

IMPROVING INTRODUCTORY COMPUTER SCIENCE EDUCATION

WITH DRACO

A Thesis

Presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements of the Degree

Master of Science in Computer Science

by

Mike Dongyub Ryu

June 2018

 ii

© 2018

Mike Dongyub Ryu

ALL RIGHTS RESERVED

 iii

COMMITTEE MEMBERSHIP

TITLE: Improving Introductory Computer Science

 Education with DRaCO

AUTHOR: Mike Dongyub Ryu

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: John B. Clements, Ph.D.

 Professor of Computer Science

COMMITTEE MEMBER: David S. Janzen, Ph.D.

 Professor of Computer Science

COMMITTEE MEMBER: Franz J. Kurfess, Ph.D.

 Professor of Computer Science

 iv

ABSTRACT

Improving Introductory Computer Science Education with DRaCO

Mike Dongyub Ryu

Today, many introductory computer science courses rely heavily on a specific

programming language to convey fundamental programming concepts. For

beginning students, the cognitive capacity required to operate with the syntactic

forms of this language may overwhelm their ability to formulate a solution to a

program.

We recognize that the introductory computer science courses can be more

effective if they convey fundamental concepts without requiring the students to

focus on the syntax of a programming language. To achieve this, we propose a

new teaching method based on the Design Recipe and Code Outlining (DRaCO)

processes. Our new pedagogy capitalizes on the algorithmic intuitions of novice

students and provides a tool for students to externalize their intuitions using

techniques they are already familiar with, rather than with the syntax of a specific

programming language. We validate the effectiveness of our new pedagogy by

integrating it into an existing CS1 course at California Polytechnic State University,

San Luis Obispo. We find that the our newly proposed pedagogy shows strong

potential to improve students’ ability to program.

 v

ACKNOWLEDGMENTS

I give my utmost thanks to:

• My wife and best friend, Jessica Ryu, for all of her love, patience, support,

and sacrifices. I dedicate my work here to you, my love!

• My parents, my sister Joy, and my family-in-law for their never-ending love

and support.

• My advisor, Dr. John Clements, for his infinite patience and always telling

me exactly what I needed to hear so I may succeed.

• Dr. David Janzen and Dr. Franz Kurfess, for being wonderful teachers and

providing much help in and outside of classrooms.

• Professor Kurt Voelker, for his unmatched support and mentorship.

• Professor Paul Hatalsky and Christopher Siu for providing their amazing

course material and infrastructure supporting all my work in CPE-101.

• All students of my Winter 2018 CPE-101 section who happily partook in my

experiment and made this thesis possible.

• Tobias Bleisch, who is one of the most exemplary graduate students Cal

Poly CSSE has ever seen, for all his support and help through my research.

• Tram Lai, Vivian Fong, and Jules Sulpico for being amazing friends who

tolerated me.

• Evan Ovadia, for being a fantastic mentor for all of my years at Cal Poly.

• Last, but not least – Kyle Mulligan, for an amazing friendship, laughter, and

all the burritos we shared together.

 vi

TABLE OF CONTENTS

Page

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTER

1. INTRODUCTION ... 1

1.1 Motivation .. 1

1.1.1 An Anecdote on Why .. 1

1.1.1.1 How We All Started ... 1

1.1.1.2 The Fundamental Definition of Programming 2

1.1.1.3 The Party Guest List Problem ... 3

1.1.1.4 Our Motivation ... 5

1.1.2 Traditional Computer Science Education and Its Shortcomings 6

1.2 Outline of the Following Chapters .. 7

2. RELATED WORK .. 10

2.1 Pseudo-language-based Pedagogy ... 10

2.2 Initial Learning Environments ... 11

2.3 Multilingual Pedagogy .. 13

2.4 Planning-Based Pedagogy ... 14

2.5 Common Shortcomings of the Existing Alternative Methods 14

2.5.1 Lack of Capitalization on Students’ Existing Programming Skills 15

2.5.2 The Cost of Increase in Cognitive Load ... 16

2.5.3 Persistence of the Blank Pages.. 17

 vii

2.6 Contributions of This Thesis ... 18

3. BACKGROUND ... 20

3.1 Design Recipe... 20

3.2 Short-term Memory ... 21

3.3 Outlining .. 22

3.4 Nomenclature.. 24

4. PROPOSAL OF A NEW TEACHING METHOD ... 27

4.1 The Primary Goal of the New Teaching Method 27

4.2 Components of the New Teaching Method ... 28

4.2.1 Design Recipe ... 28

4.2.2 Code Outlining .. 32

4.2.3 The DRaCO Workflow .. 41

4.2.4 Peer Review Process.. 42

4.2.5 Automatic Code Template Generation ... 45

4.2.6 Automatic Unit Test Generation ... 47

4.3 Summary of the Proposal ... 49

4.3.1.1 New DRaCO-Based Pedagogy for Introductory Computer

Science Education ... 49

4.4 Name of the New Teaching Method .. 51

5. IMPLEMENTATION OF THE DRACO-BASED PEDAGOGY 52

5.1 Implementation Environment.. 52

5.1.1 Introductory Computer Science Courses at Cal Poly SLO 52

5.1.2 General Structure of the CS1 Course at Cal Poly SLO 54

 viii

5.1.3 Seams for the DRaCO-based Pedagogy ... 55

5.2 The DRaCO Workflow .. 56

5.2.1 Implementation of the Design Recipe Process 57

5.2.2 Implementation of the Code Outlining Process.................................. 61

5.2.3 Integration of the Workflow ... 62

5.3 Peer Review Process ... 64

5.3.1 Pre-screening and Formatting .. 65

5.3.2 Informal Peer Review Session ... 67

5.3.3 In-depth Peer Review Session ... 68

5.4 Design Recipe and Code Outline Processor (DRCOP) 70

5.4.1 Scope of DRCOP .. 70

5.4.2 Usage Pattern of DRCOP ... 72

6. VALIDATION OF THE DRACO-BASED PEDAGOGY 74

6.1 Thesis Statement .. 74

6.1.1 Null Hypothesis ... 75

6.1.2 Alternate Hypothesis ... 75

6.2 Experiment Design ... 75

6.2.1 Subjects and Sample Selection .. 75

6.2.2 Execution ... 78

6.3 Data Collection ... 79

6.4 Experiment Schedule ... 85

7. RESULTS AND DISCUSSION .. 86

7.1 Composite ATP Score .. 86

 ix

7.1.1 Statistical Significance .. 89

7.1.2 Effect Size ... 90

7.2 Friction .. 91

7.3 Overall Evaluation of the Thesis Statement... 94

8. THREATS TO VALIDITY ... 96

9. CONCLUSION AND FUTURE WORK .. 98

9.1 Concluding Remarks .. 98

9.2 Future Work .. 98

BIBLIOGRAPHY .. 100

APPENDICES

A. Architecture Design of DRCOP .. 107

B. Instructions for DRCOP Usage .. 115

C. Selection of Student-Composed Linear Code Outlines 117

D. Project Specifications from CPE-101 ... 120

E. In-Depth Code Review Worksheets ... 124

F. Midterm and Lab Final Exam Problems from CPE-101 128

G. Student Exit Interview Results ... 128

H. Source Code of DRCOP... 128

 x

LIST OF TABLES

Table Page

6.1: Summary of exam problems that test students’ ability to program 80

6.2: Questions prepared for the student exit interview ... 83

6.3: Experiment schedule in Cal Poly SLO’s CPE 101 .. 85

7.1: Example computation of a single Composite ATP Score 86

7.2: Composite ATP scores for all subjects of the experiment 87

7.3: Composite ATP score statistics for the effect size computation 88

 xi

LIST OF FIGURES

Figure Page

3.1.1: Function definition written in Racket using the design recipe 20

4.2.1: Example of a design recipe as a textual artifact... 28

4.2.2: An example of the electronic template for the design recipe 30

4.2.3: An example of a paper-based template for the design recipe 30

4.2.4: An example code outline for a simple program .. 34

4.2.5: An example code outline for a moderately complex program 37

4.2.6: An example function-level code outline with a design recipe 40

4.2.7: Design Recipe and Code Outline (DRaCO) workflow 41

5.2.1: Population of a design recipe template using auto-advance 57

5.2.2: Example design recipes for functions with side-effects 58

5.3.1: DRaCO artifact in a Python source code file .. 66

5.3.2: DRaCO artifact in a PDF document after the conversion 67

5.4.1: Python function stub generated using DRCOP .. 71

5.4.2: Code template and unit test generation prompts of DRCOP..................... 73

6.2.1: Subjects’ experience in programming prior to CPE 101 76

6.2.2: Durations of the subjects’ prior programming experience 77

6.2.3: Subject’s experience with Python prior to CPE-101 77

7.1.1 Kernel distribution plot of composite ATP scores 89

7.2.1 Google Cloud Platform’s classification of sentiment scores 94

A.1 Abridged UML of the high-level architecture of DRCOP 107

A.2: Parse errors from DRCOP being presented as ‘Ignorable’ 110

 xii

A.3: Halting parse errors from DRCOP being reported as ‘CRITICAL’ 111

A.4: Detailed sequence diagram of DRCOP’s execution 114

 1

Chapter 1

INTRODUCTION

In this chapter, we introduce our work with an illustration of the personal motivation

that drives us to develop and present our work.

1.1 Motivation

Since its emergence as a unique discipline in early 1960s [1], computer science

as a field of study never ceased to accelerate its growth. Today, the industry it has

spawned is growing faster than all other industries [2]. It is undeniable that the

contributions of computer science to the “widespread proliferation of emerging

information and communication technologies” accelerated the coming of the

Information Age in the early twenty-first century [3]. However, there has been

limited advancement in the methods to teach such a discipline, even as other

artifacts of computer science research have changed the world many times over

within the past half-century.

1.1.1 An Anecdote on Why

To understand our motivation, it’s important to examine how programmers today

found their beginning, why that paradigm hasn’t changed, and what programming

really means in its most fundamental form.

1.1.1.1 How We All Started

Many established professionals in the field of computer science today probably

remember their first few attempts at programming.

 2

Regardless of whether it all started with a few lines of a C program that

displayed out Hello, World! on the computer screen, or a few blocks snapped

together in Scratch [4], many will agree that a prominent source of confusion

originated from syntactic details of the first programming language they learned.

The difference between brackets ([]) and parentheses (()) (in the case of the C

program), or how Events blocks cannot be used within Control blocks (in the case

of Scratch [5]), or the like, might seem obvious now. However, it’s likely that many

of today’s professionals would admit to having had trouble understanding these

syntax forms at first.

While the computer science as a field has grown dramatically in complexity

over the years, we still observe this pattern of students struggling with the syntax

of a programming language in many introductory classrooms. Why is it that the

early computing education has not yet escaped the pattern of, as Stephen Bloch

has put it, “drowning the students with syntax” [6]?

1.1.1.2 The Fundamental Definition of Programming

Within the context of early computer science education, the abilities that most

instructors aim to pass on to their pupils consist not of any particular syntax of a

programming language, but rather the analytic skills that are required to solve

challenging problems using an algorithmic process called programming. What,

then, is programming? Is it not, in its most fundamental form, a process of planning

out stages of execution for the solution to a given problem? If that were true, why

do so many programmers recall struggling with the syntax of a language in

 3

introductory programming courses more prominently than they remember the

challenges they faced in planning their solutions to algorithmic problems?

With this, we aim to highlight that the beginning computer science students

have strong and useful intuitions on algorithmic thinking, but their intuitions are

often crippled by traditional teaching methods that inundate students’ cognitive

capacities with syntax of an unfamiliar language. We illustrate this issue with an

example provided in the following subsection.

1.1.1.3 The Party Guest List Problem

Imagine putting together a guest list for a big party. Perhaps the party we are

throwing is very exclusive and we only want certain guests to attend, or we are

simply generous hosts who would like to send thank-you notes later. In any case,

we would want to make sure that each guest to our party only has one entry in the

guest list, assuming no one we invite has the same name. This problem of

checking for a duplicate entry in a list of names is simple enough to be asked of

any student at a secondary level of education (middle or high school).

Nevertheless, we have observed that when such a problem is asked in a

programming course, the perceived difficulty of the problem seems to skyrocket.

For instance, consider the following example of a guest list shown below:

[Jess, Mike, Joy, Kyle, John, Toby, LaMarion, John, Joy]

If we ask middle school students how they may go about making sure we only have

each guest’s name appear only once in our guest list (again, assuming that all

guests have unique names), they will not find it troublesome to draw up some sort

of a plan on how to check for the name(s) that appear more than once. Perhaps

 4

some of them will explain how they would look at each of the guest’s name that

appears in the list and look for every other guests’ name to see if there is a match

for a duplicate, which is a logically sound solution.

However, if we ask the same exact question to introductory programming

students who have recently learned about list and strings, we will easily find many

of students who struggle to come up with an answer. Perhaps the programming

language in use is too low-level to effectively represent the problem, or the

students’ lack of proficiency with the language in use hinders their algorithmic

thought process. This phenomenon is surprisingly easy to observe when assisting

novice computer science students, even when the question does not require them

to construct a working program to do so.

We are not mandating that all tasks in a programming course be

approached initially with middle-school-level intuitions. In fact, it is reasonable to

assume that many intuitive thoughts from a middle school student may be logically

insufficient or unsound for many programming tasks students at higher level

institutions face. Instead, we are attempting to simply illustrate the lack of reliance

on planning out stages of execution in the beginning students. If the middle school

students had some intuitions on this simple problem, students at college-level must

also have some intuitions, likely to be more mature and logically sound, shaped by

the concepts they learned in the course so far. Nevertheless, we frequently

observe only a small subset of the beginning students thinks through the whole

problem and plan what they are about to code before they begin typing away.

 5

Certainly, it is not unnatural for students in a computer programming course

to want to jump into practicing the skills they are learning, which is utilizing a syntax

of a programming language to construct a working program. Nonetheless, what

many students fail to recognize is that prematurely attempting to construct a

snippet of code on a computer often hinders the process of planning out stages of

execution of a logically sound solution to the given problem.

In terms of didactics in early computer science education, the importance

of analytic skills and algorithmic thinking often dwarfs any significance in the act of

learning and memorizing the syntax of some programming language. Nevertheless,

we continue to observe alarming insufficiency in the efforts to harness the students’

existing intuition to grow into maturely developed analytic skills and algorithmic

thinking. The algorithmic problems presented to the students in introductory

courses—such as the one illustrated above—are perfect opportunities for the

students to apply their intuition on the ‘process of planning out stages of execution

for the solution to a given problem’ (the fundamental definition of programming

stated earlier). However, many educators fail to make this connection abundantly

clear to their pupils as majority of the novice students still continue to perceive any

problem given in a programming course as something that must be solved by

typing code in some syntax of a programming language they are not yet familiar

with.

1.1.1.4 Our Motivation

We want a framework in which the members of an introductory computer science

classroom can effectively utilize their existing intuitions on programming to derive

 6

and refine the core computer programming concepts. With such a framework,

teaching and learning computer programming shall be feasible with minimal

floundering caused by the syntax of any programming language.

1.1.2 Traditional Computer Science Education and Its Shortcomings

Here, we introduce Sally Fincher’s 1999 publication that inspired our motivation.

In it, Fincher briefly describes the origin of traditional computer science education

as the acquisition of “the languages and techniques of programming for a specific

purpose.” She explains that most of those who initially learned how to program

were “scientists, engineers, and mathematicians” [7]. For the most part, they did

not care much for the complexities involved in programming as a discipline. They

simply wanted to use computer programs as tools to solve their domain-specific

problems, and it was sufficient for them to quickly pick up the syntax of a

programming language and move on.

Contrastingly, Fincher identifies the modern computer science educators

“no longer teach programming in order to get the computer to do something, but

as a transferable skill in its own right” [7]. That is, when we teach programming in

today’s classrooms, we do emphasize the complexities in the discipline of

programming more than the scientific, engineering, or mathematic problems we

solve with it. She claims that the traditional teaching methods that follow how those

scientists learned it—“via syntax, through the vehicle of a single language”—is

limiting, because the “students get bogged down in the specifics of the chosen

form” [7].

 7

As Fincher demonstrates in her work, the limitations of traditional pedagogy

in computer science were well recognized nearly three decades ago. However,

despite some efforts to address the shortcomings and improve the effectiveness

of the traditional methods in the past, mainstream introductory computer science

courses at higher education institutions have not yet escaped the curricula that

inevitably lead students to flounder, in varying degrees, in the syntax of a language

students are not familiar with.

1.2 Outline of the Following Chapters

Here, we outline the subsequent chapters and provide brief previews of their

content:

• In Chapter 2 (Related Work), we survey some of the existing alternatives

that were proposed as improvements or replacements to the traditional

methods and highlight how our contributions presented in this thesis differs.

• In Chapter 3 (Background), we present the strategies and concepts that

already exist in computer science and non-computer science education we

leverage in developing the new teaching method, as well as key definitions

of the terms to be used in the following chapters.

• In Chapter 4 (Proposal of a New Teaching Method), we refine the goal and

the premises of our new teaching method, then formally propose it to

explain in detail our educational philosophy behind each component it

contains within. This chapter is the main contribution of this thesis.

 8

• In Chapter 5, (Implementation of the DRaCO-based Pedagogy), we provide

details on how we implement the new teaching method to suit the existing

introductory computer science course structure and curricula at California

Polytechnic State University, San Luis Obispo. The implementation we

illustrate in this chapter is used in validating the new teaching method we

propose.

• In Chapter 6 (Validation of the DRaCO-based Pedagogy), we describe our

execution of an A-B experiment to validate the new teaching methods and

our implementation of it. We report whether our new teaching method

demonstrates the positive educational impact we expect it to provide to the

beginning computer science students, and whether it generates any

negative emotional responses from the students.

• In Chapter 7 (Results and Discussion), we refine our thesis statements in

order to apply rigorous statistical tests on the data gathered during our A-B

experiment. Then, we conduct the analysis on the data to draw a conclusion

regarding how effective our new teaching method is, and what negative

consequences it may incur when being integrated it into an existing early

computer science course.

• In Chapter 8 (Threats to Validity), we acknowledge certain weaknesses in

our proposal of the new teaching method and disclose the details on

potential criticisms or opportunities of reevaluation of our experiment and

the data analysis.

 9

• In Chapter 9 (Conclusion and Future Work), we conclude our research with

a brief summary of the preceding chapters and provide directions for any

further replications or refinements of our work.

 10

Chapter 2

RELATED WORK

In this chapter, we survey some of previous efforts that have been extended to

improve the early computer science to provide a context for the contribution of this

thesis.

2.1 Pseudo-language-based Pedagogy

Despite the seemingly unshakable status quo of the past three decades of

computer science education which demands “the vehicle of a single language” [7],

many educators have chosen to explore the option of developing an alternative

pedagogy that attempt to reduce the reliance on a single programming language.

We revisit Fincher’s 1999 publication and her presentation of a few notable

implementations of the pseudo-language-based paradigm. Fincher presents these

pedagogies as “syntax-free” [7] in her work. However, we recognize that they are

not truly syntax-free, as they still utilize the syntax of pseudo-languages as a

stepping stone for the syntax of formal programming languages.

First, she presents Richard Bornat and his methods detailed in his book

Programming from First Principles. Based on the rationale “… it is the delusion that

to learn a code is to learn to program which is truly harmful” [8], Bornat’s method

is implemented with examples presented in ISWIM (short for “If you See What I

Mean;” an abstract programming language popularized through Landin’s seminal

paper The Next 700 Programming Languages [9]) and exercises doable in paper

and pencil, later to be used as notes when programming with a formal

 11

programming language. The second method presented by Fincher is Russel

Shackelford’s use of pseudocode named RUSCAL as the “teaching vehicle” [7] to

instill “algorithmic thinking” [10] in the mindsets of all students at Georgia Institute

of Technology. Fincher classifies both of these implementations of “syntax-free”

approaches as successful separation of programming from coding [7].

2.2 Initial Learning Environments

With the propagation of computer science education from the higher education

institutions down to secondary and primary levels, popularity of Initial Learning

Environments (ILEs) increased among introductory computer science educators

throughout the past decade. Many of the ILEs answer the difficulties that arise from

the syntax of a programming language with high interactivity and, in some cases,

tools and environments that can help reduce syntactic mistakes.

In their 2009 paper, Fincher et al., enumerates the following three as the

“leading” ILEs: Alice, Greenfoot, and Scratch [11]. Although these three ILEs are

developed independently of each other using different technologies and target

audiences, they all exhibit interactive graphical programs to engage students with

high level of interactivity.

The idea of using interactive graphical elements in introductory

programming courses has certainly existed for long. Karel—an educational

programming language introduced in 1981 [12] designed for programming a robot

to move around and perform simple in a two-dimensional GUI—exemplifies this.

This paradigm of pairing a conventional practice of typing in the syntax of formal

 12

programming language(s) with some graphical element is still employed in recently

developed ILEs, such as in Code Combat [13].

However, a survey of more recent developments of ILEs reveals a different

trend that started off with Scratch. Developed by MIT for “computer clubhouses”

for younger students [11] [14], the programming pattern that Scratch offers stands

out from the other ILEs. Instead of relying on a beginning programmer to type or

drag-and-drop code into an editor in an error-prone way, it presents snippets of its

proprietary syntax wrapped around in puzzle-piece-like blocks, such that the

programmer can only put certain snippets together if the snippets belong together.

This highly restrictive syntax greatly reduces chances for a novice programmer to

make syntactic mistakes. Today, many ILEs utilize this puzzle-piece approach

along with the interactive component to appeal to a younger audience. Some

examples include Google’s Blockly [15], Made with Code [16], and Disney’s

Wayfinding with Moana [17].

ILEs have proven their success in ‘initial learning.’ However, many of them

lack proper segues to more generally-purposed programming environments that

reach the ‘next level.’ For instance, MIT’s Scratch relies heavily on the graphical

user interface and interactive software projects, while providing rather little

opportunities for its user to organically move up to formal programming languages

or environments that are not exclusively for initial learners. Here, we must

acknowledge that there does exist rare exceptions like Google’s Blockly [15] that

allow real-time translation from drag-and-drop ILEs to formal programming

 13

languages, but such commitment to connect the ILEs to the next level

programming environments is rather difficult to encounter.

Perhaps this is a fair drawback to expect, since the ILEs’ focus is limited at

initial learning and not much more. Nevertheless, this drawback may easily be a

deal breaker for the higher education instructors, as many of them bear the

responsibility of having to prepare their freshman pupils for the rest of their

academic and professional programming career. Thus, there is simply no luxury to

be able to reside only in the initial learning environments in higher education

classrooms.

2.3 Multilingual Pedagogy

The Computer Science Division of University of California, Berkeley takes the

opposite approach of the ones taken by syntax-free pedagogy or the ILEs. Instead

of attempting to eliminate, minimize, or otherwise simplify the syntax of specific

programming languages, they push a multilingual pedagogy that utilizes three

different languages: Python, Scheme, and Structured Query Language (SQL).

They argue that their “goal is not to choose what language [students] use in

[their] future studies and career,” and that once the students have learned the

essence of programming by observing the concepts employed by all three

languages, they “will find that picking up a new programming language is but a few

days’ work” [18].

 14

2.4 Planning-Based Pedagogy

We present a short-term and a long-term planning-based pedagogy here. First of

the two is a single-lecture based methods by Castro and Fisler of Brown University.

Motivated by the “tasks of developing and integrating programming plans” being

“a recurring problem among programming students [19] [20] [21],” Castro and

Fisler explore the impact of introducing program planning in a single lecture to the

first-year computer science students. They discover that while introducing the

concept of program planning in a single lecture may result in improvements in

students’ planning behavior, students “need some computing experience before

they can embrace planning” [22].

The latter is How to Design Programs (HtDP) [23] by Program by Design

[24] project. HtDP is a course curriculum in Racket (a dialect of Scheme) designed

around planning using a six-step design recipe process. By introducing the concept

of planning with the design recipe early on and reinforcing it throughout the whole

curriculum, this pedagogy guides beginning students to design, write, and test their

programs more effectively. A significant portion of our work is based on our

augmentation of the design recipe from HtDP and its benefits (presented in

subsection 4.2.1) in combating some of the shortcoming we discuss in the

following section.

2.5 Common Shortcomings of the Existing Alternative Methods

In this section, we highlight some shortcomings that are common to most of the

existing alternative methods we explore in the preceding sections. We address

 15

these shortcomings explicitly to distinguish the contributions of this thesis from the

existing work on early computer science education.

2.5.1 Lack of Capitalization on Students’ Existing Programming Skills

Many introductory computer science pedagogies are unique in a sense that they

often lack a clear attempt to capitalize on the incoming students’ existing

knowledge or intuition on programming—something that might help the students

connect or relate their previous experience to the new material to be presented.

Perhaps this is due to the limited programming curricula that exist as discrete

courses in the K-12 education standards. Therefore, it is understandable that many

introductory computer science courses focus on starting mostly from scratch.

Nevertheless, we claim that just because the majority of incoming students

have not heard much about programming, it does not mean that we must abandon

all hopes for connecting some parts of computer science to something the students

already know. We assert that presenting concepts without having any connection

to the students’ existing programming knowledge may make even some of the

simplest concepts seem difficult, therefore attempts to make those connections

whenever possible is pivotal in making early computer science education more

approachable and effective. Bootstrap’s Introduction to Programming that explicitly

instructs students to “use what you already know to think about” programming in

Scheme, because it “works just like math” is an excellent example of this concept

[25]. There may not be any particular programming course an introductory

computer science instructor may be able to naturally reference in their first-day

lectures like how a university’s Calculus instructor may reference a high school AP

 16

Calculus course. However, we find referencing practices from completely separate

disciplines still proves useful. Further discussion regarding this is presented in

section 3.3 and subsection 4.2.2.

2.5.2 The Cost of Increase in Cognitive Load

We argued that the extra cognitive load required to operate with the syntactic forms

of specific programming language hinders students’ ability to retain and express

their algorithmic thought process. Some approaches like ILEs address this directly

by reducing the learning curve of the syntax. However, we expect that the

approaches that include additional pseudo-languages (section 2.1) or more

programming languages (section 2.3) on top of the single programming language

students already struggle with would not reduce the problematic cognitive load.

It is quite obvious why requiring students to learn multiple different

languages would increase the cognitive load that hinders students’ ability to focus

on abstract fundamental concepts. However, we must better explain the logic

behind why we claim that pseudo-languages do not help reduce the cognitive load.

Utilizing a pseudo-language that is free from syntactic rules enforced by a

pedantic compiler or an interpreter may temporarily lower the students’ cognitive

load in externalizing algorithmic ideas. Nonetheless, many abstract languages and

systems of pseudocode are designed to notate the application of challenging

computer science concepts (such as nested iterations, recursion, and higher-order

functions), and therefore use strikingly similar syntactic conventions as many

formal programming languages do. This often leaves the lack of evaluators as the

 17

only noticeable difference between the pseudo-languages and a formal

programming language.

Simply taking away the mean-looking syntax error messages may help

lower the students’ cognitive load. However, even without the presence of those

error messages, we must be careful not to neglect that the degree of newness a

novice computer science experiences in an abstract language or pseudocode is

often similar to that of any formal programming language. That is, students who

have little knowledge of formal programming languages most likely also have little

knowledge on any abstract languages or systems of pseudocode, if any. Thus, in

order to meaningfully reduce the beginning students’ cognitive load, we must utilize

even higher level pseudo-languages. Allowing the pseudo-languages to take form

of a natural language like regular English sentences would certainly free students

from needing to learn some new elaborate syntax.

2.5.3 Persistence of the Blank Pages

Perhaps the most outstanding shortcomings of the existing alternative pedagogy

is that it still leaves the beginning students vulnerable to “the Blank Page

Syndrome,” which Bloch et al. of Program by Design project identify as a

phenomenon where “the student, given a problem statement, confronts a blank

page...and doesn't know how to begin” [24]. Our observations from years of

interacting with the students confirm that that this is a common shortcoming in

many mainstream introductory pedagogies, including the alternatives we present

in this chapter. We speculate the cause of this Blank Page Syndrome to be a two-

fold issue.

 18

First, beginning students are simply too new to the concept of programming.

This connects to the point we make in subsection 2.5.1. There exists some

pedagogy that alludes to the beginning students’ existing knowledge, such as the

aforementioned Bootstrap [25]. However, many mainstream pedagogies attempt

to teach computer science as a mostly brand-new discipline without some

connections to the students’ past learning experience. This may unnecessarily

amplify the learning curve and leave some students completely overwhelmed to

even try doing something.

Second, on top the unprecedented learning curve they present, many

pedagogies quite literally involve a blank page as a starting point of a students’

programming environment. If the novice students’ encounter of blank pages

reliably causes them to feel overwhelmed and lost, why must the educators persist

it in their pedagogies? We claim that as long as a programming environment lets

a novice student encounter a blank page, its highly polished user experience and

ease of use becomes a moot point. This may be analogous to being placed in front

of a large blank canvas in an art studio. If you have limited knowledge on how to

paint, you are not likely to be comforted just because the paintbrushes given to

you are fancy or easy to use. We present our solution to this in subsection 4.2.1.

2.6 Contributions of This Thesis

With many of the work we have cited in this chapter as the inspirational foundations,

we propose a new teaching method (presented in detail in Chapter 4). We identify

the key contributions of this thesis as the following:

• Augmentation of the HtDP’s design recipe for the effects-early languages.

 19

• Proposal of a code outlining process to be combined with the augmented

design recipe process.

• Peer review process of students’ design recipe and code outlines.

• An experiment to validate the pedagogy we propose.

In the following chapter (Background), we present some key instruments

that are prerequisites for establishing our definition of the new teaching method.

Then in Chapter 4, we propose our new teaching method that addresses all

shortcomings we enumerate in this chapter.

 20

Chapter 3

BACKGROUND

In this chapter, we introduce a few key concepts that are instrumental in

understanding the development of the new teaching method being proposed.

3.1 Design Recipe

Introduced by Felleisen et al. in How to Design Programs (discussed in 2.4,

Planning-Based Pedagogy), design recipe is defined as “a roadmap for defining

functions, which programmers use to make sure the code they write does what

they want it to do” [26]. The original text presents the “basic steps of a function

design recipe” as a six-step process including (1) data definition; (2) signature,

purpose, statement, and header; (3) function examples; (4) function template; (5)

function definition; and (6) testing [23].

Figure 3.1.1: Function definition written in Racket using the design recipe

In practice, following the six steps of the design recipe in a formal

programming language results in the construction of function-level documentation

comments (similar to Javadoc or pydoc), function headers, function bodies, and

 21

(unit) tests for the functions written. Figure 3.1.1 above shows an example of this

[26].

One theoretical benefit of using a design recipe as a part of early computer

science education is that it can potentially address the “Blank Page Syndrome,”

which we have pointed out as a common flaw of existing alternatives in Related

Work (Chapter 2). By providing students with a concrete set of steps to follow, the

design recipe provides them a viable alternative to blindly attempting “to piece

together a program by trial-and-error” and skip the much-needed step to think

through a given problem simply by saying, “‘Well, it seems to work...’ for what their

program really does” [24].

In this thesis, we use an adaptation of Felleisen et al.’s design recipe in our

development of a process that students are instructed to follow when expressing

their function designs. Further illustration on developing this adaptation is

presented in Chapter 4 (Proposal of a New Teaching Method), subsection 4.2.1

(Design Recipe).

3.2 Short-term Memory

In introductory computer science courses, we observe that students’ cognitive

capabilities are often overwhelmed by the particularities of the syntax of a

programming language they are not yet accustomed to, regardless of how simple

the syntax may seem to the instructor.

In the field of cognitive psychology, the concept that the human mind can

only hold seven plus-or-minus two items in its short-term memory has been a well-

established fact since the publication of Miller’s seminal paper [27]. Since even the

 22

elementary programming problems have a few steps involved in its solution (which

a novice student may take three or four iterations of different approaches to arrive

at), we theorize that this limited capacity of short-term memory is often fully utilized

once a student is presented with a programming problem.

Our first-hand observations and experiences so far as students and

educators in computer science substantiate this theory. As a student begins to

engage with a given problem, their mind starts the process of constructing the

initial road map on how to navigate the problem. At this point, the student may

have developed some intuitions that could eventually lead them to a sound solution.

However, once their focus shifts from abstract algorithmic thinking to the concrete

implementation on a computer, the high cognitive load required to recall the

unfamiliar syntax floods their short-term memory and interrupts the train of thought

on the intuitions that were emerging.

Thus, proper externalization of the short-term memory prior to writing any

code seems necessary to preserve the abstract algorithmic thinking process and

any useful intuition that may result from such processes. In developing the new

teaching method, we implement a mechanism that systematically introduces this

externalization of short-term memory as part of the programming experience in an

introductory computer science course.

3.3 Outlining

Software is a product of complex logic that is unique to the field of computer

science, but computer science is not the only discipline that practices producing

aggregations of complex logic. This suggests that computer science cannot be the

 23

only field of study in which students suffer from the negative consequences of

failing to properly externalize their initial roadmaps or intuitions on applications of

complex logic. In fact, many non-technical disciplines today boast of robust

strategies for organizing and externalizing complex logic, developed throughout

the much longer history of their existence compared to the relatively brief history

of computer science.

Arguably, one of the most prominent fields of study to have invested much

effort in externalizing complex thought process is language arts. In composing a

piece of writing that is to eventually span multiple pages, or even volumes, outlining

is often utilized as the technique for externalizing the content of an author’s short-

term memory. Defined to be a practice of “identification of main ideas and

supporting details ... and their representation in a specified format,” this simple yet

effective technique is “included in most elementary language arts curricula and is

often taught” [28].

We take advantage of this well-established technique of outlining to develop

the new teaching method, as the outlining borrowed from language arts provides

one outstanding benefit: almost all students at higher level institutions are

guaranteed to be familiar with the practice of outlining through the repeated

exposure in their K-12 composition classes. Being able to utilize a technique with

virtually no learning curve is ideal in attempting to minimize any factor that may

impact the cognitive load of the students.

 24

3.4 Nomenclature

In order to minimize any ambiguity in communicating our intent while presenting

this work, we provide specific definitions for the following terms and phrases, to be

applied strictly within the context of this thesis:

• Formal Programming Language refers to a general-purpose (as opposed

to domain-specific), Turing-complete, and readily available programming

language with an evaluator that allows such language to be executed on a

computer.

• Implementation Plan refers to a set of steps to implement a particular

solution to the given problem in a manner that can be used to compose an

executable program in any formal programming language.

• Friction refers to a measure of students' emotional resistance to the

teaching method being utilized.

• The Framework refers to the five key components of the new teaching

method being developed and proposed in this thesis. The five key

components are as follows:

1. Design Recipe refers to our adaptations of the last five steps of the

six-step process from How to Design Programs [23] [24], with

augmentations to distinguish functional arguments from console and

file system I/O’s, as well as some formatting restrictions to allow for

code template and unit test generation with a parsing tool.

2. Code Outlining to externalize the abstract algorithmic intuitions in

an easily readable and sharable format.

 25

3. Peer Review Process for students to learn from each other and to

practice effectively communicating different ideas for the given

problem.

4. Automatic Code Template Generation to reduce some cognitive

load spent on familiarizing oneself with the syntactic structure of a

formal programming language.

5. Automatic Unit Test Generation to reduce the introductory-level

learning curve to test-driven development while still encouraging

thinking through the given problem sufficiently prior to

implementation.

Further discussion on the specifications and the educational benefits of

these components are presented in section 4.2, Components of the New

Teaching Method.

• Ability to Program is defined as the ability for a student to adequately

perform all of the following tasks:

1. Effectively decompose a given problem into discrete subproblems

and externalize them in the form of an implementation plan.

2. Devise solutions to the subproblems in the implementation plan.

3. Communicate the plans of implementation to other students.

4. Devise a range of test values for the program-to-be-implemented.

5. Follow the implementation plan and the test values to compose an

executable program in a formal programming language that solves

the given problem.

 26

For the context of this thesis, Ability to Program is strictly limited to the

application of computer programming.

 27

Chapter 4

PROPOSAL OF A NEW TEACHING METHOD

In this chapter, we formally present the contribution of this thesis, which is a new

teaching method for early computer science at higher education institutions.

Strategies on integrating the new method into an existing introductory computer

science course and its evaluations are presented in a later chapter (Chapter 5).

4.1 The Primary Goal of the New Teaching Method

In the previous chapters, we have argued that overreliance on the syntax of a

formal programming language or languages is one of the critical issues that

requires attention.

We must reiterate that our goal is not to oppose the use of formal

programming languages and their syntax in early computer science education.

Rather, we primarily intend to lighten the psychological burden placed on the

novice students by providing a systematic approach they can utilize to effectively

externalize and communicate their algorithmic thinking process. We expect this

process to meaningfully reduce the necessity of having to recall syntax of a formal

programming language when the students encounter any programming task in an

introductory computer science course.

The new method we propose here has the ultimate goal of improving the

effectiveness of early computer science courses such that the participating

students’ ability to program is positively impacted in a quantitatively

verifiable manner.

 28

4.2 Components of the New Teaching Method

The new teaching method we propose is centered around the framework, which

contains five key components to be integrated into the existing curricula. The

following subsections provide detailed specifications for each component of the

framework, along with implementation examples that were used in validating the

new method.

4.2.1 Design Recipe

Adapting and augmenting the last five steps (all steps excluding the data definition)

of a six-step design recipe process from How to Design Programs [23] [24] (HtDP),

we specify the design recipe as the process of determining the name, inputs,

outputs, purpose, side effects, and example test cases of a program,

function, or a subroutine and explicitly externalizing them in a specific

format. The term itself (‘design recipe’) is also used to refer to the textual artifact

that results from this externalization process, such as a function

documentation block shown in Figure 4.2.1: Example of a design recipe as a

textual artifact below.

Figure 4.2.1: Example of a design recipe as a textual artifact

 29

As part of the framework, the process of constructing a design recipe is

devised to serve as a streamlined tool for the students to effortlessly externalize

their ideas on how to decompose a larger programming assignment into smaller

pieces (namely, functions or subroutines). Naturally, this makes a few fundamental

lessons—lessons on concepts regarding datatypes (such as Booleans, numbers,

characters, and strings), functions or subroutines as smaller components of a

larger program and strategies on unit testing—necessary prerequisites to the

introduction of the design recipe process. Ideally, the first or second large

programming assignment of the introductory course should be presented to the

students along with the presentation of the design recipe process to highlight its

application and usefulness. Provisions of a few concrete examples on how a

programmer might propose their function designs using the design recipe process

is also strongly encouraged.

Once the students are introduced to the concept of the design recipe

process, they can be given an immediate opportunity to practice utilizing the

process. For instance, the instructor may provide blank templates of the design

recipe for students to use as they are coming up with the ideas on the functions

they may want to build for the assignment. Electronic (Figure 4.2.2) and paper-

based (Figure 4.2.3) examples of this template are shown in the figures below.

 30

Figure 4.2.2: An example of the electronic template for the design recipe

Figure 4.2.3: An example of a paper-based template for the design recipe

The primary benefit we expect from the design recipe process is almost

identical to the motivation of the original design recipe proposed by the Program

by Design project: “Addressing the ‘Blank Page Syndrome’” [24]. Unlike passing

out a blank sheet of paper or instructing the students to open up a new text

document, we expect that exposing the novice students to the template of the

design recipe (such as the example shown in Figure 4.2.2 or Figure 4.2.3) will

provide a strong sense of direction as to what they are supposed to do next.

More specifically, we expect that the blank fields of the design recipe sitting

right in front of the novice students—almost asking to be filled in—are likely to

organically lead them into coming up with a few concrete draft designs and test

cases for the functions, effectively beginning to decompose the larger problem

without having to think explicitly about problem decomposition as a task.

 31

We believe this primary benefit of avoiding “Blank Page Syndrome” [24] is

absolutely critical. No matter how great the framework may be, if the students feel

unsure about what to do at the very beginning of practicing it, only to eventually

get lead astray or give up, what value could it possibly deliver? Therefore, in

defining the framework, we require the design recipe to be the very first component

to be introduced to and practiced by the students, even at the instructor’s cost of

having to spend a few days or weeks preparing the students with the fundamental

concepts leading up to and including functions and unit testing.

As we discuss later, there are components of the framework (such as code

outlining; subsection 4.2.2) that have almost no conceptual prerequisite and thus

may be introduced to the students within the first few days of instruction.

Nonetheless, our recommendation still stands with the design recipe having the

highest topological ordering in relation to all other components, just so we can

deliver the primary benefit of providing the students with a clear sense of direction.

As similar as it may seem to the original by Felleisen et al. [23], our

adaptation of the design recipe process still has a few key differentiating features.

The first differentiator is the aforementioned provision of the design recipe

templates. (The original specifications of HtDP’s design recipe process do not

require templates to be provided to the students [23], although there are

implementations of it that do, e.g. Bootstrap [25]).

The second differentiator is that our design recipe process is completely

agnostic to the specifics of a formal programming language’s syntax that may

eventually be used to implement the function. Again, this is to reduce the possibility

 32

of interrupting the students’ thought process. Without the need to write the function

signature in any formal programming language, the extra effort of having to recall

the function header or signature syntax becomes eliminated from the process of

problem decomposition and function design. Instead, students may simply state

the name of the function, then list the datatypes of the functional arguments and

return value in the CONTRACT line.

The third and final differentiating factor in our process is that the concept of

side-effects is introduced from the very beginning, compared to how HtDP [23]

defers introduction of side-effects and its inclusion in the design recipe until very

late in its curriculum. Our design recipe process requires any side-effects of the

functions to be explicitly stated separately from the functional arguments. This is

motivated purely by our observation of novice students throughout the years of

interacting with them: a recurring pattern we observe is that students tend to

confuse and intermix the functional input/outputs and the system-level

input/outputs such as the console outputs or keyboard inputs. Since the system-

level input/outputs are often implemented as side-effects within a function, we

expect to meaningfully reduce this confusion by letting students explicitly state the

side-effects of a function and visually and conceptually distinguish any system-

level interactions from the inputs and outputs of a function.

4.2.2 Code Outlining

Inspired by the techniques often taught and used in language arts [28], we define

code outlining as a process of describing the implementation plan for a

program, function, or a subroutine.

 33

We want to minimize any extraneous cognitive load that may hinder the

expression of the students’ intuitive algorithmic thinking on how the programs,

functions, or subroutines may be implemented. Therefore, code outlines are

defined relatively broadly and informally. The outlines are to be written in a natural

language, in a bullet-point format, with optional utilization of different levels

of bullets and indentation to distinguish the implementation plan within a

control structure from the top-level implementation plans (Figure 4.2.5). In

theory, the outlines may be written in any medium, but we recommend instructing

students to place the outlines as in-line comments in the source code file where

the actual implementation in a formal programming language will eventually be.

We make this recommendation to ensure that the efforts put towards composing

the outlines contributes to the actual implementation when students begin to code.

When students design functions as part of the framework, we suggest that

the code outlining practice immediately follow the design recipe process

(presented in subsection 4.2.1), so that students may continue the externalization

process of their intuitive ideas on functions as components of a larger program.

We anticipate the practice of writing down or typing out the implementation plans

in a concise format to assist the students in organizing, validating, and improving

their initial ideas on how to implement certain componential algorithms of a larger

program.

Because the code outlining process aims to capitalize on students’ existing

knowledge and experience with outlining in general, instructors need not invest

much time into explaining how the outline shall be written. This also allows the

 34

timing of integrating the code outlining process into the course curriculum to be

flexible. Here, we provide a few examples of code outlines with varying complexity

to illustrate this point.

Figure 4.2.4 shown below represents a potential externalization of a

student’s initial idea on how to structure a small top-down program as they are

reading through the programming assignment specifications.

Figure 4.2.4: An example code outline for a simple program

In this example, the assignment specification asks for a simple program that

computes the recoil velocity of a physical object (skater) based on the launch

parameters (skater’s weight, distance of the throw, and the type of a projectile) of

a projectile thrown by it. Notice that the linear progression of logic in this outline

could have been generated without any knowledge on even the most elementary

computer science concepts such as functions or control structures. This suggests

that outlines like the one shown could be generated by students of an introductory

 35

course quite early on. To substantiate this, we provide a selection of linear code

outlines (similar to Figure 4.2.4) written by actual introductory students in Appendix

C, Selection of Student-Composed Linear Code Outlines.

With the limited complexity of the logic expressed in the outline, this

externalization process may seem too trivial to provide any benefit. However, the

benefit this seemingly trivial process provides is more than meets the eye. Unlike

any retention of the initial idea in one’s human memory, this once-externalized

outline is semi-permanent, relatively free from the risk of being lost or corrupted

[29]. Therefore, a novice student who has finished externalizing their initial idea for

the program is then free to safely move on to other tasks required to complete the

project. Continuing with the running example from Figure 4.2.4, perhaps a student

may need to study some of the mathematical formulae to gain better insight on the

domain knowledge (physics) required to understand the problem better, or they

may desire to consider designing a function to handle detailed tasks like input

validations (if the student is familiar with the necessary concepts, of course).

Whichever the case may be, the novice student is now at a much lower risk of

potentially losing a key insight from their initial brainstorming—for example,

needing to perform a unit conversion to KG in the case of this program—than if

they had relied on their memory alone.

Figure 4.2.5 shows an example of a code outline written for a ‘word search’

program, with the task of finding the locations of given words in a two-dimensional

matrix of characters. Unlike the previous example, this outline is much larger in

size, and it includes the aforementioned multi-level bullet points to account for the

 36

applications of control structures such as conditionals and loops. Naturally, a

student must have been introduced to the concepts of functions or subroutines and

various control structures to be able to generate an outline like the one shown in

the figure. Still, once the student has been taught those concepts, instructing them

to express their implementation plan with those concepts in an outline format takes

very little in-class overhead. Again, this is because we are able to capitalize on the

students’ existing knowledge and experience with outlining in general.

 37

Figure 4.2.5: An example code outline for a moderately complex program

With a moderately complex program like the word search, expected benefits

of externalizing the implementation plan as an outline become more apparent. First,

an implementation of this size is arguably difficult to retain in one’s memory without

any form of externalization, so students shall benefit again by creating a semi-

permanent record of their plan. Secondly, by writing the outline, students should

 38

be able to visually organize the individual pieces of their plan such as strategic

placements of control structures and function applications.

One may argue that a novice student is more likely to begin constructing

their outline in a purely linear, top-down manner without necessarily thinking about

applying any of the relatively complex concepts. We certainly anticipate some

students may initially experience difficulties in developing an outline that goes

beyond a linear, top-down approach, even for the problems with obvious

opportunities to apply more complex logic such as conditionals and loops.

However, as they continue the construction of their outline, we expect certain

pieces of the outline to stand out as repetitive or particularly refactorable, perhaps

motivating them to apply their knowledge of functions or control structures. Even if

the original author of an overly simplistic linear outline does not catch certain

opportunities to apply higher-order concepts, having a written outline makes

pointing out such missed opportunities during a review process (such as the one

presented in subsection 4.2.2) much easier.

Without any concrete artifact like the outline, motivating a constructive

discussion of one’s implementation plan would be rather difficult, as reviewing and

critiquing something that only exists abstractly in one’s mind usually is. In essence,

this is the larger benefit we expect students to gain from practicing code outlining.

Outlining is certainly a familiar practice that provides students with a tool to

organize their intuitive algorithmic thought process. But more importantly, it yields

semi-permanent and tangible artifacts which allows students to effectively revisit,

review, critique, and further develop their algorithmic ideas with.

 39

Figure 4.2.6 shows the code outline in a slightly different context, where the

outline is used to externalize an implementation plan for a specific function rather

than the top-level logic of the whole program. Here, the outline shown is

constructed to accompany the design recipe for a function that searches for a

possible occurrence of a word in a grid for the word search program, where grid

is a two-dimensional matrix of characters.

Once the higher-level outlines and design recipes for their overall program

are written, the only remaining portion of the implementation plan is the details on

how the functions specified by the design recipes shall be realized. Therefore, we

present the construction of more fine-grained implementation plan outlines like the

one in the figure below as a natural subsequent step to the higher-level

implementation outlines shown in the previous figures (Figure 4.2.4 and Figure

4.2.5).

 40

Figure 4.2.6: An example function-level code outline with a design recipe

Similar to how the assignment specifications may prompt students to think

about the high-level solutions, we expect the design recipes to be good references

for the students to base their function-level implementation plans on. We

recommend the function-level outlines to be written adjacent to the design recipes,

so students may conveniently refer to the contract, purpose, and examples of their

functions to ensure that their outline is logically compliant with the design recipe.

 41

4.2.3 The DRaCO Workflow

Figure 4.2.7: Design Recipe and Code Outline (DRaCO) workflow

Before we continue on to discuss the remaining components of the framework, we

propose an aggregative terminology for the first two components presented so far:

DRaCO (Design Recipe and Code Outlines). Figure 4.2.7 above illustrates the

process involving the two components (DRaCO) as a workflow.

We acknowledge that the aggregation of the two separate components of

the framework as a single workflow may seem arbitrary and contrived. After all, the

design recipe process and the code outlining practice each originate from different

sources [23] [28] and have discrete purpose as we present in preceding sections.

Nevertheless, we believe that it is important to present both as a singularly

 42

packaged workflow to the students, since presentation of a single workflow is likely

to minimize any room for confusion and make it more convenient when integrating

it into an existing curriculum. Detailed discussion on implementing the DRaCO

workflow into the existing assignment structures of an introductory course is

presented in Chapter 5, Implementation of the DRaCO-based Pedagogy.

4.2.4 Peer Review Process

Peer code review is a process well known to be an effective tool both in the

computing industry [30] and the educational context [31]. However, there are clear

difficulties in implementing the process in the introductory courses. According to

Busjahn et al, computer science educators report that “understanding the code’s

intention from the text surface” is perceived by the learners “as the major challenge

in [code] reading” [32]. This is particularly easy to observe at the introductory level

where encountering statements such as “I wrote this snippet of code, which does

what I want, but I have no idea why it does what it does” are not a rarity. Many

students struggle often with the code they have written all by themselves, so we

can reasonably see how the magnitude of the struggles would only multiply if they

had to read someone else’s code.

This is perhaps similar to a situation in which a couple of students in a

foreign language course—say, for instance, Korean—are attempting to

communicate by speaking only in Korean. While it is a noble attempt on their end

to practice the language, we can certainly expect some of their intentions to be

‘lost in translation.’ At least it makes sense for students in a Korean course to put

themselves in a situation like this, as their primary goal in being in a Korean course

 43

is to learn the language, not necessarily learning how to communicate their

sentiments with each other.

Unfortunately, the same justification cannot be granted to the students who

are taking an introductory computer science course. The primary goal of being in

an introductory computer science course shall be, as we and many other educators

have argued thus far [7] [6], anything but simply learning a programming language.

Therefore, in most introductory courses, letting the algorithmic thought process get

‘lost in translation’ is in no way acceptable, since the part that often gets ‘lost in

translation’ is what we care most about in a peer code review process.

Again, we approach this difficulty in integrating the peer code review

process into an introductory course with recognition that the students’ lack of

proficiency in the formal programming language(s) is the main obstacle. We

propose a peer review process that strips away the problematic “text surface” and

retains only the “intention” [32], or the algorithmic thought process, behind. We

claim that this is not too difficult to achieve with the specifications of DRaCO.

In the framework we are proposing, following the DRaCO workflow (Figure

4.2.7) results in generation of textual artifacts that are written mostly in natural

language and formatted in a well-organized structure (bullet-point outline). The

greatest benefit the DRaCO artifact delivers to the novice students is that almost

all of the artifact is written in a language and format they are quite familiar with. If

we assume that students have familiarized themselves with the formatting of

design recipes (Figure 4.2.1), then we can even argue that none of the DRaCO

artifacts shall seem foreign to them. By reading the code outlines that are

 44

descriptions of different stages of the implementation plan in a natural language,

students are effectively reading the original author’s unaltered externalizations of

the intentions. We expect this to be far more effective than having to roughly

estimate the meaning behind a rather foreign surface syntax of a programming

language that is possibly an incorrect translation of the author’s original intentions.

Our specifications of the peer review process do not restrict the medium of

the review. That is, the instructors implementing the peer review process as part

of the framework are not at all discouraged from conducting the review with any

electronic tools, including commercial code review tools such as Microsoft’s

GitHub [33], Atlassian’s Crucible [34], JetBrains’ Upsource [35], or any proprietary

tools. Conducting the review simply with paper-and-pencil also aligns well with our

specifications. However, we recommend that the review processes be held in

person, such that the reviewer and the author of the DRaCO artifacts are free to

verbally communicate while sharing a single copy of the artifact they are sharing.

Consequently, we define the peer review process in the context of the

framework as an in-person review process of the artifacts of DRaCO workflow,

where the participants shall examine, discuss, and critique each other’s

implementation plans via verbal and written communication.

Although we expect the peer review process without the overhead of having

to translate the code to dramatically reduce the difficulty of communicating

students’ intentions, we also understand that it is quite unreasonable to expect all

of the novice students to be perfectly proficient at clearly and concisely expressing

their algorithmic thinking process even in a natural language. Given that many of

 45

the students would be still learning how to think algorithmically with the concepts

in computer science, we shall rather expect most DRaCO artifacts to lack clarity in

many aspects. Since the main goal of the review process is to understand and

critique the intentions of the author, we claim that having the author in the flesh to

interact directly with is one of the most essential steps in achieving that goal.

Especially if the artifact alone proves to be lacking due to the author’s inexperience,

the opportunities to freely ask clarifying questions, critique the logic expressed,

and listen to the author’s defense of certain choices would unequivocally add

significant value to the review process than if the only channel of communication

between the author and the reviewer were the DRaCO artifacts.

4.2.5 Automatic Code Template Generation

Primarily, both of the remaining components are included in the framework to

dissuade students from simply perceiving the requirements of the framework as

‘extra work’ that is time consuming and offers little benefit.

The first of the two remaining components is automatic code template

generation. Not to be confused with the design recipe template from subsection

4.2.1, we define ‘code template’ as some starter code to be generated from the

students’ DRaCO artifact, such that the generated code may provide some

guidance to the author of the DRaCO artifact on how one could start

implementing their program in the syntax of a formal programming language.

We observe that the interactive aspect of the formal programming

languages is one of the key factors that captures students’ attention and

engagement. That is, students seem to enjoy observing that their code ‘works.’ It

 46

is certainly understandable how a cycle of interaction between a programmer and

a computer via a language that both can comprehend may be much more exciting

than jotting down one’s thought process in a manner that the computer will never

understand. Although often overlooked in higher education, excitement is an

important factor in a programming environment’s ability to engage and retain

students and their attention, as the developers of Scratch have noted in developing

their initial learning environment for a wider range of audiences [14].

Therefore, we have devised automatic code template generation as one of

the components of the framework in order to incite some excitement in students.

The emphasis here is on the automatic generation of code based on students’ text

input. By providing a tool that parses DRaCO artifacts and generates some level

of ‘real code’, we are allowing the emulation of the aforementioned cycle of

interaction between a programmer and a computer. With this, we are also instilling

into students’ minds the idea that following the DRaCO workflow is more than mere

notetaking, and that the DRaCO artifacts have some functional aspects similar to

formal programming languages. With this, we aim to convince the students that

DRaCO has a unique value beyond simply being a format to organize their

implementation plan, thus motivating them further to put in sincere efforts into the

DRaCO workflow.

We must note that we are being purposefully vague as to what the

“generated code” or “some guidance” in the definition of a code template shall be.

We acknowledge that there exist many schools of thought on where the line

between beneficial and harmful lies when it comes to differing degrees of help a

 47

code-generating tool may provide to novice students. While we still provide an

example implementation of automatic code template generation in the subsequent

chapter (Implementation of the DRaCO-based Pedagogy), we are leaving the

interpretation of the definition of code template completely up to the discretion of

the instructor implementing the framework to their own introductory computer

science course.

4.2.6 Automatic Unit Test Generation

Automatic unit test generation in the context of the framework serves as the

second component that adds practical benefit of utilizing the DRaCO workflow. It

is quite similar to the automatic code template generation (subsection 4.2.5) in the

sense that it also generates executable code based on the DRaCO artifacts and

allows students to interact with a computer. However, automatic unit test

generation is proposed with a much more clear-cut definition and purpose than

providing “some guidance” to the students.

Defined as the generation of a working unit test suite written in a formal

programming language based on the DRaCO artifact, we propose automatic

unit test generation to serve as the training wheels for the novice students to

experience the benefit of test-first or test-driven development (TDD).

Many years of research on TDD has revealed its positive and quantifiable

impact on software quality, both in the industry [36] [37] and in academia [38].

However, as Edwards has pointed out, application of TDD is often met with

challenges at an introductory level, because “software testing requires experience

at programming,” and “introductory students are not ready for [software testing

 48

practices] until they have mastered other basic skills” [39]. In addition, most TDD

practices require writing the tests in the testing framework of the formal programing

language in use. Since we are proposing an extended deference of any use of the

formal programming languages based on the observation we have so far

enumerated regarding our inexperienced target audience, it may seem that there

exists no plausible avenue of compatibility between the traditional TDD practices

and our Framework. While we acknowledge that no traditional TDD practice will

organically synergize with the specifications of the framework, we also recognize

that some logic to validate the students’ design of the function or subroutines

already exists in the form of example test cases within the design recipe

component of the DRaCO artifact.

The key motivation here in specifying the automatic unit test generation is

to utilize the validation logic already available in the form of example test cases to

provide a working test suite the students can run as they begin writing code to

implement their designs. One immediate consequence we may expect from this is

that the students will proceed with a strong sense of direction as to what their

implementation of the functions shall do, since running the generated test suite

can provide instant feedback on how well their current code is working. This is

precisely one of the major benefits of TDD [40]. Here, we are not claiming that the

test suite generated from the novice students’ DRaCO artifacts will offer the

coverage level equivalent to the test suite written by an expert programmer. Our

emphasis is on the fact that even a few runnable unit tests are far better at

providing initial guidance than no unit tests, and that the whole test suite will be

 49

bestowed upon the students at no cost of having to learn any particular testing

framework or the language in which the framework is written.

Moreover, we anticipate that the students’ initial interaction with a generated

test suite will allow them to realize how a well-written set of test cases is capable

of saving them from “forever fussing about what did I miss, what did I forget, what

did I just screw up,” as Kent Beck has put it [40]. With this, we assert that motivating

the students to put more time and effort into writing good example test cases for

the later assignments should not be difficult, especially with some extra guidance

from the instructor to reinforce the importance of good test cases. Ultimately, we

expect automatic unit test generation to at least cultivate a learning environment

in which motivating and introducing more formally established practices of TDD

becomes natural.

4.3 Summary of the Proposal

We present the entirety of our new teaching method with verbose philosophical

and practical justifications in the earlier portion of the chapter. In this section, we

tersely summarize our proposal and reproduce the definitions of the key

components of the framework, such that those who intend to develop a proprietary

integration strategy for the proposed teaching method may utilize it as a quick

reference.

4.3.1.1 New DRaCO-Based Pedagogy for Introductory Computer Science

Education

• The primary goal of the new pedagogy proposed here is to improve the

effectiveness of early computer science courses such that the participating

 50

students’ ability to program is positively impacted in a quantitatively

verifiable manner.

• The new teaching method is centered around the framework, which

contains five key components. They are:

1. Design Recipe: the process of determining the name, inputs,

outputs, purpose, side effects, and example test cases of a program,

function, or a subroutine and explicitly externalizing them in a specific

format.

2. Code Outlining: a process of describing the implementation plan for

a program, function, or a subroutine in a natural language, in a bullet-

point format, with optional utilization of different levels of bullets and

indentations to distinguish the implementation plan within a control

structure from the top-level implementation plans.

3. Peer Review Process: an in-person review process of the artifacts

of DRaCO workflow (subsection 4.2.3), where the participants shall

examine, discuss, and critique each other’s implementation plans via

verbal and written communication.

4. Automatic Code Template Generation: programmatic generation

of some starter code based on the students’ DRaCO artifact, such

that the generated code may provide some guidance to the author of

the DRaCO artifact on how one could start implementing their

program in the syntax of a formal programming language.

 51

5. Automatic Unit Test Generation: programmatic generation of a

working unit test suite written in a formal programming language

based on the DRaCO artifact.

4.4 Name of the New Teaching Method

In order to make the subsequent discussions clearer and avoid any confusion with

other teaching methods, we refer to our newly proposed teaching method as a

‘DRaCO-based pedagogy’ in the following chapters of this thesis.

 52

Chapter 5

IMPLEMENTATION OF THE DRACO-BASED PEDAGOGY

In this chapter, we present the details of our implementations in integrating the

DRaCO-based pedagogy into an introductory computer science course at

California Polytechnic State University, San Luis Obispo (‘Cal Poly SLO’). The

proof-of-concept implementation of the framework presented in this chapter serves

as a basis for our validation of the new pedagogy (presented in Chapter 6,

Validation of the DRaCO-based Pedagogy) and is intended to be a motivating

example for any replication studies or future work utilizing the framework.

5.1 Implementation Environment

We begin the illustration of the environment in which we deployed the DRaCO-

based pedagogy by explaining the contextual course structures at Cal Poly SLO.

5.1.1 Introductory Computer Science Courses at Cal Poly SLO

At Cal Poly SLO, a majority of the underclassmen in computer science, software

engineering, and computer engineering majors begin their major coursework in a

sequence of two introductory courses: CPE-123 and CPE-101 (in this order). Each

course spans a single academic term, which is a quarter composed of ten

instruction weeks and a one final exam week.

The first course of the sequence, CPE-123, or Introduction to Computing, is

a pre-introductory, “CS0” course designed to “to attract and retain undergraduates

that have no prior experience in CS” [41]. This particular course is offered with

 53

varying themes such as computational art, game development, mobile application

development, music, robotics, and cybersecurity, in which a beginning student may

choose to enroll depending on which subject aligns best with their interests. While

all offerings of this course have a common high-level objective such as teaching

“core computer science principles and tools, providing a foundation and context

for more traditional, introductory CS coursework,” the contents of the differently

themed offerings of the course vary depending on the technology stack and the

pedagogy employed by the instructor in charge [41].

The latter course in the sequence, CPE-101, or Fundamentals of Computer

Science, is the traditional ‘CS1’ course. The university’s catalog specifies the

course to provide lessons on the following: “Basic principles of algorithmic problem

solving and programming using methods of top-down design, stepwise refinement

and procedural abstraction. Basic control structures, data types, and input/output.

Introduction to the software development process: design, implementation, testing

and documentation. The syntax and semantics of a modern programming

language” (Python 3 at the time of this research) [42].

We select the relatively traditional CPE-101 as a course suitable for

introducing the DRaCO-based pedagogy, as it is a course with a well-defined set

of objectives established over many years of refinement, and it is a course that

satisfies the assumptions of our teaching method regarding the environments in

which it may be implemented in. But, above all, it is a course that saw little change

over the past half-decade in terms of how it has been implemented with a vehicle

of a single formal programming language to convey the fundamental concepts.

 54

5.1.2 General Structure of the CS1 Course at Cal Poly SLO

An offering of CPE-101 at Cal Poly SLO has a fifty-fifty split between the ‘lecture’

and ‘lab’ hours. With the current configuration of the course where a total of six

hours is allotted to an offering of the course per week, three of the six hours are

designed as a traditional lecture time during which the instructor of the course will

deliver the course content to the students attending. Although most of the lecture

hours are spent with the instructor presenting some computer science concept and

its applications in front of a traditional classroom with little interaction among

students, a small portion of the lecture hours are spent on discussions and

opportunities in which students can work on small exercises as a group.

The remaining three hours per week are less structured and scheduled in a

computer lab. During these ‘lab’ hours, students are encouraged to work on

exercises and assignments for the course and seek the help from an instructor or

a teaching assistant as needed. Rarely, some lab hours may be consumed by

overflow lectures or exam time. Because the learning that is designed to occur

during the lab hours are mostly student-led and not initiated by the instructor’s

delivery of new course material, attendance of the lab hours is largely considered

optional.

Evaluation of the student performance in CPE-101 also follows the

traditional classroom model. All students in computing-related majors, minors, or

concentrations taking the course as a degree requirement are required to seek a

letter grade (‘A’ through ‘F’) based on evaluation throughout the academic term.

The letter grade for the course is computed largely based on the combination of

 55

scores students earn from the following items: lab assignments (smaller

programming homework to be completed within a short period of time; usually

about a week), projects (larger programming assignments that require applying a

sizable culmination of concepts, with relatively larger time window for students to

work on them), a couple of midterm exams that occur throughout the quarter, and

a final exam that is scheduled during the final exam week. In principle, all graded

items in the course are to be completed without any collaboration among students.

5.1.3 Seams for the DRaCO-based Pedagogy

With the existing structure of the CPE-101 standing as presented in previous

subsections, we identify the a few components of the course as ‘seams,’ or

appropriate points in which we may be able to integrate the key components of the

framework only with minimal and necessary disruption to the established course

structure. These seams are described in the subsequent paragraphs.

First, we find the projects of CPE-101 to be perfect candidates for the

students to apply the framework. The level of complexity the projects provide are

deemed sufficient to motivate the need for thoughtful decomposition, planning, and

testing prior to implementation in code. Also, the wide time window allocated for

the projects allow equitable introduction of DRaCO workflow assignments and peer

review process as smaller parts of the overall project progression.

Secondly, the midterm and the final exams provide ample opportunities for

us to test the educational effect the framework has on students. Since the aim of

the DRaCO-based pedagogy aligns well with the overall learning objective of the

 56

course, we see that asking exam questions that are designed to test the students’

ability to program would be appropriate.

Finally, the flexible lab hours that are scheduled in a separate time and

physical location from the lectures do not only allow designing an A-B experiment

to evaluate the pedagogy we were implementing (presented in Chapter 6) but are

also pivotal in finding the extra time to introduce to the students key components

of the framework and assist them in getting familiarized with the DRaCO workflow.

For the remainder of this chapter, we explain precisely how we integrate the

components of the framework into the aforementioned seams on an offering of

CPE-101 at Cal Poly SLO. We must note for clarification, however, that the

integration techniques we present only apply to the experimental group of the

course offering. That is, when we mention integration of certain components of the

framework into our course offering of CPE-101, only half of the students (those in

the experimental group) from our offering are affected. More details on the

structure of the A-B experiment and the different course materials each of the

experimental and control groups were exposed to are discussed in section 6.2,

Experiment Design.

5.2 The DRaCO Workflow

Prior to assigning any actionable tasks pertaining to the DRaCO workflow to our

students in CPE-101, we present the detailed implementations of individual

components of the DRaCO workflow via instructor demonstrations and in-class

discussions.

 57

5.2.1 Implementation of the Design Recipe Process

Before students begin the design recipe process, we guide them to install the

Sublime Text 3 text editor. Then, we assist students in configuring its autocomplete

feature to provide an electronic template for the design recipe—similar to the one

shown in Figure 4.2.2. This configuration of Sublime Text 3 text editor allows

students to simply type ‘dr’ in any Python source file and press the tab key on the

keyboard to insert the design recipe template at the cursor location.

Once the template is inserted, subsequent presses of the tab key auto-

advances the cursor and highlights different fields of the design recipe (function

name, input argument types, return value type, purpose, and on) to be populated.

Figure 5.2.1 is provided below as a snapshot amidst this process, which shows

CONTRACT line of the design recipe populated, with the cursor auto-advanced prior

to the completion of the PURPOSE line. Dashed texts such as ‘purpose-

statement’ are placeholder strings that get automatically highlighted and

eventually replaced as the actual content of the design recipe is typed into the

template as part of the process.

Figure 5.2.1: Population of a design recipe template using auto-advance

Along with this setup to conveniently follow the design recipe process, a

demonstration on how the design recipe assists in concretely specifying functions

 58

are shown to the students via a few examples. Here, we reproduce those examples

and explain a manner in which the students are expected to compose them.

Figure 5.2.2: Example design recipes for functions with side-effects

Figure 5.2.2 above depicts the first two examples presented to the students

as application of the design recipe process to specify functions that handle the

console output. There are a few notable structural features shown in this example

that were designed specifically to suit the projects in CPE-101. We begin by

explaining the purpose of these structural features prior to discussing the

conceptual features of this formatting.

The textual artifact of the design recipe process is encapsulated within

Python’s triple-quote (""") docstring comment enclosure and formatted to be

GitHub-style-Markdown-compatible. Encapsulation within the Python docstring

allows easy and proximate inclusion of design recipe into the source code later,

allowing DRaCO to serve as a useful reference while students code, and as well-

structured documentation once the implementation is completed. The GitHub-

 59

style-Markdown compatibility enables programmatic transformation of the design

recipe as a portion of a HTML document, similar to how Java’s Javadoc comments

can be compiled into pieces of API documentation in HTML.

Now, we dissect each line of this design recipe template and discuss the

conceptual role each part of the line serves. First, the CONTRACT line requires

specifications of the function’s name, types of its input arguments, and the type of

its return value, typed in the following format:

<function name> : <in1> <in2> … <inN> -> <return type>

The function name must be specified in a CONTRACT line, but the types of input

arguments or the return type shall be stated as ‘None’ if there aren’t any.

The dashed line below the CONTRACT line is part of the GitHub-style-

Markdown syntax that renders the whole block of text as a table. Immediately

below it is the PURPOSE line that asks for a concise statement that expresses the

purpose of the function being specified. In it, each input argument to the function

shall be named in the same order as it appears in the CONTRACT line. These

names of the arugments are to be enclosed in grave accent or ‘backtick’ characters

(`) to distinguish them from the rest of the purpose statement. Since the purpose

statement is to be written in a natural language, there is no restriction (such as not

allowing spaces) on the naming of the arugments. This is shown on the second

example depicted in Figure 5.2.2.

The first two lines (ignoring the Markdown syntax) of this design recipe

template provide space to describe what the function shall do, leading the students

to prompt themselves with questions such as ‘What will this function need to

 60

achieve the purpose stated?’ and ‘What would be an appropriate data type for this

function to return once it has finished its work?’

Once these questions are answered, students then would encounter an

opportunity to referesh their memory on how function inputs and outputs differ from

the side-effects that implement system-level inputs and outputs. Formatting of the

EFFECTS line requires separetely stating any system-level inputs and outputs. The

example functions print_hello and print_product specified in Figure 5.2.2

both have console outputs, so ‘str’ is written as the system-level output to be

implemented with a side-effect later. The general formatting of the EFFECTS line

is as follows:

<sytem-level inputs>/<system-level outputs>

Describing the system-level outputs in terms of the available datatypes is not

critical on the EFFECTS line. However, use of terms coherent with the rest of the

design recipe block is strongly encouraged.

The last line is EXAMPLE(S), where students must write a few test cases for

the function they have just specified in the first three lines of the design recipe. In

order to reinforce the concept that functions with only side-effects (such as

displaying result of a calculation to the console) and no return value (specified as

‘-> None’) cannot be tested by inspecting the function’s return value, examples

in Figure 5.2.2 were shown with test cases as None. However, if the function being

specified has a predictable output based on the inputs given, students are

instructed to write a few example test cases as shown in Figure 4.2.2.

 61

We acknowledge that our detailed, line-by-line description of the design

recipe process may convey an image that the whole process is perhaps

excruciatingly daunting or tedious to the students who are instructed to follow it.

However, that is simply not the case. A live demonstration of the whole process

takes minutes at most, with many students able to complete this process for a

single function within a minute or two once they have had a chance to practice it a

few times.

5.2.2 Implementation of the Code Outlining Process

As we underscore in our initial proposal of the code outlining process, code

outlining aims to capitalize students’ existing knowledge on the general concept of

outlining. Therefore, unlike in implementing the design recipe process, we do not

provide much specifics on how the outline shall be composed.

The only implementation detail on the process of outlining presented to

students is that they must be written as Python’s in-line comments, prepended by

a hash (#) character instead of a rather-difficult-to-type bullet (•) character. For the

function-level outlines, there is an additional directive to place the code outline

immediately below the design recipe block.

Aside from the sheer convenience factor, this is to yet again ensure the

easy and proximate inclusion of code outline directly into the source code, such

that the code outlines may serve the dual purpose of being references at

implementation time and being documentations post-implementation. Later, as we

introduce control structures in class, a multi-level outlining technique is

demonstrated in parallel as a suggestion for how the students may organize their

 62

implementation plan more effetely with readability in mind. Figure 4.2.6, which is

based on an actual DRaCO artifact composed by one of the students, is an

excellent illustration of all details discussed here.

5.2.3 Integration of the Workflow

During the lecture, we introduce the design recipe process as a one that is discrete

and narrowly-purposed. This introduction is presented immediately following the

introductions of elementary concepts such as variables, expressions, primitive

data types, and functions. The code outlining, on the contrary, is subtly presented

throughout the early lectures of the course without explicitly drawing students’

attention to it. Whenever the course material calls for writing a few lines of code as

demonstrations, we start the whole process by writing a few lines of in-line

comments as an outline for the code we are about to show.

With these preparations complete, the DRaCO workflow is then presented

as a singularly packaged process that combines the design recipe process and the

outlining practice. This combined workflow is included in CPE-101’s project

specifications in Appendix D. In those specs, we instruct the students to begin the

design recipe process by creating a new Python source file with an extension

*.oln.py, with ‘oln’ being the abbreviation for ‘outline’ to indicate that the

students are still composing the outline of the program rather than the actual

implementation. Once the file is created, students may use the auto-completion

feature of the text editor to recall and insert the design recipe template in an instant.

The rest of the process is mostly compliant with the implementation details

presented in the two previous subsections 5.2.1 and 5.2.2.

 63

As the last step prior to the submission of DRaCO artifacts, the project

specs guides students to create another Python source file with an extension

*.oln.py to write their high-level code outline. This outline contains the

implementation for the driver (main function) of the program. Ideally, with all of the

functions involved in the project well-understood, students shall have little trouble

piecing together the applications of their functions and completing the high-level

outline.

A keen reader at this point may notice that this order violates the

“recommended order in which each component shall be written by the students”

suggested by the Figure 4.2.7 of subsection 4.2.3, The DRaCO Workflow. While it

is true that instructing students to construct the design recipe prior to the high-level

code outline conflicts with our original recommendation, specs for the first few

projects of CPE-101 already include pre-designed functions for students to

implement. This inclusion certainly takes away the students’ freedom to

decompose the large problem in a way they see fit. Nevertheless, we do not take

any corrective measures to resolve this conflict, mainly for the reasons explained

below.

First, we recognize that the pre-designed functions from CPE-101’s project

specifications provide an excellent example of good decomposition of a large

problem, while also letting the students practice the process of transcribing the

designs of functions presented in the project specs into DRaCO artifacts. These

are both arguably desirable occurrences in the first two weeks of reinforcing the

DRaCO workflow. Second, as we have mentioned previously, our priority lies with

 64

minimal and necessary disruption of the existing curricula. We determine that

altering a set of well-established project specifications to require deprecating part

of the existing course infrastructure and evaluations rubrics merely for the sake of

pedantic compliance to a recommendation of the pedagogy to be neither minimal

nor necessary.

5.3 Peer Review Process

With every introduction of a project in CPE-101 that requires completion of DRaCO

workflow, we set the due date of the DRaCO deliverables at least a week ahead

of the final program deliverable due dates. This motivates students to complete the

DRaCO workflow prior to the completion—or, ideally, the start—of actual

implementation of the projects and leaves ample time for the instructors to pre-

screen the artifacts and prepare for a review process while the project is still

ongoing. Once DRaCO artifacts are collected on the due dates, instructors may

pre-screen, format, and redistribute the artifacts. Printed artifacts are passed out

to the students such that they are reviewed by a student of the same course other

than the original author.

We present our implementation of the review process in the subsections

below. First, we illustrate how the pre-screening and formatting process is applied

to student submissions. Then, we explain two different strategies (informal in

subsection 5.3.2 and ‘in-depth’ in subsection 5.3.3) we applied in conducting the

reviews during the class times of CPE-101.

 65

5.3.1 Pre-screening and Formatting

This first step of the review process is entirely dependent on the instructor.

Although the specifications of the framework do not require DRaCO artifacts be

pre-processed in any way by the instructor of the introductory course, we still claim

that some level of inspection and correction can go a long way.

As the work produced by novice students usually is, we expect a fair number

of mistakes such as incorrect formatting or typos be part of the deliverables. While

completely tolerable and mostly harmless, we still deem those mistakes as

potential distractions during the review process. We recognize that the novice

students may find pointing out a grammatical mistake or a formatting error to be

much more attractive option than having to criticize some potentially unsound logic

during the reviews. Therefore, in our implementation, we visually inspect the

student submissions to manually correct any non-semantic error, as long as our

corrections do not alter the logical process the student demonstrates.

Once any outstanding non-semantic errors are corrected, we convert the

Python source files (*.oln.py) to a HTML document and export the print layout

as the PDF documents to make redistribution of the DRaCO artifacts more

convenient for the instructors.

Figures below show the DRaCO artifact before and after the conversion

process. Both figures depict the design of a function that processes a file name to

generate a string to be used as another filename. Figure 5.3.1 shows the way a

student initially constructed the design recipe and the code outlines, and Figure

5.3.2 shows the same artifacts once they has been fully converted.

 66

At the end of the pre-screening and formatting step, we print out paper

copies of the converted PDF documents in a random order so that they can be

distributed to the students at the beginning of the review sessions.

Figure 5.3.1: DRaCO artifact in a Python source code file

 67

Figure 5.3.2: DRaCO artifact in a PDF document after the conversion

5.3.2 Informal Peer Review Session

Despite the potential benefit [30] [31] of a well-structured code review, we do not

consider possibly overwhelming the students with procedural details of a rigorous

code review to be appropriate for an introductory phase of CPE-101.

Therefore, for the three out of five applicable projects in the course, we

conduct the review sessions in an informal, student-led manner. Once we

distribute the printed copies of the DRaCO artifacts and ensure that no student has

their own artifact to review, we do not give much specific instruction other than that

the students shall rearrange their seating such that the author and the reviewer

can freely communicate.

 68

By imposing very little procedural restrictions on the students, we allow

them to move at their own pace, reading and comprehending the implementation

for the same project their peer has constructed. Compared to a more formal review

process with more explicit directions on which questions are to be asked and what

features are to be discussed, this informal process may leave some students

clueless as to how they shall critique the DRaCO artifact in front on them.

Nevertheless, during the introductory phase of the course and the review process,

we purposefully let students prioritize understanding someone else’s logical

thought process, rather than directing them to focus on certain points for the

critique.

With this, we find many students asking for and listening to the explanations

regarding certain algorithms from the author of the implementation plan. In some

cases, small group of students form to discuss algorithmically challenging part of

the project, with discussions involving how different strategies may be used to

achieve the same goal. Despite the drawbacks of not providing detailed

instructions, our observation of the student communications throughout the

informal process to support our approach to still provide sufficient educational

value.

5.3.3 In-depth Peer Review Session

For the latter two out of five applicable projects of CPE-101, we implement more

rigorous review procedure with specific focus on what to review from the DRaCO

artifact. We name this process as an ‘in-depth’ review.

 69

Setup and the format of the code review (how students are each given

someone else’s implementation plan to review in person) largely remains identical

to the informal process. One large difference for the in-depth process is that we

require students to fill out an in-depth review worksheet, which asks specific

questions.

We include questions on the worksheet that directs the reviewer’s attention

on how their peer implements certain features, how some corner cases for the

projects are handled, and how easy it is to make out certain logical features from

the artifacts. We also place some questions to encourage comparative analysis,

asking for the reviewer to point out some logical similarities and differences

between the reviewer’s implementation plan and the implementation plan they are

reviewing. Once the students complete the review and answer all questions on the

sheet, we ask them to make a qualitative evaluation of the implementation plan

reviewed as a whole. We do this by requesting an assignment of a letter grade (‘A’

through ‘F’) from the reviewer on the review sheet.

Due to the limited class time and many components of the DRaCO artifacts

students must review, we observe that the in-depth reviews proceed with a sense

of urgency, where the students’ focus on the completion of the worksheet results

in reduced volume of free discussions. Nevertheless, we also observe that the

pinpointed critique questions posed by the worksheet reveals important parts of

some implementation plan for some students. This allows some exchange of

questions and answers among students regarding critical realizations about the

 70

projects’ implementations that might have not occurred during the student-led

informal review process.

We provide examples of the in-depth review worksheet in Appendix E, In-

Depth Code Review Worksheets.

5.4 Design Recipe and Code Outline Processor (DRCOP)

Our automatic code template and unit test generation tool, named ‘Design Recipe

and Code Outline Processor’—DRCOP for short (pronounced ‘Doctor Cop’)—

serves as a proof-of-concept automatic code template and unit test generator

specifically for CPE-101. In this section, we briefly present the scope of the tool

and how students may use the tool as a part of the DRaCO-based pedagogy.

Implementation-level details of DRCOP is presented separately in Appendix A,

Architecture Design of DRCOP.

5.4.1 Scope of DRCOP

DRCOP parses students’ function-level DRaCO artifacts (*.oln.py files) and

generates the code template and unit tests in a correct Python 3 syntax.

Given the information present in students’ artifacts, we can go as far as to

provide control structure stubs and some snippets of function body using more

elaborate techniques like keyword detection or natural language processing based

on the function-level code outlines. However, since Python is already a high-level

language with relatively terse syntax, we determine that the benefits of providing

anything more than the function stubs would likely fail to outweigh any risk of

potentially taking away some opportunities for students to practice writing Python

 71

code. Thus, we purposefully limit the degree of ‘helpfulness’ in the generated

starter code by providing only syntactically valid function stubs. Figure 5.4.1, which

shows an unaltered output of DRCOP generated from the design recipe block in

Figure 4.2.1, illustrates an example of this.

Figure 5.4.1: Python function stub generated using DRCOP

As for the unit test generation, we find Python’s unittest module to

involve concepts and syntactic particularities that seem to have little contribution

to students’ learning of fundamental programming concepts. Requiring the

understanding of object-oriented concepts and Python’s implementation of it—for

instance, having to understand what the keyword self means—is one example

of such particularities. In that light, we take the opposite approach from the code

template generation and implement DRCOP to generate all of the unit testing code

based on the EXAMPLE(S) line of the design recipe block.

As the consequence of this initial focus, we implement DRCOP to generate

two Python files per a single, function-level *.oln.py file: (1) function stubs as

the starter code and (2) a complete test suite compliant with Python3’s unittest

module. With this, students can follow the standard workflow of TDD [40] without

 72

having to implement any of the test cases themselves. They can start their iterative

implementation and improvement cycle by first running the generated test file and

seeing most of the test fail, then work towards the final ‘OK’ message from the unit

test driver by focusing on resolving each of the failures. As they complete the body

of each function, they can re-run the tests to check whether their implementation

complies with the behavior their tests specifies. Assuming the students invested a

fair amount of time and effort into writing the EXAMPLE(S), they can achieve “instant

confidence” [40] in the code they have written with the test suite from DRCOP.

5.4.2 Usage Pattern of DRCOP

The course infrastructure of CPE-101 at Cal Poly relies heavily on the UNIX

system the school provides, which allows convenient assignment deliverable

collection and grading for the instructors while letting students learn the basics of

the command-line UNIX environment. For instance, students are instructed to set

up and use their UNIX accounts for developing and testing their lab assignments

and projects, with the requirement to use the command-line utility handin to

submit the final deliverables of every programming assignment.

We deploy DRCOP with this existing infrastructure in mind. Once students

have finished drafting their DRaCO artifacts, they can upload their artifacts to the

school’s UNIX server and run DRCOP on their function-level DRaCO with the

following command in shell which is available as a BASH script publicly listed on

the instructor’s UNIX account ‘doryu’:

~$ ~doryu/services/DRCOP <filename>.oln.py

 73

At first, students are almost guaranteed to run into different severities of

PARSE ERRORs (examples of these are shown in Figure A.2 and Figure A.3, in

Appendix A), which may require some revision on their end before proceeding.

After a few cycles of running DRCOP, encountering errors, revising their DRaCO,

and re-running DRCOP, we expect students to have a code template to begin their

implementations of the course project, along with a fully functional unit test suite

they can run from the very beginning. Output from DRCOP that a student may see

at the point where DRCOP is writing out the generated file contents is shown in

Figure 5.4.2 below.

Figure 5.4.2: Code template and unit test generation prompts of DRCOP

The full instructions that describe this usage pattern to the students of CPE-

101 is provided in Appendix B, Instructions for DRCOP Usage.

 74

Chapter 6

VALIDATION OF THE DRACO-BASED PEDAGOGY

As we mention in section 5.1, Implementation Environment, we deploy our own

implementation of the DRaCO-based pedagogy in an attempt to empirically

validate its effectiveness and identify any practical challenges in integrating the

new methods. We design an A-B experiment with a control group we teach with

conventional methods of CPE-101 and an experimental group with the deployment

of DRaCO implementation illustrated in Chapter 5. Our primary focus here is to

objectively measure and analyze any improvements to the students’ ability to

program attributable to the DRaCO-based pedagogy, with a secondary goal of

observing students’ emotional resistance to the integration of the pedagogy—

namely, friction (as defined in Nomenclature).

6.1 Thesis Statement

Since we are interested in discovering whether the DRaCO-based pedagogy

positively impacts students’ ability to program, we utilize the single-tailed, two-

sample t-test to determine the statistical significance of applying the DRaCO-

based pedagogy.

In order to apply the statistical test to our empirical evaluation, we must

clearly define the Null and Alternate hypotheses for the A-B experiment. The

hypotheses are presented in the following subsections.

 75

6.1.1 Null Hypothesis

Use of a teaching method consisting of Design Recipes, Code Outlining, and Peer

Review practices backed by Automatic Code Template and Unit Test Generation

(namely, the DRaCO-based pedagogy) does not generate any difference or

worsens beginning students' performance on exam questions that test their ability

to program.

6.1.2 Alternate Hypothesis

Use of a teaching method consisting of Design Recipes, Code Outlining, and Peer

Review practices backed by Automatic Code Template and Unit Test Generation

(namely, the DRaCO-based pedagogy) does generate improvement in

beginning students' performance on exam questions that test their ability to

program.

6.2 Experiment Design

Here, we present the high-level design of the experiment to provide some context

of our experiment and disclose any relevant details that may impact evaluation of

the results.

6.2.1 Subjects and Sample Selection

Subjects for the experiment are 34 students enrolled in a single offering of CPE-

101 course during the Winter academic quarter of 2018 at Cal Poly SLO. Any

student who wishes not to participate in the research as a subject is allowed to opt

 76

out without any negative consequences to the course activities or their grades. All

students of the course agreed to participate in our experiment. We consider the

subjects of our experiment to be a representative sample of all first-year computing

major students at Cal Poly SLO.

We conducted a customary Prior Programming Experience survey at the

beginning of the academic quarter to find the following characteristics about the

sample group: out of 34 subjects, only one subject reported having absolutely no

programming experience, and another subject reporting to have never taken CPE-

123. The majority of the subjects reported having less than a year of programming

experience including CPE-123 (54.6%). Another partially overlapping majority out

of 34 reported having no prior experience with Python (55.9%). Figures supporting

these results are presented below.

Figure 6.2.1: Subjects’ experience in programming prior to CPE 101

 77

Figure 6.2.2: Durations of the subjects’ prior programming experience

Figure 6.2.3: Subject’s experience with Python prior to CPE-101

We leverage the separation of the 34 subjects into experimental and control

groups on the lecture-lab split of CPE-101 course structure. Most offerings of CPE-

101 at Cal Poly SLO maintain one-to-one mapping. That is, all students who attend

a particular CPE-101’s single lecture offering are assigned to a single offering of

 78

the lab offering of the courses. However, we split the 34 students attending a single

CPE-101 lecture by the primary investigator into two equally-sized groups of 17

students, each with their own lab offering to attend. The fifty-minute lecture of CPE-

101 is scheduled on Mondays, Wednesdays, and Fridays at 12:10pm, with two

separate fifty-minute labs scheduled back-to-back, one starting at 1:10pm

(experimental group) and another starting at 2:10pm (control group). The splitting

of the single group of lecture attendees into two groups of lab attendees are

handled mostly by on the university’s course enrollment system based on each

students’ other course schedules, preferences, and availabilities.

6.2.2 Execution

Throughout the ten-week duration of the quarter, two groups of students (control

and experimental, each enrolled in different lab offerings) receive the same

lectures, labs assignments, and projects, but are presented with different tools and

procedures for the projects during the lab hours.

The control group is presented with the specifications that stress traditional

methods of test-driven development with restricted peer evaluation or collaboration,

whereas the experimental group receives instructions with heavy emphasis on

practicing the DRaCO workflow, utilizing the textual artifacts of DRaCO to generate

code template and unit tests using DRCOP, and participating in the peer review

process.

 79

6.3 Data Collection

The evaluation of student performance was done during the two midterm exams

and a lab final exam at the end of the quarter. Two midterm exams—each

scheduled during week four and six respectively out of a ten-week quarter—

presented all students with the same problems, including a subset of problems

designed to test their ability to program. The lab final exam was a computer-based

exam where students were expected to complete a small programming task using

the skills they have acquired throughout the quarter.

Reproduction of the subset of problems from the midterm exams and the

lab final exam problem is available in Appendix F, Midterm and Lab Final Exam

Problems . We summarize these problems and their design in Table 6.1 to show

that our data collection methods comprehensively evaluate the DRaCO

pedagogy’s impact on students’ learning.

In the table below, each problem is identified by the exam which it appears

in and the problem number we assign to it. All problems are marked with number(s),

one through five, corresponding to each component of the ability to program (‘ATP’)

they are designed to test. The numbering scheme and the definitions for the

components of the ATP are given in presented initially in section 3.4,

Nomenclature. The rightmost column of the table explains the rationale behind

each problem, i.e., why we believe it is important to gather our validation data

based on it.

 80

Table 6.1: Summary of exam problems that test students’ ability to program

Exam Problem # ATP # Explanation for the Problem Design

Midterm I

6 5

Tests students’ ability to read and

comprehend an implementation plan

given in a code outline format, as well as

their ability to correctly produce an

executable program from the outline.

7 5

Tests students’ ability to distinguish the

system-level input/outputs implemented

as side-effect from the input/outputs of a

function when implementing a function

based on the provided code outline.

8 4

Tests students’ ability to generate

effective test cases to cover all branches

of a conditional logic. Also tests students’

capabilities to extract and understand an

abstract logic expressed in a formal

programming language syntax.

9 5

Tests students’ ability to effectively

comprehend and trace the execution

pattern of an existing program. Also tests

students’ capabilities to navigate a

complex iterative logic expressed in a

formal programming language syntax.

Midterm II 8 1,3,4

Tests students’ capabilities of

understanding a complex problem

statement and decomposing it into

discrete subproblems in terms of function

specifications in design recipe. Grading of

this problem is done by a one-on-one

interview, during which the authoring

student is evaluated on their clear

communication of their implementation

plan.

 81

9 2,3,5

Tests student’s ability to gauge the

overall complexity of the functions they

have specified as part of a decomposition

process and their ability to lay out an

implementation plan for them in terms of

the code outline. Grading of this problem

is also done by the one-on-one interview,

during which the authoring student is

evaluated on their clear communication of

their implementation plan.

Lab Final ALL 1,2,5

Comprehensive evaluation of a student’s

ability to program in real-life situation,

where a student must decompose a

complex problem into unit-testable

functions, implement them, and utilize

them effectively in a main driver program

to satisfy the requirements for the given

problem.

By collecting the scores earned on the exam problems by the two groups

and analyzing the differences, we are able to validate if DRaCO-based pedagogy

is effective in making a statistically significant difference in the experimental groups’

ability to program. For the exam problems that have a set answer, we apply a

rubric-based grading in evaluating students’ responses to generate the scores,

applying a class-wide rubric to ensure the grading is consistent throughout. For

some exam problems that are more open-ended such as the ones asking for a

decomposition of a relatively complex problem, we conduct a one-on-one student

interview to ensure that the students’ intentions are delivered clearly to the

instructor while also testing student’s ability to communicate their implementation

plan to a third party (which is a component of the ability to program). Throughout

 82

the grading process, we mix student submissions in random order and temporarily

anonymize them such that no subconscious bias affects our evaluation.

In addition to the evaluation and analysis of exam results, in-person exit

interviews and inspection of the student assignment submissions are performed to

determine the students’ emotional responses to the integration of the framework

into the teaching of the course. This collection and analysis of student reactions is

designed to reveal the magnitude of any friction introduced by integrating the

framework into the course.

Although most of the data collected regarding friction is done informally via

student interaction observations and making certain assumptions based on how

students generate and deliver DRaCO artifacts, we do prepare a more formal

interview process for the student exit interview, where we compose the following

questions ahead of time and verbally deliver them to be answered by the students

in a Likert scale, such that 1 indicates ‘strongly disagree’ and 5 indicates ‘strongly

agree,’ unless otherwise specified. These questions are separated into the

following sections for the better flow of the in-person interview:

1. Past Programming Practices

2. Newfound Programming Practices

3. Current Thoughts on DRaCO

4. Future Plans with DRaCO

5. General Feedback

6. Final Open Comment

 83

These questions are presented in Table 6.2 below. Most questions are posed as

statements students can respond with the Likert scale from ‘strongly disagree’ to

‘strongly agree,’ but questions that do not conform to this format are indicated with

the curly brackets ({ }) following the question text that describes the different

response type.

Table 6.2: Questions prepared for the student exit interview

Section # Question {Specifications of Different Response Type}

1

1
How much programming experience did you have prior to

taking this course? {1: ‘Little to None’, 5: ‘Expert-Level’}

2
Prior to taking this course, I have heard of or was taught code

outlining or any other similar practice(s) for programming.

3

Prior to taking this course, I was taught to use non-executable

texts (such as in-line comments or paper-and-pencil notes) to

plan out programming implementations.

4

Prior to taking this course, I have had experiences of using a

tool that generates code templates and/or unit tests from non-

executable implementation plans.

5

Prior to taking this course, I personally liked to write outlines

for the program I am about to write before actually writing any

executable code.

2

1
How much programming skill do you think you have now that

you've taken this course? {1: ‘Little to None’, 5: ‘Expert-Level’}

2
In this course, I have heard of or was taught code outlining or

any other similar practice(s) for programming.

3

In this course, I was taught to use non-executable texts (such

as in-line comments or paper-and-pencil notes) to plan out

programming implementations.

4

In this course, I have had experiences of using a tool that

generates code templates and/or unit tests from non-

executable implementation plans.

 84

5

After my experience during this course, I now personally like to

write outlines for the program I am about to write before

actually writing any executable code.

3

1
I think constructing design recipe(s) is an important process in

constructing a working program.

2
I think writing code outline(s) is an important process in

constructing a working program.

3
I think peer DRaCO review process (would) have helped me

better plan my implementation for a program.

4
I think automatic function stub generation from DRaCO (would)

have made my writing and completion of the programs easier.

5
I think automatic unit test generation from DRaCO (would)

have produced helpful unit tests I used throughout the course.

4

1

I plan to (continue to) use the DRaCO in my future courses if

the automatic function stub and unit test generation becomes

available for me to use.

2

I plan to (continue to) use the DRaCO in my future courses,

even if the automatic function stub and unit test generation is

no longer available.

3

I would recommend the DRaCO backed by automatic function

stub and unit test generation to any beginning computer

science student.

4

I would recommend the DRaCO to any beginning computer

science student, even without the support of any automatic

function stub and unit test generation.

5

1
If applicable: I personally enjoyed writing design recipes for

this course. {Empty response permitted}

2
If applicable: I personally enjoyed writing code outlines for this

course. {Empty response permitted}

3
If applicable: I personally enjoyed using the function stub and

unit test generation tool (DRCOP). {Empty response permitted}

6 1 How did you think the course went? {Free discussion}

 85

2
Lastly, do you have any questions, concerns, comments, or

thoughts for the instructor? {Free discussion}

6.4 Experiment Schedule

Table 6.3 below enumerates each key component of the experiment we schedule

throughout the course. In the schedule, we provide week and day numbers along

with the concrete dates from 2018. The weeks are numbers 1 through 10, for each

week of the ten-week academic quarter, and the days are numbered 1 for a

Monday, 2 for a Wednesday, and 3 for a Friday class meeting.

Table 6.3: Experiment schedule in Cal Poly SLO’s CPE 101

Date Week Day Component of the Experiment

January 8 1 1 First Day, Informed Consent

January 17 2 2 Project 1 Assigned (no peer review)

January 26 3 3 Project 1 Due, Project 2 Assigned

January 31 4 2 Project 2 DRaCO Due, Informal Peer Review

February 2 4 3 Midterm I Exam

February 5 5 1 Project 2 Final

February 7 5 2 Project 3 Assigned

February 9 5 3 Project 3 DRaCO Due, Informal Peer Review

February 16 6 3 Project 3 Due

February 20 7 1 Project 4 Assigned

February 21 7 2 Midterm II Exam

February 23 7 3 Project 4 DRaCO Due, In-depth Peer Review

February 26 8 1 Project 4 Due

March 9 9 3 Project 6.1 Assigned

March 12 10 1 Project 6.1 DRaCO Due, In-depth Peer Review

March 16 10 3 Lab Final Exam

March 15 – March 22 (Finals) Student Interviews for Midterm II and Friction

 86

Chapter 7

RESULTS AND DISCUSSION

In this chapter, we provide the results of empirically evaluating DRaCO-based

pedagogy with the A-B experiment we describe in the previous chapter (Validation

of the DRaCO-based Pedagogy).

There are two main parts of the results of our experiment. The first is the

statistical significance test based on the exam scores that reflect students’ ability

to program—namely, Composite ATP Score. The second is the evaluation of

Friction based on the primary investigator’s observation of student interactions

during the academic quarter and students’ responses from the exit interviews at

the conclusion of the experiment.

7.1 Composite ATP Score

We compute composite ATP score per student, where a single score is calculated

as a weighted mean of the scores earned on the specific problems that test their

ability to program from Table 6.1: Summary of exam problems that test students’

ability to program. The weight used for each problem is based on the specific

problem score’s contribution to the total course grade. Once the weighted mean is

computed, we scale it as a percentage out of the maximum attainable score. Table

7.1 below shows an example of how a single student’s composite ATP score is

computed.

Table 7.1: Example computation of a single Composite ATP Score

Exam Problem # Score Earned Max Score Appx Score Weight

 87

Midterm I

6 6 10 2.31 %

7 5 5 1.15 %

8 5 5 1.15 %

9 6 6 1.39 %

Midterm I Subtotal 22 26 6.00 %

Midterm II
8 10 12 2.77 %

9 4 6 1.38 %

Midterm II Subtotal 14 18 4.15 %

Lab Final

Output Diff 0 15 0.45 %

Main 15 25 0.75 %

Functions 24 40 1.20 %

I/O 20 20 0.60 %

Lab Final Subtotal 59 100 3.00 %

Composite ATP Score Relative to Course Grade 13.15 %

Final Composite ATP Score for the Student 76.61 / 100.00

Table 7.2 below shows composite ATP scores for all students who were

subjects of our experiment. Students from the experimental groups are marked

with subject IDs ‘A01’ through ‘A17’, and the ones from the control groups are

marked with subject IDs ‘B01’ through ‘B17.’ Values shown in this table are used

in deriving the statistical significance (subsection 7.1.1) of our experiment.

Table 7.2: Composite ATP scores for all subjects of the experiment

Subject ID Composite ATP Score Subject ID Composite ATP Score

A01 77.82 B01 43.75

A02 58.79 B02 78.05

A03 76.61 B03 71.96

A04 66.11 B04 81.88

A05 79.69 B05 47.26

A06 71.07 B06 74.18

A07 59.16 B07 69.12

A08 77.51 B08 69.28

 88

A09 83.53 B09 29.82

A10 81.63 B10 67.11

A11 67.16 B11 70.51

A12 92.43 B12 80.56

A13 60.00 B13 45.42

A14 66.84 B14 41.56

A15 72.61 B15 50.70

A16 65.40 B16 63.65

A17 43.23 B17 84.46

We present the group means and the overall sample standard deviation of

the composite ATP scores in Table 7.3 below. Values shown in this table are used

in deriving the effect size (subsection 7.1.2) of our experiment.

Table 7.3: Composite ATP score statistics for the effect size computation

Means of

Composite ATP Scores

Experimental (A) 70.56

Control (B) 62.90

Sample Standard Deviation of

All Composite ATP Scores
14.60

Lastly, Figure 7.1.1 shows the kernel distribution plots of the two groups’

composite ATP scores.

 89

Figure 7.1.1 Kernel distribution plot of composite ATP scores

7.1.1 Statistical Significance

As explained in 6.1, Thesis Statement, we perform a single-tailed, two-sample t-

test to determine the statistical significance in applying the DRaCO-based

pedagogy to improve introductory computer science students’ ability to program.

First, we begin by defining the parameters of the t-test. As for the variable

to analyze, we select composite ATP score as the single variable for statistical

significance test. For the significance level, we use the value pre-determined prior

to the commencement of the experiment. This significance level, or Alpha (α) value,

is set to 0.05. By using a pre-set significance level, we suppress any potential of

 90

post-experiment alteration of the parameters of statistical analysis in order to fit the

results to the hypothesis.

Our t-test returns the p-value of 0.0644 (rounded to the nearest ten-

thousandth) which is larger than our pre-set Alpha value of 0.05. Therefore, we are

not able to conclude that DRaCO-based pedagogy yields any statistically

significant difference in students' ability to program.

7.1.2 Effect Size

The failure to show the statistical significance of implementing DRaCO-based

pedagogy is not particularly surprising, given the total sample size of 34. What is

surprising, however, is that the p-value we derived is close of enough to suggest

at least some effect that DRaCO-based pedagogy has. In order to further

investigate the effect of our new pedagogy, we compute the effect size. Adapting

Coe’s definition that “effect size is just the standardised [sic] mean difference

between the two groups” [43] directly, we use the following formula to compute the

effect size:

𝐄𝐟𝐟𝐞𝐜𝐭 𝐒𝐢𝐳𝐞 =
(Mean of Experimal ATP Scores) − (Mean of Control ATP Scores)

(Sample Standard Deviation of All Composite ATP Scores)

Using the values of means and the standard deviation presented in Table 7.3, we

get the effect size of 0.5248 (again, rounded to the nearest ten-thousandth), which

qualifies as “medium” effect size, and is “large enough to be visible to the naked

eye” [43].

This result is certainly much more optimistic for the future of DRaCO-based

pedagogy. Although we acknowledge that there are reputable criticisms of using

 91

the term such as ‘medium’ out of contexts [44] [45], we retain our conclusion of

‘medium’ effect size based on Coe’s statement that “In education, if it could be

shown that making a small and inexpensive change would raise academic

achievement by an effect size of even as little as 0.1, then this could be a very

significant improvement, particularly if the improvement applied uniformly to all

students, and even more so if the effect were cumulative over time” [43].

7.2 Friction

Rather than applying rigorous statistical utilities to the data we have collected, we

rely mostly on the qualitative observations and the experiences we have

throughout the experiment to discuss Friction, supplemented by the students’

responses from the standardized exit interview. The questions we utilize in the exit

interview are shown in Table 6.2: Questions prepared for the student exit interview.

The entirety of the exit interview results in tabular and distribution plot formats is

available in Appendix G, Student Exit Interview Results.

Above all, it becomes obvious quite early on that the integration of DRaCO

workflow into CPE-101’s project specifications as a required deliverable appears

as burdensome to the students, as it inevitably introduced additional intermediate

deadlines and more submission requirements. We, as instructors, make an

argument that front-loading the workload on the DRaCO workflow has a great

potential to ultimately reduce any unexpected semantic errors later on, along with

the added benefit of DRCOP’s automatic unit test generation from DRaCO.

However, our observation shows that the long-term benefit of the DRaCO workflow

is often eclipsed by the nuisance of having to deal with extra deadlines and

 92

deliverables in the students’ eyes. Experiencing student pushbacks such as

requests to be exempt from the DRaCO requirements or pleading how DRaCO

workflow is becoming an impedance for certain projects is quite a regular

occurrence at the introductory phase. However, these pushbacks soon subside as

we communicated to the students that the DRaCO requirements cannot be waived

for any reason and students simply accepted as part of the course requirements.

Despite this pushback, we observe that a small group of students soon learn

to take advantage of the DRaCO workflow heavily to their benefit, acknowledging

that spending sufficient time on the DRaCO artifacts prior to the starting code

implementation is indeed helpful in the long term. We find that almost all DRaCO

deliverables we inspect from this group of students do support their claim regarding

how much time and effort they spend on DRaCO.

We also observe that our implementation of automatic code template and

unit test generation, namely DRCOP, seems to introduce a bit of extra difficulty for

the students. Although we design DRCOP to be as user-friendly as possible, the

limitations of command-line interface and the students’ lack of familiarity with the

UNIX environment help paint DRCOP as any other regular UNIX-style utility that

is difficult to work with in many cases. While our exit interview results indicate that

DRCOP still serves its purpose as a good motivator for students to use the DRaCO

workflow on their own (delta between questions 1 and 2 from section 4, increase

of 0.9444 in experimental group compared to the increase of 0.5000 in the control

group on average), and that students certainly found the generated unit tests to be

helpful (questions 5 from section 3, average response 4.2778), we encounter

 93

confusions from students regarding their interaction with DRCOP quite often

throughout the experiment.

Another notable observation includes the peer review process, where the

exit interview responses (question 3 from section 3) reveal that students from the

experimental group have rather lukewarm responses (average of 3.1111)

regarding the peer review process’s helpfulness, compared to the relatively high

expectations the control group show for the same process (average of 4.0625).

Lastly, we use Google Cloud Platform (GCP)’s natural language sentiment

analysis demonstration tool to analyze the overall sentiment captured during the

final open comment section of the exit interview (section 6) [46]. The sentiment

analysis result provided by GCP is composed of a sentiment score ranging

between –1 and 1, accompanied by the magnitude of the sentiment as a positive

real number. Detailed definitions of the output values are provided by GCP as

follows [47]:

• score of the sentiment ranges between -1.0 (negative) and 1.0 (positive)

and corresponds to the overall emotional leaning of the text.

• magnitude indicates the overall strength of emotion (both positive and

negative) within the given text, between 0.0 and +inf. Unlike score,

magnitude is not normalized; each expression of emotion within the text

(both positive and negative) contributes to the text's magnitude (so longer

text blocks may have greater magnitudes).

 94

Figure 7.2.1 Google Cloud Platform’s classification of sentiment scores

Figure 7.2.1 above shows the classification of the sentiment scores as

negative (red), neutral (yellow), and positive (green). This analysis reveals that the

experimental group’s comments have an overall neutral sentiment about the

course (sentiment score 0.2) at a relatively higher magnitude (33.9, 0.0209 per

word), while the control group’s comments contain an overall positive sentiment

(score 0.3, 0.0392 per word) at a lower magnitude (28.3). If we assume that the

difference between the two sets of values are larger than the margin of error, we

may interpret this result as a supporting measure for the pushback and the

difficulties we observed while deploying DRaCO workflow and DRCOP.

7.3 Overall Evaluation of the Thesis Statement

Considering the statistical and anecdotal analysis presented in previous sections,

we determine that the use of a teaching method consisting of Design Recipes,

Code Outlining, and Peer Review practices backed by Automatic Code Template

and Unit Test Generation (namely, the DRaCO-based pedagogy) shows

promising potential in generating meaningful improvement in beginning students'

ability to program.

With this evaluation of the thesis statement, we also stress the

implementation strategy we have utilized in conducting our experiment incurs at

least some nontrivial Friction, such that the students working under our particular

 95

implementation are likely to have negative emotional response to the DRaCO-

based pedagogy. This indicates that at least a moderate amount of modification to

our implementations of the pedagogy is required for a successful integration of the

new pedagogy into existing curricula.

 96

Chapter 8

THREATS TO VALIDITY

The primary threat to our work’s validity lies in our methods of validating the new

pedagogy we propose. First, our design of the exam problems and assignment of

the score distribution are not particularly compliant with any existing standardized

academic testing framework. Due to this, any lack of experience or knowledge we

have from the field of education in general may have resulted in the exam problems

that may not have been as effective in testing students’ ability to program as we

intended them to be. Second, although we have taken all cautionary measures

necessary to prevent biased evaluation of the exam problems, we acknowledge

that we were still susceptible to subconscious bias that may skew the outcome.

This is almost unavoidable as we were both the author and the tester for the

DRaCO-based pedagogy and its implementations.

Another threat to validity is our sample selection. The students who

participated in our experiment were divided initially by Cal Poly SLO’s course

enrollment into the two separate lab offerings which we utilized as experimental

and control groups. In addition, before commencing the experiment, we moved

some students from the experimental-group-to-be lab offerings to the control-

group-to-be lab offering to resolve the group size imbalance. We recognize this

process does not follow proper random sample selection and division procedure.

Lastly, we note that students’ own bias for or against the DRaCO-based

pedagogy might have affected our validation, as our experiment was not a ‘blind’

A-B experiment. That is, all students in the experiment were enrolled in the

 97

common lecture offering, and we did not restrict communications between the two

groups of students. Most students were aware of how the other group of students

were taught during the lab hours. Replication of our validation in a blind A-B

experiment may yield significantly different results from the ones we achieved from

our validation methods.

 98

Chapter 9

CONCLUSION AND FUTURE WORK

9.1 Concluding Remarks

In this thesis, we motivate and propose a new teaching method for the early

computer science education at higher education institutions. We use our own

experience with observing students’ struggles with the syntax of programming

languages and the “Blank Page Syndrome” [24] to suggest a DRaCO-based

pedagogy that capitalizes on fundamental programming skills the students

possess as intuitions and their familiarity with outlining practices.

We develop our own implementation of this pedagogy to integrate it into Cal

Poly SLO’s introductory computer science course that. We set up an A-B

experiment to validate the pedagogy and its implementation while observing the

emotional response from the students regarding the new workflow and course

requirements that we introduce on top of the existing curricula. We collect students’

exam scores to verify that the new pedagogy shows strong potential in generating

meaningful improvement in beginning students' ability to program despite some

indications of negative emotional response from the students.

9.2 Future Work

The work we present here is highly experimental and is in need of further validation

via replication studies that deploy improved implementations of the DRaCO

workflow and the automatic code template and unit test generation.

 99

If the pedagogy itself is shown to be sound with replication studies, the next

step of development must be focused heavily on a streamlined implementation of

the automatic code template and unit test generation. In particular, we anticipate

a graphical tool that provides the same functionality of DRCOP in a much more

streamlined and easy-to-use way to be one of the more attainable ways in

significantly reducing Friction we observe in our experiment.

 100

BIBLIOGRAPHY

[1] J. O. Shallit, "A Very Brief History of Computer Science," University of

Waterloo, [Online]. Available: https://cs.uwaterloo.ca/~shallit/

Courses/134/history.html. [Accessed 2 May 2018].

[2] U.S. Bureau of Labor Statistics, "Software Developers: Occupational Outlook

Handbook," U.S. Bureau of Labor Statistics, 2017. [Online]. Available:

https://www.bls.gov/ooh/computer-and-information-

technology/software-developers.htm. [Accessed 2 May 2018].

[3] D. S. Alberts and D. S. Papp, "The information age: An anthology on its

impact and consequences," Office of the Assistant Secretary of Defense

Washington DC Command and Control Research Program (CCRP),

Washington DC, 1997.

[4] M. Resnick, J. Maloney, A. Monroy-Hernàndez, N. Rusk, E. Eastmond, K.

Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman and others,

"Scratch: programming for all," Communications of the ACM, vol. 52,

no. 11, pp. 60-67, 2009.

[5] Lifelong Kindergarten Group at the MIT Media Lab, "Scratch - Imagine,

Program, Share," Lifelong Kindergarten Group at the MIT Media Lab,

2018. [Online]. Available: https://scratch.mit.edu/. [Accessed 2 May

2018].

 101

[6] S. Bloch, "Teach Scheme, reach Java: introducing object-oriented

programming without drowning in syntax," Journal of Computing

Sciences in Colleges, vol. 23, no. 5, pp. 65-67, 2008.

[7] S. Fincher, "What are we doing when we teach programming?," in Frontiers

in Education Conference, 1999. FIE'99. 29th Annual, San Juan, 1999.

[8] R. Bornat, Programming from First Principles, Prentice Hall International,

1987.

[9] P. J. Landin, "The next 700 programming languages," Communications of

the ACM, vol. 9, no. 3, pp. 157-166, 1966.

[10] R. Shackelford, Introduction to Computing and Algorithms, Addison-Wesley,

1998.

[11] S. Fincher, S. Cooper, M. Kölling and I. Utting, "ILE-Idol," ACM SIGCSE

Bulletin, vol. 41, no. 3, pp. 4-5, September 2009.

[12] R. E. Pattis, Karel the robot: a gentle introduction to the art of programming,

John Wiley & Sons, Inc., 1981.

[13] CodeCombat, Inc., "CodeCombat - Learn how to code by playing a game,"

CodeCombat, Inc., 2018. [Online]. Available: https://codecombat.com/.

[Accessed 11 June 2018].

[14] D. J. Malan and H. H. Leitner, "Scratch for budding computer scientists," in

ACM Sigcse Bulletin, Covington, 2007.

 102

[15] Google, Inc., "Blockly | Google Developers," Google, Inc., 2018. [Online].

Available: https://developers.google.com/blockly/. [Accessed 5 June

2018].

[16] Google, Inc., "Made with Code | Google," 2018. [Online]. Available:

https://www.madewithcode.com/. [Accessed 8 June 2018].

[17] The Walt Disney Company, "Hour of Code | Disney Partners," The Walt

Disney Company, 2018. [Online]. Available: http://partners.disney.com/

hour-of-code. [Accessed 8 June 2018].

[18] UC Berkeley Computer Science Division, "CS61A Spring 2018," 2018.

[Online]. Available: https://inst.eecs.berkeley.edu/~cs61a/sp18/articles/

about.html. [Accessed 8 June 2018].

[19] M. de Raadt, M. Toleman and R. Watson, "Training strategic problem

solvers," ACM SIGCSE Bulletin, vol. 36, no. 2, pp. 48-51, 2004.

[20] Simon, "Soloway's Rainfall Problem Has Become Harder," in LATICE '13

Proceedings of the 2013 Learning and Teaching in Computing and

Engineering, 2013.

[21] E. Soloway, "Learning to program= learning to construct mechanisms and

explanations," Communications of the ACM, vol. 29, no. 9, pp. 850-858,

1986.

[22] F. E. V. Castro, S. Krishnamurthi and K. Fisler, "The impact of a single lecture

on program plans in first-year CS," in Proceedings of the 17th Koli

Calling Conference on Computing Education Research, 2017.

 103

[23] M. Felleisen, R. B. Findler, S. Krishnamurthi and M. Flatt, How to Design

Programs, Second Edition, MIT Press, 2014.

[24] S. Bloch, J. Clements, M. Felleisen, R. Findler, K. Fisler, M. Flatt, V. Proulx

and S. Krishnamurthi, "Program by Design," [Online]. Available:

http://www.programbydesign.org/who. [Accessed 20 May 2018].

[25] E. Schanzer, K. Fisler, S. Krishnamurthi, E. Youndtsmith and R. Sobota,

"Bootstrap :: Hour of Code," 2018. [Online]. Available:

http://www.bootstrapworld.org/materials/spring2018/courses/hour-of-

code/#. [Accessed 12 June 2018].

[26] E. Schanzer, E. Youndtsmith, K. Fisler, S. Krishnamurthi and J. Politz, "Unit

4: The Design Recipe," Bootstrap, 2017. [Online]. Available:

http://www.bootstrapworld.org/materials/spring2017/courses/bs1/units/

unit4/index.html. [Accessed 20 May 2018].

[27] G. A. Miller, "The magical number seven, plus or minus two: Some limits on

our capacity for processing information.," Psychological review, vol. 63,

no. 2, p. 81, 1956.

[28] K. D. Bromley, "Précis writing and outlining enhance content learning," The

Reading Teacher, vol. 38, no. 4, pp. 406-411, 1985.

[29] D. L. Schacter, The seven sins of memory: How the mind forgets and

remembers, Houghton Mifflin Harcourt, 2002.

[30] S. McIntosh, Y. Kamei, B. Adams and A. E. Hassan, "The impact of code

review coverage and code review participation on software quality: A

 104

case study of the qt, vtk, and itk projects," in Proceedings of the 11th

Working Conference on Mining Software Repositories, Hyderabad,

2014.

[31] Y. a. L. H. Wang, Y. Feng, Y. Jiang and Y. Liu, "Assessment of programming

language learning based on peer code review model: Implementation

and experience report," Computers & Education, vol. 59, no. 2, pp. 412-

422, 2012.

[32] T. Busjahn and C. Schulte, "The use of code reading in teaching

programming," in Proceedings of the 13th Koli Calling international

conference on computing education research, Koli, 2013.

[33] GitHub, "Features · Code review," GitHub, [Online]. Available:

https://github.com/features/code-review. [Accessed 27 May 2018].

[34] Atlassian, "Crucible Code Review Tool for Git, SVN, Perforce and More,"

Atlassian, 2018. [Online]. Available: https://www.atlassian.com/

software/crucible. [Accessed 27 May 2018].

[35] JetBrains, "Upsource: Code Review, Project Analytics, and Team

Collaboration by JetBrains," JetBrains, [Online]. Available:

https://www.jetbrains.com/upsource/. [Accessed 27 May 2018].

[36] E. M. Maximilien and L. Williams, "Assessing test-driven development at

IBM," in Software Engineering, 2003. Proceedings. 25th International

Conference on Software Engineering, Portland, 2003.

 105

[37] D. Janzen and H. Saiedian, "Does test-driven development really improve

software design quality?," IEEE Software, vol. 25, no. 2, 2008.

[38] C. Desai, D. Janzen and K. Savage, "A survey of evidence for test-driven

development in academia," ACM SIGCSE Bulletin, vol. 40, no. 2, pp.

97-101, 2008.

[39] S. H. Edwards, "Using software testing to move students from trial-and-error

to reflection-in-action," ACM SIGCSE Bulletin, vol. 36, no. 1, pp. 26-30,

2004.

[40] K. Beck, "Aim, fire [test-first coding]," IEEE Software, vol. 18, no. 5, pp. 87-

89, 2001.

[41] Z. J. Wood, J. Clements, Z. Peterson, D. Janzen, H. Smith, M. Haungs, J.

Workman, J. Bellardo and B. DeBruhl, "Mixed Approaches to CS0:

Exploring Topic and Pedagogy Variance After Six Years of CS0," in

Proceedings of the 49th ACM Technical Symposium on Computer

Science Education, Baltimore, 2018.

[42] California Polytechnic State University, San Luis Obispo, "Computer

Engineering (CPE) < California Polytechnic State University," California

Polytechnic State University, San Luis Obispo, 2018. [Online].

Available: http://catalog.calpoly.edu/coursesaz/cpe/. [Accessed 28 May

2018].

[43] R. Coe, "It’s the Effect Size, Stupid," in Paper presented at the British

Educational Research Association annual conference, 2002.

 106

[44] J. Cohen, Statistical power analysis for the behavioral sciences. Revised

Edition, New York: Academic Press, 1977.

[45] G. V. Glass, M. L. Smith and B. McGaw, Meta-analysis in social research,

Sage Publications, Incorporated, 1981.

[46] Google, Inc., "Cloud Natural Language | Google Cloud," Google, Inc., 2018.

[Online]. Available: https://cloud.google.com/natural-language/.

[Accessed 5 June 2018].

[47] Google, Inc., "Natural Language API Basics | Cloud Natural Language API

Documentation | Google Cloud," Google, Inc., 2018. [Online]. Available:

https://cloud.google.com/natural-language/docs/basics#sentiment-

analysis-values. [Accessed 11 June 2018].

[48] T. Vanderbilt, "Let the robot drive: The autonomous car of the future is here,"

Wired Magazine, Conde NAST, www. wired. com, pp. 1-34, 2012.

[49] Summer of Innovation Zero Robotics, "Making a Peanut Butter and Jelly

Sandwich," [Online]. Available: http://static.zerorobotics.mit.edu/docs/

team-activities/ProgrammingPeanutButterAndJelly.pdf. [Accessed 20

May 2018].

[50] Microsoft Corporation, "T.TEST function - Office Support," Microsoft

Corporation, 2018. [Online]. Available: https://support.office.com/en-

ie/article/t-test-function-d4e08ec3-c545-485f-962e-276f7cbed055.

[Accessed 5 June 2018].

 107

APPENDICES

A. Architecture Design of DRCOP

The architecture of DRCOP contains two main subsystems and a single abstract

data type definition that serves as the medium of information flow between the two

subsystems. An abridged UML diagram illustrating this architecture is presented

below in Figure A.1.

Figure A.1 Abridged UML of the high-level architecture of DRCOP

Main Components of DRCOP

The abstract data type, class Function, represents a function in a program, with

the specifications of a function such as name, input types, return type, purpose,

argument names, side-effects, examples, and the code outline for the function

body as the attributes.

 108

First of the subsystems is the Parser class, which is a state machine

responsible for reading the design recipe blocks and building a collection of

functions. It also validates that the specifications for a function expressed in the

design recipe is complete with all of its components required to be used in a

function stub generation. The parser reads and processes one line of the

*.oln.py at a time and uses the header of the design recipe lines, e.g. CONTRACT,

PURPOSE, etc., and other textual artifacts to determine which state it needs to be

in to properly tokenize and populate the collection of functions with the line of text

it is processing. This is a theoretically reliable method of determining the state.

Despite the fact that input text is arbitrary, the electronic design recipe template

we provide to the students ensures that virtually no student would hand-write the

header of the design recipe lines. The states the parser maintains are composed

of ‘primary’ ans ‘sub’ states implemented as inner classes within parser. The

primary state is designed to distinguish the design recipe block from the function-

level outlines, and the sub state is kept track to separately track each line of the

design recipe block.

The second subsystem is the Writer class, which is designed at a high-level

as a language-independent interface requiring the concrete implementation of

template and unit test composition strategies to provide any language-specific

details. Since CPE-101 only uses Python, we construct the concrete PythonWriter

class that implements writer to generate the Python syntax. Our implementation of

the Python writer is quite simple. Once the parser completes processing the

*.oln.py file and the driver of DRCOP instantiates the writer with the collection

 109

of function and the file I/O details, our writer simply assembles the substrings of

Python unit test syntax corresponding to the design recipe’s components and

writes them sequentially to the two output files.

These subsystems and the abstract data type are put together as a single

pipeline inside of a command-line utility, written in Python and wrapped around a

BASH shell script for the proper delivery of the error logs to the instructor of the

course. This dual-layer driver is also responsible for input validation, file I/O, error

handling, logging, and helping students avoid small operational mistakes such as

file overwrites that may result in data loss.

Error Handling During Parsing

We designed DRCOP as a tool that students can use freely as they are working

on the course projects. This implies that the parser is exposed directly to the

arbitrary input fed in by the novice students, with even the best-case scenario

including some inevitable typos or mistakes in the design recipe that students write.

Thus, we include three different levels of error handling in the design of DRCOP

to flexibly handle various error scenarios while attempting to minimize student

frustration in dealing with the tool.

First and the least sever level of error case is ‘Ignorable PARSE ERROR.’

We recognize that our target audience is students who are not proficient at reading

and comprehending uncaught exception messages and stacktrace. Therefore, we

minimize the need to for the human user to handle any errors that occur during the

execution of DRCOP if the error can be somehow reconciled by the tool. When

some benign error is found in the text being parsed, DRCOP reports any such error,

 110

while still ‘doing its best’ in a JavaScript-like attitude to produce the output files that

are written in valid Python syntax. Certainly, this presents some possibility of

embedding unpredictable behaviors or hard-to-catch bugs in the code generated.

Nevertheless, this is a tradeoff we purposefully permit to prevent students from

ever getting completely ‘blocked’ from proceeding to run the generated unit tests

if they wish.

Figure A.2: Parse errors from DRCOP being presented as ‘Ignorable’

Figure A.2 above, which is a screen capture from the standard error stream,

illustrates this. The messages shown here are a result of unexpected characters

in the EXAMPLE line. DRCOP expects to fine a floating-point number, but some

mistake from the student results in pollutive characters to cause typecast failures

when generating unit tests. The tool reports these as Ignorable PARSE ERRORs

and continues to run, eventually generating the output files.

Although Ignorable PARSE ERRORs of DRCOP are quite similar to

“warning” messages of many conventional programming languages’ compilers or

 111

interpreters, we decide to stick with the term ‘ignorable’ instead to explicitly

communicate that DRCOP’s execution is not interrupted. This again comes from

understanding that most novice students do not know the difference between

“warnings” and “errors.” This terminology is designed to present a clear choice

between the following options to the students: (1) addressing the issues that

DRCOP runs into while parsing, or (2) simply accepting the fallback measures that

it provides.

The next level of severity in DRCOP’s error hierarchy is ‘CRITICAL PARSE

ERROR’s. Expected to be encountered much less frequently than the ‘ignorable’

errors, ‘critical’ errors correspond to cases where certain unexpected content from

the DRaCO text severely disrupts the operation of the parser. A student’s attempt

to run DRCOP on a high-level (instead of function-level) code outline or some other

non-DRaCO text can result in this disruption. In such cases, DRCOP reports this

error and halts, directing students to double check their outline. Figure A.3 below

shows an example of this, caused by a student’s attempt to run DRCOP on a high-

level code outline that does not have any design recipe blocks.

Figure A.3: Halting parse errors from DRCOP being reported as ‘CRITICAL’

In both levels of PARSE ERROR handling, we carefully design all student-

facing error messages to be novice-friendly. Despite the restrictions the command-

 112

line interface places on visual communications, we still determine that short error

messages with ASCII-art style graphics can communicate the causes of the errors

better than paragraphs-worth text instructions. Thus, whenever applicable, we

completely hide any conventional stacktrace-style errors and show a single-

sentence description of the error with a long-tailed arrow pointing to the portion of

their source text that caused the error instead. The long tail of the arrow also serves

as a box-shaped visual separator of multiple error messages in order to reduce

any potential confusion caused by a handful of error messages filling the whole

output screen.

The last and most severe level of the error is caused by a propagation of an

uncaught exception to the driver (main function) of DRCOP during a runtime.

Because the errors caused by the unexpected text from the students’ input is

handled mostly by the PARSE ERRORs, this case is most likely caused by some

defective internal logic of DRCOP. Therefore, we have implemented a detailed

error logging functionality such that the error conditions and the stacktrace from

the error is delivered to a UNIX directory designated by the instructor for

troubleshooting. If this error case is triggered, DRCOP generates an ‘error code’

and displays it to the student, along with a message instructing the student to

contact the instructor with that code.

Operational Detail

We present the operational details of our tool as a sequence diagram shown below

in Figure A.4. It shows the high-level structure of DRCOP’s architecture design,

and how each component of it interacts over the lifetime of a single execution of

 113

the tool. To provide better context, we present four more components in the

diagram in addition to the three key components shown in Figure A.1.

On the left-hand side of the sequence diagram, we show lifelines of each

layer of DRCOP’s dual-layer: DRCOP Wrapper (written in BASH) and DRCOP

Main (written in Python). On the right-hand side of the diagram, we show two

system-level components that interact heavily with DRCOP but is not part of the

tool: Console I/O (stdout and stderr), and File I/O.

 114

Figure A.4: Detailed sequence diagram of DRCOP’s execution

 115

B. Instructions for DRCOP Usage

This document provides a quick guide on how to use DRCOP to generate a

function template file and a unit test file for your program development.

1. If you haven't done so already, use Cyberduck, FileZilla, or scp to transfer

your code outlines for the functions file (for example, my_funcs.oln.py)

to the Cal Poly's UNIX machine.

2. Using Terminal or Git Bash, SSH to one of the CSC UNIX machines (e.g.

ssh username@unix3.csc.calpoly.edu).

3. Navigate to the directory you had transferred your files to (most likely

~/cpe101/labX/ or ~/cpe101/projectX/).

4. Check the directory listing with ls command to make sure your function file

(for example, my_funcs.oln.py) is in the current directory.

5. Type in the following command to convert your code outline file to a code

template and generate the unit tests. Be sure to replace

‘my_code_outline’ with the actual file name of your outline:

//home/doryu/services/DRCOP my_funcs.oln.py

6. You may see “PARSE ERROR” that show up as you run DRCOP. Although

many of them are marked as “ignorable,” you might want to go back and

check your outline to make sure if you haven't made any mistakes, as any

PARSE ERROR generally leads to some unexpected or incorrect

generation of the function template and the unit tests. Repeat Step 5 and 6

as necessary.

 116

7. Try the ls command again, and you'll notice that the unit test file (e.g.

my_funcs_test.py), as well as the template file (e.g. my_program.py)

has been generated.

8. Try running the generated unit test file. Most of the test should fail, because

your code hasn't been written yet.

9. At this point, you're ready to write actual code. Open up or transfer the

template generated (e.g. my_funcs.py) and begin writing code as outlined.

As you complete your functions, try-re-running the unit test and check if

more tests are passing. You'll know you've successfully implemented your

functions when you see all tests pass! (Assuming that your examples were

written correctly ...).

 117

C. Selection of Student-Composed Linear Code Outlines

The code outline shown in Figure 4.2.4: An example code outline for a simple

program and the outlines reproduced here are for the same ‘skater’ project.

Sample Linear Code Outline 1

#first ask how much the user weighs

#convert answer to float

#convert weight of skater to KG with poundstoKG

#then ask how far away the professor is

#convert distance to float

#then ask what type of object they want to throw

#use getMassObject function to find the mass of the object

#use getVelocityObject to find the velocity of the object

#Using the mass of the skater, mass of object, and velocity

of object calculate velocity of skater with getVelocitySkater

#velocity should be reported

#using if statements report appropriate remark based on

velocity of object

 118

Sample Linear Code Outline 2

#first, we will need to ask our user how much they weigh in

pounds.

#we will do this through using input to allow them to return

an answer

#second, we will ask them how far away the professor is (in

meters).

#third, we will ask them what item they will choose to throw.

#depending on the weight of the object (in kilograms) that

the user chooses to throw, the print statement we choose to

show will vary.

we will print the correct statements by using if, elif,

else regarding the mass of the object

#after this, we will determine the velocity of the skater by

importing the function we created in funcs.oln.py - then we

will print the velocity and a corresponding statement.

#after this, we will again use if, elif, and else to determine

which statement to print that corresponds with the given

skater velocity, per the instructions.

Sample Linear Code Outline 3

ask user for their weight in pounds

 119

ask user for distance (in meters) between skater and

professor

ask user which object they would like to throw

calculate the velocity of the object

calculate the velocity of the skater and print the result

Sample Linear Code Outline 4

Import functions from the func.py file

Ask the user for their weight (lbs) and cast the input as

a float

convert weight (lbs) into mass (kg)

Ask for user distance to professor

calculate velocity of the object

Ask user to input the object they are throwing

calculate mass of object

calculate velocity of skater

print based on the variables in previous steps.

 120

D. Project Specifications from CPE-101

Below, we reproduce the DRaCO workflow instructions from the specifications of

Projects 1 and 4 published to our experimental group. More project specifications

with different instructions for each project used in CPE-101 is available on the

online extension of this appendix at: http://mikeryu.com/DRaCO.

 “Code Outline and Peer Review Process” from Project 1

As we discussed in class, we will utilize the code outlining process before we start

writing the code. For this project, you are required to submit two code outlines; one for

your functions (funcs.oln.py), and the other for your main program

(skater.oln.py).

Follow the steps below to complete this phase of the project:

1. Do a close read of this specifications, top-to-bottom. As you’re reading the

specifications, think about what steps are necessary to generate the required

output.

2. If you haven’t done so already, set up your Sublime Text to support a design

recipe snippet. Visit http://mikeryu.com/dr to learn how to set this up.

3. Start on your first outline, funcs.oln.py. This file will serve as the outline for

your functions file, namely funcs.py. For this particular project, design recipe

will contain most of the important information, with the outline for function body

fairly minimal.

An example of how your funcs.oln.py should start is shown below (some

information is obfuscated with ‘...’, but your design recipe and outline should be

complete):

"""

Project 1

Name: Boaty MacBoatface

Instructor: Mike Ryu

http://mikeryu.com/DRaCO
http://mikeryu.com/dr

 121

Section: 13

"""

"""

CONTRACT | poundsToKG : ...

-------: | :---

PURPOSE | Converts weight in `pounds` ...

EFFECTS | ...

EXAMPLE | 0.0 -> 0.0 # 0 pound is 0 kg

 | 1.0 -> ...

 | ...

"""

calculate the result with given formula

4. Once you’ve completed funcs.oln.py, start your outline for your main program

in skater.oln.py. This file will consist of the file header (see the subsequent

section), as well as a few in-line comments that list the steps necessary to

complete the main program.

An example outline is shown below (note that this example is intentionally written

tersely as to not spoil any fun for you -- your outline should be much more

detailed):

"""

Project 1

Name: Boaty MacBoatface

Instructor: Mike Ryu

Section: 13

"""

first need to ask user about something

then another thing

now that we have some data, do some calculations

report the result!

 122

5. As soon as you’re done with funcs.oln.py and skater.oln.py, you may

handin the two outlines using the following command:

handin grader-ph 101project01 funcs.oln.py skater.oln.py

Code Outline is due on Saturday, 1/20 by 11:59 pm via handin

6. Once you have handed in your code outlines, you may convert your

funcs.oln.py to the template and corresponding unit test files using the

process outlined in http://mikeryu.com/oln. At this point, you should begin writing

actual code.

7. We will do an in-lab exercise on Monday, 1/22 to peer review each other’s code

outline, to make sure that everyone’s thought process expressed in the outline is

well organized and logically sound.

“Design Recipe and Code Outlines (DRaCO)” from Project 4

Due THIS Friday, 2/23 by 10:00 am via handin

The process of carefully designing your functions and expressing the implementation

plan in terms of code outlines has never been more important!

Therefore, the deliverable for this portion will compose

whopping 40% of your Project 4 grade.

Please read the following requirements carefully and handin your deliverables on time:

1. Read the subsequent pages of this specifications to understand the problem.

2. Think carefully about which functions you should write. Consider the following:

o Are your functions easy to understand? What would be their PURPOSE?

o Are your functions easy to test? Are you able to think of a few EXAMPLEs?

3. Once you’ve decided on which functions to write …

o Write the DRaCO for your functions in funcs.oln.py file.

▪ Each function’s DR must have at least FIVE (5) distinct

EXAMPLEs.

▪ Each function’s DR must be followed by a detailed CO. (No code,

tho!)

o Generate the unit tests and the template file using DRCOP.

http://mikeryu.com/oln

 123

▪ Your DRaCO must not cause any ERRORs when being

processed.

4. Once you’ve completed step 3 …

o Design your word_finder.py by writing word_finder.oln.py.

▪ Only write the detailed CO for the main program (no Python code).

▪ Think about how your functions will be used, in what order.

▪ Clearly indicate how you’ll be using conditionals, loops, etc.

o word_finder.oln.py does not need to be processed by DRCOP.

5. Handin your work, both DRaCO and the generated Python unit test and template

files.

o First, navigate to the UNIX folder where you’ve uploaded your work.

o Then, use this command:

handin grader-ph 101project04_ryu *.py

6. On Friday, 2/23, we will perform an in-depth code review of your DRaCO.

If you do not have the submission ready by 10:00 am, you’ll receive 0% credit.

 124

E. In-Depth Code Review Worksheets

In-Depth DRaCO Review Sheet for Project 4

 125

 126

In-Depth DRaCO Review Sheet for Project 6.1

 127

PDF versions of these documents are available on the online extension of this

appendix at http://mikeryu.com/DRaCO.

http://mikeryu.com/DRaCO

 128

F. Midterm and Lab Final Exam Problems from CPE-101

The following exam documents from CPE-101 are available on the online

extension of this appendix at http://mikeryu.com/DRaCO as PDF files:

• Midterm I, Part 2 (Problems 6 through 9)

• Midterm II, Part 2 (Problems 8 and 9)

• Lab Final Exam Specifications

• Supplemental Source Code for Lab Final Exam

G. Student Exit Interview Results

The entirety of student exit interview results is available on the online extension of

this appendix at http://mikeryu.com/DRaCO in the following formats:

• Spreadsheet with Anonymized Responses

• Distribution Plots for Each Exit Interview Question

H. Source Code of DRCOP

Source code of DRCOP is freely available for under the GNU Lesser General

Public License, version 3 (LGPL-3.0). You can download the ZIP archive of the

source code from the online extension of this appendix at

http://mikeryu.com/DRaCO. Public source code repository of DRCOP is also

available on GitHub: https://github.com/mikeryu/ms-thesis.

http://mikeryu.com/DRaCO
http://mikeryu.com/DRaCO
http://mikeryu.com/DRaCO
https://github.com/mikeryu/ms-thesis

	Committee membership
	Abstract
	Acknowledgments
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation
	1.1.1 An Anecdote on Why
	1.1.1.1 How We All Started
	1.1.1.2 The Fundamental Definition of Programming
	1.1.1.3 The Party Guest List Problem
	1.1.1.4 Our Motivation

	1.1.2 Traditional Computer Science Education and Its Shortcomings

	1.2 Outline of the Following Chapters

	2 Related Work
	2.1 Pseudo-language-based Pedagogy
	2.2 Initial Learning Environments
	2.3 Multilingual Pedagogy
	2.4 Planning-Based Pedagogy
	2.5 Common Shortcomings of the Existing Alternative Methods
	2.5.1 Lack of Capitalization on Students’ Existing Programming Skills
	2.5.2 The Cost of Increase in Cognitive Load
	2.5.3 Persistence of the Blank Pages

	2.6 Contributions of This Thesis

	3 Background
	3.1 Design Recipe
	3.2 Short-term Memory
	3.3 Outlining
	3.4 Nomenclature

	4 Proposal of a New Teaching Method
	4.1 The Primary Goal of the New Teaching Method
	4.2 Components of the New Teaching Method
	4.2.1 Design Recipe
	4.2.2 Code Outlining
	4.2.3 The DRaCO Workflow
	4.2.4 Peer Review Process
	4.2.5 Automatic Code Template Generation
	4.2.6 Automatic Unit Test Generation

	4.3 Summary of the Proposal
	4.3.1.1 New DRaCO-Based Pedagogy for Introductory Computer Science Education

	4.4 Name of the New Teaching Method

	5 Implementation of the DRaCO-based Pedagogy
	5.1 Implementation Environment
	5.1.1 Introductory Computer Science Courses at Cal Poly SLO
	5.1.2 General Structure of the CS1 Course at Cal Poly SLO
	5.1.3 Seams for the DRaCO-based Pedagogy

	5.2 The DRaCO Workflow
	5.2.1 Implementation of the Design Recipe Process
	5.2.2 Implementation of the Code Outlining Process
	5.2.3 Integration of the Workflow

	5.3 Peer Review Process
	5.3.1 Pre-screening and Formatting
	5.3.2 Informal Peer Review Session
	5.3.3 In-depth Peer Review Session

	5.4 Design Recipe and Code Outline Processor (DRCOP)
	5.4.1 Scope of DRCOP
	5.4.2 Usage Pattern of DRCOP

	6 Validation of the DRaCO-based Pedagogy
	6.1 Thesis Statement
	6.1.1 Null Hypothesis
	6.1.2 Alternate Hypothesis

	6.2 Experiment Design
	6.2.1 Subjects and Sample Selection
	6.2.2 Execution

	6.3 Data Collection
	6.4 Experiment Schedule

	7 Results and Discussion
	7.1 Composite ATP Score
	7.1.1 Statistical Significance
	7.1.2 Effect Size

	7.2 Friction
	7.3 Overall Evaluation of the Thesis Statement

	8 Threats to Validity
	9 Conclusion and Future Work
	9.1 Concluding Remarks
	9.2 Future Work

	10 Bibliography
	11 Appendices
	A. Architecture Design of DRCOP
	B. Instructions for DRCOP Usage
	C. Selection of Student-Composed Linear Code Outlines
	D. Project Specifications from CPE-101
	E. In-Depth Code Review Worksheets
	F. Midterm and Lab Final Exam Problems from CPE-101
	G. Student Exit Interview Results
	H. Source Code of DRCOP

