
LOGGING AND ANALYSIS OF INTERNET OF THINGS (IOT) DEVICE

NETWORK TRAFFIC AND POWER CONSUMPTION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Ryan Frawley

June 2018



c© 2018
Ryan Frawley

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: Logging and Analysis of Internet of Things

(IoT) Device Network Traffic and Power

Consumption

AUTHOR: Ryan Frawley

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: Andrew Danowitz, Ph.D.

Assistant Professor of Electrical Engineering

COMMITTEE MEMBER: Foaad Khosmood, Ph.D.

Associate Professor of Computer Science

COMMITTEE MEMBER: David Retz, Ph.D.

Lecturer of Electrical Engineering

iii



ABSTRACT

Logging and Analysis of Internet of Things (IoT) Device Network Traffic and Power
Consumption

Ryan Frawley

An increasing number of devices, from coffee makers to electric kettles, are becoming

connected to the Internet. These are all a part of the Internet of Things, or IoT. Each

device generates unique network traffic and power consumption patterns. Until now,

there has not been a comprehensive set of data that captures these traffic and power

patterns.

This thesis documents how we collected 10 to 15 weeks of network traffic and

power consumption data from 15 different IoT devices and provides an analysis of a

subset of 6 devices.

Devices including an Amazon Echo Dot, Google Home Mini, and Google Chrome-

cast were used on a regular basis and all of their network traffic and power consumption

was logged to a MySQL database. The database currently contains 64 million packets

and 71 gigabytes of data and is still growing in size as more data is collected 24/7

from each device.

We show that it is possible to see when users are asking their smart speaker a

question or whether the lights in their home are on or off based on power consumption

and network traffic from the devices. These trends can be seen even if the data being

sent is encrypted.
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Chapter 1

INTRODUCTION

Devices with internet connectivity are becoming increasingly commonplace in homes

and businesses. Many of these devices aim to make life more convenient by providing

services like voice controlled calendar access or the ability to stream shows and movies

directly to a TV [1, 2, 3, 4]. These devices are all part of the Internet of Things (IoT).

IoT devices typically generate much less network traffic than devices like computers

or smartphones. The servers that each device communicates with are usually related

to the device manufacturer. For instance, Amazon IoT devices primarily talk to

Amazon servers and Google devices primarily talk to Google servers. This becomes

harder to predict when the device is made by a white label manufacturer.

With so many different IoT devices available today, it is hard to predict what kind

of traffic every device is going to generate. Even devices that have a similar purpose

can generate wildly different traffic. Devices designed in China tend to send more

traffic to China and its surrounding countries than those designed in the United States.

The prevalence of IoT devices raises a couple questions: should we be concerned about

the data being sent to any servers? Are the IoT devices in our homes spying on us?

All of these connected devices are constantly generating data. A lot of the data

generated ends up being sent to a server outside of the local network. On top of

that, these servers send a large amount of data back to the devices. With so many

different devices on the market, there is a huge amount of data being sent and received.

Currently, we do not know many of these devices’ baseline in terms of the data they

generate. Obtaining a baseline for many devices unlocks the potential to perform

powerful analyses and gain even more insight into how each one operates.
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1.1 Contributions

This thesis makes two contributions. The first is the creation of a large database

which currently includes 15 weeks of network traffic and power consumption data for

15 different IoT devices. The database will continue to grow after the current 15 week

period ends. This database contains 64 million packets totalling 71 gigabytes as well

as over 1 million power consumption measurements.

The second contribution is an analysis of the IoT devices in the database. This

shows the difference in traffic and power consumption between devices in the same

categories. It establishes a baseline for what “normal” traffic and power consumption

is for a smart speaker, media player, and more. Part of this analysis includes looking

at the amount of data sent and received during normal operations such as asking

for the weather or watching TV. Additional metadata including what countries each

device sends data to most frequently is also analyzed.

1.2 Thesis Organization

Chapter 2 gives an overview of the Internet of Things, privacy issues that surround

the IoT domain, and related work. Chapter 3 details the experimental setup for

monitoring IoT devices. In Chapter 4, analysis is performed on the data collected

from a subset of the monitored devices. Chapter 5 concludes with a summary of the

experiment and analysis and discusses possible future work.
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Chapter 2

BACKGROUND

The Internet of Things, or IoT, is the network of a wide variety of devices containing

electronics, software, sensors, actuators, and network connectivity. These devices

range from simple items like light bulbs that can be controlled over the internet to

cars that can be started with a smartphone app. Every IoT device is able to operate

within the existing internet infrastructure.

It is becoming increasingly common for devices to connect to the internet. From

2016 to 2017, the number of online capable devices increased from 6.4 billion to 8.4

billion [5]. This is expected to increase to over 20 billion devices by 2020 [5]. The

increase in connected devices has the potential to lead to a massive amount of data

being collected from the owners of these products. This brings up an important

question with regards to privacy: what information is being sent or leaked by each of

these devices?

2.1 Privacy Concerns with IoT Devices

Many IoT devices come with a number of sensors including microphones and cameras.

This has caused concern over what data is being collected from users without their

knowledge. These concerns are warranted. In 2017, Google admitted that its newest

smart speaker, the Google Home Mini, was eavesdropping on users [6]. The Home

Mini was recording and sending audio to Google servers without being prompted with

the wake word. Even though the issue was caused by a hardware bug with the touch

pad, it still caused many to question how much trust customers should be putting

into speakers that potentially listen 24/7.
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While Google and Amazon both state that their speakers do not record any audio

unless prompted with the wake word, this may not hold true in the future. Both

companies have filed patents for systems that can listen to any conversation without

being prompted with the wake word and send targeted advertisements to the users

based on their conversation [7, 8]. Smart speakers are not the only devices prone to

these kinds of spying. The microphone on a mobile phone could be used for the same

purpose.

IoT devices designed in China have been scrutinized closely for potential spying.

In 2012, the U.S. General Services Administration removed Hikvision, a Chinese

electronics manufacturer, from a list of automatically approved suppliers due to

security concerns [9]. The Department of Homeland Security also issued a cybersecurity

warning saying that a loophole in certain Hikvision cameras made it easy for hackers

to exploit and view the camera’s video stream [10]. Some U.S. security vendors also

stopped selling Hikvsion cameras over concerns that they may be being used by China

to spy on U.S. citizens [9]. Four years later, the smartphone maker BLU was caught

putting spyware on its users’ phones which sent their text messages, real-time location

information, and other personal information to a server in China [11].

Many IoT devices are also open to exploits that could let unknown attackers steal

data from the owners. A lot of devices, especially generic ones with no brand name,

use weak default usernames and passwords like “admin:admin” or “admin:1234” or

have no password protection at all. This has lead to many different IoT-centered

attacks including Stuxnet [12], Mirai [13], Brickerbot [14], and the botnet barrage [15].

2.2 Related Work

The paper ProfilIoT: A Machine Learning Approach for IoT Device Identification

Based on Network Traffic Analysis describes an approach for using machine learning
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algorithms to accurately identify IoT devices [16]. In the paper, researchers first

collected network traffic data from 13 different devices. These devices included both

IoT and non-IoT devices. Some of the IoT devices included a refrigerator, a security

camera, a thermostat, and a TV. The non-IoT devices included two computers and

two smartphones. The devices were connected to a WiFi access point and the network

traffic was recorded using Wireshark.

After the traffic data was collected, the researchers performed feature extraction [17]

on the data. The first feature extraction was performed on TCP packets. Unique

4-tuples consisting of source and destination IP addresses and port numbers were

created for each packet. These 4-tuples are called sessions. The sessions were then

represented by a vector of features from the network, transport, and application

layers. They were also enriched with data like the Alexa Rank [18] and GeoIP [19]

information.

The paper describes a multi-stage process in which a set of machine learning based

classifiers are applied to a stream of sessions that originate from a specific device. The

goal of this process was to determine whether the traffic belonged to a PC, smartphone,

or a specific IoT device. The classifier uses packet metadata and payload data to

perform its classification. For instance, smartphones were classified using the “user

agent” HTTP property and this yielded a classification accuracy of 100 percent. The

classifier had an accuracy of 99.281 percent for identifying specific IoT devices.
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This paper briefly described the process of data acquisition for IoT devices, but

there was not much hand-done analysis on the data. The paper describes some of the

features used to train a model and describes the algorithms used to classify traffic,

but there are not any graphs describing the traffic observed. This would have made it

easier to understand how the traffic generated by each device differed. Additionally,

the paper only describes the logging of network traffic of the devices. There is no

mention of power consumption logging.

Later in the year, the authors of [16] published a second paper, Detection of

Unauthorized IoT Devices Using Machine Learning Techniques [20]. This paper

describes the process of detecting unauthorized IoT devices on a network using

machine learning techniques. The data collection portion of this paper is much more

detailed than the first. Network traffic data was collected and labeled from 17 different

IoT devices covering 9 different categories. In this paper, the network was set up to

reflect a common enterprise practice in which devices are connected over WiFi to

several access points wire-connected to a switch that is connected to a router. Port

mirroring was performed on the switch to sniff the devices’ network traffic which was

recorded to a local server using Wireshark [21].

TCP packets were broken down into the same 4-tuples from the first paper [16].

The research was performed in two different countries, so the same setup was mirrored

in both labs to evaluate model transportability. The feature extractor from [17] was

used to convert the data to vectors. These vectors included 274 different features

labeled with the device type. The data was then partitioned into training, testing,

and validation sets. A model was trained using similar techniques from [16] using IP

streams and the features extracted from TCP packets.

Using this method, the researchers were able to achieve a 94 percent accuracy rate

for identifying unknown IoT devices on the network. In addition, 97 percent of the
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white listed devices were correctly classified by their specific device type. The most

important features for identifying an IoT device were the TCP time to live (TTL)

minimum, the TCP TTL first quartile, and TCP TTL average. The model presented

in the paper is also transportable, meaning that is able to be deployed in different

locations and networks and still have a high success rate.

The focus of the paper is machine learning techniques, so many of the finer details

of the traffic patterns are lost. Additionally, the paper does not cover any power

consumption statistics for the devices.

In the paper A Smart Home is No Castle: Privacy Vulnerabilities of Encrypted IoT

Traffic, researchers found that it is possible to identify IoT devices based on network

traffic patterns and DNS [22] packets being sent [23]. Furthermore, it is possible to

reveal information about a user even if all of the traffic is encrypted. For instance, by

plotting the bytes per second being sent or received from a device, it is possible to tell

when users are asking their Amazon Echo a question. Examining traffic spikes on a

sleep sensor can reveal when the user goes to sleep or wakes up.

The devices covered in this paper were a Sense sleep monitor, a Nest security

camera, a Belkin Wemo switch, and an Amazon Echo. Each device had unique traffic

patterns that made it possible to both identify what device the traffic was coming

from. Beyond looking at network throughput, examining DNS queries showed which

device was sending traffic. Almost all of the devices send DNS traffic to servers that no

other device does, making it easy to identify where the traffic is coming from. Devices

from the same manufacturer often send very similar DNS requests, so differentiating

between devices from the same manufacturer can be difficult. Many ISPs already

collect enough information to perform this type of analysis on the traffic that their

customers are generating. This could lead to many new issues surrounding privacy

and data collection.
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A Smart Home is No Castle: Privacy Vulnerabilities of Encrypted IoT Traffic

goes into more depth in analyzing the traffic captured and using graphs to show the

data. Many of the traffic patterns described in the paper also show up in Chapter 4 of

this thesis. However, the dataset used in [23] is much smaller than either [16] or [20].

The number and types of IoT devices examined are also more limited and no power

consumption is taken into consideration since the goal of the paper was to identify

traffic from outside of the network.

The analysis performed in An Analysis of Home IoT Network Traffic and Behaviour

is much closer to what is done in Chapter 4 of this thesis [24]. The primary purpose

of the paper is to analyze network traces from a test bed of common IoT devices,

describe general methods for fingerprinting their behavior, and assess where privacy

and security risks manifest. The test bed contained 14 common IoT devices including

an Amazon Echo, Samsung SmartThings Hub, Apple iPad, and more. These devices

are also all monitored in this thesis.

The devices were used and monitored for 22 days before the collected packets were

analyzed. The paper shows that it is possible to associate specific devices with network

traffic even if protection methods like MAC address randomization are used. This can

done with something as simple as looking at DNS requests to see what websites the

devices are asking for. Some of the devices also used HTTP packets to send or receive

all data, so it was possible to extract API keys and hijack devices.

The majority of the traffic transmitted during the 22 day monitoring period was

TCP traffic. This was true for all but the Philips Hue Bridge, Amazon Echo, and

Ubiquiti Access point, which primarily sent UDP traffic. The paper goes on to break

down the traffic sent by all 14 of the monitored devices. Many of the traffic patterns

noted in the paper hold true in this thesis.
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The analysis performed in [24] shows the breakdown of what normal traffic looked

like for 14 different common IoT devices. However, the data collected only covered a

period of three weeks. Additionally, the paper did not monitor multiple devices from

different manufacturers in the same category. For instance, the only smart speaker

being monitored was the Amazon Echo. Additionally, there is no mention of power

consumption for the monitored devices.

The device monitoring portions of [16, 20, 23, 24] started to build databases

containing network traffic for different IoT devices, but the monitoring periods were

not long enough to create a comprehensive database. The experiments performed in

these papers did not present a clear comparison between devices in the same category.

All of the papers focused only on network traffic behavior, which gives only a partial

view of how each device normally behaves. In this thesis, we go beyond the monitoring

and analyses performed in these papers by monitoring the network traffic and power

consumption of IoT devices for 15 weeks. We include more devices in the same

category to provide a comparison between the traffic and power consumption of three

different smart speakers and two different streaming devices.
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Chapter 3

CREATING AN IOT TEST BED

To create a baseline for network traffic and power consumption for our IoT devices,

we set up a database and use-cases to log this data. This chapter documents how we

create a Python script that logs all network traffic from our devices. It also documents

how we obtain power consumption data by using Belkin Wemo Insight switches [25].

All of this data is stored in a MySQL database that was configured using Amazon

Relational Database Service (Amazon RDS) [26].

3.1 Preparing a Wireless Access Point

To log network and power usage, we configured an Intel NUC [27] to act as a wireless

access point. This provides a convenient package that is as compact as a wireless router

while providing the ability to run almost any software. In its current configuration,

our NUC is using Ubuntu as its primary operating system. We chose Ubuntu so we

could run the Python scripts used to both capture the data and send it to our MySQL

database.

The Intel NUC comes with an internal wireless antenna that can be used to connect

to wireless networks. Initially, this antenna was used to broadcast the wireless local

area network that all of the IoT devices connect to, but this caused problems. The

internal antenna was originally intended to be used to connect to a network and

allow the NUC to act as a wireless client. The antenna was not able to handle the

load of all of the IoT devices communicating simultaneously. This caused frequent

network outages because the antenna was not able to support the amount of data
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being transmitted simultaneously between all of the devices on the network. In order

to alleviate this problem, an external USB antenna is used instead.

The NUC receives an internet connection through its on-board Ethernet port.

The connection is then shared to the external USB antenna using the open source

create ap script [28]. The script enables two network interfaces to share an internet

connection using network address translation (NAT) [29]. This allows the NUC to act

as a wireless access point to which all of the IoT devices can connect to. The access

point is configured to use the WPA2 [30] security protocol on an 802.11n [31] network.

Using this setup, we are able to achieve consistent download and upload speeds of

about 30 megabits per second. We found that this is more than enough to perform

day-to-day activities like streaming content from YouTube or downloading games on

the consoles.

3.2 Logging Scripts

The NUC is configured to log the network traffic and power consumption of every

device that is connected to it. This is accomplished using a Python script. This script

connects to the database that it used to store all of the logged information about each

device. If the connection to the database is ever lost, the script will automatically

attempt to reconnect. We send the data to our database using the mysqlclient [32]

package. From there, the program is split into two major sections.
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3.2.1 Packet Logging

The first and largest part of the script handles all of the packet logging for any devices

on the LAN. This portion of the script makes use of sockets to capture all of the data

sent or received on the network. A socket is opened on the wireless interface and all

IP packets are read from the socket. This is shown in Listing 3.1.

self. socket = socket . socket ( socket .AF_PACKET , socket .SOCK_RAW ,

socket .htons( ETH_P_ALL ))

self. socket . setsockopt ( socket .SOL_SOCKET , socket .SO_RCVBUF ,

2**30)

self. socket .bind (( self. interface_name , ETH_P_ALL ))

while True:

packet , address = self. socket . recvfrom (MTU)

Listing 3.1: Open and Read from a Socket

After a packet is captured from the socket, the data stored in the headers of the

packet is extracted for use in the database. This includes information like packet size,

source and destination ports, and transport or internet layer protocol. The script

is able to handle both IPV4 and IPV6 addresses. Storing packet metadata makes

searching for packets in the database much easier. To make finding traffic for specific

devices easier, we assign static IP addresses to each device using dnsmasq [33].

Each entry is supplemented with additional data in the form of the hostname of

the source and destination IP addresses. The script attempts to perform a reverse

DNS lookup to get the hostname of the source and destination IP addresses. The

reverse DNS lookup does not work on any of the monitored devices, but it works for

most of the external IP addresses. The reverse DNS lookup is accomplished using the

gethostbyaddr function as shown in Listing 3.2.
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try:

src_hostname = socket . gethostbyaddr ( socket . inet_ntop (family

, src))[0]

except socket . herror :

src_hostname = "N/A"

Listing 3.2: Reverse DNS Lookup

3.2.2 Power Consumption Logging

The second half of the logging script records the power usage of every IoT device.

This is accomplished using Belkin Wemo Insight switches [25] on each device that is

being monitored. Each Insight is plugged into an outlet and then the device that is

being monitored is connected to the outlet on the Insight. Each Insight is connected

to the wireless LAN that the IoT devices are connected to. The script communicates

with all of the Insights using the pyWeMo module [34]. This lets the wireless access

point read the current power usage on every Insight once every second. The Insight is

capable of reading both the current power in milliwatts as well as the daily energy

use in kilowatt hours. This setup is illustrated in Figures 3.1 and 3.2.
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Figure 3.1: Network Diagram
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Figure 3.2: Smart Speakers Connected to Wemo Insight Switches

If an Insight switch switch becomes unreachable, the script will attempt to reach

the Insight three times. If it cannot establish a connection with the Insight after three

attempts, the script rescans the network for all Insights and continues logging power

usage. Due to limitations with the pywemo library, this scan does not always find all

of the Insights on the network. For this reason, the script is configured to scan until it

discovers a minimum of 15 different Insight switches. This value was selected based on

the number of devices that we are currently monitoring. The scanning functionality is

shown below in the scan until all found function in Listing 3.3.
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def scan_until_all_found ():

print(" Discovering Wemos")

switches = pywemo . discover_devices ()

print(" Discovered {} switches ". format (len( switches )))

print( switches )

try_num = 1

while len( switches ) < 15:

print("Did not discover enough switches , trying again

{}...". format ( try_num ))

switches = pywemo . discover_devices ()

try_num += 1

print(" Discovered {} switches ". format (len( switches )))

return switches

Listing 3.3: Wemo Scanning Function

3.2.3 Multiprocessing

Both halves of the script contain code that will automatically restart logging if it ever

stops. Additionally, the logging portions of the script run in two separate processes

separate from the main process. The network and power logging sections of the script

each run in their own process in order to provide more stability in the case of a crash.

This is done to ensure that even if one portion of the logging encounters an issue, the

other will be able to continue as normal. In the main process, each logging process is

repeatedly polled to check if it is still running and automatically restarted if it has

terminated. Multiprocessing is accomplished with the code in Listing 3.4.
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p1 = Process ( target = ip_sniff .recv , args =( cursor ,))

p1.start ()

p2 = Process ( target = monitor_power , args =( cursor1 ,))

p2.start ()

p1.join ()

p2.join ()

while True:

time.sleep (0.5)

for p in [p1 , p2]:

if not p. is_alive ():

print(" Restarting process ...")

p.start ()

p.join ()

Listing 3.4: Multiprocessing

3.3 Database

The data collected by the scripts in section 3.2 is stored in an Amazon RDS [26]

MySQL database. There are two tables in the database that are used for logging

information from the IoT devices. Limiting the database to two tables makes finding

logged data easier. The first table is the network traffic table which is used to store

all of the packets sent or received by the devices. This table is where the majority of

the data collected from the devices is stored. The second table in the database is the

power table, which is used to store power usage information about each device.

The two tables are linked by the network traffic table’s source and destination

IP address columns and the power table’s device name column. We are able to map

power consumption data to network traffic by mapping each device name to an IP
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address. This is done in a separate spreadsheet. Table 3.1 shows a portion of this

sheet.

Table 3.1: Device Name to IP Address Table

Device IP Address

Amazon Echo Dot 192.168.12.79

Eufy Genie 192.168.12.141

Google Home Mini 192.168.12.48

Google Chromecast 192.168.12.78

3.3.1 Network Traffic Table

Every packet that is sent or received by any device on the network is logged and

stored in a MySQL database [35]. MySQL was chosen based on its ease of use and

broad support. Hosting the database using Amazon RDS [26] allows for access to any

logged information from any location and provides backups and scalability. MySQL is

particularly well suited for this dataset because it allows for filtering between specific

time ranges and IP addresses.

The network traffic table contains multiple columns to allow for easy searches

through the database for specific packets. The columns in use are shown in Table 3.2
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Table 3.2: Columns in Network Traffic Table

Column Number Column Name Data Type

1 time datetime

2 source varchar

3 src host varchar

4 destination varchar

5 dst host varchar

6 protocol varchar

7 type (in/out) varchar

8 src port varchar

9 dst port varchar

10 size int

11 hexdump longtext

As an example of what a packet looks like when it is stored in the database, refer

to Figure 3.3. Each line represents a separate packet that is stored in the database.

Figure 3.3: Packets Stored in Database
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The packet logging table contains about 64 million rows, or 64 million packets.

These 64 million packets contain about 71 gigabytes worth of data. Due to the table

size, searches can be extremely slow. The source IP, destination IP, and time columns

are configured as indexes in the table in order to speed up searches. These columns

are the most common ones used to find packets. To get all of the traffic generated by

the Google Home Mini for 1 hour, the SQL query in Listing 3.5 can be used. Note

that the IP address of the Home Mini is 192.168.12.48, so that is what is used in the

query.

SELECT * FROM ip_log .ip

WHERE time BETWEEN ’2018 -05 -01 13:00:00 ’ AND ’2018 -05 -01

14:00:00 ’ AND ( source =’192.168.12.48 ’ OR destination =’

192.168.12.48 ’)

ORDER BY time ASC

Listing 3.5: Network Table Query

The hexdump column contains a hexdump of every packet that was logged for

every device so far. This allows users to import a log of all the network traffic over a

specific time window or device into Wireshark for easy parsing. Using this column is

useful for monitoring the packets sent during the first time boot-up of a device or any

packets sent or received during an update. The majority of the packets in this column

are encrypted using TLS/SSL [36], but useful information can still be gathered from

the metadata of the packet. The packet metadata can reveal information about an IP

address like the owner of the address, the host name, or the geographic location of

the IP address.
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3.3.2 Power Table

The power usage of each device is logged and stored in a separate table in the database.

The power table contains about 15 million measurements and occupies 1 gigabyte

of space. This table is much smaller than the network traffic table for two reasons.

First, the frequency that data is logged to the table is much lower, at one reading per

second. Second, the only data types stored in the table are varchars, integers, and

datetime timestamps - there are no large fields like hexdump. The table is comprised

of the columns listed in Table 3.3.

Table 3.3: Columns in Power Table

Column Number Column Name Data Type

1 name varchar

2 power mw int

3 time datetime

4 today kwh varchar

5 on for varchar

6 today on time varchar

Figure 3.4 shows what the power consumption data looks like when it is stored in

the table.

Figure 3.4: Power Consumption in Database
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Similar to the packet logging table, the power logging table contains indexes in

order to speed up searches. The time and device name columns are configured as

indexes because these are the most commonly used features for filtering. Device names

come from the Wemo Insight switches which were named by hand when we set them

up. This makes it easy to filter out the power usage of a device when it is performing

an update or idling to compare the power usage. To get the power consumption for

an hour for the Echo Dot, the SQL query in Listing 3.6 can be used.

SELECT time , power_mw FROM ip_log .power

WHERE time BETWEEN ’2018 -05 -19 21:10:08 ’ AND ’2018 -05 -19

22:10:08 ’ AND name=’Echo Dot ’

ORDER BY time ASC

Listing 3.6: Power Table Query

3.4 IoT Device Selection

In order to obtain a dataset that encompasses what many home’s IoT network traffic

might look like, we have a broad set of devices. We did this to create a superset of

consumer devices. The majority of the devices were selected based on the market share

they hold in the United States. Using similar devices made by different manufacturers

also provides an interesting comparison between multiple IoT devices. A list of all of

the devices being monitored can be seen in Table 3.4 and a picture of the devices is

shown in Figure 3.5.
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Table 3.4: IoT Devices Being Monitored

Category Manufacturer Device Quantity

Game Console Nintendo Switch 1

Game Console Microsoft Xbox One 1

Laptop HP Chromebook 1

Media Player Samsung Smart TV 1

Media Player Google Chromecast 1

Media Player Amazon Fire TV Stick 1

Media Player Roku Express 1

Security Camera Eray Hi3518 WiFi Camera 1

Smart Speaker Amazon Echo Dot 2

Smart Speaker Eufy/Anker Genie 2

Smart Speaker Amazon Echo Show 1

Smart Speaker Google Home Mini 1

Tablet Amazon Fire 7 Tablet 2

Tablet Samsung Galaxy Tablet 1

Tablet Apple iPad 1

Figure 3.5: IoT Devices Under Examination
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Every device that is being monitored required an email address to set up the device

for the first time. A unique email address was created for each device in order to keep

the data as “clean” as possible: if two devices from different manufacturers discover

each other and communicate, we want to ensure that this behavior does not occur

because the devices are linked to the same account. Most of the devices only made

use of the email address for the initial login to associate an account with the device.

3.4.1 Smart Speakers

Smart speakers like the Amazon Echo and Google Home are among the most common

IoT devices present in U.S. households. As of January 2018, 39 million Americans,

or about 16 percent of the population, owned a smart speaker [37]. This number is

expected to grow to 175 million (55 percent of U.S. households) by 2022 [38]. Smart

speakers are one of the most common IoT devices present in homes.

Devices from multiple manufacturers are used within the smart speaker category

to reflect the U.S. market. One of the smart speakers that is being monitored is the

Amazon Echo Dot. Amazon’s smart speakers made up 72 percent of the market share

in January 2018 [39]. The Echo is able to tell the weather, set alarms, play music, read

the news, set reminders, and more. By default, it downloads updates automatically in

the middle of the night.
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3.4.2 Media Players

Media Players with the ability to stream content from the internet are quickly becoming

a popular way to watch TV. In 2017, 60 percent of young adults in the U.S. primarily

used online streaming to watch TV [40]. The most common media players in the

U.S. are the Roku, Chromecast, and Fire TV respectively. These have a combined

user base of over 110 million users who watch content at least once a month [41]. We

selected these three devices based on their popularity and the fact that they are all

produced by different companies.

3.4.3 Tablets

The tablets purchased cover the three most popular manufacturers. Samsung tablets,

Apple tablets, and Amazon tablets make up about half of the tablet market. Of these

brands, Apple is the most popular with 30 percent of the market share [42]. The

tablets also provide a convenient method for setting up and controlling the other IoT

devices. Many of the devices must be set up with an Android or iOS app, so having

at least one tablet was a necessity.

We chose not to monitor any devices running Windows or macOS. We chose to

focus on devices running Chrome OS, Android, iOS, and Fire OS. The devices running

these operating systems tend to be more dependent on manufacturer specific services

and servers: Android devices are closely tied into Google’s servers, and Amazon

devices rely on Amazon’s software and content ecosystems.
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3.4.4 Video Game Consoles

In addition to the smaller IoT devices discussed previously, two game consoles are also

monitored. These include the Nintendo Switch [43] and the Microsoft Xbox One [44].

These were selected because they are both in the newest generation of consoles and

they are two out of the three most popular consoles in 2018. As of January 2018, the

Xbox One sold 25-30 million units [45] and the Switch sold 17.8 million units [46].

3.4.5 Security Cameras

Only one security camera is being monitored. The camera is sold by Eray, but it makes

use of the same firmware that many generic IP cameras are based on. Cameras that

use this firmware have been known to send secure data unencrypted to servers during

the setup process [47]. Additionally, IP cameras similar to the Eray camera were

one of the main targets of the Mirai malware [13]. We wanted to compare the traffic

of a generic device to traffic generated by devices made from well known companies

like Google or Amazon. The Eray camera in particular has a default password of

“123” which is a very weak password. Cameras with default passwords are often easily

accessible to attackers outside of the network. We were interested in seeing if any

unauthorized parties accessed the camera.

3.5 Device Usage

One of the main goals of this thesis is to create a dataset that represents a baseline of

“normal” network traffic and power usage. For this reason, every device has a fixed set

of actions that are performed at least every other day.
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Performing the same activities every time establishes a baseline of what kind of traffic

should be expected. This includes the amount of data being sent or received as well

as the IP addresses that the data is going to or coming from.

Every time a device is used, we log what we did with the device into a table. This

table includes the date that the action was performed on, the start and end times of

the action, the device used, what the action was, and any notes on the action. This

allows us to easily correlate network traffic and power consumption with events that

were logged in the table. An example of four entries in this table is shown in Table 3.5.

Table 3.5: Event Log Excerpt

Date Start Time End Time Device Event

5/25/2018 12:44:42 12:47:04 Home Mini Ask for news

5/25/2018 12:55:07 12:56:37 Echo Dot Ask for news

5/25/2018 12:55:57 12:56:17 Echo Show Ask for weather

5/25/2018 12:56:44 13:03:07 Home Mini Play music

3.5.1 Smart Speakers

Each smart speaker is prompted to read the weather, read the news, and play music

every time it is used. Once a week, we ask the speakers to set a reminder for the

future. Each speaker is also muted for a few minutes to see if there are any noticeable

changes in power consumption or network traffic during the period where the device

is not listening for commands.

3.5.2 Video Game Consoles

The Switch and the Xbox One are both used to play games for about 15 minutes

every time they are used. We also browse the game store to see what new games and
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demos are available. When we are done using the Switch, we put it into sleep mode.

We turn the Xbox One off when we are done using it. The Switch is not turned off

because when it is docked, it is only possible to put the console into sleep mode.

3.5.3 Media Players

The Chromecast, Roku, Fire TV, and Samsung TV are all used to watch YouTube

videos. The videos watched on each device vary in order to more accurately represent

normal viewing patterns. We also control each device using both a tablet to cast a

video to the device and the remote that came with each device.

3.5.4 Tablets

Each tablet is used to browse the web, watch YouTube, and use different apps. The

tablets are also used to view and control the security camera using the NVAS2 app.

All of the tablets were used for the initial setup of the other IoT devices that needed

an app to complete the setup. This process involves creating an account for each

device and then connecting the device to the wireless access point.
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3.5.5 Security Camera

The security camera’s video stream is viewed on the tablets. The tablets also have the

ability to move the camera using its built in motors. Each time the camera is used,

it is panned and tilted around and the stream is usually viewed for a total of two to

three minutes. After this, we disconnect the tablet from the camera by using the “end

stream” button in the NVAS2 app on the iPad.
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Chapter 4

ANALYSIS OF LOGGED DEVICE DATA

To date, the database contains about 12 weeks worth of data. The complete network

traffic table contains 64 million packets and 71 gigabytes worth of data. Looking at

the traits of the overall dataset reveals some interesting trends about the data. Using

GeoIP data provided by Cal Poly ITS [48], we are able to see where each IP address

is located and who owns it. The dataset contains 13,500 unique IP addresses for

servers in 36 countries that the devices are communicating with. Out of the 13,500

IP addresses, 12,471 (92 percent) of the addresses are in the United States [48, 19].

The next two countries are Ireland and Germany with 214 and 136 IP addresses

respectively. The results for each country can be seen in Table 4.1 and are mapped in

Figure 4.1.

Several countries only have a single IP address associated with them. These include

Belgium, Chile, Hungary, Italy, Kazakhstan, Latvia, Lithuania, Portugal, and Slovenia.

Most of these IP addresses are used to get the current time. This is accomplished using

Network Time Protocol (NTP) packets [49]. The IP addresses located in Belgium and

Italy are both content distribution network servers owned by Akamai Technologies

Inc.
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Table 4.1: Unique IP Addresses Per Country

Country IP Addresses

United States 12471

Ireland 214

Germany 136

United Kingdom 103

Canada 45

China 44

Netherlands 42

France 34

Hong Kong 13

Japan 12

Argentina 12

Singapore 10

Ukraine 9

Czech Republic 8

Sweden 7

Switzerland 4

Australia 4

Russia 4

Country IP Addresses

Taiwan 4

Spain 3

Denmark 3

Guam 2

India 2

South Korea 2

Norway 2

Portugal 1

Slovenia 1

Hungary 1

South Africa 1

Belgium 1

Chile 1

Lithuania 1

Italy 1

Kazakhstan 1

Latvia 1
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Figure 4.1: Map of Countries in Database

We can also look at which organization owns each IP address in the database.

Using information from the GeoIP [19] lookup, we can see which organization owns

the autonomous system that each IP as a part of. The database contains IP addresses

owned by 374 different organizations. The top 10 are shown in Table 4.2. Amazon

owns 65 percent of the IP addresses in the database. This is likely due to the fact that

Amazon Web Services (AWS) owns 34 percent of the cloud computing market [50]

as well as providing web hosting and content distribution networks. Many of the

organizations in Table 4.2 are not far behind Amazon in terms of cloud share. Microsoft,

Google, and NTT are all heavily involved in the cloud market.
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Table 4.2: Top 10 Organizations by IP Addresses Owned

Organization IP Addresses

Amazon Technologies Inc. 6051

Amazon.com Inc. 2407

Akamai Technologies Inc. 1381

Google Inc. 904

Apple Inc. 400

Microsoft Corporation 328

NTT America Inc. 111

Amazon Data Services Ireland Limited 109

Fastly 79

Linode LLC 64

Using the protocol field of the table, we can also see which internet and transport

layer protocols are the most common in the database. Figure 4.2 shows a breakdown

of the most common protocols in the database. The majority of the traffic transmitted

or received by all of the devices was TCP traffic. Within this TCP traffic, most of the

traffic was encrypted TLS/SSL packets. The next most common protocol was UDP.

All of the SSDP [51] packets were sent over UDP and most of the video and audio

streams also used UDP. All of the ICMP packets were ping requests and replies from

the wireless access point to various IP addresses both inside and outside of the local

network.
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Figure 4.2: Internet and Transport Layer Protocols in Database

4.1 Device Case Studies

The majority of the traffic sent or received by the IoT devices are encrypted TLS/SSL

packets. Because of this, most of the analysis performed was on packet metadata

including the source and destination IP, port numbers, packet protocol, and packet

size. The packet metadata provides information for differentiating between IoT devices.

The few packets that are sent unencrypted give an insight into what kind of data each

device is sending to both first and third party servers.

In this section, we analyze six different devices covering three different categories.

The first three devices are the Google Home Mini, Amazon Echo Dot, and Eufy Genie.

These three devices are smart speakers with many of the same capabilities, such as

reading the news or playing music, so we wanted to see how their traffic and power

consumption differed. We were particularly interested in comparing the Echo Dot
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and the Genie since they both use Alexa. Next, we analyze the traffic from the Eray

security camera. The camera is one of the only generic devices that we are monitoring

and we wanted to see how its traffic differed from name-brand devices. Finally, we

analyze the Google Chromecast and the Amazon Fire TV Stick because they are both

media streaming devices made by different companies.

4.1.1 Google Home Mini

The Home Mini has a fairly predictable traffic pattern when idling. Once every minute,

the Home Mini broadcasts an SSDP (Simple Service Discovery Protocol) [51] discovery

request packet to every device on the local network. Every device that supports UPnP

(Universal Plug and Play) [52] then responds to the Home Mini with information

about the location of the .xml file describing the device, the operating system on the

device, and more.

Figure 4.3 shows what the contents of the SSDP packets look like. The first

packet, the discovery request packet, is sent from the Home Mini. The second packet,

the presence announcement, comes from the Eufy Genie. Each device announces its

presences with a packet similar in structure.
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Figure 4.3: SSDP Discovery Request and Presence Announcement

This allows the Home Mini to communicate with devices and perform actions like

playing music or videos on other devices. In addition to this internal traffic, the Home

Mini also sends encrypted TCP traffic to Google servers every 10 minutes. This can

be seen in Figure 4.4. The small periodic spikes in the figure are the SSDP packets

being sent to the Home Mini while the larger spikes are the TCP traffic being sent to

Google. It is the only device out of all of the IoT devices we have that broadcasts

SSDP discovery request packets this frequently.
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Figure 4.4: Idle Traffic of Google Home Over 1 Hour Period

The Home Mini communicates with IP addresses in only two countries. These

include the United States and Canada, as seen in 4.5. Like the Echo Dot and the

Eufy Genie, the majority of the traffic is with servers with American IP addresses.

Both the Eufy Genie and the Echo Dot communicate with Asian IP addresses. A

larger portion of the Home Mini’s traffic is also sent or received locally rather than by

external IP addresses. This is due to the fact that the Home Mini regularly performs

SSDP searches. The Home Mini is closer to the Eufy Genie in terms of the number of

IP addresses it talks to at 197 IP addresses. The companies owning the IP addresses

are also a lot more uniform. There are only 12 companies owning the IP addresses

that the Home Mini talks to compared to 40 for the Eufy Genie and 48 for the Echo

Dot. 147 of the 197 IP addresses are owned by Google.
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Figure 4.5: Countries Contacted by Google Home Mini

Using data from the power consumption and network traffic tables, we are able to

correlate user actions with patterns in the data. For example, Figure 4.6 shows what

happens when we asked the Home Mini a few different questions. First, we prompted

the Home Mini with its wake word “hey Google” at which point it started listening

for a command. This can be seen by the jump in power consumption from 1200 to

1500 mW. We then asked for the news. At this point, the Home Mini sends about 5

kB of data to a Google server. About 5 seconds later, it started receiving a stream of

UDP packets which were the audio of the news feed. After about a minute, we told

the Home Mini to stop playing the news. This can be seen by the second spike in

power consumption. Next, we asked for the weather. This can be seen by the third

spike in power consumption around 1:39PM. The Home Mini sent out another 4 kB

to Google servers before receiving 3 kB back and then reading the weather. Over this

period, the regularly intervaled SSDP packets are still sent which can be seen by the

many small peaks in traffic.
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Figure 4.6: Home Mini Response to News and Weather

4.1.2 Amazon Echo Dot

Over 99 percent of the IP addresses that the Echo Dot communicates with are located

in the United States. Other than the U.S., the Echo Dot communicates with 4 IP

addresses in Hong Kong, 2 in Canada, and 2 in Hungary. This is reflected in Figure 4.7.

Figure 4.7: Countries Contacted by Echo Dot
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The network traffic of the Echo Dot is not the only data that separates it from

the other devices. The power consumption shows when users are performing certain

events. For example, the Echo Dot contains a light sensor that it uses to change the

brightness of the LEDs on the device. If the Echo Dot is in a bright area, the LEDs

glow brighter and vice versa. Using this feature, we can determine when users have

the lights turned on or off in their home. Figure 4.8 shows three distinct areas where

the lights are turned on and the LEDs are lit brighter. This causes the Echo Dot to

consume about 2200 mW of power rather than its usual 1500 mW.

Figure 4.8: Echo Dot Response to Lights

4.1.3 Eufy Genie

The Eufy Genie, a third party Echo Dot alternative with Alexa support, has a slightly

different pattern. As shown in Figure 4.7, over 99 percent of the IP addresses that

the Echo Dot communicates with are located in the United States. This amount is

much lower for the Eufy Genie at 73 percent as seen in Figure 4.9.

Additionally, the Echo Dot communicates with many more IP addresses than the
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Genie. The Genie communicates with 191 different IP addresses and the Echo Dot

communicates with 2,310 IP addresses. The companies that own these IP addresses

differ between the two devices also. Both devices primarily communicate with IP

addresses owned by Amazon, but the Genie also communicates with IP addresses

owned by ChinaNet, Shenzhen Tencent Computer Systems Company Limited, Tencent

Cloud Computing (Beijing) Co. Ltd., Baidu Hong Kong Limited, and China Education

and Research Network Backbone. None of these IP addresses are present in the Echo

Dot’s traffic.

Figure 4.9: Countries Contacted by Eufy Genie

Similar to the Echo Dot and the Home Mini, it is easy to correlate network traffic

and power consumption with Genie activity. Figure 4.10 shows the Genie’s response

to being asked various questions about the weather, news, and random facts. The

Genie consumes less power than the Echo Dot when it starts listening for a command

after it hears the wake word.
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Figure 4.10: Eufy Genie Response to Commands

4.1.4 Eray Security Camera

In contrast to the smart speakers, about half of the servers that the security camera

communicates with are located in China. This can be seen in Figure 4.11. About 24

percent of the IP addresses are located in the United States; however, the majority of

the U.S. IP addresses are owned by Alibaba.com LLC. Alibaba also owns most of the

Chinese IP addresses that the camera communicates with.
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Figure 4.11: Countries Contacted by Security Camera

Grouping each country based on the amount of data sent or received by IP addresses

in that country gives a better breakdown of where the traffic is going. Figure 4.12

shows that the majority of traffic is still within the U.S. Only 2.4 percent of the traffic

is being sent or received is over the local network. We perform all of our camera access

on the local network.
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Figure 4.12: Countries Contacted by Security Camera, grouped by amount
of data

Almost all of the packets being sent are 78 byte UDP packets sent over port 51880.

They each contain 36 bytes of data. Most of this 36 bytes is different for every packet,

but there are about 10 bytes that stay constant. The user ID that was created when

making a new account is sent in these packets. These packets may be used as a

heartbeat to make sure that the camera still has a connection with Alibaba’s servers.

While it is difficult to tell the exact purpose of these packets, our device’s account

number is part of the data that is sent. The camera was set up using the NVAS2

app on the iPad. During the setup, the iPad sent an unencrypted packet with user

information contained in an HTTP packet to an Alibaba server in China. The packet

is shown in figure 4.13.
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Figure 4.13: User Data Sent by NVAS2 Security Camera App

When the video feed is viewed on the iPad, the camera sends about 3 kB/s of data

to the iPad. The NVAS2 app lets users move the camera with pan and tilt motors. In

order to do this, the iPad sends a 360-660 byte UDP packet with instructions on which

direction to move. During the periods where the camera is moving, there are small

power spikes where the motors draw more power. These line up with the UDP packets

that the iPad is sending to the camera. This can be seen in Figure 4.14 where we

viewed the camera feed once, disconnected, then reconnected and viewed the stream

again 10 minutes later.
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Figure 4.14: Security Camera Streaming and Pan/Tilt

4.1.5 Google Chromecast

Each device exhibits a slightly different behavior on its first boot than any other

time the device is booted. Typically this involves sending some user data to a server,

checking to see if there is an update available, and downloading and applying any

available updates. The Chromecast performed these steps on its first boot. The

power and network activity are easiest to understand as shown in Figure 4.15. Upon

booting, the power consumption jumped up to about 1600 mW momentarily and then

stabilized to 1300 mW. This continued until the Chromecast was connected to the

wireless access point. As soon as this was done, the Chromecast began checking for

updates. An update was found, so the Chromecast began downloading the update

and playing a one minute intro video. This can be seen by the spike in network traffic

from 12:40 to 12:41. The Chromecast received an unencrypted TCP packet containing

the URL of the tutorial video to play during the download as shown in Figure 4.16.

The power consumption also reached its maximum value of 2000 mW during the
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download. When the update finished downloading, the Chromecast applied the update.

This caused the Chromecast to reboot twice. This can be seen by the two dips in the

power consumption at 12:41 and 12:43 respectively. Finally, the Chromecast booted

and displayed a background image from the internet. The power then stabilized back

to about 1300 mW. The additional network traffic seen after that point is caused by

the Chromecast loading new background images.

Figure 4.15: Chromecast First Time Boot Network Traffic and Power
Consumption
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Figure 4.16: Chromecast Tutorial Video URL Received During Update

During the download process, the Chromecast also sent various pieces of information

to the Galaxy Tablet that was used to set it up. Some of this information included

the percent completion of the download update, the number of IP addresses that

the Chromecast has been connected to, the Bluetooth low energy capability of the

Chromecast, and more. This packet is shown in Figure 4.17.

Figure 4.17: Chromecast Information Sent to Galaxy Tablet During Up-
date

We can also see what the Chromecast’s traffic looks like when it is idling in

Figure 4.18. Every 2 minutes, the Chromecast displays a new background image.

The image is downloaded from Google servers. We can see when new background
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pictures are being displayed based on the periodic spikes in throughput and power

consumption. We can also see smaller data throughput spikes every minute. These

are the SSDP presence announcement packets that the Chromecast sends to the Home

Mini.

Figure 4.18: Chromecast Idle Traffic

There are clear differences in the data when content is being streamed to the

Chromecast. Figure 4.19 shows the power increasing from 1400 mW to 1900 mW

when we started watching a YouTube video. The Chromecast also starts receiving

about 13 kB of video data every second which happens at the same time as the power

consumption increase. After the video stops, the power consumption lowers but spikes

back to about 1700 mW every minute or so. This is because we were using the iPad

to control the Chromecast, so every time we sent a command to the Chromecast such

as removing a video from the queue, the power consumption spiked. The remaining

network traffic is from the background images.
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Figure 4.19: Chromecast Video Streaming

4.1.6 Amazon Fire TV Stick

The Fire TV Stick’s first time boot behavior was similar to the Chromecast. On its

first boot, the Fire TV Stick’s power consumption rose to 2400 mW and then dropped

down to 1300 mW. As soon as the Fire TV Stick was connected to the wireless AP,

it began checking for updates and downloading an update. This can be seen by the

section of high network traffic and power consumption. The majority of the traffic

during the update download was from Akamai Technologies servers. Just like the

Chromecast, the power consumption was at its highest during the download at 2500

mW. During the update process, the Fire TV Stick rebooted twice like the Chromecast

did. This can be seen by the two dips in power consumption at 12:38 and 12:40. The

power consumption then rose and stabilized to about 1500 mW. After the final reboot,

the Fire TV Stick downloaded an additional 5 MB of content from Akamai servers.

All of this can be seen in Figure 4.20.
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Figure 4.20: Fire TV Stick First Time Boot Network Traffic and Power
Consumption

The first packets sent and received by the Fire TV Stick are shown in Figure 4.21.

First, the Fire TV sends a keep-alive packet with data about itself to an Amazon

server. This includes the version of Android running on the device. Next, the Amazon

server replies back with an HTTP OK message and then gives it various parameters

like an amazon ID, request ID, and Etag. It also sends an HTML Kindle reachability

page. After this, the Fire TV download a few different certificates from Symantec and

Verisign. After this, everything is encrypted TLS traffic from Akamai Technologies.
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Figure 4.21: Fire TV Stick First Packets Sent and Received

Similar to the Chromecast, we can also see when someone is watching videos

on the Fire TV Stick. As soon as we began watching a YouTube video, the power

consumption jumped from 800 mW up to 2400 mW before dropping back to about

1700 mW while the video was playing. After watching five minutes of videos, we

stopped playback by going back to the home screen. This caused the Fire TV Stick

to enter a lower power consumption state of 1300 mW for another 5 minutes before

finally returning back to its sleep state at 800 mW.
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Figure 4.22: Fire TV Stick Video Streaming
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Chapter 5

CONCLUSION

Using every IoT device on a regular basis and monitoring their network traffic and

power consumption 24/7 has caused the MySQL database to grow to 71 gigabytes.

This data covers 10 to 15 weeks of use at least every other day. This dataset provides

a baseline of “normal” traffic and power consumption for 15 different IoT devices.

Even in this set, there are some rare anomalous events such as devices contacting an

IP address only a single time or communicating with an IP address in a country that

no other device communicates with.

Analyzing the network traffic that each device sends or receives reveals interesting

trends about different manufacturers. Google devices tend to only communicate with

IP addresses in North America while Amazon devices are more varied. Additionally,

devices designed in Asia like the Eufy Genie or the Eray Security Camera send a much

larger proportion of their total traffic to countries in Asia.

There was not much anomalous activity in the 6 devices examined in this thesis.

The most significant finding for network traffic was the fact that some of the devices

sent or received data from countries only a single time. Even then, most of this traffic

was just time data. As we showed, we were able to determine whether or not the

lights were on in a house based on the power consumption of the Echo Dot. Applying

machine learning techniques that are able to look at the entire database may reveal

more trends.

The dataset also shows the typical power consumption of each IoT device. We can

use the power consumption data to see how much power each device consumes while

it is idling or while it is performing an action such as streaming a video or playing
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music. We can also make comparisons between the devices during these periods. For

example, the Fire TV Stick consumes 200 mW less power than the Chromecast does

while it is streaming videos. We can use the power data to detect if there are any

unexpected periods of high power consumption.

For now, it does not seem like any of the IoT devices are sending audio or video

without permission. Even the devices that constantly communicate with servers like

the security camera only seem to be doing this to make sure they still have a connection

to the servers. Machine learning may reveal some patterns in the future that show

that some of the devices actually are spying, but there were not any obvious traffic

patterns that show this.

5.1 Future Work

With so much information stored in the database, a natural next step would be

applying machine learning techniques to the data. The application of machine learning

and artificial neural networks could lead to many interesting projects such as automatic

device detection based on fingerprinting. This is similar to the research done in [16].

This could also lead to projects like automated intrusion detection systems which are

able to detect anomalies in network traffic or power consumption. This same data

could be used to predict when updates are downloading based on the IP addresses

sending data to a device, the size of the packets, port numbers, the time of day, or

power consumption.

Out of the 15 devices that are currently being used and monitored, only a few had

data analysis performed on them. Performing more detailed analyses on all of the

devices we have set up would give an interesting insight into what traffic patterns look

like for a large variety of IoT devices. This could be split into device categories such as

smart speaker traffic, video game consoles, and more. Within these categories, there
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could also be more discussion about the differences between manufacturers similar

to what was described in Chapter 4. Additionally, we only have one device in some

device categories. The security camera generates some very interesting traffic, but we

have nothing else to compare it to. Using a camera from a well known manufacturer

like Belkin or Amazon would make for an interesting comparison to see what countries

these devices communicate with as well as what kind of data they are sending to

external IP addresses.

Repeating the monitoring and usage in a different country would provide good

data for a comparison between the GeoIP information we collected in the U.S. and a

different country. The majority of the traffic for each device originates in the United

States, but that is likely due to the fact that all of the devices are located there. It

would be interesting to see if the ratio of countries seen in Chapter 4 differs based

on the country that the devices are located in. A lot of the devices seem to send

small packets to servers all over the world before settling on U.S. servers, so the large

portion of U.S. IP addresses is likely due to the locality of the devices and servers.

Many of the countries that only had a single IP address associated with them may

also see more traffic because they are closer to the location of the IoT devices.

One of the most time consuming parts of this project was using all of the IoT

devices regularly. This typically took about an hour every day. Automating this

process would cut out a lot of the tedious portions of building up the database. It could

also make for some additional analysis. If the same exact tasks are repeated every day

at the same time, the devices may respond differently or detect that they are being

used by a bot. Similarly, if a text to speech program is used to issue commands to the

smart speakers, they might send different traffic or ignore the command completely if

they can differentiate between a human voice and a computer generated one.
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While there are countless more analyses and experiments that can be performed,

this work introduces a robust data-collection set up that will enable a wide range of

future work on IoT devices to be conducted at Cal Poly. This work also introduces a

substantial dataset of IoT power and network traffic that we intend to open-source so

that a wide range of researchers can explore and benefit from our data.
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