: 

• In Chapter 2 (Related Work), we survey some of the existing alternatives 

that were proposed as improvements or replacements to the traditional 

methods and highlight how our contributions presented in this thesis differs. 

• In Chapter 3 (Background), we present the strategies and concepts that 

already exist in computer science and non-computer science education we 

leverage in developing the new teaching method, as well as key definitions 

of the terms to be used in the following chapters. 

• In Chapter 4 (Proposal of a New Teaching Method), we refine the goal and 

the premises of our new teaching method, then formally propose it to 

explain in detail our educational philosophy behind each component it 

contains within. This chapter is the main contribution of this thesis. 



 

 8 

• In Chapter 5, (Implementation of the DRaCO-based Pedagogy), we provide 

details on how we implement the new teaching method to suit the existing 

introductory computer science course structure and curricula at California 

Polytechnic State University, San Luis Obispo. The implementation we 

illustrate in this chapter is used in validating the new teaching method we 

propose.  

• In Chapter 6 (Validation of the DRaCO-based Pedagogy), we describe our 

execution of an A-B experiment to validate the new teaching methods and 

our implementation of it. We report whether our new teaching method 

demonstrates the positive educational impact we expect it to provide to the 

beginning computer science students, and whether it generates any 

negative emotional responses from the students. 

• In Chapter 7 (Results and Discussion), we refine our thesis statements in 

order to apply rigorous statistical tests on the data gathered during our A-B 

experiment. Then, we conduct the analysis on the data to draw a conclusion 

regarding how effective our new teaching method is, and what negative 

consequences it may incur when being integrated it into an existing early 

computer science course. 

• In Chapter 8 (Threats to Validity), we acknowledge certain weaknesses in 

our proposal of the new teaching method and disclose the details on 

potential criticisms or opportunities of reevaluation of our experiment and 

the data analysis. 
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• In Chapter 9 (Conclusion and Future Work), we conclude our research with 

a brief summary of the preceding chapters and provide directions for any 

further replications or refinements of our work. 
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Chapter 2 

RELATED WORK 

In this chapter, we survey some of previous efforts that have been extended to 

improve the early computer science to provide a context for the contribution of this 

thesis. 

2.1 Pseudo-language-based Pedagogy 

Despite the seemingly unshakable status quo of the past three decades of 

computer science education which demands “the vehicle of a single language” [7], 

many educators have chosen to explore the option of developing an alternative 

pedagogy that attempt to reduce the reliance on a single programming language.  

We revisit Fincher’s 1999 publication and her presentation of a few notable 

implementations of the pseudo-language-based paradigm. Fincher presents these 

pedagogies as “syntax-free” [7] in her work. However, we recognize that they are 

not truly syntax-free, as they still utilize the syntax of pseudo-languages as a 

stepping stone for the syntax of formal programming languages.  

First, she presents Richard Bornat and his methods detailed in his book 

Programming from First Principles. Based on the rationale “… it is the delusion that 

to learn a code is to learn to program which is truly harmful” [8], Bornat’s method 

is implemented with examples presented in ISWIM (short for “If you See What I 

Mean;” an abstract programming language popularized through Landin’s seminal 

paper The Next 700 Programming Languages [9]) and exercises doable in paper 

and pencil, later to be used as notes when programming with a formal 
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programming language. The second method presented by Fincher is Russel 

Shackelford’s use of pseudocode named RUSCAL as the “teaching vehicle” [7] to 

instill “algorithmic thinking” [10] in the mindsets of all students at Georgia Institute 

of Technology. Fincher classifies both of these implementations of “syntax-free” 

approaches as successful separation of programming from coding [7]. 

2.2 Initial Learning Environments  

With the propagation of computer science education from the higher education 

institutions down to secondary and primary levels, popularity of Initial Learning 

Environments (ILEs) increased among introductory computer science educators 

throughout the past decade. Many of the ILEs answer the difficulties that arise from 

the syntax of a programming language with high interactivity and, in some cases, 

tools and environments that can help reduce syntactic mistakes.  

In their 2009 paper, Fincher et al., enumerates the following three as the 

“leading” ILEs: Alice, Greenfoot, and Scratch [11]. Although these three ILEs are 

developed independently of each other using different technologies and target 

audiences, they all exhibit interactive graphical programs to engage students with 

high level of interactivity. 

The idea of using interactive graphical elements in introductory 

programming courses has certainly existed for long. Karel—an educational 

programming language introduced in 1981 [12] designed for programming a robot 

to move around and perform simple in a two-dimensional GUI—exemplifies this. 

This paradigm of pairing a conventional practice of typing in the syntax of formal 
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programming language(s) with some graphical element is still employed in recently 

developed ILEs, such as in Code Combat [13]. 

However, a survey of more recent developments of ILEs reveals a different 

trend that started off with Scratch. Developed by MIT for “computer clubhouses” 

for younger students [11] [14], the programming pattern that Scratch offers stands 

out from the other ILEs. Instead of relying on a beginning programmer to type or 

drag-and-drop code into an editor in an error-prone way, it presents snippets of its 

proprietary syntax wrapped around in puzzle-piece-like blocks, such that the 

programmer can only put certain snippets together if the snippets belong together. 

This highly restrictive syntax greatly reduces chances for a novice programmer to 

make syntactic mistakes. Today, many ILEs utilize this puzzle-piece approach 

along with the interactive component to appeal to a younger audience. Some 

examples include Google’s Blockly [15], Made with Code [16], and Disney’s 

Wayfinding with Moana [17]. 

ILEs have proven their success in ‘initial learning.’ However, many of them 

lack proper segues to more generally-purposed programming environments that 

reach the ‘next level.’ For instance, MIT’s Scratch relies heavily on the graphical 

user interface and interactive software projects, while providing rather little 

opportunities for its user to organically move up to formal programming languages 

or environments that are not exclusively for initial learners. Here, we must 

acknowledge that there does exist rare exceptions like Google’s Blockly [15] that 

allow real-time translation from drag-and-drop ILEs to formal programming 
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languages, but such commitment to connect the ILEs to the next level 

programming environments is rather difficult to encounter. 

Perhaps this is a fair drawback to expect, since the ILEs’ focus is limited at 

initial learning and not much more. Nevertheless, this drawback may easily be a 

deal breaker for the higher education instructors, as many of them bear the 

responsibility of having to prepare their freshman pupils for the rest of their 

academic and professional programming career. Thus, there is simply no luxury to 

be able to reside only in the initial learning environments in higher education 

classrooms. 

2.3 Multilingual Pedagogy 

The Computer Science Division of University of California, Berkeley takes the 

opposite approach of the ones taken by syntax-free pedagogy or the ILEs. Instead 

of attempting to eliminate, minimize, or otherwise simplify the syntax of specific 

programming languages, they push a multilingual pedagogy that utilizes three 

different languages: Python, Scheme, and Structured Query Language (SQL).  

They argue that their “goal is not to choose what language [students] use in 

[their] future studies and career,” and that once the students have learned the 

essence of programming by observing the concepts employed by all three 

languages, they “will find that picking up a new programming language is but a few 

days’ work” [18]. 
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2.4 Planning-Based Pedagogy 

We present a short-term and a long-term planning-based pedagogy here. First of 

the two is a single-lecture based methods by Castro and Fisler of Brown University. 

Motivated by the “tasks of developing and integrating programming plans” being 

“a recurring problem among programming students [19] [20] [21],” Castro and 

Fisler explore the impact of introducing program planning in a single lecture to the 

first-year computer science students. They discover that while introducing the 

concept of program planning in a single lecture may result in improvements in 

students’ planning behavior, students “need some computing experience before 

they can embrace planning” [22]. 

The latter is How to Design Programs (HtDP) [23] by Program by Design 

[24] project. HtDP is a course curriculum in Racket (a dialect of Scheme) designed 

around planning using a six-step design recipe process. By introducing the concept 

of planning with the design recipe early on and reinforcing it throughout the whole 

curriculum, this pedagogy guides beginning students to design, write, and test their 

programs more effectively. A significant portion of our work is based on our 

augmentation of the design recipe from HtDP and its benefits (presented in 

subsection 4.2.1) in combating some of the shortcoming we discuss in the 

following section. 

2.5 Common Shortcomings of the Existing Alternative Methods 

In this section, we highlight some shortcomings that are common to most of the 

existing alternative methods we explore in the preceding sections. We address 
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these shortcomings explicitly to distinguish the contributions of this thesis from the 

existing work on early computer science education. 

2.5.1 Lack of Capitalization on Students’ Existing Programming Skills 

Many introductory computer science pedagogies are unique in a sense that they 

often lack a clear attempt to capitalize on the incoming students’ existing 

knowledge or intuition on programming—something that might help the students 

connect or relate their previous experience to the new material to be presented. 

Perhaps this is due to the limited programming curricula that exist as discrete 

courses in the K-12 education standards. Therefore, it is understandable that many 

introductory computer science courses focus on starting mostly from scratch. 

Nevertheless, we claim that just because the majority of incoming students 

have not heard much about programming, it does not mean that we must abandon 

all hopes for connecting some parts of computer science to something the students 

already know. We assert that presenting concepts without having any connection 

to the students’ existing programming knowledge may make even some of the 

simplest concepts seem difficult, therefore attempts to make those connections 

whenever possible is pivotal in making early computer science education more 

approachable and effective. Bootstrap’s Introduction to Programming that explicitly 

instructs students to “use what you already know to think about” programming in 

Scheme, because it “works just like math” is an excellent example of this concept 

[25]. There may not be any particular programming course an introductory 

computer science instructor may be able to naturally reference in their first-day 

lectures like how a university’s Calculus instructor may reference a high school AP 
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Calculus course. However, we find referencing practices from completely separate 

disciplines still proves useful. Further discussion regarding this is presented in 

section 3.3 and subsection 4.2.2. 

2.5.2 The Cost of Increase in Cognitive Load 

We argued that the extra cognitive load required to operate with the syntactic forms 

of specific programming language hinders students’ ability to retain and express 

their algorithmic thought process. Some approaches like ILEs address this directly 

by reducing the learning curve of the syntax. However, we expect that the 

approaches that include additional pseudo-languages (section 2.1) or more 

programming languages (section 2.3) on top of the single programming language 

students already struggle with would not reduce the problematic cognitive load. 

It is quite obvious why requiring students to learn multiple different 

languages would increase the cognitive load that hinders students’ ability to focus 

on abstract fundamental concepts. However, we must better explain the logic 

behind why we claim that pseudo-languages do not help reduce the cognitive load. 

Utilizing a pseudo-language that is free from syntactic rules enforced by a 

pedantic compiler or an interpreter may temporarily lower the students’ cognitive 

load in externalizing algorithmic ideas. Nonetheless, many abstract languages and 

systems of pseudocode are designed to notate the application of challenging 

computer science concepts (such as nested iterations, recursion, and higher-order 

functions), and therefore use strikingly similar syntactic conventions as many 

formal programming languages do. This often leaves the lack of evaluators as the 
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only noticeable difference between the pseudo-languages and a formal 

programming language. 

Simply taking away the mean-looking syntax error messages may help 

lower the students’ cognitive load. However, even without the presence of those 

error messages, we must be careful not to neglect that the degree of newness a 

novice computer science experiences in an abstract language or pseudocode is 

often similar to that of any formal programming language. That is, students who 

have little knowledge of formal programming languages most likely also have little 

knowledge on any abstract languages or systems of pseudocode, if any. Thus, in 

order to meaningfully reduce the beginning students’ cognitive load, we must utilize 

even higher level pseudo-languages. Allowing the pseudo-languages to take form 

of a natural language like regular English sentences would certainly free students 

from needing to learn some new elaborate syntax.  

2.5.3 Persistence of the Blank Pages 

Perhaps the most outstanding shortcomings of the existing alternative pedagogy 

is that it still leaves the beginning students vulnerable to “the Blank Page 

Syndrome,” which Bloch et al. of Program by Design project identify as a 

phenomenon where “the student, given a problem statement, confronts a blank 

page...and doesn't know how to begin” [24]. Our observations from years of 

interacting with the students confirm that that this is a common shortcoming in 

many mainstream introductory pedagogies, including the alternatives we present 

in this chapter. We speculate the cause of this Blank Page Syndrome to be a two-

fold issue.  
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First, beginning students are simply too new to the concept of programming. 

This connects to the point we make in subsection 2.5.1. There exists some 

pedagogy that alludes to the beginning students’ existing knowledge, such as the 

aforementioned Bootstrap [25]. However, many mainstream pedagogies attempt 

to teach computer science as a mostly brand-new discipline without some 

connections to the students’ past learning experience. This may unnecessarily 

amplify the learning curve and leave some students completely overwhelmed to 

even try doing something. 

Second, on top the unprecedented learning curve they present, many 

pedagogies quite literally involve a blank page as a starting point of a students’ 

programming environment. If the novice students’ encounter of blank pages 

reliably causes them to feel overwhelmed and lost, why must the educators persist 

it in their pedagogies? We claim that as long as a programming environment lets 

a novice student encounter a blank page, its highly polished user experience and 

ease of use becomes a moot point. This may be analogous to being placed in front 

of a large blank canvas in an art studio. If you have limited knowledge on how to 

paint, you are not likely to be comforted just because the paintbrushes given to 

you are fancy or easy to use. We present our solution to this in subsection 4.2.1. 

2.6 Contributions of This Thesis 

With many of the work we have cited in this chapter as the inspirational foundations, 

we propose a new teaching method (presented in detail in Chapter 4). We identify 

the key contributions of this thesis as the following:  

• Augmentation of the HtDP’s design recipe for the effects-early languages. 
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• Proposal of a code outlining process to be combined with the augmented 

design recipe process. 

• Peer review process of students’ design recipe and code outlines. 

• An experiment to validate the pedagogy we propose. 

In the following chapter (Background), we present some key instruments 

that are prerequisites for establishing our definition of the new teaching method. 

Then in Chapter 4, we propose our new teaching method that addresses all 

shortcomings we enumerate in this chapter. 
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Chapter 3 

BACKGROUND 

In this chapter, we introduce a few key concepts that are instrumental in 

understanding the development of the new teaching method being proposed. 

3.1 Design Recipe 

Introduced by Felleisen et al. in How to Design Programs (discussed in 2.4, 

Planning-Based Pedagogy), design recipe is defined as “a roadmap for defining 

functions, which programmers use to make sure the code they write does what 

they want it to do” [26]. The original text presents the “basic steps of a function 

design recipe” as a six-step process including (1) data definition; (2) signature, 

purpose, statement, and header; (3) function examples; (4) function template; (5) 

function definition; and (6) testing [23]. 

 

Figure 3.1.1: Function definition written in Racket using the design recipe 

In practice, following the six steps of the design recipe in a formal 

programming language results in the construction of function-level documentation 

comments (similar to Javadoc or pydoc), function headers, function bodies, and 
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(unit) tests for the functions written. Figure 3.1.1 above shows an example of this 

[26]. 

One theoretical benefit of using a design recipe as a part of early computer 

science education is that it can potentially address the “Blank Page Syndrome,” 

which we have pointed out as a common flaw of existing alternatives in Related 

Work (Chapter 2). By providing students with a concrete set of steps to follow, the 

design recipe provides them a viable alternative to blindly attempting “to piece 

together a program by trial-and-error” and skip the much-needed step to think 

through a given problem simply by saying, “‘Well, it seems to work...’ for what their 

program really does” [24]. 

In this thesis, we use an adaptation of Felleisen et al.’s design recipe in our 

development of a process that students are instructed to follow when expressing 

their function designs. Further illustration on developing this adaptation is 

presented in Chapter 4 (Proposal of a New Teaching Method), subsection 4.2.1 

(Design Recipe). 

3.2 Short-term Memory 

In introductory computer science courses, we observe that students’ cognitive 

capabilities are often overwhelmed by the particularities of the syntax of a 

programming language they are not yet accustomed to, regardless of how simple 

the syntax may seem to the instructor. 

In the field of cognitive psychology, the concept that the human mind can 

only hold seven plus-or-minus two items in its short-term memory has been a well-

established fact since the publication of Miller’s seminal paper [27]. Since even the 



 

 22 

elementary programming problems have a few steps involved in its solution (which 

a novice student may take three or four iterations of different approaches to arrive 

at), we theorize that this limited capacity of short-term memory is often fully utilized 

once a student is presented with a programming problem. 

Our first-hand observations and experiences so far as students and 

educators in computer science substantiate this theory. As a student begins to 

engage with a given problem, their mind starts the process of constructing the 

initial road map on how to navigate the problem. At this point, the student may 

have developed some intuitions that could eventually lead them to a sound solution. 

However, once their focus shifts from abstract algorithmic thinking to the concrete 

implementation on a computer, the high cognitive load required to recall the 

unfamiliar syntax floods their short-term memory and interrupts the train of thought 

on the intuitions that were emerging.  

Thus, proper externalization of the short-term memory prior to writing any 

code seems necessary to preserve the abstract algorithmic thinking process and 

any useful intuition that may result from such processes. In developing the new 

teaching method, we implement a mechanism that systematically introduces this 

externalization of short-term memory as part of the programming experience in an 

introductory computer science course. 

3.3 Outlining 

Software is a product of complex logic that is unique to the field of computer 

science, but computer science is not the only discipline that practices producing 

aggregations of complex logic. This suggests that computer science cannot be the 
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only field of study in which students suffer from the negative consequences of 

failing to properly externalize their initial roadmaps or intuitions on applications of 

complex logic. In fact, many non-technical disciplines today boast of robust 

strategies for organizing and externalizing complex logic, developed throughout 

the much longer history of their existence compared to the relatively brief history 

of computer science. 

Arguably, one of the most prominent fields of study to have invested much 

effort in externalizing complex thought process is language arts. In composing a 

piece of writing that is to eventually span multiple pages, or even volumes, outlining 

is often utilized as the technique for externalizing the content of an author’s short-

term memory. Defined to be a practice of “identification of main ideas and 

supporting details ... and their representation in a specified format,” this simple yet 

effective technique is “included in most elementary language arts curricula and is 

often taught” [28]. 

We take advantage of this well-established technique of outlining to develop 

the new teaching method, as the outlining borrowed from language arts provides 

one outstanding benefit: almost all students at higher level institutions are 

guaranteed to be familiar with the practice of outlining through the repeated 

exposure in their K-12 composition classes. Being able to utilize a technique with 

virtually no learning curve is ideal in attempting to minimize any factor that may 

impact the cognitive load of the students. 
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3.4 Nomenclature 

In order to minimize any ambiguity in communicating our intent while presenting 

this work, we provide specific definitions for the following terms and phrases, to be 

applied strictly within the context of this thesis: 

• Formal Programming Language refers to a general-purpose (as opposed 

to domain-specific), Turing-complete, and readily available programming 

language with an evaluator that allows such language to be executed on a 

computer. 

• Implementation Plan refers to a set of steps to implement a particular 

solution to the given problem in a manner that can be used to compose an 

executable program in any formal programming language. 

• Friction refers to a measure of students' emotional resistance to the 

teaching method being utilized. 

• The Framework refers to the five key components of the new teaching 

method being developed and proposed in this thesis. The five key 

components are as follows: 

1. Design Recipe refers to our adaptations of the last five steps of the 

six-step process from How to Design Programs [23] [24], with 

augmentations to distinguish functional arguments from console and 

file system I/O’s, as well as some formatting restrictions to allow for 

code template and unit test generation with a parsing tool. 

2. Code Outlining to externalize the abstract algorithmic intuitions in 

an easily readable and sharable format. 
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3. Peer Review Process for students to learn from each other and to 

practice effectively communicating different ideas for the given 

problem. 

4. Automatic Code Template Generation to reduce some cognitive 

load spent on familiarizing oneself with the syntactic structure of a 

formal programming language. 

5. Automatic Unit Test Generation to reduce the introductory-level 

learning curve to test-driven development while still encouraging 

thinking through the given problem sufficiently prior to 

implementation. 

Further discussion on the specifications and the educational benefits of 

these components are presented in section 4.2, Components of the New 

Teaching Method. 

• Ability to Program is defined as the ability for a student to adequately 

perform all of the following tasks:   

1. Effectively decompose a given problem into discrete subproblems 

and externalize them in the form of an implementation plan. 

2. Devise solutions to the subproblems in the implementation plan. 

3. Communicate the plans of implementation to other students. 

4. Devise a range of test values for the program-to-be-implemented. 

5. Follow the implementation plan and the test values to compose an 

executable program in a formal programming language that solves 

the given problem. 
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For the context of this thesis, Ability to Program is strictly limited to the 

application of computer programming. 
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Chapter 4 

PROPOSAL OF A NEW TEACHING METHOD 

In this chapter, we formally present the contribution of this thesis, which is a new 

teaching method for early computer science at higher education institutions. 

Strategies on integrating the new method into an existing introductory computer 

science course and its evaluations are presented in a later chapter (Chapter 5). 

4.1 The Primary Goal of the New Teaching Method 

In the previous chapters, we have argued that overreliance on the syntax of a 

formal programming language or languages is one of the critical issues that 

requires attention. 

We must reiterate that our goal is not to oppose the use of formal 

programming languages and their syntax in early computer science education. 

Rather, we primarily intend to lighten the psychological burden placed on the 

novice students by providing a systematic approach they can utilize to effectively 

externalize and communicate their algorithmic thinking process. We expect this 

process to meaningfully reduce the necessity of having to recall syntax of a formal 

programming language when the students encounter any programming task in an 

introductory computer science course. 

The new method we propose here has the ultimate goal of improving the 

effectiveness of early computer science courses such that the participating 

students’ ability to program is positively impacted in a quantitatively 

verifiable manner.  
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4.2 Components of the New Teaching Method 

The new teaching method we propose is centered around the framework, which 

contains five key components to be integrated into the existing curricula. The 

following subsections provide detailed specifications for each component of the 

framework, along with implementation examples that were used in validating the 

new method.  

4.2.1 Design Recipe 

Adapting and augmenting the last five steps (all steps excluding the data definition) 

of a six-step design recipe process from How to Design Programs [23] [24] (HtDP), 

we specify the design recipe as the process of determining the name, inputs, 

outputs, purpose, side effects, and example test cases of a program, 

function, or a subroutine and explicitly externalizing them in a specific 

format. The term itself (‘design recipe’) is also used to refer to the textual artifact 

that results from this externalization process, such as a function 

documentation block shown in Figure 4.2.1: Example of a design recipe as a 

textual artifact below. 

 

Figure 4.2.1: Example of a design recipe as a textual artifact 
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As part of the framework, the process of constructing a design recipe is 

devised to serve as a streamlined tool for the students to effortlessly externalize 

their ideas on how to decompose a larger programming assignment into smaller 

pieces (namely, functions or subroutines). Naturally, this makes a few fundamental 

lessons—lessons on concepts regarding datatypes (such as Booleans, numbers, 

characters, and strings), functions or subroutines as smaller components of a 

larger program and strategies on unit testing—necessary prerequisites to the 

introduction of the design recipe process. Ideally, the first or second large 

programming assignment of the introductory course should be presented to the 

students along with the presentation of the design recipe process to highlight its 

application and usefulness. Provisions of a few concrete examples on how a 

programmer might propose their function designs using the design recipe process 

is also strongly encouraged. 

Once the students are introduced to the concept of the design recipe 

process, they can be given an immediate opportunity to practice utilizing the 

process. For instance, the instructor may provide blank templates of the design 

recipe for students to use as they are coming up with the ideas on the functions 

they may want to build for the assignment. Electronic (Figure 4.2.2) and paper-

based (Figure 4.2.3) examples of this template are shown in the figures below. 
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Figure 4.2.2: An example of the electronic template for the design recipe 

 

Figure 4.2.3: An example of a paper-based template for the design recipe 

The primary benefit we expect from the design recipe process is almost 

identical to the motivation of the original design recipe proposed by the Program 

by Design project: “Addressing the ‘Blank Page Syndrome’” [24]. Unlike passing 

out a blank sheet of paper or instructing the students to open up a new text 

document, we expect that exposing the novice students to the template of the 

design recipe (such as the example shown in Figure 4.2.2 or Figure 4.2.3) will 

provide a strong sense of direction as to what they are supposed to do next.  

More specifically, we expect that the blank fields of the design recipe sitting 

right in front of the novice students—almost asking to be filled in—are likely to 

organically lead them into coming up with a few concrete draft designs and test 

cases for the functions, effectively beginning to decompose the larger problem 

without having to think explicitly about problem decomposition as a task. 
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We believe this primary benefit of avoiding “Blank Page Syndrome” [24] is 

absolutely critical. No matter how great the framework may be, if the students feel 

unsure about what to do at the very beginning of practicing it, only to eventually 

get lead astray or give up, what value could it possibly deliver? Therefore, in 

defining the framework, we require the design recipe to be the very first component 

to be introduced to and practiced by the students, even at the instructor’s cost of 

having to spend a few days or weeks preparing the students with the fundamental 

concepts leading up to and including functions and unit testing. 

As we discuss later, there are components of the framework (such as code 

outlining; subsection 4.2.2) that have almost no conceptual prerequisite and thus 

may be introduced to the students within the first few days of instruction. 

Nonetheless, our recommendation still stands with the design recipe having the 

highest topological ordering in relation to all other components, just so we can 

deliver the primary benefit of providing the students with a clear sense of direction. 

As similar as it may seem to the original by Felleisen et al. [23], our 

adaptation of the design recipe process still has a few key differentiating features. 

The first differentiator is the aforementioned provision of the design recipe 

templates. (The original specifications of HtDP’s design recipe process do not 

require templates to be provided to the students [23], although there are 

implementations of it that do, e.g. Bootstrap [25]). 

The second differentiator is that our design recipe process is completely 

agnostic to the specifics of a formal programming language’s syntax that may 

eventually be used to implement the function. Again, this is to reduce the possibility 
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of interrupting the students’ thought process. Without the need to write the function 

signature in any formal programming language, the extra effort of having to recall 

the function header or signature syntax becomes eliminated from the process of 

problem decomposition and function design. Instead, students may simply state 

the name of the function, then list the datatypes of the functional arguments and 

return value in the CONTRACT line. 

The third and final differentiating factor in our process is that the concept of 

side-effects is introduced from the very beginning, compared to how HtDP [23] 

defers introduction of side-effects and its inclusion in the design recipe until very 

late in its curriculum. Our design recipe process requires any side-effects of the 

functions to be explicitly stated separately from the functional arguments. This is 

motivated purely by our observation of novice students throughout the years of 

interacting with them: a recurring pattern we observe is that students tend to 

confuse and intermix the functional input/outputs and the system-level 

input/outputs such as the console outputs or keyboard inputs. Since the system-

level input/outputs are often implemented as side-effects within a function, we 

expect to meaningfully reduce this confusion by letting students explicitly state the 

side-effects of a function and visually and conceptually distinguish any system-

level interactions from the inputs and outputs of a function. 

4.2.2 Code Outlining 

Inspired by the techniques often taught and used in language arts [28], we define 

code outlining as a process of describing the implementation plan for a 

program, function, or a subroutine.  
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We want to minimize any extraneous cognitive load that may hinder the 

expression of the students’ intuitive algorithmic thinking on how the programs, 

functions, or subroutines may be implemented. Therefore, code outlines are 

defined relatively broadly and informally. The outlines are to be written in a natural 

language, in a bullet-point format, with optional utilization of different levels 

of bullets and indentation to distinguish the implementation plan within a 

control structure from the top-level implementation plans (Figure 4.2.5). In 

theory, the outlines may be written in any medium, but we recommend instructing 

students to place the outlines as in-line comments in the source code file where 

the actual implementation in a formal programming language will eventually be. 

We make this recommendation to ensure that the efforts put towards composing 

the outlines contributes to the actual implementation when students begin to code. 

When students design functions as part of the framework, we suggest that 

the code outlining practice immediately follow the design recipe process 

(presented in subsection 4.2.1), so that students may continue the externalization 

process of their intuitive ideas on functions as components of a larger program. 

We anticipate the practice of writing down or typing out the implementation plans 

in a concise format to assist the students in organizing, validating, and improving 

their initial ideas on how to implement certain componential algorithms of a larger 

program. 

Because the code outlining process aims to capitalize on students’ existing 

knowledge and experience with outlining in general, instructors need not invest 

much time into explaining how the outline shall be written. This also allows the 
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timing of integrating the code outlining process into the course curriculum to be 

flexible. Here, we provide a few examples of code outlines with varying complexity 

to illustrate this point. 

Figure 4.2.4 shown below represents a potential externalization of a 

student’s initial idea on how to structure a small top-down program as they are 

reading through the programming assignment specifications. 

 

Figure 4.2.4: An example code outline for a simple program 

In this example, the assignment specification asks for a simple program that 

computes the recoil velocity of a physical object (skater) based on the launch 

parameters (skater’s weight, distance of the throw, and the type of a projectile) of 

a projectile thrown by it. Notice that the linear progression of logic in this outline 

could have been generated without any knowledge on even the most elementary 

computer science concepts such as functions or control structures. This suggests 

that outlines like the one shown could be generated by students of an introductory 
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course quite early on. To substantiate this, we provide a selection of linear code 

outlines (similar to Figure 4.2.4) written by actual introductory students in Appendix 

C, Selection of Student-Composed Linear Code Outlines. 

With the limited complexity of the logic expressed in the outline, this 

externalization process may seem too trivial to provide any benefit. However, the 

benefit this seemingly trivial process provides is more than meets the eye. Unlike 

any retention of the initial idea in one’s human memory, this once-externalized 

outline is semi-permanent, relatively free from the risk of being lost or corrupted 

[29]. Therefore, a novice student who has finished externalizing their initial idea for 

the program is then free to safely move on to other tasks required to complete the 

project. Continuing with the running example from Figure 4.2.4, perhaps a student 

may need to study some of the mathematical formulae to gain better insight on the 

domain knowledge (physics) required to understand the problem better, or they 

may desire to consider designing a function to handle detailed tasks like input 

validations (if the student is familiar with the necessary concepts, of course). 

Whichever the case may be, the novice student is now at a much lower risk of 

potentially losing a key insight from their initial brainstorming—for example, 

needing to perform a unit conversion to KG in the case of this program—than if 

they had relied on their memory alone. 

Figure 4.2.5 shows an example of a code outline written for a ‘word search’ 

program, with the task of finding the locations of given words in a two-dimensional 

matrix of characters. Unlike the previous example, this outline is much larger in 

size, and it includes the aforementioned multi-level bullet points to account for the 
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applications of control structures such as conditionals and loops. Naturally, a 

student must have been introduced to the concepts of functions or subroutines and 

various control structures to be able to generate an outline like the one shown in 

the figure. Still, once the student has been taught those concepts, instructing them 

to express their implementation plan with those concepts in an outline format takes 

very little in-class overhead. Again, this is because we are able to capitalize on the 

students’ existing knowledge and experience with outlining in general.  
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Figure 4.2.5: An example code outline for a moderately complex program 

With a moderately complex program like the word search, expected benefits 

of externalizing the implementation plan as an outline become more apparent. First, 

an implementation of this size is arguably difficult to retain in one’s memory without 

any form of externalization, so students shall benefit again by creating a semi-

permanent record of their plan. Secondly, by writing the outline, students should 
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be able to visually organize the individual pieces of their plan such as strategic 

placements of control structures and function applications.  

One may argue that a novice student is more likely to begin constructing 

their outline in a purely linear, top-down manner without necessarily thinking about 

applying any of the relatively complex concepts. We certainly anticipate some 

students may initially experience difficulties in developing an outline that goes 

beyond a linear, top-down approach, even for the problems with obvious 

opportunities to apply more complex logic such as conditionals and loops. 

However, as they continue the construction of their outline, we expect certain 

pieces of the outline to stand out as repetitive or particularly refactorable, perhaps 

motivating them to apply their knowledge of functions or control structures. Even if 

the original author of an overly simplistic linear outline does not catch certain 

opportunities to apply higher-order concepts, having a written outline makes 

pointing out such missed opportunities during a review process (such as the one 

presented in subsection 4.2.2) much easier.  

Without any concrete artifact like the outline, motivating a constructive 

discussion of one’s implementation plan would be rather difficult, as reviewing and 

critiquing something that only exists abstractly in one’s mind usually is. In essence, 

this is the larger benefit we expect students to gain from practicing code outlining. 

Outlining is certainly a familiar practice that provides students with a tool to 

organize their intuitive algorithmic thought process. But more importantly, it yields 

semi-permanent and tangible artifacts which allows students to effectively revisit, 

review, critique, and further develop their algorithmic ideas with. 
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Figure 4.2.6 shows the code outline in a slightly different context, where the 

outline is used to externalize an implementation plan for a specific function rather 

than the top-level logic of the whole program. Here, the outline shown is 

constructed to accompany the design recipe for a function that searches for a 

possible occurrence of a word in a grid for the word search program, where grid 

is a two-dimensional matrix of characters. 

Once the higher-level outlines and design recipes for their overall program 

are written, the only remaining portion of the implementation plan is the details on 

how the functions specified by the design recipes shall be realized. Therefore, we 

present the construction of more fine-grained implementation plan outlines like the 

one in the figure below as a natural subsequent step to the higher-level 

implementation outlines shown in the previous figures (Figure 4.2.4 and Figure 

4.2.5). 
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Figure 4.2.6: An example function-level code outline with a design recipe 

Similar to how the assignment specifications may prompt students to think 

about the high-level solutions, we expect the design recipes to be good references 

for the students to base their function-level implementation plans on. We 

recommend the function-level outlines to be written adjacent to the design recipes, 

so students may conveniently refer to the contract, purpose, and examples of their 

functions to ensure that their outline is logically compliant with the design recipe. 
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4.2.3 The DRaCO Workflow 

 

Figure 4.2.7: Design Recipe and Code Outline (DRaCO) workflow 

Before we continue on to discuss the remaining components of the framework, we 

propose an aggregative terminology for the first two components presented so far: 

DRaCO (Design Recipe and Code Outlines). Figure 4.2.7 above illustrates the 

process involving the two components (DRaCO) as a workflow. 

We acknowledge that the aggregation of the two separate components of 

the framework as a single workflow may seem arbitrary and contrived. After all, the 

design recipe process and the code outlining practice each originate from different 

sources [23] [28] and have discrete purpose as we present in preceding sections. 

Nevertheless, we believe that it is important to present both as a singularly 
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packaged workflow to the students, since presentation of a single workflow is likely 

to minimize any room for confusion and make it more convenient when integrating 

it into an existing curriculum. Detailed discussion on implementing the DRaCO 

workflow into the existing assignment structures of an introductory course is 

presented in Chapter 5, Implementation of the DRaCO-based Pedagogy. 

4.2.4 Peer Review Process 

Peer code review is a process well known to be an effective tool both in the 

computing industry [30] and the educational context [31]. However, there are clear 

difficulties in implementing the process in the introductory courses. According to 

Busjahn et al, computer science educators report that “understanding the code’s 

intention from the text surface” is perceived by the learners “as the major challenge 

in [code] reading” [32]. This is particularly easy to observe at the introductory level 

where encountering statements such as “I wrote this snippet of code, which does 

what I want, but I have no idea why it does what it does” are not a rarity. Many 

students struggle often with the code they have written all by themselves, so we 

can reasonably see how the magnitude of the struggles would only multiply if they 

had to read someone else’s code. 

This is perhaps similar to a situation in which a couple of students in a 

foreign language course—say, for instance, Korean—are attempting to 

communicate by speaking only in Korean. While it is a noble attempt on their end 

to practice the language, we can certainly expect some of their intentions to be 

‘lost in translation.’ At least it makes sense for students in a Korean course to put 

themselves in a situation like this, as their primary goal in being in a Korean course 
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is to learn the language, not necessarily learning how to communicate their 

sentiments with each other. 

Unfortunately, the same justification cannot be granted to the students who 

are taking an introductory computer science course. The primary goal of being in 

an introductory computer science course shall be, as we and many other educators 

have argued thus far [7] [6], anything but simply learning a programming language. 

Therefore, in most introductory courses, letting the algorithmic thought process get 

‘lost in translation’ is in no way acceptable, since the part that often gets ‘lost in 

translation’ is what we care most about in a peer code review process. 

Again, we approach this difficulty in integrating the peer code review 

process into an introductory course with recognition that the students’ lack of 

proficiency in the formal programming language(s) is the main obstacle. We 

propose a peer review process that strips away the problematic “text surface” and 

retains only the “intention” [32], or the algorithmic thought process, behind. We 

claim that this is not too difficult to achieve with the specifications of DRaCO. 

In the framework we are proposing, following the DRaCO workflow (Figure 

4.2.7) results in generation of textual artifacts that are written mostly in natural 

language and formatted in a well-organized structure (bullet-point outline). The 

greatest benefit the DRaCO artifact delivers to the novice students is that almost 

all of the artifact is written in a language and format they are quite familiar with. If 

we assume that students have familiarized themselves with the formatting of 

design recipes (Figure 4.2.1), then we can even argue that none of the DRaCO 

artifacts shall seem foreign to them. By reading the code outlines that are 
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descriptions of different stages of the implementation plan in a natural language, 

students are effectively reading the original author’s unaltered externalizations of 

the intentions. We expect this to be far more effective than having to roughly 

estimate the meaning behind a rather foreign surface syntax of a programming 

language that is possibly an incorrect translation of the author’s original intentions. 

Our specifications of the peer review process do not restrict the medium of 

the review. That is, the instructors implementing the peer review process as part 

of the framework are not at all discouraged from conducting the review with any 

electronic tools, including commercial code review tools such as Microsoft’s 

GitHub [33], Atlassian’s Crucible [34], JetBrains’ Upsource [35], or any proprietary 

tools. Conducting the review simply with paper-and-pencil also aligns well with our 

specifications. However, we recommend that the review processes be held in 

person, such that the reviewer and the author of the DRaCO artifacts are free to 

verbally communicate while sharing a single copy of the artifact they are sharing. 

Consequently, we define the peer review process in the context of the 

framework as an in-person review process of the artifacts of DRaCO workflow, 

where the participants shall examine, discuss, and critique each other’s 

implementation plans via verbal and written communication. 

Although we expect the peer review process without the overhead of having 

to translate the code to dramatically reduce the difficulty of communicating 

students’ intentions, we also understand that it is quite unreasonable to expect all 

of the novice students to be perfectly proficient at clearly and concisely expressing 

their algorithmic thinking process even in a natural language. Given that many of 
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the students would be still learning how to think algorithmically with the concepts 

in computer science, we shall rather expect most DRaCO artifacts to lack clarity in 

many aspects. Since the main goal of the review process is to understand and 

critique the intentions of the author, we claim that having the author in the flesh to 

interact directly with is one of the most essential steps in achieving that goal. 

Especially if the artifact alone proves to be lacking due to the author’s inexperience, 

the opportunities to freely ask clarifying questions, critique the logic expressed, 

and listen to the author’s defense of certain choices would unequivocally add 

significant value to the review process than if the only channel of communication 

between the author and the reviewer were the DRaCO artifacts.  

4.2.5 Automatic Code Template Generation 

Primarily, both of the remaining components are included in the framework to 

dissuade students from simply perceiving the requirements of the framework as 

‘extra work’ that is time consuming and offers little benefit. 

The first of the two remaining components is automatic code template 

generation. Not to be confused with the design recipe template from subsection 

4.2.1, we define ‘code template’ as some starter code to be generated from the 

students’ DRaCO artifact, such that the generated code may provide some 

guidance to the author of the DRaCO artifact on how one could start 

implementing their program in the syntax of a formal programming language. 

We observe that the interactive aspect of the formal programming 

languages is one of the key factors that captures students’ attention and 

engagement. That is, students seem to enjoy observing that their code ‘works.’ It 
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is certainly understandable how a cycle of interaction between a programmer and 

a computer via a language that both can comprehend may be much more exciting 

than jotting down one’s thought process in a manner that the computer will never 

understand. Although often overlooked in higher education, excitement is an 

important factor in a programming environment’s ability to engage and retain 

students and their attention, as the developers of Scratch have noted in developing 

their initial learning environment for a wider range of audiences [14]. 

Therefore, we have devised automatic code template generation as one of 

the components of the framework in order to incite some excitement in students. 

The emphasis here is on the automatic generation of code based on students’ text 

input. By providing a tool that parses DRaCO artifacts and generates some level 

of ‘real code’, we are allowing the emulation of the aforementioned cycle of 

interaction between a programmer and a computer. With this, we are also instilling 

into students’ minds the idea that following the DRaCO workflow is more than mere 

notetaking, and that the DRaCO artifacts have some functional aspects similar to 

formal programming languages. With this, we aim to convince the students that 

DRaCO has a unique value beyond simply being a format to organize their 

implementation plan, thus motivating them further to put in sincere efforts into the 

DRaCO workflow. 

We must note that we are being purposefully vague as to what the 

“generated code” or “some guidance” in the definition of a code template shall be. 

We acknowledge that there exist many schools of thought on where the line 

between beneficial and harmful lies when it comes to differing degrees of help a 
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code-generating tool may provide to novice students. While we still provide an 

example implementation of automatic code template generation in the subsequent 

chapter (Implementation of the DRaCO-based Pedagogy), we are leaving the 

interpretation of the definition of code template completely up to the discretion of 

the instructor implementing the framework to their own introductory computer 

science course. 

4.2.6 Automatic Unit Test Generation 

Automatic unit test generation in the context of the framework serves as the 

second component that adds practical benefit of utilizing the DRaCO workflow. It 

is quite similar to the automatic code template generation (subsection 4.2.5) in the 

sense that it also generates executable code based on the DRaCO artifacts and 

allows students to interact with a computer. However, automatic unit test 

generation is proposed with a much more clear-cut definition and purpose than 

providing “some guidance” to the students. 

Defined as the generation of a working unit test suite written in a formal 

programming language based on the DRaCO artifact, we propose automatic 

unit test generation to serve as the training wheels for the novice students to 

experience the benefit of test-first or test-driven development (TDD). 

Many years of research on TDD has revealed its positive and quantifiable 

impact on software quality, both in the industry [36] [37] and in academia [38]. 

However, as Edwards has pointed out, application of TDD is often met with 

challenges at an introductory level, because “software testing requires experience 

at programming,” and “introductory students are not ready for [software testing 
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practices] until they have mastered other basic skills” [39]. In addition, most TDD 

practices require writing the tests in the testing framework of the formal programing 

language in use. Since we are proposing an extended deference of any use of the 

formal programming languages based on the observation we have so far 

enumerated regarding our inexperienced target audience, it may seem that there 

exists no plausible avenue of compatibility between the traditional TDD practices 

and our Framework. While we acknowledge that no traditional TDD practice will 

organically synergize with the specifications of the framework, we also recognize 

that some logic to validate the students’ design of the function or subroutines 

already exists in the form of example test cases within the design recipe 

component of the DRaCO artifact.  

The key motivation here in specifying the automatic unit test generation is 

to utilize the validation logic already available in the form of example test cases to 

provide a working test suite the students can run as they begin writing code to 

implement their designs. One immediate consequence we may expect from this is 

that the students will proceed with a strong sense of direction as to what their 

implementation of the functions shall do, since running the generated test suite 

can provide instant feedback on how well their current code is working. This is 

precisely one of the major benefits of TDD [40]. Here, we are not claiming that the 

test suite generated from the novice students’ DRaCO artifacts will offer the 

coverage level equivalent to the test suite written by an expert programmer. Our 

emphasis is on the fact that even a few runnable unit tests are far better at 

providing initial guidance than no unit tests, and that the whole test suite will be 
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bestowed upon the students at no cost of having to learn any particular testing 

framework or the language in which the framework is written. 

Moreover, we anticipate that the students’ initial interaction with a generated 

test suite will allow them to realize how a well-written set of test cases is capable 

of saving them from “forever fussing about what did I miss, what did I forget, what 

did I just screw up,” as Kent Beck has put it [40]. With this, we assert that motivating 

the students to put more time and effort into writing good example test cases for 

the later assignments should not be difficult, especially with some extra guidance 

from the instructor to reinforce the importance of good test cases. Ultimately, we 

expect automatic unit test generation to at least cultivate a learning environment 

in which motivating and introducing more formally established practices of TDD 

becomes natural. 

4.3 Summary of the Proposal 

We present the entirety of our new teaching method with verbose philosophical 

and practical justifications in the earlier portion of the chapter. In this section, we 

tersely summarize our proposal and reproduce the definitions of the key 

components of the framework, such that those who intend to develop a proprietary 

integration strategy for the proposed teaching method may utilize it as a quick 

reference. 

4.3.1.1 New DRaCO-Based Pedagogy for Introductory Computer Science 

Education 

• The primary goal of the new pedagogy proposed here is to improve the 

effectiveness of early computer science courses such that the participating 
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students’ ability to program is positively impacted in a quantitatively 

verifiable manner. 

• The new teaching method is centered around the framework, which 

contains five key components. They are: 

1. Design Recipe: the process of determining the name, inputs, 

outputs, purpose, side effects, and example test cases of a program, 

function, or a subroutine and explicitly externalizing them in a specific 

format. 

2. Code Outlining: a process of describing the implementation plan for 

a program, function, or a subroutine in a natural language, in a bullet-

point format, with optional utilization of different levels of bullets and 

indentations to distinguish the implementation plan within a control 

structure from the top-level implementation plans. 

3. Peer Review Process: an in-person review process of the artifacts 

of DRaCO workflow (subsection 4.2.3), where the participants shall 

examine, discuss, and critique each other’s implementation plans via 

verbal and written communication. 

4. Automatic Code Template Generation: programmatic generation 

of some starter code based on the students’ DRaCO artifact, such 

that the generated code may provide some guidance to the author of 

the DRaCO artifact on how one could start implementing their 

program in the syntax of a formal programming language. 
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5. Automatic Unit Test Generation: programmatic generation of a 

working unit test suite written in a formal programming language 

based on the DRaCO artifact. 

4.4 Name of the New Teaching Method 

In order to make the subsequent discussions clearer and avoid any confusion with 

other teaching methods, we refer to our newly proposed teaching method as a 

‘DRaCO-based pedagogy’ in the following chapters of this thesis.  

 



 

 52 

Chapter 5 

IMPLEMENTATION OF THE DRACO-BASED PEDAGOGY 

In this chapter, we present the details of our implementations in integrating the 

DRaCO-based pedagogy into an introductory computer science course at 

California Polytechnic State University, San Luis Obispo (‘Cal Poly SLO’). The 

proof-of-concept implementation of the framework presented in this chapter serves 

as a basis for our validation of the new pedagogy (presented in Chapter 6, 

Validation of the DRaCO-based Pedagogy) and is intended to be a motivating 

example for any replication studies or future work utilizing the framework. 

5.1 Implementation Environment 

We begin the illustration of the environment in which we deployed the DRaCO-

based pedagogy by explaining the contextual course structures at Cal Poly SLO. 

5.1.1 Introductory Computer Science Courses at Cal Poly SLO 

At Cal Poly SLO, a majority of the underclassmen in computer science, software 

engineering, and computer engineering majors begin their major coursework in a 

sequence of two introductory courses: CPE-123 and CPE-101 (in this order). Each 

course spans a single academic term, which is a quarter composed of ten 

instruction weeks and a one final exam week. 

The first course of the sequence, CPE-123, or Introduction to Computing, is 

a pre-introductory, “CS0” course designed to “to attract and retain undergraduates 

that have no prior experience in CS” [41]. This particular course is offered with 
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varying themes such as computational art, game development, mobile application 

development, music, robotics, and cybersecurity, in which a beginning student may 

choose to enroll depending on which subject aligns best with their interests. While 

all offerings of this course have a common high-level objective such as teaching 

“core computer science principles and tools, providing a foundation and context 

for more traditional, introductory CS coursework,” the contents of the differently 

themed offerings of the course vary depending on the technology stack and the 

pedagogy employed by the instructor in charge [41]. 

The latter course in the sequence, CPE-101, or Fundamentals of Computer 

Science, is the traditional ‘CS1’ course. The university’s catalog specifies the 

course to provide lessons on the following: “Basic principles of algorithmic problem 

solving and programming using methods of top-down design, stepwise refinement 

and procedural abstraction. Basic control structures, data types, and input/output. 

Introduction to the software development process: design, implementation, testing 

and documentation. The syntax and semantics of a modern programming 

language” (Python 3 at the time of this research) [42].  

We select the relatively traditional CPE-101 as a course suitable for 

introducing the DRaCO-based pedagogy, as it is a course with a well-defined set 

of objectives established over many years of refinement, and it is a course that 

satisfies the assumptions of our teaching method regarding the environments in 

which it may be implemented in. But, above all, it is a course that saw little change 

over the past half-decade in terms of how it has been implemented with a vehicle 

of a single formal programming language to convey the fundamental concepts.  
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5.1.2 General Structure of the CS1 Course at Cal Poly SLO 

An offering of CPE-101 at Cal Poly SLO has a fifty-fifty split between the ‘lecture’ 

and ‘lab’ hours. With the current configuration of the course where a total of six 

hours is allotted to an offering of the course per week, three of the six hours are 

designed as a traditional lecture time during which the instructor of the course will 

deliver the course content to the students attending. Although most of the lecture 

hours are spent with the instructor presenting some computer science concept and 

its applications in front of a traditional classroom with little interaction among 

students, a small portion of the lecture hours are spent on discussions and 

opportunities in which students can work on small exercises as a group. 

The remaining three hours per week are less structured and scheduled in a 

computer lab. During these ‘lab’ hours, students are encouraged to work on 

exercises and assignments for the course and seek the help from an instructor or 

a teaching assistant as needed. Rarely, some lab hours may be consumed by 

overflow lectures or exam time. Because the learning that is designed to occur 

during the lab hours are mostly student-led and not initiated by the instructor’s 

delivery of new course material, attendance of the lab hours is largely considered 

optional. 

Evaluation of the student performance in CPE-101 also follows the 

traditional classroom model. All students in computing-related majors, minors, or 

concentrations taking the course as a degree requirement are required to seek a 

letter grade (‘A’ through ‘F’) based on evaluation throughout the academic term. 

The letter grade for the course is computed largely based on the combination of 
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scores students earn from the following items: lab assignments (smaller 

programming homework to be completed within a short period of time; usually 

about a week), projects (larger programming assignments that require applying a 

sizable culmination of concepts, with relatively larger time window for students to 

work on them), a couple of midterm exams that occur throughout the quarter, and 

a final exam that is scheduled during the final exam week. In principle, all graded 

items in the course are to be completed without any collaboration among students. 

5.1.3 Seams for the DRaCO-based Pedagogy 

With the existing structure of the CPE-101 standing as presented in previous 

subsections, we identify the a few components of the course as ‘seams,’ or 

appropriate points in which we may be able to integrate the key components of the 

framework only with minimal and necessary disruption to the established course 

structure. These seams are described in the subsequent paragraphs. 

First, we find the projects of CPE-101 to be perfect candidates for the 

students to apply the framework. The level of complexity the projects provide are 

deemed sufficient to motivate the need for thoughtful decomposition, planning, and 

testing prior to implementation in code. Also, the wide time window allocated for 

the projects allow equitable introduction of DRaCO workflow assignments and peer 

review process as smaller parts of the overall project progression. 

Secondly, the midterm and the final exams provide ample opportunities for 

us to test the educational effect the framework has on students. Since the aim of 

the DRaCO-based pedagogy aligns well with the overall learning objective of the 
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course, we see that asking exam questions that are designed to test the students’ 

ability to program would be appropriate. 

Finally, the flexible lab hours that are scheduled in a separate time and 

physical location from the lectures do not only allow designing an A-B experiment 

to evaluate the pedagogy we were implementing (presented in Chapter 6) but are 

also pivotal in finding the extra time to introduce to the students key components 

of the framework and assist them in getting familiarized with the DRaCO workflow. 

For the remainder of this chapter, we explain precisely how we integrate the 

components of the framework into the aforementioned seams on an offering of 

CPE-101 at Cal Poly SLO. We must note for clarification, however, that the 

integration techniques we present only apply to the experimental group of the 

course offering. That is, when we mention integration of certain components of the 

framework into our course offering of CPE-101, only half of the students (those in 

the experimental group) from our offering are affected. More details on the 

structure of the A-B experiment and the different course materials each of the 

experimental and control groups were exposed to are discussed in section 6.2, 

Experiment Design. 

5.2 The DRaCO Workflow 

Prior to assigning any actionable tasks pertaining to the DRaCO workflow to our 

students in CPE-101, we present the detailed implementations of individual 

components of the DRaCO workflow via instructor demonstrations and in-class 

discussions. 
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5.2.1 Implementation of the Design Recipe Process 

Before students begin the design recipe process, we guide them to install the 

Sublime Text 3 text editor. Then, we assist students in configuring its autocomplete 

feature to provide an electronic template for the design recipe—similar to the one 

shown in Figure 4.2.2. This configuration of Sublime Text 3 text editor allows 

students to simply type ‘dr’ in any Python source file and press the tab key on the 

keyboard to insert the design recipe template at the cursor location.  

Once the template is inserted, subsequent presses of the tab key auto-

advances the cursor and highlights different fields of the design recipe (function 

name, input argument types, return value type, purpose, and on) to be populated. 

Figure 5.2.1 is provided below as a snapshot amidst this process, which shows 

CONTRACT line of the design recipe populated, with the cursor auto-advanced prior 

to the completion of the PURPOSE line. Dashed texts such as ‘purpose-

statement’ are placeholder strings that get automatically highlighted and 

eventually replaced as the actual content of the design recipe is typed into the 

template as part of the process. 

 

Figure 5.2.1: Population of a design recipe template using auto-advance 

Along with this setup to conveniently follow the design recipe process, a 

demonstration on how the design recipe assists in concretely specifying functions 
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are shown to the students via a few examples. Here, we reproduce those examples 

and explain a manner in which the students are expected to compose them. 

 

Figure 5.2.2: Example design recipes for functions with side-effects 

Figure 5.2.2 above depicts the first two examples presented to the students 

as application of the design recipe process to specify functions that handle the 

console output. There are a few notable structural features shown in this example 

that were designed specifically to suit the projects in CPE-101. We begin by 

explaining the purpose of these structural features prior to discussing the 

conceptual features of this formatting. 

The textual artifact of the design recipe process is encapsulated within 

Python’s triple-quote (""") docstring comment enclosure and formatted to be 

GitHub-style-Markdown-compatible. Encapsulation within the Python docstring 

allows easy and proximate inclusion of design recipe into the source code later, 

allowing DRaCO to serve as a useful reference while students code, and as well-

structured documentation once the implementation is completed. The GitHub-
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style-Markdown compatibility enables programmatic transformation of the design 

recipe as a portion of a HTML document, similar to how Java’s Javadoc comments 

can be compiled into pieces of API documentation in HTML. 

Now, we dissect each line of this design recipe template and discuss the 

conceptual role each part of the line serves. First, the CONTRACT line requires 

specifications of the function’s name, types of its input arguments, and the type of 

its return value, typed in the following format: 

<function name> : <in1> <in2> … <inN> -> <return type> 

The function name must be specified in a CONTRACT line, but the types of input 

arguments or the return type shall be stated as ‘None’ if there aren’t any. 

The dashed line below the CONTRACT line is part of the GitHub-style-

Markdown syntax that renders the whole block of text as a table. Immediately 

below it is the PURPOSE line that asks for a concise statement that expresses the 

purpose of the function being specified. In it, each input argument to the function 

shall be named in the same order as it appears in the CONTRACT line. These 

names of the arugments are to be enclosed in grave accent or ‘backtick’ characters  

(`) to distinguish them from the rest of the purpose statement. Since the purpose 

statement is to be written in a natural language, there is no restriction (such as not 

allowing spaces) on the naming of the arugments. This is shown on the second 

example depicted in Figure 5.2.2. 

The first two lines (ignoring the Markdown syntax) of this design recipe 

template provide space to describe what the function shall do, leading the students 

to prompt themselves with questions such as ‘What will this function need to 
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achieve the purpose stated?’ and ‘What would be an appropriate data type for this 

function to return once it has finished its work?’ 

Once these questions are answered, students then would encounter an 

opportunity to referesh their memory on how function inputs and outputs differ from 

the side-effects that implement system-level inputs and outputs. Formatting of the 

EFFECTS line requires separetely stating any system-level inputs and outputs. The 

example functions print_hello and print_product specified in Figure 5.2.2 

both have console outputs, so ‘str’ is written as the system-level output to be 

implemented with a side-effect later. The general formatting of the EFFECTS line 

is as follows: 

<sytem-level inputs>/<system-level outputs> 

Describing the system-level outputs in terms of the available datatypes is not 

critical on the EFFECTS line. However, use of terms coherent with the rest of the 

design recipe block is strongly encouraged. 

The last line is EXAMPLE(S), where students must write a few test cases for 

the function they have just specified in the first three lines of the design recipe. In 

order to reinforce the concept that functions with only side-effects (such as 

displaying result of a calculation to the console) and no return value (specified as 

‘-> None’) cannot be tested by inspecting the function’s return value, examples 

in Figure 5.2.2 were shown with test cases as None. However, if the function being 

specified has a predictable output based on the inputs given, students are 

instructed to write a few example test cases as shown in Figure 4.2.2. 
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We acknowledge that our detailed, line-by-line description of the design 

recipe process may convey an image that the whole process is perhaps 

excruciatingly daunting or tedious to the students who are instructed to follow it. 

However, that is simply not the case. A live demonstration of the whole process 

takes minutes at most, with many students able to complete this process for a 

single function within a minute or two once they have had a chance to practice it a 

few times. 

5.2.2 Implementation of the Code Outlining Process 

As we underscore in our initial proposal of the code outlining process, code 

outlining aims to capitalize students’ existing knowledge on the general concept of 

outlining. Therefore, unlike in implementing the design recipe process, we do not 

provide much specifics on how the outline shall be composed. 

The only implementation detail on the process of outlining presented to 

students is that they must be written as Python’s in-line comments, prepended by 

a hash (#) character instead of a rather-difficult-to-type bullet (•) character. For the 

function-level outlines, there is an additional directive to place the code outline 

immediately below the design recipe block.  

Aside from the sheer convenience factor, this is to yet again ensure the 

easy and proximate inclusion of code outline directly into the source code, such 

that the code outlines may serve the dual purpose of being references at 

implementation time and being documentations post-implementation. Later, as we 

introduce control structures in class, a multi-level outlining technique is 

demonstrated in parallel as a suggestion for how the students may organize their 
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implementation plan more effetely with readability in mind. Figure 4.2.6, which is 

based on an actual DRaCO artifact composed by one of the students, is an 

excellent illustration of all details discussed here. 

5.2.3 Integration of the Workflow 

During the lecture, we introduce the design recipe process as a one that is discrete 

and narrowly-purposed. This introduction is presented immediately following the 

introductions of elementary concepts such as variables, expressions, primitive 

data types, and functions. The code outlining, on the contrary, is subtly presented 

throughout the early lectures of the course without explicitly drawing students’ 

attention to it. Whenever the course material calls for writing a few lines of code as 

demonstrations, we start the whole process by writing a few lines of in-line 

comments as an outline for the code we are about to show.  

With these preparations complete, the DRaCO workflow is then presented 

as a singularly packaged process that combines the design recipe process and the 

outlining practice. This combined workflow is included in CPE-101’s project 

specifications in Appendix D. In those specs, we instruct the students to begin the 

design recipe process by creating a new Python source file with an extension 

*.oln.py, with ‘oln’ being the abbreviation for ‘outline’ to indicate that the 

students are still composing the outline of the program rather than the actual 

implementation. Once the file is created, students may use the auto-completion 

feature of the text editor to recall and insert the design recipe template in an instant. 

The rest of the process is mostly compliant with the implementation details 

presented in the two previous subsections 5.2.1 and 5.2.2. 
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As the last step prior to the submission of DRaCO artifacts, the project 

specs guides students to create another Python source file with an extension 

*.oln.py to write their high-level code outline. This outline contains the 

implementation for the driver (main function) of the program. Ideally, with all of the 

functions involved in the project well-understood, students shall have little trouble 

piecing together the applications of their functions and completing the high-level 

outline. 

A keen reader at this point may notice that this order violates the 

“recommended order in which each component shall be written by the students” 

suggested by the Figure 4.2.7 of subsection 4.2.3, The DRaCO Workflow. While it 

is true that instructing students to construct the design recipe prior to the high-level 

code outline conflicts with our original recommendation, specs for the first few 

projects of CPE-101 already include pre-designed functions for students to 

implement. This inclusion certainly takes away the students’ freedom to 

decompose the large problem in a way they see fit. Nevertheless, we do not take 

any corrective measures to resolve this conflict, mainly for the reasons explained 

below.  

First, we recognize that the pre-designed functions from CPE-101’s project 

specifications provide an excellent example of good decomposition of a large 

problem, while also letting the students practice the process of transcribing the 

designs of functions presented in the project specs into DRaCO artifacts. These 

are both arguably desirable occurrences in the first two weeks of reinforcing the 

DRaCO workflow. Second, as we have mentioned previously, our priority lies with 
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minimal and necessary disruption of the existing curricula. We determine that 

altering a set of well-established project specifications to require deprecating part 

of the existing course infrastructure and evaluations rubrics merely for the sake of 

pedantic compliance to a recommendation of the pedagogy to be neither minimal 

nor necessary. 

5.3 Peer Review Process 

With every introduction of a project in CPE-101 that requires completion of DRaCO 

workflow, we set the due date of the DRaCO deliverables at least a week ahead 

of the final program deliverable due dates. This motivates students to complete the 

DRaCO workflow prior to the completion—or, ideally, the start—of actual 

implementation of the projects and leaves ample time for the instructors to pre-

screen the artifacts and prepare for a review process while the project is still 

ongoing. Once DRaCO artifacts are collected on the due dates, instructors may 

pre-screen, format, and redistribute the artifacts. Printed artifacts are passed out 

to the students such that they are reviewed by a student of the same course other 

than the original author. 

We present our implementation of the review process in the subsections 

below. First, we illustrate how the pre-screening and formatting process is applied 

to student submissions. Then, we explain two different strategies (informal in 

subsection 5.3.2 and ‘in-depth’ in subsection 5.3.3) we applied in conducting the 

reviews during the class times of CPE-101. 
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5.3.1 Pre-screening and Formatting 

This first step of the review process is entirely dependent on the instructor. 

Although the specifications of the framework do not require DRaCO artifacts be 

pre-processed in any way by the instructor of the introductory course, we still claim 

that some level of inspection and correction can go a long way. 

As the work produced by novice students usually is, we expect a fair number 

of mistakes such as incorrect formatting or typos be part of the deliverables. While 

completely tolerable and mostly harmless, we still deem those mistakes as 

potential distractions during the review process. We recognize that the novice 

students may find pointing out a grammatical mistake or a formatting error to be 

much more attractive option than having to criticize some potentially unsound logic 

during the reviews. Therefore, in our implementation, we visually inspect the 

student submissions to manually correct any non-semantic error, as long as our 

corrections do not alter the logical process the student demonstrates. 

Once any outstanding non-semantic errors are corrected, we convert the 

Python source files (*.oln.py) to a HTML document and export the print layout 

as the PDF documents to make redistribution of the DRaCO artifacts more 

convenient for the instructors. 

Figures below show the DRaCO artifact before and after the conversion 

process. Both figures depict the design of a function that processes a file name to 

generate a string to be used as another filename. Figure 5.3.1 shows the way a 

student initially constructed the design recipe and the code outlines, and Figure 

5.3.2 shows the same artifacts once they has been fully converted. 
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At the end of the pre-screening and formatting step, we print out paper 

copies of the converted PDF documents in a random order so that they can be 

distributed to the students at the beginning of the review sessions. 

 

Figure 5.3.1: DRaCO artifact in a Python source code file 
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Figure 5.3.2: DRaCO artifact in a PDF document after the conversion 

5.3.2 Informal Peer Review Session 

Despite the potential benefit [30] [31] of a well-structured code review, we do not 

consider possibly overwhelming the students with procedural details of a rigorous 

code review to be appropriate for an introductory phase of CPE-101.  

Therefore, for the three out of five applicable projects in the course, we 

conduct the review sessions in an informal, student-led manner. Once we 

distribute the printed copies of the DRaCO artifacts and ensure that no student has 

their own artifact to review, we do not give much specific instruction other than that 

the students shall rearrange their seating such that the author and the reviewer 

can freely communicate. 
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By imposing very little procedural restrictions on the students, we allow 

them to move at their own pace, reading and comprehending the implementation 

for the same project their peer has constructed. Compared to a more formal review 

process with more explicit directions on which questions are to be asked and what 

features are to be discussed, this informal process may leave some students 

clueless as to how they shall critique the DRaCO artifact in front on them. 

Nevertheless, during the introductory phase of the course and the review process, 

we purposefully let students prioritize understanding someone else’s logical 

thought process, rather than directing them to focus on certain points for the 

critique. 

With this, we find many students asking for and listening to the explanations 

regarding certain algorithms from the author of the implementation plan. In some 

cases, small group of students form to discuss algorithmically challenging part of 

the project, with discussions involving how different strategies may be used to 

achieve the same goal. Despite the drawbacks of not providing detailed 

instructions, our observation of the student communications throughout the 

informal process to support our approach to still provide sufficient educational 

value. 

5.3.3 In-depth Peer Review Session 

For the latter two out of five applicable projects of CPE-101, we implement more 

rigorous review procedure with specific focus on what to review from the DRaCO 

artifact. We name this process as an ‘in-depth’ review. 
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Setup and the format of the code review (how students are each given 

someone else’s implementation plan to review in person) largely remains identical 

to the informal process. One large difference for the in-depth process is that we 

require students to fill out an in-depth review worksheet, which asks specific 

questions. 

We include questions on the worksheet that directs the reviewer’s attention 

on how their peer implements certain features, how some corner cases for the 

projects are handled, and how easy it is to make out certain logical features from 

the artifacts. We also place some questions to encourage comparative analysis, 

asking for the reviewer to point out some logical similarities and differences 

between the reviewer’s implementation plan and the implementation plan they are 

reviewing. Once the students complete the review and answer all questions on the 

sheet, we ask them to make a qualitative evaluation of the implementation plan 

reviewed as a whole. We do this by requesting an assignment of a letter grade (‘A’ 

through ‘F’) from the reviewer on the review sheet. 

Due to the limited class time and many components of the DRaCO artifacts 

students must review, we observe that the in-depth reviews proceed with a sense 

of urgency, where the students’ focus on the completion of the worksheet results 

in reduced volume of free discussions. Nevertheless, we also observe that the 

pinpointed critique questions posed by the worksheet reveals important parts of 

some implementation plan for some students. This allows some exchange of 

questions and answers among students regarding critical realizations about the 
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projects’ implementations that might have not occurred during the student-led 

informal review process. 

We provide examples of the in-depth review worksheet in Appendix E, In-

Depth Code Review Worksheets. 

5.4 Design Recipe and Code Outline Processor (DRCOP) 

Our automatic code template and unit test generation tool, named ‘Design Recipe 

and Code Outline Processor’—DRCOP for short (pronounced ‘Doctor Cop’)—

serves as a proof-of-concept automatic code template and unit test generator 

specifically for CPE-101. In this section, we briefly present the scope of the tool 

and how students may use the tool as a part of the DRaCO-based pedagogy. 

Implementation-level details of DRCOP is presented separately in Appendix A, 

Architecture Design of DRCOP. 

5.4.1 Scope of DRCOP 

DRCOP parses students’ function-level DRaCO artifacts (*.oln.py files) and 

generates the code template and unit tests in a correct Python 3 syntax. 

Given the information present in students’ artifacts, we can go as far as to 

provide control structure stubs and some snippets of function body using more 

elaborate techniques like keyword detection or natural language processing based 

on the function-level code outlines. However, since Python is already a high-level 

language with relatively terse syntax, we determine that the benefits of providing 

anything more than the function stubs would likely fail to outweigh any risk of 

potentially taking away some opportunities for students to practice writing Python 
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code. Thus, we purposefully limit the degree of ‘helpfulness’ in the generated 

starter code by providing only syntactically valid function stubs. Figure 5.4.1, which 

shows an unaltered output of DRCOP generated from the design recipe block in 

Figure 4.2.1, illustrates an example of this. 

 

Figure 5.4.1: Python function stub generated using DRCOP 

As for the unit test generation, we find Python’s unittest module to 

involve concepts and syntactic particularities that seem to have little contribution 

to students’ learning of fundamental programming concepts. Requiring the 

understanding of object-oriented concepts and Python’s implementation of it—for 

instance, having to understand what the keyword self means—is one example 

of such particularities. In that light, we take the opposite approach from the code 

template generation and implement DRCOP to generate all of the unit testing code 

based on the EXAMPLE(S) line of the design recipe block. 

As the consequence of this initial focus, we implement DRCOP to generate 

two Python files per a single, function-level *.oln.py file: (1) function stubs as 

the starter code and (2) a complete test suite compliant with Python3’s unittest 

module. With this, students can follow the standard workflow of TDD [40] without 
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having to implement any of the test cases themselves. They can start their iterative 

implementation and improvement cycle by first running the generated test file and 

seeing most of the test fail, then work towards the final ‘OK’ message from the unit 

test driver by focusing on resolving each of the failures. As they complete the body 

of each function, they can re-run the tests to check whether their implementation 

complies with the behavior their tests specifies. Assuming the students invested a 

fair amount of time and effort into writing the EXAMPLE(S), they can achieve “instant 

confidence” [40] in the code they have written with the test suite from DRCOP. 

5.4.2 Usage Pattern of DRCOP 

The course infrastructure of CPE-101 at Cal Poly relies heavily on the UNIX 

system the school provides, which allows convenient assignment deliverable 

collection and grading for the instructors while letting students learn the basics of 

the command-line UNIX environment. For instance, students are instructed to set 

up and use their UNIX accounts for developing and testing their lab assignments 

and projects, with the requirement to use the command-line utility handin to 

submit the final deliverables of every programming assignment. 

We deploy DRCOP with this existing infrastructure in mind. Once students 

have finished drafting their DRaCO artifacts, they can upload their artifacts to the 

school’s UNIX server and run DRCOP on their function-level DRaCO with the 

following command in shell which is available as a BASH script publicly listed on 

the instructor’s UNIX account ‘doryu’: 

~$ ~doryu/services/DRCOP <filename>.oln.py 
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At first, students are almost guaranteed to run into different severities of 

PARSE ERRORs (examples of these are shown in Figure A.2 and Figure A.3, in 

Appendix A), which may require some revision on their end before proceeding. 

After a few cycles of running DRCOP, encountering errors, revising their DRaCO, 

and re-running DRCOP, we expect students to have a code template to begin their 

implementations of the course project, along with a fully functional unit test suite 

they can run from the very beginning. Output from DRCOP that a student may see 

at the point where DRCOP is writing out the generated file contents is shown in 

Figure 5.4.2 below. 

 

Figure 5.4.2: Code template and unit test generation prompts of DRCOP 

The full instructions that describe this usage pattern to the students of CPE-

101 is provided in Appendix B, Instructions for DRCOP Usage. 
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Chapter 6 

VALIDATION OF THE DRACO-BASED PEDAGOGY 

As we mention in section 5.1, Implementation Environment, we deploy our own 

implementation of the DRaCO-based pedagogy in an attempt to empirically 

validate its effectiveness and identify any practical challenges in integrating the 

new methods. We design an A-B experiment with a control group we teach with 

conventional methods of CPE-101 and an experimental group with the deployment 

of DRaCO implementation illustrated in Chapter 5. Our primary focus here is to 

objectively measure and analyze any improvements to the students’ ability to 

program attributable to the DRaCO-based pedagogy, with a secondary goal of 

observing students’ emotional resistance to the integration of the pedagogy—

namely, friction (as defined in Nomenclature). 

6.1 Thesis Statement 

Since we are interested in discovering whether the DRaCO-based pedagogy 

positively impacts students’ ability to program, we utilize the single-tailed, two-

sample t-test to determine the statistical significance of applying the DRaCO-

based pedagogy.  

In order to apply the statistical test to our empirical evaluation, we must 

clearly define the Null and Alternate hypotheses for the A-B experiment. The 

hypotheses are presented in the following subsections. 
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6.1.1 Null Hypothesis 

Use of a teaching method consisting of Design Recipes, Code Outlining, and Peer 

Review practices backed by Automatic Code Template and Unit Test Generation 

(namely, the DRaCO-based pedagogy) does not generate any difference or 

worsens beginning students' performance on exam questions that test their ability 

to program. 

6.1.2 Alternate Hypothesis 

Use of a teaching method consisting of Design Recipes, Code Outlining, and Peer 

Review practices backed by Automatic Code Template and Unit Test Generation 

(namely, the DRaCO-based pedagogy) does generate improvement in 

beginning students' performance on exam questions that test their ability to 

program. 

6.2 Experiment Design 

Here, we present the high-level design of the experiment to provide some context 

of our experiment and disclose any relevant details that may impact evaluation of 

the results. 

6.2.1 Subjects and Sample Selection 

Subjects for the experiment are 34 students enrolled in a single offering of CPE-

101 course during the Winter academic quarter of 2018 at Cal Poly SLO. Any 

student who wishes not to participate in the research as a subject is allowed to opt 



 

 76 

out without any negative consequences to the course activities or their grades. All 

students of the course agreed to participate in our experiment. We consider the 

subjects of our experiment to be a representative sample of all first-year computing 

major students at Cal Poly SLO.  

We conducted a customary Prior Programming Experience survey at the 

beginning of the academic quarter to find the following characteristics about the 

sample group: out of 34 subjects, only one subject reported having absolutely no 

programming experience, and another subject reporting to have never taken CPE-

123. The majority of the subjects reported having less than a year of programming 

experience including CPE-123 (54.6%). Another partially overlapping majority out 

of 34 reported having no prior experience with Python (55.9%). Figures supporting 

these results are presented below. 

 

Figure 6.2.1: Subjects’ experience in programming prior to CPE 101 
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Figure 6.2.2: Durations of the subjects’ prior programming experience 

 

 

Figure 6.2.3: Subject’s experience with Python prior to CPE-101 

We leverage the separation of the 34 subjects into experimental and control 

groups on the lecture-lab split of CPE-101 course structure. Most offerings of CPE-

101 at Cal Poly SLO maintain one-to-one mapping. That is, all students who attend 

a particular CPE-101’s single lecture offering are assigned to a single offering of 
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the lab offering of the courses. However, we split the 34 students attending a single 

CPE-101 lecture by the primary investigator into two equally-sized groups of 17 

students, each with their own lab offering to attend. The fifty-minute lecture of CPE-

101 is scheduled on Mondays, Wednesdays, and Fridays at 12:10pm, with two 

separate fifty-minute labs scheduled back-to-back, one starting at 1:10pm 

(experimental group) and another starting at 2:10pm (control group). The splitting 

of the single group of lecture attendees into two groups of lab attendees are 

handled mostly by on the university’s course enrollment system based on each 

students’ other course schedules, preferences, and availabilities. 

6.2.2 Execution 

Throughout the ten-week duration of the quarter, two groups of students (control 

and experimental, each enrolled in different lab offerings) receive the same 

lectures, labs assignments, and projects, but are presented with different tools and 

procedures for the projects during the lab hours. 

The control group is presented with the specifications that stress traditional 

methods of test-driven development with restricted peer evaluation or collaboration, 

whereas the experimental group receives instructions with heavy emphasis on 

practicing the DRaCO workflow, utilizing the textual artifacts of DRaCO to generate 

code template and unit tests using DRCOP, and participating in the peer review 

process. 
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6.3 Data Collection 

The evaluation of student performance was done during the two midterm exams 

and a lab final exam at the end of the quarter. Two midterm exams—each 

scheduled during week four and six respectively out of a ten-week quarter—

presented all students with the same problems, including a subset of problems 

designed to test their ability to program. The lab final exam was a computer-based 

exam where students were expected to complete a small programming task using 

the skills they have acquired throughout the quarter. 

Reproduction of the subset of problems from the midterm exams and the 

lab final exam problem is available in Appendix F, Midterm and Lab Final Exam 

Problems . We summarize these problems and their design in Table 6.1 to show 

that our data collection methods comprehensively evaluate the DRaCO 

pedagogy’s impact on students’ learning. 

In the table below, each problem is identified by the exam which it appears 

in and the problem number we assign to it. All problems are marked with number(s), 

one through five, corresponding to each component of the ability to program (‘ATP’) 

they are designed to test. The numbering scheme and the definitions for the 

components of the ATP are given in presented initially in section 3.4, 

Nomenclature. The rightmost column of the table explains the rationale behind 

each problem, i.e., why we believe it is important to gather our validation data 

based on it. 
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Table 6.1: Summary of exam problems that test students’ ability to program 

Exam Problem # ATP # Explanation for the Problem Design 

Midterm I 

6 5 

Tests students’ ability to read and 

comprehend an implementation plan 

given in a code outline format, as well as 

their ability to correctly produce an 

executable program from the outline. 

7 5 

Tests students’ ability to distinguish the 

system-level input/outputs implemented 

as side-effect from the input/outputs of a 

function when implementing a function 

based on the provided code outline. 

8 4 

Tests students’ ability to generate 

effective test cases to cover all branches 

of a conditional logic. Also tests students’ 

capabilities to extract and understand an 

abstract logic expressed in a formal 

programming language syntax. 

9 5 

Tests students’ ability to effectively 

comprehend and trace the execution 

pattern of an existing program. Also tests 

students’ capabilities to navigate a 

complex iterative logic expressed in a 

formal programming language syntax. 

Midterm II 8 1,3,4 

Tests students’ capabilities of 

understanding a complex problem 

statement and decomposing it into 

discrete subproblems in terms of function 

specifications in design recipe. Grading of 

this problem is done by a one-on-one 

interview, during which the authoring 

student is evaluated on their clear 

communication of their implementation 

plan. 
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9 2,3,5 

Tests student’s ability to gauge the 

overall complexity of the functions they 

have specified as part of a decomposition 

process and their ability to lay out an 

implementation plan for them in terms of 

the code outline. Grading of this problem 

is also done by the one-on-one interview, 

during which the authoring student is 

evaluated on their clear communication of 

their implementation plan. 

Lab Final ALL 1,2,5 

Comprehensive evaluation of a student’s 

ability to program in real-life situation, 

where a student must decompose a 

complex problem into unit-testable 

functions, implement them, and utilize 

them effectively in a main driver program 

to satisfy the requirements for the given 

problem. 

 

By collecting the scores earned on the exam problems by the two groups 

and analyzing the differences, we are able to validate if DRaCO-based pedagogy 

is effective in making a statistically significant difference in the experimental groups’ 

ability to program. For the exam problems that have a set answer, we apply a 

rubric-based grading in evaluating students’ responses to generate the scores, 

applying a class-wide rubric to ensure the grading is consistent throughout. For 

some exam problems that are more open-ended such as the ones asking for a 

decomposition of a relatively complex problem, we conduct a one-on-one student 

interview to ensure that the students’ intentions are delivered clearly to the 

instructor while also testing student’s ability to communicate their implementation 

plan to a third party (which is a component of the ability to program). Throughout 
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the grading process, we mix student submissions in random order and temporarily 

anonymize them such that no subconscious bias affects our evaluation. 

In addition to the evaluation and analysis of exam results, in-person exit 

interviews and inspection of the student assignment submissions are performed to 

determine the students’ emotional responses to the integration of the framework 

into the teaching of the course. This collection and analysis of student reactions is 

designed to reveal the magnitude of any friction introduced by integrating the 

framework into the course. 

Although most of the data collected regarding friction is done informally via 

student interaction observations and making certain assumptions based on how 

students generate and deliver DRaCO artifacts, we do prepare a more formal 

interview process for the student exit interview, where we compose the following 

questions ahead of time and verbally deliver them to be answered by the students 

in a Likert scale, such that 1 indicates ‘strongly disagree’ and 5 indicates ‘strongly 

agree,’ unless otherwise specified. These questions are separated into the 

following sections for the better flow of the in-person interview: 

1. Past Programming Practices 

2. Newfound Programming Practices 

3. Current Thoughts on DRaCO 

4. Future Plans with DRaCO 

5. General Feedback 

6. Final Open Comment 
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These questions are presented in Table 6.2 below. Most questions are posed as 

statements students can respond with the Likert scale from ‘strongly disagree’ to 

‘strongly agree,’ but questions that do not conform to this format are indicated with 

the curly brackets ({ }) following the question text that describes the different 

response type. 

Table 6.2: Questions prepared for the student exit interview 

Section # Question {Specifications of Different Response Type} 

1 

1 
How much programming experience did you have prior to 

taking this course? {1: ‘Little to None’, 5: ‘Expert-Level’} 

2 
Prior to taking this course, I have heard of or was taught code 

outlining or any other similar practice(s) for programming. 

3 

Prior to taking this course, I was taught to use non-executable 

texts (such as in-line comments or paper-and-pencil notes) to 

plan out programming implementations. 

4 

Prior to taking this course, I have had experiences of using a 

tool that generates code templates and/or unit tests from non-

executable implementation plans. 

5 

Prior to taking this course, I personally liked to write outlines 

for the program I am about to write before actually writing any 

executable code. 

2 

1 
How much programming skill do you think you have now that 

you've taken this course? {1: ‘Little to None’, 5: ‘Expert-Level’} 

2 
In this course, I have heard of or was taught code outlining or 

any other similar practice(s) for programming. 

3 

In this course, I was taught to use non-executable texts (such 

as in-line comments or paper-and-pencil notes) to plan out 

programming implementations. 

4 

In this course, I have had experiences of using a tool that 

generates code templates and/or unit tests from non-

executable implementation plans. 
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5 

After my experience during this course, I now personally like to 

write outlines for the program I am about to write before 

actually writing any executable code. 

3 

1 
I think constructing design recipe(s) is an important process in 

constructing a working program. 

2 
I think writing code outline(s) is an important process in 

constructing a working program. 

3 
I think peer DRaCO review process (would) have helped me 

better plan my implementation for a program. 

4 
I think automatic function stub generation from DRaCO (would) 

have made my writing and completion of the programs easier. 

5 
I think automatic unit test generation from DRaCO (would) 

have produced helpful unit tests I used throughout the course. 

4 

1 

I plan to (continue to) use the DRaCO in my future courses if 

the automatic function stub and unit test generation becomes 

available for me to use.  

2 

I plan to (continue to) use the DRaCO in my future courses, 

even if the automatic function stub and unit test generation is 

no longer available.  

3 

I would recommend the DRaCO backed by automatic function 

stub and unit test generation to any beginning computer 

science student. 

4 

I would recommend the DRaCO to any beginning computer 

science student, even without the support of any automatic 

function stub and unit test generation. 

5 

1 
If applicable: I personally enjoyed writing design recipes for 

this course. {Empty response permitted} 

2 
If applicable: I personally enjoyed writing code outlines for this 

course. {Empty response permitted} 

3 
If applicable: I personally enjoyed using the function stub and 

unit test generation tool (DRCOP). {Empty response permitted} 

6 1 How did you think the course went? {Free discussion} 
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2 
Lastly, do you have any questions, concerns, comments, or 

thoughts for the instructor? {Free discussion} 

 

6.4 Experiment Schedule 

Table 6.3 below enumerates each key component of the experiment we schedule 

throughout the course. In the schedule, we provide week and day numbers along 

with the concrete dates from 2018. The weeks are numbers 1 through 10, for each 

week of the ten-week academic quarter, and the days are numbered 1 for a 

Monday, 2 for a Wednesday, and 3 for a Friday class meeting.  

Table 6.3: Experiment schedule in Cal Poly SLO’s CPE 101 

Date Week Day Component of the Experiment 

January 8 1 1 First Day, Informed Consent 

January 17 2 2 Project 1 Assigned (no peer review) 

January 26 3 3 Project 1 Due, Project 2 Assigned 

January 31 4 2 Project 2 DRaCO Due, Informal Peer Review 

February 2 4 3 Midterm I Exam 

February 5 5 1 Project 2 Final 

February 7 5 2 Project 3 Assigned 

February 9 5 3 Project 3 DRaCO Due, Informal Peer Review 

February 16 6 3 Project 3 Due 

February 20 7 1 Project 4 Assigned 

February 21 7 2 Midterm II Exam 

February 23 7 3 Project 4 DRaCO Due, In-depth Peer Review 

February 26 8 1 Project 4 Due 

March 9  9 3 Project 6.1 Assigned 

March 12 10 1 Project 6.1 DRaCO Due, In-depth Peer Review 

March 16 10 3 Lab Final Exam 

March 15 – March 22 (Finals) Student Interviews for Midterm II and Friction 
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Chapter 7 

RESULTS AND DISCUSSION 

In this chapter, we provide the results of empirically evaluating DRaCO-based 

pedagogy with the A-B experiment we describe in the previous chapter (Validation 

of the DRaCO-based Pedagogy).  

There are two main parts of the results of our experiment. The first is the 

statistical significance test based on the exam scores that reflect students’ ability 

to program—namely, Composite ATP Score. The second is the evaluation of 

Friction based on the primary investigator’s observation of student interactions 

during the academic quarter and students’ responses from the exit interviews at 

the conclusion of the experiment. 

7.1 Composite ATP Score 

We compute composite ATP score per student, where a single score is calculated 

as a weighted mean of the scores earned on the specific problems that test their 

ability to program from Table 6.1: Summary of exam problems that test students’ 

ability to program. The weight used for each problem is based on the specific 

problem score’s contribution to the total course grade. Once the weighted mean is 

computed, we scale it as a percentage out of the maximum attainable score. Table 

7.1 below shows an example of how a single student’s composite ATP score is 

computed. 

Table 7.1: Example computation of a single Composite ATP Score 

Exam Problem # Score Earned Max Score Appx Score Weight 
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Midterm I 

6 6 10 2.31 % 

7 5 5 1.15 % 

8 5 5 1.15 % 

9 6 6 1.39 % 

Midterm I Subtotal 22 26 6.00 % 

Midterm II 
8 10 12 2.77 % 

9 4 6 1.38 % 

Midterm II Subtotal 14 18 4.15 % 

Lab Final 

Output Diff 0 15 0.45 % 

Main 15 25 0.75 % 

Functions 24 40 1.20 % 

I/O 20 20 0.60 % 

Lab Final Subtotal 59 100 3.00 % 

Composite ATP Score Relative to Course Grade 13.15 % 

Final Composite ATP Score for the Student 76.61 / 100.00 

 

Table 7.2 below shows composite ATP scores for all students who were 

subjects of our experiment. Students from the experimental groups are marked 

with subject IDs ‘A01’ through ‘A17’, and the ones from the control groups are 

marked with subject IDs ‘B01’ through ‘B17.’ Values shown in this table are used 

in deriving the statistical significance (subsection 7.1.1) of our experiment. 

Table 7.2: Composite ATP scores for all subjects of the experiment 

Subject ID Composite ATP Score  Subject ID Composite ATP Score 

A01 77.82  B01 43.75 

A02 58.79  B02 78.05 

A03 76.61  B03 71.96 

A04 66.11  B04 81.88 

A05 79.69  B05 47.26 

A06 71.07  B06 74.18 

A07 59.16  B07 69.12 

A08 77.51  B08 69.28 
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A09 83.53  B09 29.82 

A10 81.63  B10 67.11 

A11 67.16  B11 70.51 

A12 92.43  B12 80.56 

A13 60.00  B13 45.42 

A14 66.84  B14 41.56 

A15 72.61  B15 50.70 

A16 65.40  B16 63.65 

A17 43.23  B17 84.46 

 

We present the group means and the overall sample standard deviation of 

the composite ATP scores in Table 7.3 below. Values shown in this table are used 

in deriving the effect size (subsection 7.1.2) of our experiment. 

Table 7.3: Composite ATP score statistics for the effect size computation 

Means of  

Composite ATP Scores 

Experimental (A) 70.56 

Control (B) 62.90 

Sample Standard Deviation of  

All Composite ATP Scores 
14.60 

 

Lastly, Figure 7.1.1 shows the kernel distribution plots of the two groups’ 

composite ATP scores. 
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Figure 7.1.1 Kernel distribution plot of composite ATP scores 

7.1.1 Statistical Significance 

As explained in 6.1, Thesis Statement, we perform a single-tailed, two-sample t-

test to determine the statistical significance in applying the DRaCO-based 

pedagogy to improve introductory computer science students’ ability to program. 

First, we begin by defining the parameters of the t-test. As for the variable 

to analyze, we select composite ATP score as the single variable for statistical 

significance test. For the significance level, we use the value pre-determined prior 

to the commencement of the experiment. This significance level, or Alpha (α) value, 

is set to 0.05. By using a pre-set significance level, we suppress any potential of 
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post-experiment alteration of the parameters of statistical analysis in order to fit the 

results to the hypothesis. 

Our t-test returns the p-value of 0.0644 (rounded to the nearest ten-

thousandth) which is larger than our pre-set Alpha value of 0.05. Therefore, we are 

not able to conclude that DRaCO-based pedagogy yields any statistically 

significant difference in students' ability to program. 

7.1.2 Effect Size 

The failure to show the statistical significance of implementing DRaCO-based 

pedagogy is not particularly surprising, given the total sample size of 34. What is 

surprising, however, is that the p-value we derived is close of enough to suggest 

at least some effect that DRaCO-based pedagogy has. In order to further 

investigate the effect of our new pedagogy, we compute the effect size. Adapting 

Coe’s definition that “effect size is just the standardised [sic] mean difference 

between the two groups” [43] directly, we use the following formula to compute the 

effect size: 

𝐄𝐟𝐟𝐞𝐜𝐭 𝐒𝐢𝐳𝐞 =
(Mean of Experimal ATP Scores) − (Mean of Control ATP Scores)

(Sample Standard Deviation of All Composite ATP Scores)
 

Using the values of means and the standard deviation presented in Table 7.3, we 

get the effect size of 0.5248 (again, rounded to the nearest ten-thousandth), which 

qualifies as “medium” effect size, and is “large enough to be visible to the naked 

eye” [43].  

This result is certainly much more optimistic for the future of DRaCO-based 

pedagogy. Although we acknowledge that there are reputable criticisms of using 
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the term such as ‘medium’ out of contexts [44] [45], we retain our conclusion of 

‘medium’ effect size based on Coe’s statement that “In education, if it could be 

shown that making a small and inexpensive change would raise academic 

achievement by an effect size of even as little as 0.1, then this could be a very 

significant improvement, particularly if the improvement applied uniformly to all 

students, and even more so if the effect were cumulative over time” [43]. 

7.2 Friction 

Rather than applying rigorous statistical utilities to the data we have collected, we 

rely mostly on the qualitative observations and the experiences we have 

throughout the experiment to discuss Friction, supplemented by the students’ 

responses from the standardized exit interview. The questions we utilize in the exit 

interview are shown in Table 6.2: Questions prepared for the student exit interview. 

The entirety of the exit interview results in tabular and distribution plot formats is 

available in Appendix G, Student Exit Interview Results. 

Above all, it becomes obvious quite early on that the integration of DRaCO 

workflow into CPE-101’s project specifications as a required deliverable appears 

as burdensome to the students, as it inevitably introduced additional intermediate 

deadlines and more submission requirements. We, as instructors, make an 

argument that front-loading the workload on the DRaCO workflow has a great 

potential to ultimately reduce any unexpected semantic errors later on, along with 

the added benefit of DRCOP’s automatic unit test generation from DRaCO. 

However, our observation shows that the long-term benefit of the DRaCO workflow 

is often eclipsed by the nuisance of having to deal with extra deadlines and 
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deliverables in the students’ eyes. Experiencing student pushbacks such as 

requests to be exempt from the DRaCO requirements or pleading how DRaCO 

workflow is becoming an impedance for certain projects is quite a regular 

occurrence at the introductory phase. However, these pushbacks soon subside as 

we communicated to the students that the DRaCO requirements cannot be waived 

for any reason and students simply accepted as part of the course requirements. 

Despite this pushback, we observe that a small group of students soon learn 

to take advantage of the DRaCO workflow heavily to their benefit, acknowledging 

that spending sufficient time on the DRaCO artifacts prior to the starting code 

implementation is indeed helpful in the long term. We find that almost all DRaCO 

deliverables we inspect from this group of students do support their claim regarding 

how much time and effort they spend on DRaCO. 

We also observe that our implementation of automatic code template and 

unit test generation, namely DRCOP, seems to introduce a bit of extra difficulty for 

the students. Although we design DRCOP to be as user-friendly as possible, the 

limitations of command-line interface and the students’ lack of familiarity with the 

UNIX environment help paint DRCOP as any other regular UNIX-style utility that 

is difficult to work with in many cases. While our exit interview results indicate that 

DRCOP still serves its purpose as a good motivator for students to use the DRaCO 

workflow on their own (delta between questions 1 and 2 from section 4, increase 

of 0.9444 in experimental group compared to the increase of 0.5000 in the control 

group on average), and that students certainly found the generated unit tests to be 

helpful (questions 5 from section 3, average response 4.2778), we encounter 
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confusions from students regarding their interaction with DRCOP quite often 

throughout the experiment. 

Another notable observation includes the peer review process, where the 

exit interview responses (question 3 from section 3) reveal that students from the 

experimental group have rather lukewarm responses (average of 3.1111) 

regarding the peer review process’s helpfulness, compared to the relatively high 

expectations the control group show for the same process (average of 4.0625). 

Lastly, we use Google Cloud Platform (GCP)’s natural language sentiment 

analysis demonstration tool to analyze the overall sentiment captured during the 

final open comment section of the exit interview (section 6) [46]. The sentiment 

analysis result provided by GCP is composed of a sentiment score ranging 

between –1 and 1, accompanied by the magnitude of the sentiment as a positive 

real number. Detailed definitions of the output values are provided by GCP as 

follows [47]: 

• score of the sentiment ranges between -1.0 (negative) and 1.0 (positive) 

and corresponds to the overall emotional leaning of the text. 

• magnitude indicates the overall strength of emotion (both positive and 

negative) within the given text, between 0.0 and +inf. Unlike score, 

magnitude is not normalized; each expression of emotion within the text 

(both positive and negative) contributes to the text's magnitude (so longer 

text blocks may have greater magnitudes). 
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Figure 7.2.1 Google Cloud Platform’s classification of sentiment scores 

Figure 7.2.1 above shows the classification of the sentiment scores as 

negative (red), neutral (yellow), and positive (green). This analysis reveals that the 

experimental group’s comments have an overall neutral sentiment about the 

course (sentiment score 0.2) at a relatively higher magnitude (33.9, 0.0209 per 

word), while the control group’s comments contain an overall positive sentiment 

(score 0.3, 0.0392 per word) at a lower magnitude (28.3). If we assume that the 

difference between the two sets of values are larger than the margin of error, we 

may interpret this result as a supporting measure for the pushback and the 

difficulties we observed while deploying DRaCO workflow and DRCOP. 

7.3 Overall Evaluation of the Thesis Statement 

Considering the statistical and anecdotal analysis presented in previous sections, 

we determine that the use of a teaching method consisting of Design Recipes, 

Code Outlining, and Peer Review practices backed by Automatic Code Template 

and Unit Test Generation (namely, the DRaCO-based pedagogy) shows 

promising potential in generating meaningful improvement in beginning students' 

ability to program. 

With this evaluation of the thesis statement, we also stress the 

implementation strategy we have utilized in conducting our experiment incurs at 

least some nontrivial Friction, such that the students working under our particular 
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implementation are likely to have negative emotional response to the DRaCO-

based pedagogy. This indicates that at least a moderate amount of modification to 

our implementations of the pedagogy is required for a successful integration of the 

new pedagogy into existing curricula. 
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Chapter 8 

THREATS TO VALIDITY 

The primary threat to our work’s validity lies in our methods of validating the new 

pedagogy we propose. First, our design of the exam problems and assignment of 

the score distribution are not particularly compliant with any existing standardized 

academic testing framework. Due to this, any lack of experience or knowledge we 

have from the field of education in general may have resulted in the exam problems 

that may not have been as effective in testing students’ ability to program as we 

intended them to be. Second, although we have taken all cautionary measures 

necessary to prevent biased evaluation of the exam problems, we acknowledge 

that we were still susceptible to subconscious bias that may skew the outcome. 

This is almost unavoidable as we were both the author and the tester for the 

DRaCO-based pedagogy and its implementations. 

Another threat to validity is our sample selection. The students who 

participated in our experiment were divided initially by Cal Poly SLO’s course 

enrollment into the two separate lab offerings which we utilized as experimental 

and control groups. In addition, before commencing the experiment, we moved 

some students from the experimental-group-to-be lab offerings to the control-

group-to-be lab offering to resolve the group size imbalance. We recognize this 

process does not follow proper random sample selection and division procedure. 

Lastly, we note that students’ own bias for or against the DRaCO-based 

pedagogy might have affected our validation, as our experiment was not a ‘blind’ 

A-B experiment. That is, all students in the experiment were enrolled in the 
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common lecture offering, and we did not restrict communications between the two 

groups of students. Most students were aware of how the other group of students 

were taught during the lab hours. Replication of our validation in a blind A-B 

experiment may yield significantly different results from the ones we achieved from 

our validation methods. 
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Chapter 9 

CONCLUSION AND FUTURE WORK 

9.1 Concluding Remarks 

In this thesis, we motivate and propose a new teaching method for the early 

computer science education at higher education institutions. We use our own 

experience with observing students’ struggles with the syntax of programming 

languages and the “Blank Page Syndrome” [24] to suggest a DRaCO-based 

pedagogy that capitalizes on fundamental programming skills the students 

possess as intuitions and their familiarity with outlining practices. 

We develop our own implementation of this pedagogy to integrate it into Cal 

Poly SLO’s introductory computer science course that. We set up an A-B 

experiment to validate the pedagogy and its implementation while observing the 

emotional response from the students regarding the new workflow and course 

requirements that we introduce on top of the existing curricula. We collect students’ 

exam scores to verify that the new pedagogy shows strong potential in generating 

meaningful improvement in beginning students' ability to program despite some 

indications of negative emotional response from the students. 

9.2 Future Work 

The work we present here is highly experimental and is in need of further validation 

via replication studies that deploy improved implementations of the DRaCO 

workflow and the automatic code template and unit test generation. 
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If the pedagogy itself is shown to be sound with replication studies, the next 

step of development must be focused heavily on a streamlined implementation of 

the automatic code template and unit test generation. In particular, we anticipate 

a graphical tool that provides the same functionality of DRCOP in a much more 

streamlined and easy-to-use way to be one of the more attainable ways in 

significantly reducing Friction we observe in our experiment. 
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APPENDICES 

A. Architecture Design of DRCOP 

The architecture of DRCOP contains two main subsystems and a single abstract 

data type definition that serves as the medium of information flow between the two 

subsystems. An abridged UML diagram illustrating this architecture is presented 

below in Figure A.1. 

 

Figure A.1 Abridged UML of the high-level architecture of DRCOP 

Main Components of DRCOP 

The abstract data type, class Function, represents a function in a program, with 

the specifications of a function such as name, input types, return type, purpose, 

argument names, side-effects, examples, and the code outline for the function 

body as the attributes. 
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First of the subsystems is the Parser class, which is a state machine 

responsible for reading the design recipe blocks and building a collection of 

functions. It also validates that the specifications for a function expressed in the 

design recipe is complete with all of its components required to be used in a 

function stub generation. The parser reads and processes one line of the 

*.oln.py at a time and uses the header of the design recipe lines, e.g. CONTRACT, 

PURPOSE, etc., and other textual artifacts to determine which state it needs to be 

in to properly tokenize and populate the collection of functions with the line of text 

it is processing. This is a theoretically reliable method of determining the state. 

Despite the fact that input text is arbitrary, the electronic design recipe template 

we provide to the students ensures that virtually no student would hand-write the 

header of the design recipe lines. The states the parser maintains are composed 

of ‘primary’ ans ‘sub’ states implemented as inner classes within parser. The 

primary state is designed to distinguish the design recipe block from the function-

level outlines, and the sub state is kept track to separately track each line of the 

design recipe block. 

The second subsystem is the Writer class, which is designed at a high-level 

as a language-independent interface requiring the concrete implementation of 

template and unit test composition strategies to provide any language-specific 

details. Since CPE-101 only uses Python, we construct the concrete PythonWriter 

class that implements writer to generate the Python syntax. Our implementation of 

the Python writer is quite simple. Once the parser completes processing the 

*.oln.py file and the driver of DRCOP instantiates the writer with the collection 
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of function and the file I/O details, our writer simply assembles the substrings of 

Python unit test syntax corresponding to the design recipe’s components and 

writes them sequentially to the two output files. 

These subsystems and the abstract data type are put together as a single 

pipeline inside of a command-line utility, written in Python and wrapped around a 

BASH shell script for the proper delivery of the error logs to the instructor of the 

course. This dual-layer driver is also responsible for input validation, file I/O, error 

handling, logging, and helping students avoid small operational mistakes such as 

file overwrites that may result in data loss. 

Error Handling During Parsing 

We designed DRCOP as a tool that students can use freely as they are working 

on the course projects. This implies that the parser is exposed directly to the 

arbitrary input fed in by the novice students, with even the best-case scenario 

including some inevitable typos or mistakes in the design recipe that students write. 

Thus, we include three different levels of error handling in the design of DRCOP 

to flexibly handle various error scenarios while attempting to minimize student 

frustration in dealing with the tool. 

First and the least sever level of error case is ‘Ignorable PARSE ERROR.’ 

We recognize that our target audience is students who are not proficient at reading 

and comprehending uncaught exception messages and stacktrace. Therefore, we 

minimize the need to for the human user to handle any errors that occur during the 

execution of DRCOP if the error can be somehow reconciled by the tool. When 

some benign error is found in the text being parsed, DRCOP reports any such error, 
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while still ‘doing its best’ in a JavaScript-like attitude to produce the output files that 

are written in valid Python syntax. Certainly, this presents some possibility of 

embedding unpredictable behaviors or hard-to-catch bugs in the code generated. 

Nevertheless, this is a tradeoff we purposefully permit to prevent students from 

ever getting completely ‘blocked’ from proceeding to run the generated unit tests 

if they wish. 

 

Figure A.2: Parse errors from DRCOP being presented as ‘Ignorable’ 

Figure A.2 above, which is a screen capture from the standard error stream, 

illustrates this. The messages shown here are a result of unexpected characters 

in the EXAMPLE line. DRCOP expects to fine a floating-point number, but some 

mistake from the student results in pollutive characters to cause typecast failures 

when generating unit tests. The tool reports these as Ignorable PARSE ERRORs 

and continues to run, eventually generating the output files. 

Although Ignorable PARSE ERRORs of DRCOP are quite similar to 

“warning” messages of many conventional programming languages’ compilers or 
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interpreters, we decide to stick with the term ‘ignorable’ instead to explicitly 

communicate that DRCOP’s execution is not interrupted. This again comes from 

understanding that most novice students do not know the difference between 

“warnings” and “errors.” This terminology is designed to present a clear choice 

between the following options to the students: (1) addressing the issues that 

DRCOP runs into while parsing, or (2) simply accepting the fallback measures that 

it provides. 

The next level of severity in DRCOP’s error hierarchy is ‘CRITICAL PARSE 

ERROR’s. Expected to be encountered much less frequently than the ‘ignorable’ 

errors, ‘critical’ errors correspond to cases where certain unexpected content from 

the DRaCO text severely disrupts the operation of the parser. A student’s attempt 

to run DRCOP on a high-level (instead of function-level) code outline or some other 

non-DRaCO text can result in this disruption. In such cases, DRCOP reports this 

error and halts, directing students to double check their outline. Figure A.3 below 

shows an example of this, caused by a student’s attempt to run DRCOP on a high-

level code outline that does not have any design recipe blocks. 

 

Figure A.3: Halting parse errors from DRCOP being reported as ‘CRITICAL’ 

In both levels of PARSE ERROR handling, we carefully design all student-

facing error messages to be novice-friendly. Despite the restrictions the command-
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line interface places on visual communications, we still determine that short error 

messages with ASCII-art style graphics can communicate the causes of the errors 

better than paragraphs-worth text instructions. Thus, whenever applicable, we 

completely hide any conventional stacktrace-style errors and show a single-

sentence description of the error with a long-tailed arrow pointing to the portion of 

their source text that caused the error instead. The long tail of the arrow also serves 

as a box-shaped visual separator of multiple error messages in order to reduce 

any potential confusion caused by a handful of error messages filling the whole 

output screen. 

The last and most severe level of the error is caused by a propagation of an 

uncaught exception to the driver (main function) of DRCOP during a runtime. 

Because the errors caused by the unexpected text from the students’ input is 

handled mostly by the PARSE ERRORs, this case is most likely caused by some 

defective internal logic of DRCOP. Therefore, we have implemented a detailed 

error logging functionality such that the error conditions and the stacktrace from 

the error is delivered to a UNIX directory designated by the instructor for 

troubleshooting. If this error case is triggered, DRCOP generates an ‘error code’ 

and displays it to the student, along with a message instructing the student to 

contact the instructor with that code. 

Operational Detail 

We present the operational details of our tool as a sequence diagram shown below 

in Figure A.4. It shows the high-level structure of DRCOP’s architecture design, 

and how each component of it interacts over the lifetime of a single execution of 
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the tool. To provide better context, we present four more components in the 

diagram in addition to the three key components shown in Figure A.1. 

On the left-hand side of the sequence diagram, we show lifelines of each 

layer of DRCOP’s dual-layer: DRCOP Wrapper (written in BASH) and DRCOP 

Main (written in Python). On the right-hand side of the diagram, we show two 

system-level components that interact heavily with DRCOP but is not part of the 

tool: Console I/O (stdout and stderr), and File I/O. 
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Figure A.4: Detailed sequence diagram of DRCOP’s execution 
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B. Instructions for DRCOP Usage 

This document provides a quick guide on how to use DRCOP to generate a 

function template file and a unit test file for your program development. 

1. If you haven't done so already, use Cyberduck, FileZilla, or scp to transfer 

your code outlines for the functions file (for example, my_funcs.oln.py) 

to the Cal Poly's UNIX machine. 

2. Using Terminal or Git Bash, SSH to one of the CSC UNIX machines (e.g. 

ssh username@unix3.csc.calpoly.edu). 

3. Navigate to the directory you had transferred your files to (most likely 

~/cpe101/labX/ or ~/cpe101/projectX/). 

4. Check the directory listing with ls command to make sure your function file 

(for example, my_funcs.oln.py) is in the current directory. 

5. Type in the following command to convert your code outline file to a code 

template and generate the unit tests. Be sure to replace 

‘my_code_outline’ with the actual file name of your outline: 

//home/doryu/services/DRCOP my_funcs.oln.py 

6. You may see “PARSE ERROR” that show up as you run DRCOP. Although 

many of them are marked as “ignorable,” you might want to go back and 

check your outline to make sure if you haven't made any mistakes, as any 

PARSE ERROR generally leads to some unexpected or incorrect 

generation of the function template and the unit tests. Repeat Step 5 and 6 

as necessary. 
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7. Try the ls command again, and you'll notice that the unit test file (e.g. 

my_funcs_test.py), as well as the template file (e.g. my_program.py) 

has been generated. 

8. Try running the generated unit test file. Most of the test should fail, because 

your code hasn't been written yet. 

9. At this point, you're ready to write actual code. Open up or transfer the 

template generated (e.g. my_funcs.py) and begin writing code as outlined. 

As you complete your functions, try-re-running the unit test and check if 

more tests are passing. You'll know you've successfully implemented your 

functions when you see all tests pass! (Assuming that your examples were 

written correctly ...). 
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C. Selection of Student-Composed Linear Code Outlines 

The code outline shown in Figure 4.2.4: An example code outline for a simple 

program and the outlines reproduced here are for the same ‘skater’ project. 

 

Sample Linear Code Outline 1 

#first ask how much the user weighs 

#convert answer to float 

#convert weight of skater to KG with poundstoKG  

#then ask how far away the professor is 

 

#convert distance to float 

#then ask what type of object they want to throw 

#use getMassObject function to find the mass of the object 

#use getVelocityObject to find the velocity of the object 

#Using the mass of the skater, mass of object, and velocity 

of object calculate velocity of skater with getVelocitySkater  

#velocity should be reported 

#using if statements report appropriate remark based on 

velocity of object 
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Sample Linear Code Outline 2 

#first, we will need to ask our user how much they weigh in 

pounds.  

#we will do this through using input to allow them to return 

an answer 

#second, we will ask them how far away the professor is (in 

meters).  

#third, we will ask them what item they will choose to throw. 

#depending on the weight of the object (in kilograms) that 

the user chooses to throw, the print statement we choose to 

show will vary. 

# we will print the correct statements by using if, elif, 

else regarding the mass of the object 

#after this, we will determine the velocity of the skater by 

importing the function we created in funcs.oln.py - then we 

will print the velocity and a corresponding statement. 

#after this, we will again use if, elif, and else to determine 

which statement to print that corresponds with the given 

skater velocity, per the instructions. 

 

Sample Linear Code Outline 3 

# ask user for their weight in pounds 
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# ask user for distance (in meters) between skater and 

professor 

# ask user which object they would like to throw 

# calculate the velocity of the object 

# calculate the velocity of the skater and print the result 

 

Sample Linear Code Outline 4 

# Import functions from the func.py file 

# Ask the user for their weight (lbs) and cast the input as 

a float 

# convert weight (lbs) into mass (kg) 

# Ask for user distance to professor 

# calculate velocity of the object 

# Ask user to input the object they are throwing 

# calculate mass of object 

# calculate velocity of skater 

# print based on the variables in previous steps. 
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D. Project Specifications from CPE-101 

Below, we reproduce the DRaCO workflow instructions from the specifications of 

Projects 1 and 4 published to our experimental group. More project specifications 

with different instructions for each project used in CPE-101 is available on the 

online extension of this appendix at: http://mikeryu.com/DRaCO. 

 

 “Code Outline and Peer Review Process” from Project 1 

As we discussed in class, we will utilize the code outlining process before we start 

writing the code. For this project, you are required to submit two code outlines; one for 

your functions (funcs.oln.py), and the other for your main program 

(skater.oln.py). 

Follow the steps below to complete this phase of the project: 

1. Do a close read of this specifications, top-to-bottom. As you’re reading the 

specifications, think about what steps are necessary to generate the required 

output. 

 

 

2. If you haven’t done so already, set up your Sublime Text to support a design 

recipe snippet. Visit http://mikeryu.com/dr to learn how to set this up. 

 

 

3. Start on your first outline, funcs.oln.py. This file will serve as the outline for 

your functions file, namely funcs.py. For this particular project, design recipe 

will contain most of the important information, with the outline for function body 

fairly minimal. 

 

An example of how your funcs.oln.py should start is shown below (some 

information is obfuscated with ‘...’, but your design recipe and outline should be 

complete): 

""" 

Project 1 

 

Name: Boaty MacBoatface 

Instructor: Mike Ryu 

http://mikeryu.com/DRaCO
http://mikeryu.com/dr


 

 121 

Section: 13 

""" 

 

""" 

CONTRACT | poundsToKG : ... 

-------: | :-----------------------------------------------

--- 

PURPOSE  | Converts weight in `pounds` ... 

EFFECTS  | ...  

EXAMPLE  | 0.0 -> 0.0 # 0 pound is 0 kg 

         | 1.0 -> ... 

         | ... 

""" 

# calculate the result with given formula 

 

 

4. Once you’ve completed funcs.oln.py, start your outline for your main program 

in skater.oln.py. This file will consist of the file header (see the subsequent 

section), as well as a few in-line comments that list the steps necessary to 

complete the main program.  

 

An example outline is shown below (note that this example is intentionally written 

tersely as to not spoil any fun for you -- your outline should be much more 

detailed): 

 

 

""" 

Project 1 

 

Name: Boaty MacBoatface 

Instructor: Mike Ryu 

Section: 13 

""" 

 

# first need to ask user about something 

 

# then another thing 

 

# now that we have some data, do some calculations 

 

# report the result! 
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5. As soon as you’re done with funcs.oln.py and skater.oln.py, you may 

handin the two outlines using the following command: 

 

handin grader-ph 101project01 funcs.oln.py skater.oln.py 

Code Outline is due on Saturday, 1/20 by 11:59 pm via handin 

6. Once you have handed in your code outlines, you may convert your 

funcs.oln.py to the template and corresponding unit test files using the 

process outlined in http://mikeryu.com/oln. At this point, you should begin writing 

actual code. 

7. We will do an in-lab exercise on Monday, 1/22 to peer review each other’s code 

outline, to make sure that everyone’s thought process expressed in the outline is 

well organized and logically sound. 

 

 

“Design Recipe and Code Outlines (DRaCO)” from Project 4 

Due THIS Friday, 2/23 by 10:00 am via handin 

The process of carefully designing your functions and expressing the implementation 

plan in terms of code outlines has never been more important!  

Therefore, the deliverable for this portion will compose  

whopping 40% of your Project 4 grade. 

Please read the following requirements carefully and handin your deliverables on time: 

1. Read the subsequent pages of this specifications to understand the problem. 

 

2. Think carefully about which functions you should write. Consider the following: 

o Are your functions easy to understand? What would be their PURPOSE? 

o Are your functions easy to test? Are you able to think of a few EXAMPLEs? 

 

3. Once you’ve decided on which functions to write … 

o Write the DRaCO for your functions in funcs.oln.py file. 

▪ Each function’s DR must have at least FIVE (5) distinct 

EXAMPLEs. 

▪ Each function’s DR must be followed by a detailed CO. (No code, 

tho!) 

o Generate the unit tests and the template file using DRCOP. 

http://mikeryu.com/oln
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▪ Your DRaCO must not cause any ERRORs when being 

processed. 

 

4. Once you’ve completed step 3 … 

o Design your word_finder.py by writing word_finder.oln.py. 

▪ Only write the detailed CO for the main program (no Python code). 

▪ Think about how your functions will be used, in what order. 

▪ Clearly indicate how you’ll be using conditionals, loops, etc. 

o word_finder.oln.py does not need to be processed by DRCOP. 

 

5. Handin your work, both DRaCO and the generated Python unit test and template 

files. 

o First, navigate to the UNIX folder where you’ve uploaded your work. 

o Then, use this command:  

handin grader-ph 101project04_ryu *.py 

 

6. On Friday, 2/23, we will perform an in-depth code review of your DRaCO. 

If you do not have the submission ready by 10:00 am, you’ll receive 0% credit. 
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E. In-Depth Code Review Worksheets 

In-Depth DRaCO Review Sheet for Project 4 
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In-Depth DRaCO Review Sheet for Project 6.1 
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PDF versions of these documents are available on the online extension of this 

appendix at http://mikeryu.com/DRaCO. 

http://mikeryu.com/DRaCO
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F. Midterm and Lab Final Exam Problems from CPE-101 

The following exam documents from CPE-101 are available on the online 

extension of this appendix at http://mikeryu.com/DRaCO as PDF files: 

• Midterm I, Part 2 (Problems 6 through 9) 

• Midterm II, Part 2 (Problems 8 and 9) 

• Lab Final Exam Specifications 

• Supplemental Source Code for Lab Final Exam 

G. Student Exit Interview Results 

The entirety of student exit interview results is available on the online extension of 

this appendix at http://mikeryu.com/DRaCO in the following formats: 

• Spreadsheet with Anonymized Responses 

• Distribution Plots for Each Exit Interview Question 

H. Source Code of DRCOP 

Source code of DRCOP is freely available for under the GNU Lesser General 

Public License, version 3 (LGPL-3.0). You can download the ZIP archive of the 

source code from the online extension of this appendix at 

http://mikeryu.com/DRaCO. Public source code repository of DRCOP is also 

available on GitHub: https://github.com/mikeryu/ms-thesis. 

http://mikeryu.com/DRaCO
http://mikeryu.com/DRaCO
http://mikeryu.com/DRaCO
https://github.com/mikeryu/ms-thesis
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