
DESIGN AND ANALYSIS OF A PARABOLIC TROUGH SOLAR CONCENTRATOR 
 
 

 
 
 
 
 
 
 
 
 

A Thesis 
presented to 

the Faculty of California Polytechnic State University, 
San Luis Obispo 

 
 

 
 
 
 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science in Civil and Environmental Engineering 
 
 
 
 
 
 
 

By 
George Nicholas Skouras 

August 2018 
 
 
 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 

George Nicholas Skouras 

ALL RIGHTS RESERVED 



iii 
 

COMMITTEE MEMBERSHIP 

 

 

TITLE:  Design and Analysis of a Parabolic Trough Solar 
Concentrator 

 
 

       AUTHOR:  George Nicholas Skouras 
 
 
 

    DATE SUBMITTED:                August 2018 
 
 
 
 
 
 
 
 
 COMMITTEE CHAIR:  Rebekah Oulton, Ph.D., PE 

Assistant Professor of Water Resources 
 

 

                         COMMITTEE MEMBER:  Tryg Lundquist, Ph.D. 

      Professor of Environmental Engineering 

 

 

          COMMITTEE MEMBER:  Yarrow Nelson, Ph.D. 

     Professor of Environmental Engineering 

 

 

 

 



iv 
 

ABSTRACT 

Design and Analysis of a Parabolic Trough Solar Concentrator 

George Nicholas Skouras 

 

A prototype solar desalination system (SODESAL) with a parabolic-trough solar concentrator 

(PTSC) and evacuated tube was designed and analyzed to determine the solar thermal 

capabilities for small-scale distillation and energy generation. A proof-of-concept study verified 

that distillation is possible with the system as designed, however a rupture occurred in the 

copper heat-pipe heat exchanger due to overheating. The internal temperatures of an 

aluminum heat transfer fin were measured inside an evacuated tube typically used in solar 

water heater systems to understand the lateral heat distribution and identify possible causes of 

the rupture.  Solar radiation was measured for both the summer and winter solstices to 

understand the relationship between incident solar radiation and the potential freshwater yield 

of the system. The lateral heat distribution of the AHTF is dependent upon the PTSC’s solar 

incident angle. A consistent lateral heat distribution occurred across the AHTF approximately 40 

mins after solar noon. The temperature difference between each end of the AHTF can exceed 

over 225 °C leading up to and following solar noon when the PTSC was set at a static slope. The 

SODESAL system’s future applications, system improvements and additional research are also 

discussed along with the capability of small-scale CSP systems. 
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1. INTRODUCTION 

Water is one of the most essential resources to support the Earth’s ecosystems and human 

civilization. Most of the water present on the planet is saltwater, and only a small portion is 

available as freshwater [1]. Agriculture, industry, power generation, sanitation and direct 

consumption all depend on reliable freshwater resources to function. A rise in developing 

nations and human population will further increase the demand for freshwater resources at a 

rate which the natural world cannot support.  

 

The effects of climate change include shifting rainfall patterns and disrupting the natural 

hydrologic cycle of regenerating freshwater resources. As more evidence supports the causality 

of climate change occurring from human consumption of fossil fuels, water-scarce areas should 

develop sustainable solutions for acquiring freshwater that are fossil-fuel free. Desalination is a 

well-practiced solution for removing dissolved solids from seawater to produce freshwater for 

coastal regions that have access to inexpensive electricity [20]. The most common method for 

desalination is reverse osmosis (RO) which can purify seawater into potable water; however, RO 

systems are expensive to maintain and require a high energy input and extensive energy 

infrastructure to operate. Some developing countries do not have the resources or 

infrastructure available to develop and operate RO systems. However, sunlight is an abundant 

and reliable resource which can provide developing countries with the necessary energy to 

purify saltwater to provide for their freshwater needs.  

 

Solar power generation technologies have improved over the last decade, especially for 

concentrated solar power (CSP) systems [15]. CSP systems typically utilize a parabolic trough 

solar collector (PTSC) in an array field for large-scale electrical power generation [12]. The 
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collector’s parabolic shape concentrates sunlight onto a cylindrical absorber located at the 

parabola’s focal point. The heat generated at the focal point is used to produce steam for 

electrical power [20].  

 

CSP technology is also capable of treating saltwater directly, by distilling the generated steam 

into freshwater [20].  Pilot-scale CSP desalination systems have successfully demonstrated their 

capability to recycle agricultural run-off with high salinities [22]. Small-scale solar desalination 

systems (SODESAL) also have the potential to provide freshwater solutions for deployment for 

disaster relief, permanent off-grid recycled water, residential and communal potable water and 

seawater purification.  The concentrated sunlight is converted into thermal energy which heats 

a heat transfer fluid and loops through a steam generator. The generated steam is passed 

through a multi-effect distillation system which recycles the latent heat of the distillate to heat 

incoming feed water and improve the system’s overall efficiency [22]. These types of solar-

powered desalination systems can treat high-salinity waters such as seawater, brackish water 

and wastewater and have the potential to produce a zero-liquid discharge for solids 

recovery[22].  

 

Solar powered desalination systems may play a key role in the future to maximize the yield of 

recycled water without adding fossil fuel demand. Significant developments have been made in 

improving the efficiencies and yields of small-scale solar desalination [25]. Current technology 

allows small-scale systems to operate with similar thermal characteristics as large-scale solar 

powered systems with comparable internal temperatures generated along the focal point of the 

PTSC [15].  
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The research herein explores the capabilities of a small-scale PTSC for application in a solar 

thermal desalination system. A prototype PTSC system was designed and constructed to be 

capable of several methods of solar tracking. A proof-of-concept study verified that distillation is 

possible with the system as designed.  The internal temperatures of an aluminum heat transfer 

fin were measured inside an evacuated tube to understand the lateral heat distribution due to 

an overheating rupture during early testing.  Solar radiation was measured for both the summer 

and winter solstices to understand the relationship between incident solar radiation and the 

potential thermal output of the system. 
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2. BACKGROUND 

Freshwater resources only account for 2.5% of the total water on earth; the remainder is 

comprised of ocean and saline water. Only approximately 30% of freshwater is accessible for 

direct use by humans in the form of groundwater, lakes, rivers and other surfaces waters [1]. 

This means the majority of global freshwater is locked in glaciers, icecaps and permafrost.  Solar 

technologies have long been used to address a variety of societal needs, and these technologies 

have potential to help address the challenge of increasing societal demand for these limited 

freshwater resources. This study focuses on how solar technologies can improve desalination 

options to meet these demands and the growing capabilities of small-scale SODESAL systems. 

 

2.1 Global Water Footprint 

Identifying the water footprint of a nation is an effective way to understand the nation’s water 

demands.  The water footprint is defined as the volume of water needed to produce goods and 

services consumed by the inhabitants of the country. The water footprint also includes virtual 

water costs which is water associated with manufacturing or producing a product that is traded 

between nations [2]. 

 

There are four main factors that contribute to a high-water footprint: 

• The total volume of consumption, which is generally related to gross national income of 

a country. Richer countries can afford more access to water, so their footprint is 

typically higher.  

• Water-intensive activities like producing livestock for meat consumption. Producing 

meat and other livestock lowers the efficiency of water use as the chain of production 

moves upwards.  
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• The climate of the region. Areas with a hot climate have high amounts of evaporation 

and therefore a higher water footprint due to losses.  

• Water-inefficient agricultural practices due to lack of adequate technology or the low 

yield of crops per amount of water used [2]. 

 

The global water footprint is estimated as 7450 Gm3/year or about 1240 m3/year per capita.  

The United States consumes the most water per capita (2480 m3/year) whereas China consumes 

very little water per capita (700 m3/year), as shown in Figure 2.1 [2]. Agriculture and food 

consumption contribute the largest portion of a nation’s water footprint. The water footprint for 

global agriculture is 6,390 Gm3/year; if irrigation losses are included the total global footprint for 

agriculture increases to 7980 Gm3/year [2].  

 

Figure 2.1: Average National Water Footprints per Capita (m3/capita/year) [2] 

 

2.2 Solar Radiation Resource 

Solar radiation arrives from the sun and is expressed by a value called the solar constant. The 

exact value of the solar constant varies throughout the year due to the eccentricity of the 

Earth’s orbit; however, the World Radiation Center (WRC) has adopted a standard value of 1367 
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W/m2 [3].  Solar radiation is comprised of two major components, beam radiation and diffuse 

radiation. Their sum on a horizontal surface is called the total solar radiation. 

The units of solar radiation can be expressed in different ways. Instantaneous radiation is 

described by W/m2 incident on a collector surface. The daily, monthly or yearly solar radiation is 

described by kWh/m2/time and represents the average potential total solar radiation for a 

specific location or region [3]. 

 

2.2.1 Beam Radiation 

Beam radiation, also referred to as direct solar radiation or direct normal irradiance (DNI), is 

solar radiation received on a surface normal to the position of the sun without having been 

scattered by the atmosphere [3, 4]. Beam radiation is especially important for solar 

concentrators since only beam radiation can be reflected for concentration. The global DNI 

resources for the world and the United States are shown in Figure 2.2 and Figure 2.3, 

respectively. 

 



7 
 

 

Figure 2.1: Global Direct Normal Irradiance [5] 

 

 

Figure 2.2: Direct Normal Irradiance for United States [6] 
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The average multi-year DNI for the Cal Poly test location was 6.84 (kWh/m2/day) and is averaged 

from 1998-2015 data. The DNI was found using the National Renewable Energy Laboratory 

(NREL) Solar Prospector tool and is shown in Figure 2.4. 

 

Figure 2.3: Direct Normal Irradiation for Cal Poly Test Location - San Luis Obispo, California [7] 

 

2.2.2 Diffuse Radiation 

Diffuse radiation, also referred to as Diffuse Horizontal Irradiance (DHI), is the radiation per unit 

area of a collector’s surface received from the sun after its direction as been altered by colliding 

with molecules in the atmosphere. DHI is not subject to shade or shadows and comes equally 

from all directions (Figure 2.5) [3,4]. 
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Figure 2.4: Horizontal Irradiance, Global Tilt Irradiance and Direct Normal Irradiance [4] 

 

2.2.3 Total Solar Radiation 

The total solar radiation, also known as the Global Horizontal Irradiance (GHI) is the sum of the 

direct normal irradiation and the diffuse solar radiation on a horizontal surface. The GHI is 

typically used to evaluate solar resources for energy generation since both forms of irradiation 

are used in photovoltaic systems [3, 4]. The global GHI values for the world and the United 

States are shown in Figure 2.6 and Figure 2.7, respectively. 

 

 

Figure 2.5: Global Horizontal Irradiation for World [8] 
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Figure 2.6: Global Horizontal Irradiation for United States [9] 

 

2.3 Concentrated Solar Power 

Concentrated solar power systems have been used throughout history to harness sunlight and 

generate solar thermal energy. Solar energy is concentrated when sunlight reflects off a 

parabolic surface onto a cylindrical surface located at the collector’s focal point. A similar 

visualization of this concept is focusing sunlight with a magnifying glass. At a specific length 

away from the target, the optical properties of the lens align with the sun’s incident rays and the 

focused image of light hits the surface, dramatically increasing the surface temperature. 

 

2.3.1 History of Concentrated Solar Power 

Harnessing the sun in this way can be dated back to the Greek scientist Archimedes (282-212 

B.C.) reportedly using sunlight to burn invading Roman ships, Figure 2.8 [10].  
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Figure 2.8: Archimedes' mirror used to burn Roman ships [10] 

 

From 1852-1871, Augustin Mouchot taught secondary school mathematics during which he 

experimented on the conversion of solar energy into useful work. Mouchot’s solar power 

designs were so successful he gained the support of the French government to pursue the 

research full-time. Mouchot’s most inspiring device was demonstrated at the 1878 Universal 

Exhibition in Paris (Figure 2.9).  

   

Figure 2.9: Augustin Mouchot’s Solar Concentrator at the Universal Exhibition in Paris, 1878 [11] 
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Due to the falling price of coal and efficient trade agreements with Britain, Mouchot’s work was 

seen as unnecessary and his funding was cut after the exhibition [11]. Mouchot’s assistant, Abel 

Pifre continued his work and showcased a solar powered printing press in the Jardin des 

Tuileries in 1882. Even with cloudy conditions, the press was able to print 500 copies per hour, 

demonstrating the ability of solar concentrators to produce low pressure steam for a working 

steam engine (Figure 2.10) [11]. 

 

Figure 2.10: Abel Pifre and his solar powered printing press, 1882 [11] 

 

During the 1870s and 1880s, the inventor and engineer John Ericsson developed a solar 

powered heat engine capable of combined operation with a conventional gas fuel source (Figure 

2.11) [11]. 
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Figure 2.11: John Ericsson’s Solar Engines [11]. 

 

Both Mouchot and Ericsson helped pioneer concentrated solar power as a renewable energy 

source. They realized that fossil fuel power was a finite resource and eventually the world would 

need to explore solar power as an alternative and sustainable solution for energy generation. 

The works of Mouchot, Pifre and Ericsson helped inspire future scientists to design the modern 

CSP systems in use today. 

 

2.3.2 Modern Concentrated Solar Power Plants 

Modern CSP power plants use highly reflective surfaces to concentrate and focus sunlight onto a 

receiver. These power plants consist of two parts, one that collects solar energy and converts it 

into heat, and another that converts the heat energy into electricity. Commercial CSP plants 

have operated in the United States for more than 15 years and require large areas to collect 

solar radiation for electricity production [12]. There are three types of CSP plants: parabolic 

trough systems, power towers and dish engine systems. 
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2.3.3 Parabolic Trough Power System 

Parabolic trough systems consist of a parabolic mirror with a cylindrical receiver that contains an 

oil-filled pipe along the focal point of the solar concentrator (Figure 2.12). The mirror tracks the 

sun along one axis and heats an oil in the receiving tube to about 400°C which is used to boil 

water at high temperatures and pressure, producing superheated steam for a conventional 

steam turbine and generator (Figure 2.13) [12]. 

 

Figure 2.12: Parabolic Trough System Diagram [12] 

 

 

Figure 2.13: Parabolic Trough System Array [12] 
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2.3.4 Power Tower System 

Power towers, also known as central receivers, utilize many large flat heliostats to track the sun 

and focus incident rays onto a receiver. The receiver is located on top of a tower where 

concentrated sunlight heats a fluid like molten salt as hot as 570°C (Figures 2.14 & 2.15) [12].  

 

Figure 2.14: Power Tower System Diagram [12] 

 

 

Figure 2.15: Power Tower [13] 

The molten salt can retain heat exceptionally well making the system capable of storing thermal 

heat for days later to make steam for electricity generation. The thermal storage of these 

systems allows for electricity generation to continue even after sunset or when limited sunlight 

is available [13]. 
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2.3.5 Dish-Engine System 

Dish engine systems use a mirrored dish like the shape of a satellite dish to focus and 

concentrate sunlight onto a receiver. The dish tracks the sun’s position in the sky in multiple 

axes and is typically coupled with a high-efficiency solar engine. The engine contains tubes filled 

with hydrogen or helium gas that help drive piston cylinders. The concentrated sunlight heats 

the gas in the cylinders, causing it to expand and drive the pistons. The pistons turn a crankshaft 

which drives an electric generator. The receiver, engine and generator are integrated and 

mounted at the focus of the dish (Figures 2.16 & 2.17) [12]. 

 

Figure 2.16: Dish-Engine System Diagram [12] 

 

Figure 2.17: Solar Dish-Engine System [12] 
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2.3.6 CSP Global Market 

About 90% of the global CSP market utilizes the parabolic trough collector system [14]. 

Spain added 400 MW of CSP plants in 2010 and is currently the global leader in CSP production 

with a total of 632 MW, compared to the United States with a total production of 509 MW [14]. 

There are several CSP power plants with unit capacities up to 80 MW in operation in United 

States and Spain (Figure 2.18) [15]. 

 

Figure 2.18: Linear Parabolic Trough Solar Collector Coupled to a Steam Cycle Power Station [15] 

 

These systems predominantly track sunlight on the north-south axis and utilize a synthetic oil as 

a heat transfer fluid. The collectors can concentrate sunlight between 70-100 times normal 

radiation and typical operating temperatures are in the range of 350-550°C [15].  

 

2.3.7 MENA CSP Potential 

The Middle East and North African (MENA) region of the globe receives around 2400 

kWh/m2/year of solar energy; equivalent to 1.5 million barrels of crude oil per year for every 

square kilometer. A CSP plant the size of Lake Nasser, about 6000 km2, would harvest the energy 

equivalent of the entire Middle East oil production, or about 9x109 barrels per year [15]. Areas 
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with high solar insolation can meet the increasing demand for freshwater in water scarce 

regions of the world by providing a low-carbon energy supplement for desalination systems[19]. 

 

2.4 Desalination 

Desalinated water is produced from either brackish water with salinity less than 10,000 mg/L or 

seawater with a salinity ranging between 30,000 to 44,000 mg/L and makes up 1% of the world’s 

drinking water resources [21]. Over 50% over the world’s population lives in urban centers 

bordering the ocean, and in many arid regions of the world like the Middle East, Australia, North 

Africa and Southern California, the population concentration along the coast exceeds 75% [21]. 

Desalination is expected to be an essential method to securing future water resources since the 

technique is drought-proof and has a nearly limitless supply [21].  

 

Modern desalination consists of two basic methods for separating salts from ocean water: 

membrane separation and thermal distillation [20]. Reverse Osmosis (RO) membrane separation 

makes up about 60% of the world’s desalination capacity. Saltwater is mechanically pressurized 

on one side of a membrane to force water molecules through a pore to remove particles greater 

than 0.1 nm. The resulting product water can have a total dissolved solids (TDS) content as low 

as 0 parts per million (ppm) [20]. Large-scale RO systems are ideally built adjacent to renewable 

energy resources such as solar power plants.  

 

Thermal distillation occurs when saltwater is heated by steam to produce pure water vapor for 

condensation and ultimately consumption. The steam used to separate the pure water vapor 

from the saltwater is typically reused to improve the energy efficiency of the distillation system 

[20].  There are two types of thermal distillation: multistage flash distillation (MSF) and multi-
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effect distillation (MED).  Both MSF and MED processes can produce product water around 5-25 

ppm TDS from seawater with TDS concentrations of 35,000 to 45,000 ppm [37]. 

 

MSF is the most commonly used thermal distillation method for treating seawater into 

freshwater. MSF is used for large capacity brine recirculation systems where typically low-

pressure steam is recycled and used to flash-evaporate brine below the saturation vapor 

pressure in multiple stages. A portion of the saltwater is flashed into steam and the remaining 

brine is moved to the next flash stage. The flashed steam condenses and is collected as 

freshwater (Figure 2.19) [37].  

 

Figure 2.19: Schematic Flow Diagram of MSF distillation process with brine recirculation [37]. 

 

MED is a thermal distillation method where seawater is heated and processed in stages so that 

the latent heat from one stage is recycled and used in the next stage (Figure 2.20).  
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Figure 2.20: Schematic Flow Diagram of MED distillation process [37]. 

 

Incoming saltwater is heated by the first effect causing a fraction of the water to evaporate and 

condense on a heat transfer tube. The concentrated brine is sent to a 2nd effect where the 

internal pressure of the stage is lower. The vapor from the first effect condenses on a heat 

transfer tube in the second effect where the latent heat is used to generate almost an equal 

amount of vapor from the brine [37].  Each additional stage increases the thermal efficiency of 

the MED system [22].  

 

2.4.1 Desalination Global market 

Over the last 10 years, seawater reverse osmosis (SWRO) has dominated the desalination 

markets outside of the Middle East [21]. The Middle East has access to lower-cost fuel resources 

and many of its facilities co-generate power and water using CSP systems, which is why thermal 

distillation dominates the region [21]. At the end of 2015, there were 18,000 desalination plants 

worldwide with a total production capacity of 86,550,000 m3/day [21]. Accelerated 
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development of desalination over the next decade is expected to be in Asia, the US and Latin 

America [21]. 

 

2.4.2 MENA Desalination 

The MENA region is one of the most water scarce regions of the world, and some countries rely 

on desalination to either supplement or completely supply their freshwater resources (Figure 

2.21) [16]. Desalination in the MENA region is projected to grow continuously at a rate of 7-9 % 

per year. 

 

Figure 2.21: Global Water Scarcity Index [20] 

 

Some of the top countries with seawater desalination plants are located within the MENA 

region, and their commissioned seawater desalination capacities are: Saudi Arabia (9,170,391 

m3/day), United Arab Emirates (8,381,299 m3/day), Kuwait (2,586,761 m3/day), Algeria 

(2,364,055 m3/day) and Qatar (1,780,708 m3/day) [17]. The total MENA region’s desalination 

capacity is around 37,320,000 m3/day [21]. As a comparison, the Carlsbad desalination plant in 
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California which is the largest seawater desalination plant on the western hemisphere, only 

produces 189,000 m3/day [18].  

 

2.4.3 Desalination Future Costs 

Advances in technology are expected to reduce the cost of desalinated water by 20% in the next 

five years and by up to 60% in the next 20 years [21]. The cost of desalinated water in 2016 was 

$0.80 - $1.20/m3 and is expected to drop to $0.30 - $0.50/m3 within the next 20 years [21]. The 

reduction in costs for SWRO is attributed to advances in the membrane technology; the 

membranes are more productive due to higher surface areas and more densely packed 

membranes for the same individual membrane element [21]. The energy cost for SWRO 

desalination was reduced by 80% over the past 20 years. Presently, the energy required to 

produce freshwater from seawater for one household is about 2,000 kWh/year which is less 

energy than is used by a household’s refrigerator [21].  

 

2.4.4 Salinity 

Feed water salinity plays a critical role in deciding which treatment technology to utilize for 

desalination. RO desalination requires greater energy per unit mass as the salinity of the feed 

water rises [20].  Salinity refers to the electrical conductivity of water and gives a bulk 

measurement of the total dissolves solids (TDS). The concentration of ions can be measured 

directly in µS/cm. Distilled water’s conductivity can be between 0.5 to 3 µS/cm. Typical drinking 

water is anywhere below 100 µS/cm, and seawater can be as high as 54,000 µS/cm [20]. 

 

 

 



23 
 

2.4.5 Scale Formation 

The thermodynamic efficiency of a heat-transfer surface in thermal distillation is limited by the 

temperature that produces scale formation of the dissolved ions. Precipitation of scale-forming 

compounds is a complex relationship between temperature, pH, and the concentration of ions 

in the raw water upstream of the removal of water [20].  Seawater has two insoluble species 

that play a key role in the design temperature for the distillation system. Bicarbonate ions 

(HCO3) - or alkaline scales begin to appear around 60°C in the form of soft scale or CaCO3. Above 

85°C the salt is predominantly Mg (OH) 2. The second type of salts is CaSO4 and its hydrates, 

which can form hard scale at temperatures above 100°C. The addition of acids such as HCL or 

H2SO4 can help prevent scaling up to temperatures around 100°C, however their addition 

increases the risk of corrosion. Temperatures above 105 to 110°C make controlling scale 

formation difficult so most seawater desalination systems will generally not operate at those 

temperatures [20]. To overcome directly boiling seawater, distillation systems like MSF and MED 

use liquid films evaporating into a reduced pressure environment [20]. The top temperature 

range of thermal desalination systems with reduced pressure is typical between 60 to 100°C to 

reduce scaling 

 

2.5 Previous CSP Studies 

Pilot and small-scale CSP systems have been tested with the goal of maximizing the performance 

and understanding the ability to optimize these smaller systems into full size solar desalination 

systems. A good measure for a CSP system’s thermal performance for desalination is the 

concentration ratio and the specific energy consumption of the system. The concentration ratio 

is a comparison between the collector’s aperture area of sunlight concentrated onto the surface 

area of a receiver and is described in more detail in Section 3.2 [3]. The specific energy 
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consumption is a measure of how much thermal energy is required to produce a unit volume of 

product water [22]. Some systems will compare the price of generated power ($/watt) while 

other systems will compare the yield of freshwater in terms of (L/hr) or (kg/m2·hr). 

 

2.5.1 Solar Desalination Pilot Plant PTSC with MED-AHP 

WaterFx® constructed and tested a pilot solar desalination system which desalinated 

agricultural runoff by using a parabolic trough solar collector (PTSC) coupled with an absorption 

heat pump (AHP) and a multi-effect distillation system (MED). According to the PTSC’s 

manufacturer, SkyFuel®, the aperture area of the collector was 656 m2 and the peak thermal 

efficiency was 73.7% based on 1000W/m2 of solar irradiance [22]. The thermal efficiency is the 

system’s ability to convert solar thermal energy into useable steam.  

 

The heat transfer fluid used was Therminol XP, which is a food-grade mineral oil and was 

selected to reduce environmental hazards in the event of leakage [22]. The pilot system’s MED 

had 3 effects for distillation, and each effect had its own recirculation pump and manual valve to 

control the recycle ratio for high-recovery experiments (Figure 2.22) [22].  
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Figure 2.22: WaterFX® Process Flow Diagram [22]. 

 

The pilot study found that without the heat pump, the minimum distillation thermal energy 

consumption of the system was 261.87 kWhth/m3. With the absorption heat pump, the specific 

energy consumption was reduced to 133.2 kWhth/m3 [22]. The reduction in specific energy 

consumption can translate to a 49% reduction in solar array area required to power a process 

with the same freshwater production as a system with a similar adsorption heat pump [22]. 

 

The researchers also found that the most effective way to increase the instantaneous 

performance ratio (PR) and decrease the specific energy consumption (SC) of the MED is to 

increase the number of distillation effects in the system [22]. An optimized design was modeled 

using a 10-effect MED-AHP system which showed a specific energy consumption of 34.9 

kWhth/m3 [22]. No degradation in overall system performance was measured due to scaling from 

a first-law perspective; however, there was measured degradation for the first distillation 
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effect’s overall heat transfer coefficient. This degradation was recoverable with in-situ cleaning 

using an HCL acid wash [22]. 

 

2.5.2 Cal Poly San Luis Obispo CSP 

Researchers from the Electrical Engineering Department at Cal Poly designed a low cost portable 

parabolic solar concentrator system to study the power and steam generation capability of a 

portable system (Figure 2.23). The team designed the solar concentrator’s surface to create a 

low-cost and lightweight system that would still maintain durability and optical precision. The 

material for the mirror is a UV stabilized mirror finish on a thermoplastic backing that can 

withstand UV degradation for at least 10 years [23]. 

 

Figure 2.23: Cal Poly Prototype CSP System [23] 

 

Tests were conducted to compare the performance in power output between vacuum insulated 

and uninsulated heat collecting pipes. The collector had an aperture area of 1.5 m2 and was able 

to boil water for steam production at 170 W. The Cal Poly research yielded a price per watt of 

around $0.52/watt with a total project cost under $90 [23]. This experiment, although 
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simplified, demonstrated the ability to design a working small-scale CSP system with minimal 

capital cost. 

 

2.5.3 Florida State University CSP Dish 

The Florida State University’s Sustainable Energy Science and Engineering Center (SESEC) 

program constructed an inexpensive parabolic dish concentrating system for electrical power 

generation and evaluation of overall system efficiency. The parabolic dish had a collector 

concentration ratio of 96 with an aperture area of 10.507m2 (Figure 2.24) [24]. 

 

Figure 2.24: SESEC Parabolic Dish in Operation [24]. 

The constructed parabolic dish concentrator could theoretically produce temperatures to 712°C, 

however due to degradation of optics, maximum temperatures of approximately 560°C were 

achieved [24]. The solar radiation incident on the collector when these temperatures were 

measured was approximately 1064 W/m2. The collector, steam turbine, and generator 

efficiencies were 95.56%, 49.98% and 16.42%, respectively. The energy conversion efficiency 
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from incoming solar energy to electric energy was 1.94%. The overall efficiency of the system 

was 7.3% [24].  

 

One of the recommendations for improving a future design was utilizing a different material for 

the reflective surface of the parabolic mirror. The material used for this study was aluminized 

mylar which contained poor weathering characteristics. 

 

2.5.4 Sharif University of Technology 

Researchers at the Sharif University improved the thermal efficiency and yield production of a 

small-scale solar desalination system by adding oil inside an evacuated tube heat exchanger. The 

experimental design consisted of a single parabolic trough solar concentrator coupled with an 

evacuated heat pipe. Brackish water is inputted into a saltwater basin at specific water levels 

over a heat pipe. The steam generated in the basin is condensed in a corrugated tube and 

collected in a jar through a tube (Figure 2.25) [25]. 

 

Figure 2.25: Experimental Setup for Sharif University Desalination System [25] 
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The constructed system was oriented in the polar N-S axis to track the sun, with a system slope 

equal to the latitude of the location, approximately 35° N. As the collector rotated about the 

polar N-S axis, the incident angle is equal to the declination angle. The collector was rotated 15° 

an hour to maximize solar radiation on the absorber (Figure 2.26). 

 

Figure 2.26: Schematic of Sharif University Solar Desalination System [25] 

 

Multiple tests were conducted to investigate ways to improve the rate of freshwater production 

including the effect of water level in the saltwater basin and the use of different fluids inside the 

evacuated tube to improve thermal efficiency. The evacuated tube was filled with water and oil 

to increase the heat transfer rate between the pipe and the internal aluminum heat transfer 

fin[25].  

 

The rate of production was highest for the oil filled evacuated tube due to the oil having a 

higher conductivity and therefore increasing heat transfer. The researchers concluded that the 
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increase in production rate was synchronous with the increase in solar intensity [25]. The 

maximum production rate for all three water volume fill levels occurred between 13:00 to 13:30 

local time, which was synchronous with the maximum solar intensity [25]. Solar noon for the 

time of the study (August 2013) occurred around 13:39 local time [36]. This solar noon time was 

found using the longitude, latitude, and the local time and date for the experiment. 

 

The maximum overall efficiency was 21.7%, 42.2% and 65.2% for the systems with the 

evacuated tube filled with aluminum foil, water and oil, respectively [25]. The maximum 

freshwater yield of the system was 0.78 L/m2·hr or 0.9333 kg/m2·hr.  
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3. SODESAL SYSTEM DESIGN 

This section explains the details of the SODESAL design including the theory and methodology 

for designing the system components. The SODESAL design was inspired by the experiment 

conducted at the Sharif University of Technology in Tehran, Iran which utilized a single parabolic 

solar trough mirror to concentrate sunlight onto an evacuated tube. The Sharif experimental 

design allowed the mirror to track and concentrate direct sunlight to analyze freshwater yields 

for desalination. The dimensions for the Sharif system’s evacuated tube and parabolic mirror are 

listed below in Table 1 [25]. 

 

Table 1: Sharif System Specifications 

Mirror Specification Value/Type 

Collector Aperture Area 1.8m2 

Collector Aperture 1 m 

Receiver Diameter 47 mm 

Receiver Length 1800 mm 

Concentration Ratio 6.77 

Parabola Height 176 mm 

Rim Angle 79.31˚ 

Focal Length 355 mm 

Rim Radius 531 mm 

Diameter of Receiver for Reflector 
with Perfect Shape and Alignment 

4.95 mm 

Allowable Misalignment for 100% 
Image Reflection 

2.56˚ 

Heat Transfer Fluid Ethanol 
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An analysis of the Sharif’s experimental design was conducted to understand how to develop a 

similar system utilizing a different sized evacuated tube, larger mirror and shorter focal length, 

while accommodating materials available in San Luis Obispo.  

 

The system used in this SODESAL project consisted of four major components: an evacuated 

tube, a parabolic solar concentrator mirror, a tracking frame and a boiler. The evacuated tube 

converts absorbed sunlight into thermal energy by means of an internal heat transfer pipe and 

fluid. The parabolic solar concentrator mirror focuses sunlight to increase the solar energy into 

the evacuated tube. The tracking frame allows for adjustments of the mirror’s surface based on 

the time of day and year. The boiler receives the thermal energy from the heat pipe and heats 

the internal water to produce steam for distillation. 

 

3.1 Evacuated Tube 

An evacuated tube, otherwise known as a “Sydney” tube or a “twin-tube” is a double layered 

glass-walled tube which converts sunlight into thermal heat (Figure 3.1). As sunlight travels 

through the outer glass layer of the evacuated tube, it passes through a vacuum and impacts a 

special absorbing layer on the surface of the inner glass tube. The air between the two layers of 

glass is evacuated to create this vacuum so that the air cannot cause convection losses between 

the surfaces during heat transfer. 
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Figure 3.1: Apricus® Evacuated Tube [27] 

 

The absorbed sunlight is converted to heat and is transferred to an aluminum heat transfer fin 

inside the inner glass tube. The aluminum fin and internal air heats up and transfers thermal 

energy to a copper pipe heat exchanger. The aluminum fin is shaped such that the copper tube 

is held directly in the middle of the tube and the outer face of the aluminum is touching the 

inner glass surface of the evacuated tube (Figure 3.2). 

 

Figure 3.2: Apricus Evacuated Tube (open end) [27] 

 



34 
 

The copper pipe heat exchanger is filled with a water-glycol heat transfer fluid, which when 

heated, phase changes into a gas and travels up the length of the heat-pipe and condenses at 

the top. The gas cools and condenses in the bulb by transferring heat to a manifold and drips 

down the length of the copper heat pipe where it is heated once again by the evacuated tube 

and aluminum fin (Figure 3.3). 

 

Figure 3.3: Condenser Heat Pipe Solar Thermal Collector [28] 

 

A solar water heater uses sunlight to off-set or replace the energy required to heat water for a 

residential home or pool. Several evacuated tubes are placed side-by-side in a rack on either a 

roof or open sunlit area adjacent to the water source (Figure 3.4).  
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Figure 3.4: Solar Water Heater Collector System [29] 

 

Evacuated tubes are readily available from solar water heater retailers ranging in lengths 

between 800-2100 mm, and their individual prices may make them economical for developing a 

small-scale solar desalination system.  The evacuated tube used in the SODESAL experiment was 

supplied by Apricus®, a solar water heating company. The Apricus® evacuated tube had an 

approximate radius of 29 mm, operating length of 1.8 m and a glass wall thickness of 1.8 mm 

(Figure 3.5) [30]. 

 

Figure 3.5: Apricus® Evacuated Tube Used in SODESAL Experiment [30] 
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The evacuated tube is made of a borosilicate glass material similar to Pyrex which provides 

strength against impacts like hail and maintains a light transparency of > 92% through a 2mm 

wall thickness [30]. A barium getter is installed inside the evacuated chamber which helps soak 

up gases that may enter the vacuum chamber and compromise the tube. The internal absorber 

coating consists of an aluminum layer on the outside of the inner glass tube followed by a layer 

of a dark colored aluminum nitride material. A single tube can provide over 60 Watts or 204 BTU 

of water heating output when under strong sunlight [30].  

 

The evacuated tube used in this SODESAL system was selected from a solar water heating 

system since it had the same length and similar characteristics as the Sharif evacuated tube. The 

evacuated tube is open on one end to allow the copper heat-pipe to insert into the solar water 

heater’s manifold. The evacuated tube must be angled to allow for the internal heat transfer 

fluid to recirculate in the copper heat-pipe. Evacuated tubes used in large-scale CSP systems are 

typically open on both ends to allow the heat transfer fluid to travel horizontally through the 

evacuated tube and along the focal point of the PTSC mirror. Running evacuated tubes 

horizontally allows for multiple tubes to collectively heat a heat transfer fluid in an array system 

(Figure 3.6). 
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Figure 3.6: Parabolic Trough Solar Concentrator Mirror with Horizontal Evacuated Tube [31] 

 

3.2 Parabolic Trough Solar Concentrator Mirror 

Parabolic trough solar concentrator mirrors are typically used for large commercial scale 

systems for both power generation and water treatment in addition to small-scale systems for 

residential hot water (Figures 3.7 & 3.8). 

   

Figure 3.7: Residential CSP Water Heater [32]     Figure 3.8: Large Scale CSP Plant [33]  

    

Both large and small-scale systems demonstrate the scalability of parabolic solar concentrators 

and their use for heating up water for different sized demands. The mirrors in these systems are 
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troughs since their design reflects sunlight at a point across the length of the mirror. The 

evacuated tube runs along the focus point of the mirror and serves as the “target” toward which 

sunlight is concentrated. Targeting the evacuated tube requires determining the size, shape and 

location of the suns reflected image onto the concentrated surface. Analyzing the parabolic 

mirror’s geometric properties determines the theoretical reflected sunlight concentration onto 

the evacuated tube or receiver.  

 

The geometric properties for a parabolic solar concentrator mirror include the aperture area, 

rim angle, rim radius, parabola height and focal length (Figures 3.9 & 3.10). These properties 

determine the parabolic mirror’s concentration ratio, the required diameter of a cylindrical 

receiver for a reflector with ideal shape and alignment, and the parabolic mirror’s maximum 

allowable misalignment before 100% of the sun’s image is no longer reflected [3].  

      

Figure 3.9: Geometric Properties of Mirror [3] 
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Figure 3.10: Geometric Properties of Reflected Image [3] 

 

Aperture is the width of area or “window” of sunlight that enters the parabolic mirror. The 

aperture of a parabolic mirror determines the total input of sunlight radiation into the system 

before concentration. The rim angle represents the angle between the outer edge of the 

parabolic mirror to the focal point or receiver, which is located at half the distance of the 

mirror’s aperture and above the parabola’s vertex. The rim radius is the distance between the 

focal point and the outer edge of the parabolic mirror. The parabola height is the height of the 

edge of the mirror located half the aperture from the vertex. The focal length is the distance 

between the mirror’s focal point and vertex. Equations 1 – 4 were used to calculate the 

properties to design the parabolic mirror where (f) is the focal length and (a) the aperture 

width[3]. 
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Equation 1: Aperture Area  𝐴𝑎 = (𝑇𝑢𝑏𝑒 𝐿𝑒𝑛𝑔𝑡ℎ) 𝑋 (𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑊𝑖𝑑𝑡ℎ) [3] 

Equation 2: Rim Angle    𝛷𝑟  = 𝑡𝑎𝑛−1 [
8(

𝑓
𝑎⁄ )

16(
𝑓

𝑎⁄ )2−1
] =  𝑠𝑖𝑛−1 (

𝑎

2𝑟𝑟
)  [3] 

Equation 3: Rim Radius    𝑟𝑟 =  
2𝑓

1+cos 𝛷
     [3] 

Equation 4: Parabola Height   ℎ =  
𝑎2

16𝑓
     [3] 

 

The concentration ratio of a parabolic solar concentrator is the ratio between the aperture area 

and the receiver’s total surface area. The concentration ratio is used to compare parabolic solar 

concentrator systems and the overall capability to concentrate sunlight. Higher concentration 

ratios can mean the parabolic mirror has a relatively large surface area or that the receiver is 

relatively small. Larger parabolic mirrors can increase the capital costs of a system whereas a 

smaller receiver can increase the difficulty for accurate sunlight tracking since the target for 

concentrating sunlight onto is small. The maximum concentration ratio for a linear concentrator 

is 212. However, if the mirror is circular and utilizes dual-axis tracking, the maximum possible 

concentration ratio becomes 45,000 [3]. Higher concentration ratios require more precise optics 

of both the mirror and tracking system and will yield in a higher temperature of the delivered 

energy to the system [3].  

 

The required diameter for a cylindrical receiver for a reflector with ideal shape and alignment is 

calculated using Equation 5 to determine the theoretical receiver size for the given parabolic 

mirror properties [3]. 

 

Equation 5: Diameter of Cylindrical Receiver  𝐷 = 2𝑟𝑟 sin 0.267 =  
𝑎 sin 0.267

sin 𝛷𝑟
   [3] 
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If the diameter for the theoretical receiver size is less than the actual receiver diameter then the 

parabolic mirror’s concentration of sunlight will work assuming its shape and alignment is ideal 

(Figure 3.11) [3]. 

 

 Figure 3.11:  Reflected Radiation from Rim onto Receiver [3] 

 

The maximum allowable misalignment before 100% of the sun’s image is no longer reflected 

represents a designed allowable error within the parabolic mirror’s sunlight concentration. 

Accurate sunlight tracking is critical for the performance of a parabolic solar concentrator mirror 

since the mirror utilizes direct sunlight normal to the mirror’s surface to achieve concentration.  

The shape of the parabolic mirror for the SODESAL system was designed using the Parabolic 

Trough Solar Concentrator - Wolfram CDF Player software [34]. The program allows for several 

adjustable design parameters including, tube radius, half aperture width, focal length and the 

degrees of misalignment. The selected dimensions for the SODESAL system were determined 

after analyzing the mirror dimensions for the Sharif design (Figure 3.12) [25]. 
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Figure 3.12: Wolfram Parabolic Trough Solar Concentrator Designer [34] 

 

The focal length of the mirror was determined after iterating different focal lengths until the 

optimal allowable misalignment to continue yielding a full image reflection on the concentrated 

surface was found given an aperture width of 1200mm. The SODEAL mirror design allows for 

2.81 degrees of misalignment before any reduction in reflected image.  

 

The final parabolic specifications for the SODESAL mirror are shown in Table 2, compared to the 

dimensions for the Sharif study. The differences in mirror dimensions between the Sharif and 

SODESAL designs is due to the differences in evacuated tube diameters and the effect on 

concentration ratio. Since the SODESAL evacuated tube was larger it required a greater mirror 

surface area to achieve a similar concentration ratio as Sharif’s. Maximizing the degrees of 
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allowable misalignment altered the SODESAL mirror dimensions to also have a larger parabola 

height and shorter focal length. 

 

Table 2: Sharif and SODESAL Parabolic Mirror Specifications  

Mirror Properties Sharif SODESAL 

Collector Aperture Area 1.8m2 2.16 m2 

Collector Aperture 1 m 1.2 m 

Receiver Diameter 47 mm 58 mm 

Receiver Length 1800 mm 1800 mm 

Concentration Ratio 6.77 6.5857 

Parabola Height 176 mm 281 mm 

Rim Angle 79.31˚ 86.30˚ 

Focal Length 355 mm 320 mm 

Rim Radius 531 mm 601 mm 

Diameter of Receiver for Reflector 
with Perfect Shape and Alignment 

4.95 mm 5.60 mm 

Allowable Misalignment for 100% 
Image Reflection 

2.56˚ 2.81˚ 

Heat Transfer Fluid Ethanol 
Water-
glycol 

mixture 

 

Equation 6 represents the parabolic shape required for the mirror to concentrate sunlight where 

𝑓 is the focal length from the base of the mirror to the vertex, 𝑥 is the distance away from the 

base of the mirror and 𝑦 is the correlating height of the mirror’s surface given x. The parabolic 

equation for the SODESAL system is shown in Equation 7. 

 

Equation 6: Parabolic Shape  𝑦 =  
𝑥2

4𝑓
       [3] 

Equation 7: SODESAL Parabolic Shape   𝑦 =  
𝑥2

4(320𝑚𝑚)
= 0.0007813𝑥2  [3] 
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The parabolic shape for the mirror was plotted on Microsoft Excel with an aperture width of 1.2 

meters (Figure 3.13).  

 

Figure 3.13: SODESAL Parabolic Curve 

 

The arc length for the parabolic mirror was calculated using Equation 8, where 𝒂 and 𝒃 

represent the half aperture widths in both x directions and 
𝒅𝒚

𝒅𝒙
 is derived from Equation 6. The 

calculated arc length for the SODESAL system was 1357.88mm by integrating Equation 9 [3]. 

 

Equation 8: Parabolic Surface Length  𝐿 =  ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2
𝑑𝑥

𝑏

𝑎
    [3] 

Equation 9: SODESAL Parabolic Surface Arc Length 𝐿 =  ∫ √1 + (0.0015625𝑥)2𝑑𝑥
600

−600
 [3] 

 

3.3 PTSC Mirror Construction 

The SODESAL parabolic surface equation was used to plot the X-Y coordinates of the parabolic 

shape into a laser cutting program using Equation 7 (Figure 3.14). Laser cutting was used to 

maximize the accuracy and shape of the parabolic surface.  
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Figure 3.14: Laser Cutting Program 

 

The laser cutter etched out the desired parabolic shape onto wood panels used to create the 

ribs for the parabolic mirror (Figures 3.15). Only half a rib could fit within the laser cutter 

aperture; the ribs were designed to be joined in the middle with a jigsaw pattern (Figure 3.16).  

 

       

Figure 3.15: Laser Cutter       Figure 3.16: Finished Laser Cut Ribs  

        

Wood was selected as the rib material due to its low cost, low weight and ease in 

manufacturing. The width of a single wood panel was too thin to support the weight of the 

mirror, so each complete rib contains three sections that were glued and clamped together for 

at least 24 hours (Figure 3.17). 
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Figure 3.17: Rib Assembly 

 

The parabolic surface of the ribs was sanded to smooth out any uneven edges between the 

adjacent pieces without compromising the parabolic shape. The ribs also had notches cut out of 

the bottom edge to allow for a rod to connect the ribs together (Figure 3.18). 

 

Figure 3.18: Mirror Rib Skeleton 

 

The rods connecting the ribs were glued and hammered into place. Each joint was clamped and 

allowed to cure for 1 day after applying a wood glue (Figure 3.19).  
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Figure 3.19: Mirror Rib Assembly with Support Rods 

 

Two endcaps were cut out of a thick piece of plywood to hold the ribs and cross beams together 

with enough height to support the evacuated tube (Figures 3.20 & 3.21). 

  

     

Figure 3.20: End Cap Design               Figure 3.21: End Cap Assembly 

     

A thin sheet of wood utility paneling was selected from a local hardware store for the base of 

the parabolic mirror due to its flexibility and low material cost. The utility panel was secured 

with finishing screws and sanded until smooth (Figure 3.22). 
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Figure 3.22: Parabolic Mirror with Wood Utility Panel 

 

Each side of the parabolic mirror required an endcap to hold the ribs and supports together. A 

section of the endcap was removed to allow the evacuated tube to fit. The SODESAL system 

required the parabolic mirror to rotate around the axis of the evacuated tube so lead screws 

were attached to each endcap to allow for adjustments in focal length (Figure 3.23). The lead 

screws attach to a turntable bearing which is mounted on the inside face of the wooden tracking 

frame (Figure 3.24). 

   

              Figure 3.23: End Cap with Lead Screw  Figure 3.24: Turntable Bearing 
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3.4 Reflective Material  

The material used for the reflective surface was ReflecTech® mirror film. ReflecTech® mirror film 

is used for commercial parabolic trough concentrating solar power systems. The mirror film is a 

silver polymer film developed at the National Renewable Energy Laboratory (NREL) where 

research focused on cost reduction and increasing the durability of parabolic trough collectors. 

SkyFuel® currently owns the exclusive license to manufacture ReflecTech® and the company 

states that their product can withstand the equivalent of 35 years of outdoor UV dosage with no 

degradation and no loss in reflectance. The material also maintains a resistance to delamination 

after a water immersion test for 60 days [35]. The ReflecTech® material ships in a 4ft wide roll 

and costs around $31.00/m2 (Figure 3.25). 

 

 

Figure 3.25: ReflecTech® Mirror Film 

 

Two sections of ReflecTech® were used to cover the parabolic surface required for the parabolic 

mirror. The reflective material was pulled across the top of utility panel and cut so that the 

entire arc length was covered. The width of the second piece was cut to fit the length of the 
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parabolic mirror and each section was screwed into the wood utility panel with finishing screws. 

The two pieces have slightly different parabolic surfaces and the difference in reflection 

between the two pieces can be seen in Figure 3.26. 

 

 

Figure 3.26: Joining of ReflecTech ® Surfaces with Finishing Screws 

 

The material has a specular reflectance of 94% and contains a peel-off release liner that covers 

the material until application, making it an idea choice for installing onto an experimental 

surface (Figures 3.27 & 3.28) [35]. 
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Figure 3.27: Removal of ReflecTech® Protective Liner 

 

 

Figure 3.28: ReflecTech® Final Application 



52 
 

3.5 Tracking Frame 

Accurate tracking and adjustments of the parabolic solar concentrator mirror are necessary to 

concentrate direct sunlight onto the evacuated tube for operation. Since the evacuated tube 

used in the SODESAL system was originally designed for a solar water heater, a minimum angle 

is required to allow the internal heat transfer fluid to circulate.  The frame for the SODESAL 

system needed to support the weight of the evacuated tube, mirror and boiler while also 

allowing for the adjustment of the mirror’s focal length, rotation, and slope throughout the 

year. The frame of the SODESAL system was constructed out of wood to reduce construction 

costs and ease the fabrication process of the system (Figure 3.29).  

 

   

Figure 3.29: SODESAL Frame (Elevated)   Figure 3.30: SODESAL Frame (Collapsed) 

 

The frame was designed to carry up to 100 pounds during operation. High winds could tip the 

system when the mirror is rotated so the base of the frame was designed to be wide enough to 

prevent tipping and increase the system mass. Lockable caster wheels were attached to the 

bottom of the frame to allow for easy maneuvering of the system for alignment (Figure 3.30).  
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An adjustable boiler holder was designed to allow for different boiler sizes if the boiler volume 

was changed by implementing a V-shaped holder while also allowing for the entire holder to 

adjust up and down by moving securing bolts through channels on the endcap. The bottom face 

of the boiler rests next to the outer face of the endcap so that the evacuated tube’s copper 

heat-pipe can insert for heat transfer (Figures 3.31 & 3.32). 

   

Figure 3.31: Boiler Holder          Figure 3.32: Boiler Holder Adjustment 

 

The weight of the evacuated tube rests on the bottom endcap when elevated, however the 

evacuated tube cannot rotate due to the heat pipe and how the boiler is secured. A gear system 

was designed to allow for the mirror to rotate around the evacuated tube. A gear box was 

constructed around the gear to protect operators and the motor-chains system from 

environmental damage (Figures 3.33 - 3.35). 
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Figure 3.33: Tracking Gear 

 

Figure 3.34: Bottom Endcap Gearbox and Evacuated Tube Holder 

 

The SODESAL system was designed to also operate at a horizontal configuration if necessary 

(Figure 3.36). For horizontal operation a solar water heater pipe must be replaced with a 

pumped heat transfer fluid system that will loop inside the evacuated tube.  
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Figure 3.35: SODESAL System (Elevated) 

 

 

Figure 3.36: SODESAL System (Horizontal) with no Gear Box 
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3.6 Tracking Frame Alignment 

Alignment is critical for a solar collector to capture the most sunlight possible for concentration. 

The sunlight tracking methods used in the experiments required the parabolic mirror to be 

aligned along either the polar E-W or N-S axis (Figures 3.37 & 3.38). 

 

Figure 3.37: E-W Alignment, (prepared by Teyvon Brooks) 
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Figure 3.38: N-S Alignment, (prepared by Teyvon Brooks) 

 

An ancient method for finding true north, the shadow-stick method, was used to find true north. 

A stick was place upright normal to the ground surface and the location of the edge of the stick’s 

shadow was marked every 15 minutes. The line of marks indicates the direction of the earth’s E-

W axis and was used to align the parabolic mirror (Figure 3.39). 
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Figure 3.39: Shadow-Stick Method for E-W Axis Alignment 

 

3.6.1 Sun Tracking Angles 

The angles that determine the position of the sun’s beam radiation for a solar tracking system is 

the location’s latitude (∅), declination and sun hour angle.  

The latitude is the angular location north or south of the equator, north positive; - 90⁰ ≤ ∅ ≤ 90⁰. 

The latitude (∅) for the SODESAL system was determined using an online Global Positioning 

System (GPS) and is 35.3013° N [37]. 

The declination (δ) is the angular distance of a point north or south of the celestial equator and 

changes daily. The declination and is calculated using Equation 10 which requires the latitude of 

the system’s location and the day (𝑛) of the year.  

Equation 10: Declination   𝛿 = 23.45 sin (365
284+𝑛

365
)   [16] 

E W 



59 
 

The declination is used to determine the angle of incidence (𝜃), which is the angle between the 

solar beam radiation on a surface and the normal of that surface (Figure 3.40) 

 

Figure 3.40: Zenith angle (𝜽𝒛), slope (𝜷), surface azimuth angle (𝜸), solar azimuth angle (𝜸𝒔), 
solar altitude angle (𝜶𝒔) for a tilted surface [3] 

 

Sun Hour Angle (𝜔) is the angular displacement of the sun east or west of the local meridian due 

to the rotation of the earth on its axis at 15° per hour; morning negative, afternoon positive. The 

sun hour angle is used for calculating the sun’s position in respect to solar time and is used for 

continuous tracking. The sun hour angle (𝜔) is 0° at solar noon. For example, if solar noon occurs 

at 1:00 pm, the sun hour angle at 2 pm would be 15° since only one hour has elapsed from when 

the sun traveled west of the local meridian. 

 

 

Collector Surface 
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3.6.2 Solar Noon 

Solar noon occurs when the sun crosses the local meridian and reaches its highest position in 

the sky. The exact time for solar noon fluctuates every day for each location on the earth. Solar 

noon was found using the NOAA Solar calculator for each test day. The calculator receives the 

latitude, longitude, and time zone to calculate the time for solar noon [36]. The NOAA solar 

calculator for one of the days of data collection is in Figure (3.41). 

 

Figure 3.41: NOAA Solar Calculator – Cal Poly Test Location - June 21st, 2018 [37] 

 

The shadow cast by the tracking frame at solar noon is another way to verify that the mirror is 

aligned along the E-W axis (Figure 3.42). 
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Figure 3.42: Solar Noon Shadow, arrows indicate rib shadow 

 

3.7 Sun Tracking Methods 

There are six methods for which a surface can track the sun, depending on whether the mirror is 

aligned parallel to the earth’s true north-south or east-west axis, as well as the axis around 

which the mirror is rotated. 

 

3.7.1 Method 1 Tracking 

The simplest method for tracking the sun is when the horizontal mirror surface is aligned along 

the east-west axis. Only a single daily adjustment is required so that the beam radiation is 

normal to the mirror at solar noon each day. The slope and angle of incidence for Method 1 

tracking is calculated using Equations 11 and 12. 

Equation 11: Method 1 Slope   𝛽𝑀1 =  |∅ − 𝛿|     [3] 
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Equation 12: Method 1 Angle of Incidence cos 𝜃 = sin2 𝛿 + cos2 𝛿 cos 𝜔  [3] 

The surface azimuth angle for Method 1 tracking will be 0° or 180° depending on the latitude 

and declination and is found using Equation 13. 

Equation 13: Method 1 Surface Azimuth Angle 𝛾 = {
0° 

180° 
 𝑖𝑓 ∅−𝛿 > 0

𝑖𝑓 ∅−𝛿 ≤ 0
   [3] 

 

3.7.2 Method 2 Tracking 

Method 2 tracking is a plane that is rotated about a horizontal east-west axis with continuous 

mirror slope (𝛽) adjustment toward the sun. Method 2 tracking improves the alignment of the 

mirror by minimizing the angle of incidence of the sun’s beam radiation onto the mirror’s 

surface. A motor drives a chain and gear system to turn the mirror to the ideal slope depending 

on the desired moment’s sun hour angle. The slope and angle of incidence for Method 2 

tracking is calculated using Equations 14 and 15. 

Equation 14: Method 2 Slope   tan 𝛽 = tan 𝜃𝑧|cos 𝛾𝑠|   [3] 

Equation 15: Method 2 Angle of Incidence cos 𝜃 = (1 − cos2 𝛿 sin2 𝜔)1 2⁄   [3] 

The surface azimuth angle for Method 2 tracking will change between 0° and 180° if the solar 

azimuth angle passes through ±90° and is found in either hemisphere using Equation 16. 

Equation 16: Method 2 Surface Azimuth Angle 𝛾 = {
0° 

180° 
 𝑖𝑓 |𝛾𝑠| < 90

𝑖𝑓 |𝛾𝑠| ≥ 90
   [3] 

Method 2 continuous tracking is performed using an electric motor that is coupled with an 

Arduino solar cell tracker. The Arduino tracker is programed with the values to rotate the mirror 

to the required slope for a given sun hour angle. 
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3.7.3 Method 3 Tracking 

Method 3 tracking is a plane rotated about a horizontal north-south axis with continuous 

adjustment. Like Method 2, this type of tracking will minimize the angle of incidence and is used 

when E-W axis orientation is not ideal for the system’s area. The slope and angle of incidence for 

Method 3 tracking is calculated using Equations 17 and 18.  

Equation 17: Method 3 Slope   tan 𝛽 = tan 𝜃𝑧|cos(𝛾 − 𝛾𝑠)|  [3] 

Equation 18: Method 3 Angle of Incidence cos 𝜃 = (cos2 𝜃𝑧 + cos2 𝛿 sin2 𝜔)1 2⁄  [3] 

The surface azimuth angle for Method 3 tracking will be 90° or -90° depending on the sign of the 

solar azimuth angle and is find using Equation 19. 

Equation 19: Method 3 Surface Azimuth Angle 𝛾 = {
90°

−90° 
𝑖𝑓 𝛾𝑠 > 0
𝑖𝑓 𝛾𝑠 ≤ 0

    [3] 

 

3.7.4 Method 4 Tracking 

Method 4 tracking is a plane with a fixed slope rotated about a vertical axis. Method 4 tracking is 

used for systems with a fixed slope. Some small-systems have an evacuated tube filled with a 

fluid medium to increase thermal efficiency so a system with a fixed slope is idea so that the 

contents of the evacuated tube do not still during operation.  

The angle of incidence is minimized when the surface azimuth and solar azimuth angles are 

equal. The slope and angle of incidence for Method 4 tracking is calculated using Equations 19 

and 20.  

Equation 19: Method 4 Slope   𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    [3] 

Equation 20: Method 4 Angle of Incidence cos 𝜃 = cos 𝜃𝑧 cos 𝛽 + sin 𝜃𝑧 sin 𝛽 [3] 
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The surface azimuth angle for Method 4 is equivalent to the solar azimuth angle since the 

tracker rotates about a vertical axis, Equation 21. 

Equation 21: Surface Azimuth Angle  𝜸 = 𝜸𝒔      [3] 

 

3.7.5 Method 5 Tracking 

Method 5 tracking utilizes a plane rotated about a north-south parallel to the earth’s axis with 

continuous adjustment. Method 5 tracking is used when the surface azimuth angle does not 

track the solar azimuth angle and a non-horizontal north-south axis. The slope and angle of 

incidence for Method 5 tracking is calculated using Equations 22 and 23. 

Equation 22: Method 5 Slope   tan 𝛽 =
tan ∅

cos 𝛾
    [3] 

Equation 23: Method 5 Angle of Incidence cos 𝜃 = cos 𝛿    [3] 

The surface azimuth angle for Method 5 is calculated using Equation 24 and requires additional 

calculation of two constants, C1 and C2. 

Equation 24: Method 5 Surface Azimuth Angle 𝑦 = tan−1 sin 𝜃𝑧 sin 𝛾𝑠

cos 𝜃′ sin ∅
+ 180𝐶1𝐶2 [3] 

Where      cos 𝜃′ = cos 𝜃𝑧 cos ∅ + sin 𝜃𝑧 sin ∅ cos 𝛾𝑠 

      𝐶1 = {
0

+1
𝑖𝑓 (tan−1sin 𝜃𝑧 sin 𝛾𝑠

cos 𝜃′ sin ∅
)𝛾𝑠 ≥ 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

      𝐶2 =  {
+1
−1

𝑖𝑓 𝛾𝑠 ≥ 0
𝑖𝑓 𝛾𝑠 < 0
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3.7.6 Method 6 Tracking 

Method 6 tracking is used when a plane is continuously tracked about two axes. Method 6 

tracking is typically used for parabolic dish systems and maximizes solar radiation into the 

collector since the incident angle is minimized in both axes. The slope for Method 6 tracking is 

equal to the zenith angle, Equation 25 and the angle of incidence is found using Equation 26. 

The surface azimuth angle is equal to the solar azimuth angle, Equation 27. 

Equation 25: Method 6 Slope   𝛽 = 𝜃𝑧     [3] 

Equation 26: Method 6 Angle of Incidence cos 𝜃 = 1    [3] 

Equation 27: Method 6 Surface Azimuth Angle 𝛾 = 𝛾𝑠     [16] 

 

The SODESAL system’s design can use Methods 1-5 for solar tracking. Method 6 would require 

an actuator strong enough to support the weight of the raised frame and would need to 

continuously adjust the slope of the mirror. The tracker’s capabilities are demonstrated in 

Figures (3.43 – 3.45). Method 4 was utilized for Phase 1 of the experiment and Method 1 for 

Phase 2. Method 4 tracking provided the closest method of tracking to the Sharif study due to 

the necessary operating angle of the PTSC to allow the copper heat-pipe transfer fluid to 

circulate. Method 1 tracking was used for Phase 2 due to its simplicity for operation. 
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Figure 3.43: Partially raised SODESAL tracking 

 

 

Figure 3.44: Partially raised SODESAL tracking with full rotation 
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Figure 3.45: Fully extended and rotated SODESAL tracking 

 

3.8 Steam Boiler 

The design of the SODESAL boiler mimicked the characteristics of a solar water heater system 

since the copper heat-pipe used for heat exchange is typically inserted into a manifold alongside 

other heat-pipes. Since the SODESAL system would only use a single heat-pipe, the boiler was 

designed around the shape of the heat-pipe’s condenser bulb.  Stainless steel was chosen as the 

boiler material due to its high corrosion resistance and heat transfer properties. The design for 

the boiler was simplified to ensure welds were water tight around the manifold and would fit 

snug around the top of copper heat-pipe bulb. The boiler needed to have a low mass, operate at 

different system angles and allow for both batch and continuous flow tests. 
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3.8.1 Boiler Construction 

Precise measurements were taken of the copper heat-pipe bulb’s diameter and length so that a 

stainless-steel pipe could be selected for the manifold. The manifold’s internal diameter was 

slightly larger than the outside diameter of the copper heat-pipe bulb. The bulb will expand 

during operation and tightly press against the inside of the manifold (Figure 3.46) 

 

Figure 3.46: Boiler Manifold Plug with Heat-Pipe Bulb and Thermocouple 

 

A stainless-steel cooking container was used for constructing the main body of the boiler. The 

cooking container was selected because it had a low mass and relatively low cost. A stainless-

steel plate was used to cap off both the top of the manifold plug and seal the bottom of the 

boiler (Figures 3.47 & 3.48). The components for the stainless-steel boiler were polished using 

metal grinders and valves were installed for both batch and continuous flow operations (Figure 

3.49). 
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Figure 3.47: Boiler Components 

 

 

Figure 3.48: Welded Boiler 
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Figure 3.49: Finished Stainless Steel Boilers with Inlet and Outlet Valves 

 

A heat transfer paste is applied to the surface of the heat-pipe bulb and manifold to increase 

heat transfer between the two surfaces. Air has poor heat transfer properties and fills the area 

around the manifold. The thermal paste increases heat transfer by replacing the air with a 

material between the two surfaces when they are in contact. Excessive heat transfer paste can 

inhibit heat transfer by acting as an insulator, so a minimal amount of thermal paste is applied. 

The heat-bulb will expand during operation and press into the manifold; wrapping the heat bulb 

with pea size drops of thermal paste allows for the material to spread around the surface during 

operation. 
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The boiler is wrapped in insulation to reduce heat loses through the external surface of the 

boiler. An inlet valve is located on one of the sides of the boiler to allow water to enter the 

boiler for filling and continuous operation. The steam outlet is located at the top of the boiler 

and can accept a silicon tube for condensation collection (Figure 3.50). 

 

Figure 3.50: Mounted Boiler Wrapped in Insulation 

 

The SODESAL boiler has a brine discharge valve at the bottom of the boiler which also allows for 

water to recirculate through the boiler during continuous flow operations.  

 

3.8.2 Recirculation Tank and Pump Test 

A recirculation test was performed to identify what conditions were possible for a steady-state 

flow operation when the internal volume of the tank was unknown. The recirculation tank could 

be used for future tests to aid in cooling the boiler and promote better heat exchange between 

the boiler manifold and internal copper heat-pipe condenser bulb (Figure 3.61). The 

Water Inlet Valve 
Steam Outlet 
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recirculation tank would help simulate a continuous steady-state flow system while recycling the 

generated heat in the boiler to preheat incoming source water. 

 

 

Figure 3.51: Recirculation Tank and Boiler Pump Test 

 

Two liters of water were used to initially fill the stainless-steel base tank and was enough water 

to cover a submersible garden water pump purchased from a local hardware store. An 

additional liter of water was added to the base tank to maximize volume for operation. The 

maximum volume for the base tank is 3.5 L. The maximum volume of the boiler was found by 

closing the bottom valve of the boiler and filling with the pump until overflow. The maximum 

volume of the boiler is about 1.9 L. The ideal boiler volume is between 1.5 L – 1.75 L, depending 

on the angle of the boiler, to allow adequate internal space for steam generation. 

Discharge Valve 

Recirculation Base Tank 
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The submersible water pump was set to the maximum flow which would allow the greatest 

circulation and identify what the maximum steady-state flow is between the base tank, pump 

and boiler discharge valve. The boiler discharge valve was used to adjust the boiler volume to 

find a steady state flow rate. 

 

The flowrate of the pump is about 30 mL/s. This pump rate was found by first closing the 

bottom valve of the boiler so that only the boiler volume would increase. The pump was turned 

on for a set amount of time and the volume of water that entered the boiler was measured 

using a graduated cylinder. Estimated fill time of the boiler for testing was between 50 – 60 

seconds assuming no kinks in the silicon tube to impede pump rate. The pump test verified that 

a recirculation system was practical for future tests using the designed boiler in a continuous 

flow system. The results of the recirculation pump test are in Table 2.  

Table 3: Recirculation Tank and Boiler Pump Test 

 

 

 

 

 

 

 

Pump Time Volume Measured Calculated Flowrate 

35 seconds 1050 mL 30 mL/s

60 seconds 1750 mL 29.2 mL/S

50 seconds 1480 ml 29.6 mL/s

52 seconds 1560 mL 30 mL/s
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3.9 Safety and Mitigation 

The SODESAL system’s tracking frame required reinforcements and hazard mitigation to safely 

operate. The frame was painted with a water-resistant stain to reduce the effects from 

environmental water damage. Protective padding was installed underneath the mirror on the 

base of the frame so that the collapsible support frames would not damage the wood surface 

(Figure 3.52). 

 

Figure 3.52: Protective Padding for Collapsed Supports 

 

The frame underneath the top endcap was reinforced with steel telescoping pipes to support 

the weight of a full boiler and allow for a safe and secure slope adjustment. Several locking 

mechanisms were required to secure the telescoping pipes and the frame in place when 

elevated. The steel telescoping pipes each had a lock at the base, one for the telescoping outer 

channel to prevent the pipes from sliding and a final lockable hinge where the supports connect 

to the tracking frame (Figures 3.53 & 3.54). 
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Figure 3.53: Telescoping Lock Mechanism (Bottom) 

 

 

Figure 3.54: Telescoping Lockable Hinge 

 

Along each side of the tracking frame are supports that lock in place to help displace the 

combined weight of the parabolic mirror and boiler. The side supports can carry the entire 

weight of the system and help prevent the system from swaying sideways (Figure 3.55). 
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Figure 3.55: Tracking Frame Side Supports 

 

The tracking frame presents a fire hazard since the parabolic mirror can burn and ignite the 

wood frame, even when not elevated and focused. A portion of the top endcap was scorched 

during storage when sunlight was able to enter through a small hole in the tarp used to cover 

the SODESAL system (Figure 3.56).  

 

Figure 3.56: Scorched Endcap 
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The mitigate potential fire hazards, the endcaps were covered in a reflective tape to redirect and 

disperse concentrated sunlight that may contact the wood surface (Figures 3.57 & 3.58). 

       

Figure 3.57: Bottom Endcap with Reflective Tape  Figure 3.58: Top Endcap with Reflective Tape 

 

Additional reflective tape was wrapped around the bottom portion of the PVC cap that holds the 

evacuated tube in place to prevent the reflected sunlight from damaging the cap further 

(Figures 3.59).  

   

Figure 3.59: Scorched Evacuated Tube Cap (left), Protected Evacuated Tube Cap (right) 
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A fire blanket was used to cover the parabolic surface during setup, operation and storage to 

prevent any unwanted sunlight concentration. The testing area was cordoned off with caution 

tape during operation to protect the operators and public (Figure 3.60). During storage, the 

SODESAL system is covered in multiple tarps to prevent potential fire hazards due to penetrating 

sunlight and to protect from rain and other environmental hazards. 

 

Figure 3.60: SODESAL System with Safety Barrier and Fire Blanket 
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4. PHASE 1: STEAM PRODUCTION 

The objective of the Phase 1 experiment was to produce steam using a parabolic trough solar 

concentrator with an evacuated tube, resembling the experiment by Mosleh at the Sharif 

University of Technology in Tehran, Iran [25]. This phase was conducted as a proof of concept 

study to verify that steam production was possible.  

 

4.1 Methodology 

The latitude for the Sharif experiment (35.7036 ° N) is very similar to the latitude at the Cal Poly 

test location (35.3013° N). The latitude was used to set the slope of the PTSC to about 35° [25]. 

Method 4 tracking was used to track the sun’s position since the slope of the mirror was fixed 

and the tracking frame could easily be moved around a vertical axis to follow the solar azimuth 

(Figure 4.1). 

 

 

Figure 4.1: Phase 1 Experimental Design - mirror slope (white), sun tracking rotation (yellow) 

35° 
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Approximately 1.5L of tap water was used to fill the boiler before testing. The brine discharge 

valve and inlet valve on the side of the boiler were closed to simulate a batch operation (Figure 

3.54). Once the boiler was filled, the tracking frame was moved into the testing area and rotated 

every 5 minutes so that the mirror’s surface azimuth angle (𝛾) = the solar azimuth angle (𝛾𝑠) as 

described in Section 3.7.4 for Method 4 tracking. 

 

Direct Normal Irradiation (DNI) and Global Horizontal Irradiation (GHI) were recorded using an 

Eppley Pyrheliometer and Pyranometer after each adjustment of the mirror (Figures 4.2 & 4.3). 

   

Figure 4.2: Eppley Pyrheliometer        Figure 4.3: Eppley Pyranometer 

 

The Pyrheliometer required realignment for each measurement due to the movement of the 

sun. The temperature between the copper heat bulb condenser and the inside of the boiler’s 

stainless-steel manifold were recorded manually using a K-type thermocouple and Fluke 

Multimeter (Figure 3.58). 
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Figure 4.4: Boiler Thermocouple Position 

 

4.2 Phase 1 Results 

During preliminary testing, the experimental design was successful in utilizing concentrated 

sunlight to boil 1.5 L of tap water in approximately 25 minutes, before the system overheated. 

The produced steam was collected and condensed in a silicon tube open to the air (Figure 4.5).  

 

Figure 4.5: Steam Condensation Collection 

Shortly after reaching boiling temperatures, the copper heat pipe overheated and ruptured, 

breaking the bottom of the evacuated tube (Figures 4.6 and 4.7). No one was injured. 
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Figure 4.6: Ruptured Copper Heat Pipe and Aluminum Heat Transfer Fin 

 

 

Figure 4.7: Broken Evacuated Tube 

The solar radiation and boiler temperature data for the copper-heat pipe rupture are shown in 

Figure 4.8. 
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Figure 4.8: Preliminary Phase 1 Test and Rupture Event 

 

4.3 Phase 1 Implications 

The suspected cause of the rupture was a buildup of pressure caused by inadequate heat 

transfer between the copper heat-pipe condensing bulb and the stainless-steel manifold in the 

boiler. The internal walls of the copper heat pipe were relatively thin, about 1-2mm, and were 

unable to contain the internal pressure from the rapid expansion of the water/glycol heat 

transfer fluid mixture during concentration.  

 

During future tests, the evacuated tube should be filled with an oil or other liquid with a boiling 

point higher than water. Filling the evacuated tube with a liquid was avoided initially due to the 

risk that the glass tube could shatter from moving the mirror for tracking or uneven heating. 

However, the addition of a fluid could allow more energy to transfer out of the copper heat pipe 

and mitigate against a rapid expansion of the water/glycol heat transfer fluid [25]. 
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5. PHASE 2: TEMPERTURE DISTRIBUTION OF AHTF 

Analysis of the Phase 1 experiment indicated that additional testing was required to understand 

how thermal energy is distributed across the inside of the evacuated tube during solar 

concentration. Since the copper heat-pipe posed a risk of rupturing due to overheating it was 

removed from the aluminum heat transfer fin (AHTF). The AHTF is the first material that 

contacts the surface of the evacuated tube’s inner glass wall, so it was decided that measuring 

the lateral heat distribution across the AHTF would safely represent the internal temperatures 

during solar concentration. Measuring the AHTF’s lateral heat distribution would help aid in 

determining which materials could be selected for a future safe and effective heat transfer 

system, and potentially help model thermal outputs for steam production. 

 

5.1 Phase 2 Experimental Design 

The lateral heat distribution for the AHTF was measured with three high-temperature K-type 

thermocouples capable of accurate measurements up to 1200° C. The thermocouples were 

secured to the inside of the AHTF using Kapton thermocouple tape which is capable of handling 

high temperature applications (Figures 5.1 & 5.2). 
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Figure 5.1: Aluminum Heat Transfer Fin and Thermocouples 

 

 

Figure 5.2: Thermocouple Placement with Kapton Tape 
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The position of each thermocouple in relation to the evacuated tube in the parabolic trough 

solar collector is shown in Figure 5.3. 

 

 

Figure 5.3: Thermocouple Locations for Lateral Heat Distribution Collection 

 

The channel 1 (CH1) thermocouple was placed at the location where the edge of the collector’s 

aperture lines up with the evacuated tube. About 130 mm of the evacuated tube’s open end 

extends past the PTSC’s aperture edge and therefore does not receive concentrated sunlight 

(Figures 5.4 & 5.5).  

CH 1 CH 2 CH 3 
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Figure 5.4: Evacuated Tube Extension & CH1 Location 

 

Figure 5.5: Open End of Evacuated Tube 

CH 1 
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Channel 2 (CH2) represents the center of the AHTF, and Channel 3 (CH3) is the location where 

the copper heat pipe ruptured during the Phase 1 experiment. CH2 and CH3 are located 

approximately 86.4 cm and 152.4 cm, respectively, from the open end of the evacuated tube. 

Thermocouple temperature data was collected automatically each second for 6 hours using a 

LabQuest® 2 data logger. The data logger was set to run 3 hours before and after solar noon to 

measure the temperature on the AHTF during the portion of the day with the highest solar 

radiation. 

 

Method 1 tracking was used for the Phase 2 experiment due to the simplicity of setup for 

operation. The tracking frame was aligned parallel to the E-W axis and the slope of the mirror 

was set to align with the sun at solar noon (Figure 5.6). 

 

Figure 5.6: Phase 2 Method 1 Alignment and Slope 

 

E 

N 
S 

W 

E 

β 



89 
 

The PTSC was rotated using an electric motor and Arduino power switch so that the mirror 

would align with the sun at the appropriate slope angle (β) for solar noon (Figure 5.7). 

 

Figure 5.7: Tracker Electric Motor and Arduino Power Switch 

 

Sunlight data was collected using a LabQuest® 2 data logger connected to an Eppley 

pyrheliometer and pyranometer. The solar radiation sampling window was set to 5 minutes for 

the 6-hour duration of the test. 

 

5.2 Phase 2 Results 

Solar radiation and aluminum heat transfer fin temperatures were measured over several days, 

and representative data for the AHTF’s heat dispersion are shown in (Figure 5.8). The graph 

shows the time of day for solar noon as a reference for the middle of the experiment’s duration. 

The collected Global Horizontal Irradiation (GHI) shows the gradual change in sunlight 

throughout the morning until reaching a climax at solar noon and descending at relatively the 

same rate during the afternoon. Direct Normal Irradiation (DNI) fluctuates throughout the day 

depending on weather conditions and how clear the sky is above the collector. Since the 
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collector only uses DNI for concentration, this value is of importance when calculating the 

power output (P) of the system. 

 

Figure 5.8: Aluminum Fin Heat Dispersion and Solar Energy for Summer Solstice 

 

The observed changes in lateral heat distribution are a result of using Method 1 tracking. Since 

Method 1 tracking requires a single adjustment to align the mirror at solar noon, the AHTF will 

experience different timelines of rapid heating and cooling. The maximum temperature 

achieved on the AHTF was about 525°C located at CH1 after about 5 hours of heating. The 

operational temperature of the PTSC and AHTF is about 500°C for all channels once proper 

alignment is achieved. 

 

During the morning, the angle of incidence (θ) onto the evacuated tube is such that CH1 is 

shaded and encounters a delayed and slower rate of heating (Figure 5.9). As the day continues, 

the angle of incidence (θ) approaches near 0° at solar noon which is represented by the 

maximum temperatures seen for Channels 2 and 3 (Figure 5.8).  
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Figure 5.9: CH1 Shading by System Frame before Solar Noon. 

 

CH2 and CH3 measurements are elevated compared to CH1 because both sensors receive 

constant sunlight throughout testing until the afternoon (around 13:45 PM) when the 

temperatures begin to drop due to increased shading from the system’s frame and an increased 

angle of incidence on the opposite end of the evacuated tube indicated by the CH3 location 

(Figure 5.10). 

 

Figure 5.10: CH3 Shading by System Frame after Solar Noon. 
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CH1 has the highest measured value in the afternoon around 14:45 PM. The reason for CH1’s 

high temperature value is due to the alignment of the sun and the duration of heating located at 

CH1 during operation. Although CH1 does not receive direct sunlight until later in the 

experiment, the location is still heating up due to the lateral heat transfer across the AHTF. After 

solar noon, CH1 continues to receive angled sunlight whereas CH3 begins to rapidly cool due to 

shading. 

 

5.2.1 - Power Output and Theoretical Maximum Freshwater Yield 

The total output of steam is dependent upon the surface area of the collector and the combined 

thermal efficiency of the PTSC and heat transfer system. The power output (P) of the PTSC can 

be estimated using Equation 28 where (S) is the average DNI (W/m2) over the operating period, 

(Aa) is the total aperture area (m2), (αr) is the specular reflectance of the collector surface (%), 

and (t) the total time of operation (hours) [3].  

Equation 28: CSP Power Output   𝑃 = (𝑆)(𝐴𝑎) (
𝛼𝑟

100
) (𝑡)    

 

The maximum theoretical freshwater yield (VTMax) in (L/m2·hr) can be calculated using Equation 

29 where (P) is the power output (kWh) of the CSP, (Tbp) is the boiling temperature (°C) of pure 

water at 1 atm, (Tamb) is the ambient temperature (°C), (Cp) is the heat capacity (4.184 J/kg·°C) of 

water, (Hv) is the latent heat of vaporization (kJ/kg) of pure water at 1 atm and (ρ) the density of 

water (kg/m3) at 1 atm and ambient temperature [3]. 

Equation 29: Maximum Theoretical Freshwater Yield  

  

𝑉𝑇𝑀𝑎𝑥 = (
𝑃

𝜌((𝑇𝐵𝑃−𝑇𝑎𝑚𝑏)(𝐶𝑃)+(𝐻𝑣))
) (

3600𝑠

1ℎ𝑟
) (

1

𝐴𝑎
)  

 



93 
 

The maximum theoretical freshwater yield for the SODESAL system using the above-mentioned 

conditions and average DNI of the summer solstice is 1.42 L/m2·hr. This value does not 

represent the actual output of the SODESAL system since the theoretical freshwater yield is 

assuming 100% thermal conversion of solar radiation into steam production. 

 

Actual freshwater yield calculation would need to account for thermal losses associated with 

heat transfer between the aluminum heat transfer fin, heat exchange fluid and transfer system, 

steam generator and condenser. Similar small-scale systems have achieved system thermal 

efficiencies between 22.1 – 65.2% when producing steam for direct distillation [25]. If the 

mentioned efficiency for an evacuated tube with only an AHTF is applied to the SODESAL 

system, the adjusted theoretical freshwater yield becomes 0.31 L/m2·hr. 

 

5.2.2 - Summer Solstice vs Winter Solstice Solar Radiation Potential 

Solar radiation data was collected for both the winter and summer solstices to compare the 

theoretical maximum and minimum values for available solar energy for the Cal Poly test 

location (Figure 5.11). The summer and winter solstice measurements demonstrate the 

maximum and minimum available solar radiation throughout the year. 
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Figure 5.11: Summer 2018 vs. Winter 2018 Solstice Solar Radiation for Cal Poly Test Location 

 

The GHI values were similar for both sampling days, whereas the DNI measurements indicate 

significant differences in atmospheric conditions. During the summer when DNI is highest the 

angle between the sun and the collector is lowest, resulting in longer days and less atmosphere 

to absorb and scatter direct solar radiation [3]. During the winter when DNI is lowest, the angle 

between the sun and the collector is highest, resulting in shorter days and more relative 

atmosphere to absorb and scatter direct solar radiation.  The dramatic drops in the winter 

solstice solar radiation measurements were due to clouds blocking sunlight to the collector’s 

surface.  

On the winter solstice (Dec 21st), the sun’s incident radiation is impeded the most by the earth’s 

atmosphere due to the sun’s low position in the sky [3]. The winter solstice DNI measurements 

can help quantify a theoretical minimum freshwater yield for the SODESAL system since these 

measurements represent the lowest potential solar radiation for the location. Assuming 100% 
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thermal efficiency and using an average winter solstice DNI of 831 W/m2, the theoretical 

minimum freshwater yield is 1.16 L/m2·hr. The adjusted minimum freshwater yield using the 

thermal efficiencies from Mosleh [25] is 0.24 L/m2·hr.  

 

5.2.3 - Localized Impacts on Solar Thermal Energy 

Atmospheric conditions can significantly hinder a CSP system’s output if direct solar radiation is 

blocked by clouds. Cloud coverage blocking available solar radiation and altering the heat 

distribution of the AHTF was observed for one of the testing days and is shown in Figure (5.12). 

 

 

Figure 5.12: Solar Energy and AHTF Heat Dispersion for Cloudy Day 

 

As the solar radiation increased, the temperatures for Channels 2 and 3 began to climb while 

Channel 1’s temperature plateaued and declined. At around solar noon, the temperatures for all 

3 channels were relatively consistent indicating an operation window of consistent sunlight. At 
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approximately 15:30 PM, cloud coverage over the collector peaked, causing the measured solar 

radiation to plummet along with the temperatures measured inside the evacuated tube. 

Shading and cloud coverage can significantly reduce the solar radiation received for a PTSC and 

therefore the freshwater yield for a small-scale solar desalination system. The highest DNI 

recorded for June 9th was 935 W/m2 and the lowest value after cloud shading was 211 W/m2. 

The effect of cloud shading could therefore reduce the maximum theoretical freshwater yield by 

up to 77%.  The resulting freshwater yield per unit area of collector would drop from 1.23 

L/m2·hr to 0.28 L/m2·hr. 

 

5.3 Phase 2 Implications 

The Phase 2 experiment demonstrated the importance of alignment for providing consistent 

thermal energy to a small-scale CSP system. The lateral heat distribution across the aluminum 

heat transfer fin varies throughout the day depending on the total time of ideal solar alignment 

and the angle of incidence with direct solar radiation (θ). Method 1 tracking was used as a 

simple way to align a parabolic trough solar collector with solar noon. However, if Method 2 or 

Method 3 tracking were used to continuously adjust the slope (β) of the collector, the angle of 

incidence will be minimized during operation. Minimizing the angle of incidence should allow 

the AHTF to achieve consistent operating temperatures earlier and longer during operation.  

 

Alignment along the polar axis and continuous tracking are two ways to minimize the incident 

angle (θ) and shading that can occur on the collector or the evacuated tube surface. Shading can 

provide a significant decrease in solar energy production. A remedy for shading on small-scale 

systems is to align the tracking frame along the polar N-S axis for continuous tracking operation. 

N-S tracking with continuous adjustment should reduce the effect of shading from a collector’s 
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endcaps since the incident angle will be less severe for that specific alignment [3]. If the endcap 

surface area is kept to a minimum, shading will have a minimal effect on N-S axis continuous 

tracking CSP systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

6. CONCLUSIONS  

This study demonstrated that the SODESAL system can achieve results like other CSP systems. 

The AHTF used in this SODESAL system achieved temperatures (350 – 525 °C) that are like 

operating temperatures achieved by large-scale systems (300 - 550°C) [15]. Previous 

experiments have shown that it is possible to achieve an actual freshwater yield of up to 0.78 

L/m2·hr with an operating cost of $ 0.0450/l/m2 [25]. This SODESAL system can reach boiling for 

1.5 L of water in approximately 25 minutes, however the copper heat-pipe used for heat 

exchange ruptured from overheating. Small-scale CSP systems are limited by the thermal 

efficiency of the heat exchange system.  Method 4 tracking was utilized to provide the necessary 

angle to allow the copper heat-pipe to circulate the internal heat transfer fluid, however, a 

horizontal alignment using Methods 1, 2 or 3 could utilize a more robust heat transfer loop that 

is safer and more effective. The lateral heat distribution of the AHTF is dependent upon the 

PTSC’s solar incident angle. A consistent lateral heat distribution occurred across the AHTF 

approximately 40 mins after solar noon. The temperature difference between each end of the 

AHTF can exceed over 225 °C leading up to and following solar noon when the PTSC was set at a 

static slope. 

 

Large-scale CSP systems have the benefit of operating multiple PTSCs in an array to maintain 

consistent heating of a heat transfer fluid throughout a full sunlight day. Longer PTSC’s thermal 

efficiencies are less affected by endcap shading due a higher proportion of reflector surface area 

exposed to sunlight compared to small PTSCs. The SODESAL system described herein was 

affected by shading due to structural design flaws and the chosen method of tracking which 

limited the timeline of consistent maximum operating temperatures. Based on these findings 
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this SODESAL system has the potential for future applications, system improvements and 

additional research.  

 

6.1 Small-Scale CSP Applications 

Combined CSP and Seawater Reverse Osmosis (SWRO) systems are commonly used in areas 

with abundant sunlight to provide freshwater to water-scarce regions [15, 19, 20]. However, 

these systems require economical infrastructure and consistent sources of solar thermal energy 

to be competitive with fossil-fuel powered systems. Small-scale CSP desalination systems have 

the potential to produce steam for both power generation and direct steam distillation on a 

scale that can be more affordable for off-grid applications and non-conventional source waters 

for treatment [20, 23, 24, 25]. 

 

Aside from seawater desalination, small-scale CSP systems could also be implemented to recycle 

wastewaters in areas that do not have the infrastructure or space available for commercial size 

systems. Small-scale CSP systems could be used to treat agricultural run-off, fracking 

wastewater or even provide on-demand solar power and water treatment for disaster relief 

zones [20, 22]. The size of small-scale systems could serve as a pilot to test the requirements 

and model a larger scale system at minimal capital costs. 

 

6.2 Future Studies 

Small-scale solar desalination systems have been proven to provide solar thermal outputs 

comparative to large-scale CSP desalinations systems [25, 24, 25]. Additional research must be 

made to maximize the thermal efficiency, reduce the capital costs and increase the longevity of 

small-scale systems. Improvements in the freshwater yield per unit of collector area are of 
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importance for small-scale systems vying to reduce the relative cost of producing steam. With 

some improvements to the SODESAL system design, additional studies using this system may 

allow for even greater insight into the potential for small scale solar desalination systems. 

 

6.2.1 Structural Improvements 

The solar desalination system shown herein was constructed as a prototype to understand the 

process of manufacturing and the capabilities of a small-scale CSP system. Over a year of 

operation has caused many parts of the SODESAL system to warp, crack or even break from the 

stresses of operation.  

 

Warping of the collector’s rib structure can alter the mirror’s reflected image and reduce the 

effectiveness of reflectivity or create unwanted concentration. Sunlight concentration spots 

must be mitigated on the structure if wood is used since wood can combust under concentrated 

sunlight. Reflective tape was used as a quick way to fix concentration spots that are causing the 

structure system to overheat, but aluminum is recommended for the structure due to its light 

weight, strength, manufacturability and high melting point. Aluminum should replace the 

wooden structure of the tracking frame so that the system is reinforced, and the weight of the 

collection system is supported.  

 

A robust motor, gear and tracking system is necessary to maximize collection of solar radiation 

into the collector. The gear system and ball bearing mount used for tracking needs to be 

reinforced to prevent flexing and subsequent damage while a force is acted upon it during 

rotation. Some of the ball bearings popped out of the mount due to excessive flexing of the 

structure. 
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The length of the collector is limited by the length of the evacuated tube. The structure 

supporting the evacuated tube should not impede or block sunlight entering the collector. The 

endcaps used in the system described herein, although structurally necessary, could be changed 

to allow for sunlight to pass through if stronger materials are used to occupy less space. 

 

The evacuated tube is constructed out of a borosilicate material and therefore has the potential 

to break under shocks or impacts. Alternative materials that provide the same thermal 

conditions and sunlight transmission should be investigated to provide more robust solutions to 

solar radiation conversion to thermal energy.  

 

The copper heat-pipe used in this SODESAL system ruptured due to overheating from 

inadequate heat exchange between the condensation bulb and steam generator. A pressure 

relief valve could mitigate this risk if the mechanism for heat transfer is not compromised.  The 

addition of a heat transfer paste can also improve heat exchange between the heat-pipe bulb 

and boiler when both are in direct contact.   

 

6.2.2 Operation Improvements 

Implementing Methods 2 and 3 for continuous tracking should improve the duration of 

maximum operating temperatures for this SODESAL system. A longer duration of maximum 

operating temperature will provide a more consistent heat transfer which is critical to 

maintaining a constant production for steam for either energy production or desalination.  
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A steady-state flow of feed water through the boiler could limit the risk of the copper heat-pipe 

from overheating since a consistent flow of cooler water will provide better heat exchange for 

steam production compared to a batch-reactor with stagnant hot water.  

 

A heat exchange fluid that is pumped and looped through the evacuated tube to exchange heat 

through an external steam generator could greatly improve the thermal efficiency and safety of 

the SODESAL system. This type of heat exchange system would better simulate large-scale CSP 

systems and allow for additional methods of tracking that do not require a minimum PTSC slope 

for internal heat exchange like in Method 4 tracking. 

 

6.2.3 Additional Experiments 

The addition of a medium inside the evacuated tube has shown to substantially increase the 

thermal efficiency and freshwater yield of other small-scale systems [25]. The evacuated tube 

for the SODESAL system should be filled with a medium like oil, or a solid medium like sand that 

has a higher boiling point than water. Sand is a readily available solid medium that could be 

added to the inside of an evacuated tube to help evenly distribute heat across the AHTF and 

heat transfer system during operation. The internal medium may also provide heat storage and 

increase the duration of solar thermal production during off-peak hours when solar radiation is 

limited, like how molten salt is used as thermal storage in solar tower power systems [13]. 

 

The size of a small-scale CSP system provides the benefit of being able to compare different 

tracking methods to identify the best solution for a location. A thermal output test like the one 

performed for Phase 2 at different orientations could satisfy a comparative test to see if the 
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window of operational temperature can be extended for different tracking methods. 

 

A heat transfer system that can withstand high internal temperatures and pressure should be 

implemented with a simple distillation and condensation system to test the capabilities for 

small-scale desalination.   Once a small-scale system is constructed that is durable and thermally 

consistent with converting solar thermal energy for steam production a model of the system 

should be developed to predict performance for different source waters. Different source 

waters should be tested to identify what constituents if any are transferred through the 

separation process.  

 

A study should be done for a small-scale CSP system’s capability to produce solar thermal 

energy for heat storage. Surplus thermal energy not used for steam generation could be used to 

charge a heat storage, prolonging the window of operation during times of insufficient solar 

radiation [20]. Excess thermal energy could also be recycled to preheat source water going into 

the CSP system, effectively increasing the thermal efficiency [22]. 

 

An optimization of a small-scale array system should be conducted to determine what the 

maximum thermal performance is for a given length of evacuated tube. At a certain point a PTSC 

cannot be made any wider since the width would impede with the tracking motion; an array of 

small-systems could be more economical than fewer large-systems if space is limited for the 

location of the system. 

 

A study verifying modeled results against measured results should be conducted for small-scale 

CSP systems to predict thermal efficiencies and expected steam generation yields. Researchers 
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at the University of Engineering and Technology in Karachi, Pakistan developed a probabilistic 

model for a Parabolic Trough Concentrator (PTC) to determine a single correlation for outlet 

temperature of Syltherm 800, a commonly-used heat transfer fluid (HTF).  

 

The model was able to identify several input factors that had an insignificant effect on the 

modeled thermal performance of a PTC including the diameter of the absorber pipe, the 

thickness of the evacuated tube’s glass envelope, the spacing between the absorber pipe and 

glass envelope, the emissivity of the absorber pipe, the optical efficiency, ambient temperatures 

and wind speed. The model was able to explain 98.4% of the variability in the heat transfer fluid 

outlet temperatures. The methodology used in Pakistan could be applied to find correlations for 

other output parameters of PTCs using this SODESAL equipment. 
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