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ABSTRACT

Real-Time Object Removal in Augmented Reality

Tyler Dahl

Diminished reality, as a sub-topic of augmented reality where digital information

is overlaid on an environment, is the perceived removal of an object from an environ-

ment. Previous approaches to diminished reality used digital replacement techniques,

inpainting, and multi-view homographies. However, few used a virtual representation

of the real environment, limiting their domains to planar environments.

This thesis provides a framework to achieve real-time diminished reality on an

augmented reality headset. Using state-of-the-art hardware, we combine a virtual

representation of the real environment with inpainting to remove existing objects

from complex environments.1

Our work is found to be competitive with previous results, with a similar quali-

tative outcome under the limitations of available technology. Additionally, by imple-

menting new texturing algorithms, a more detailed representation of the real envi-

ronment is achieved.

1Source code is provided at https://github.com/tydahlwave/Thesis
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Chapter 1

INTRODUCTION

Our perception of reality is being reshaped. Much like the industrial revolution forever

changed society through the rise of machines, the digital revolution is changing society

through the rise of visual, interactive data. This data is accessible through interaction

with 2D screens in the form of smartphones, tablets, computers, and TVs. However,

new developments in virtual reality make it feasible to interact with this data in 3D

space.

Virtual reality (VR) allows us to become completely immersed in a fully artificial,

digital environment [42]. Current VR technology displays digital content onto a

head-mounted device with two screens, one for each eye, where a stereoscopic image

is displayed to trick the brain into perceiving depth. Users can interact with virtual

objects through controllers specifically designed for such interaction. The experiences

users have within the virtual environment are often described as highly immersive.

Sensations range from experiencing virtual movement to altitude panic [13].

The primary focus of recent investigations in virtual reality have been the side

effects of this high level of immersion, specifically motion sickness. If a user moves

within the virtual environment while their physical body remains at rest, their brain

registers a certain acceleration and tries to compensate, leading to an uncomfortable

disorientation. The same sensation is felt in the opposite scenario, when e.g. sitting

in a static environment while the body senses movement such as carsickness and

seasickness. This can result in nausea, dizziness, and fatigue, reducing time spent in

the virtual environment [46].

Motion sickness can be prevented by moving a user’s position in the virtual envi-
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ronment in sync with their physical body. This allows the user to control their virtual

counterpart in a natural way by walking around their real environment. However,

this presents several limitations, such as the user colliding with physical objects and

a virtual world constrained by the size of the real environment. Other strategies

have been developed to reduce motion sickness, such as teleporting a person’s virtual

counterpart between locations and walking in place. These strategies allow users to

experience the fun and immersion of virtual reality without the unwanted side effects.

Another technology, called augmented reality, provides a similar experience to virtual

reality but without the motion sickness.

Augmented reality (AR) allows us to interact with digital content while also

remaining aware of the real environment. Current AR technology displays digital

content onto a see-through display, overlapping real world information with digital

content. In the simplest form of augmented reality, digital information is displayed

on billboards within the user’s field of view. Digital content cannot interact with the

real world. This form of augmented reality became popular through the introduc-

tion of heads-up displays (HUD). Originally developed to prevent military pilots from

looking down to view instrument data, HUDs have also been used in popular modern

products such as Google Glass.

Recent advancements in computer vision and depth sensing are enabling a more

advanced form of augmented reality, where digital content is not confined to a static

location. These advancements allow the pinpointing of real object positions and

properties (size, color) for a fluid interaction between virtual and real elements.

Mixed reality (MR), an advanced form of augmented reality, is the anchoring and

interaction of digital content with the real world. Digital content can collide with

and hide behind real objects. As users navigate their environment, digital content

stays in place, mimicking the behavior of real objects. This form of augmented reality
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provides an immersive experience similar to virtual reality.

Though this technology is still in its infancy, industry-leading tech companies are

actively pursuing its development [32]. Mobile devices are dominating the market

in the near-term with head-mounted devices predicted to dominate in the future.

In 2015, the first head-mounted mixed reality device, the HoloLens, was released

by Microsoft. In 2017, mobile mixed reality experiences became common with the

introduction of ARKit and ARCore by Apple and Google respectively. The future is

one where digital content seamlessly blends with our real world.

The primary vision touted by futurists is a pair of augmented reality glasses

powerful enough to replace smartphones. To realize this future, technology needs to

shrink and faster algorithms need to be developed. Consumers want a device that

enhances their life without the need to change their habits. In order to seamlessly

blend digital content with the real world, digital content ought to not just be added

to the world, but real content ought to be digitally removed.

Diminished reality (DR), a sub-topic of augmented reality, is the perceived removal

of an object from an environment. DR is achieved by displaying digital content in

front of an object, where the digital content emulates the region behind the object.

This causes the user to perceive that the object no longer exists. The need for DR is

most easily seen when considering the virtual refurnishing of a house interior. When

viewing virtual furniture, the virtual content ought to match as closely as possible

what the real environment will look like after refurnishing. If virtual furniture is

placed on top of existing furniture, overlapping content will reduce the realism of the

experience. However, it would be time-consuming to require the user to physically

remove existing furniture prior to viewing virtual furniture. Instead, we can provide a

realistic refurnishing with minimal effort by digitally removing the existing furniture

prior to placing virtual furniture. Other applications of DR include hiding trash or
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graffiti from view, obscuring secret agents from webcams, seeing through walls on

a construction site, seeing a patient’s internal organs during surgery, or removing

unwanted objects in photographs.

For this thesis, we chose to research diminished reality. With the goal of eventual

consumer adoption, an ideal diminished reality solution is one that works in any

environment without complex setup. Our research question is therefore: ”Can a

diminished reality solution be developed with current hardware which works in any

environment in real-time, with no prior knowledge of the environment?”

Figure 1.1: Diminishing a table with our solution. Left image is the table
before diminishing. Right image is after the table is removed.

Our solution is a diminished reality prototype created on the Microsoft HoloLens

which successfully removes an object in an unseen environment in real-time. See

Figure 1.1. Our contribution to the field of diminished reality is a pipeline that can

be used as a basis upon which future diminished reality solutions can be developed.

Each section of the pipeline can be replaced with newer technologies and algorithms

as they become available to enhance the diminished result.

This thesis is organized as follows. Chapter 2 discusses the background and re-

lated work that has been conducted within the field of diminished reality. Chapter
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3 provides an overview of the design of our diminished reality pipeline. Chapter 4

discusses the hardware and software platforms available to create a diminished reality

prototype as well as our specific implementation. Chapter 5 discusses the results of

our solution in various environments and compared to similar work in diminished

reality. Chapter 6 discusses potential future enhancements to our solution. Chapter

7 concludes our work.
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Chapter 2

BACKGROUND

The term ”diminished reality” was first coined in 1999 by Mann in his concept of

mediated reality which included AR, MR, and DR [35]. In practice, diminished

reality is achieved when applying the following three steps to a video feed: region

selection, region tracking, and region removal. The following sections will explore

various techniques that have been explored for each step.

2.1 Region Selection

Before an object can be removed, there must first be a way to specify the object.

Techniques used by previous diminished reality approaches range from completely

manual selection to completely automated selection. The more accurate the selection,

the more realistic the removal.

2.1.1 Manual

Manual region selection requires the user to specify the exact pixels to be removed.

This allows for extremely accurate results, where only pixels of the object are removed.

However, specifying every pixel of a complex object is a tedious process. Zokai et al.

alleviate this problem by allowing the user to specify a bounding box as the region

instead of selecting every pixel [58]. This method reduces the manual selection time,

but also causes more pixels to be removed if the desired region is not rectangular.

Manual selection methods cannot account for regions that change shape over time,

as it requires the region to be respecified by the user.
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2.1.2 Semi-Automatic

Semi-automatic region selection methods require the user to provide minimal input

prior to generating the selected region. Both region expansion and region shrinking

algorithms exist. Herling and Broll use a region shrinking method to fit the selected

region to the contour of the dominant object within an initial circle drawn by the

user [28]. Additional padding was added to account for errors in contour detection.

Simpson used a region expansion method to segment an object from a mesh given a

3D point on the object [47]. The selected object was found by traversing triangles

connected to the given point until a plane was detected. Semi-automatic selection

methods allow complex shapes to be quickly selected and provide impressive results.

2.1.3 Automatic

Automatic region selection requires no real-time input from the user. Region selection

is performed immediately and automatically, sometimes using offline input. Nakajima

et al. use automatic region selection by removing all objects of a chosen category

specified offline [38]. Objects of the chosen category are detected using a neural

network and segmented from a global point cloud. Automatic selection methods

allow immediate diminished results, but are not practical in all scenarios. Some user

input is preferred.

2.2 Region Tracking

After selecting the region, it needs to be tracked between frames. When the selected

region and the camera are stationary, tracking is not necessary. However, to maintain

an accurate removal, tracking is necessary if either the camera or the selected object

moves. To track an object between frames, either 2D features or 3D positions are
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used.

2.2.1 2D Features

Region tracking with 2D features involves the detection and matching of small pat-

terns within pairs of images. Features that can be tracked include edges, corners,

blobs, ridges, and other shapes learned by neural networks. Using the difference be-

tween tracked features within two images, a homography is calculated and used to

transform one image to the perspective of the other. See Figure 2.1. This transform

is also used to update the selected region’s position in each frame. Many diminished

reality methods use 2D image features to update the selected region per frame. For

example, Herling and Broll used 2D features to detect the contour of an object and

update the selected region to match the contour every frame [28].

Figure 2.1: A homography between two frames taken from different per-
spectives [55].
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2.2.2 SLAM

Region tracking with 3D positions is performed through simultaneous localization

and mapping (SLAM) techniques. SLAM techniques use RGB plus depth (RGB-D)

data per pixel to create a map of the environment and calculate the camera’s position

within the map. See Figure 2.2. Visual-SLAM techniques use only RGB data per

pixel and calculate depth from changes in 2D features over time. Visual-SLAM is less

accurate than SLAM, but doesn’t require a sensor capable of acquiring depth data.

The 3D positions of the selected object are then transformed to screen space every

frame to obtain the updated selected region. Kawai et al. used visual-SLAM to track

an object’s position within an environment and inpaint detected planes [30]. SLAM

techniques are less often used in diminished reality due to the need for specialized

sensors and computationally expensive algorithms.

Figure 2.2: Simultaneous localization and mapping (SLAM) [34].

2.3 Region Diminishing

The most important step to achieve diminished reality is the removal of the selected

region. This requires coloring pixels in front of the selected region with data from

another source. First, the selected region is converted into a binary grayscale mask,

with pixels in the selected region colored white and the rest of the image colored black.

This mask is then fed into an algorithm with the original image of the environment.
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The result is the original image where the selected region is diminished. There are

three categories of object removal: replacing, inpainting, and see-through.

2.3.1 Replacing

Figure 2.3: Google Translate app replaces text with a different language
[41].

Object removal techniques that cover or replace the selected region are the sim-

plest form of diminished reality. The selected region is diminished by hiding it behind

a virtual object large enough to cover the entire region. An example of this is imple-

mented in the Google Translate iOS and Android app [1]. The app replaces text in

any picture taken by the user with text of a chosen language. A virtual rectangle is

displayed in front of the existing text to hide it and then text of the chosen language

is displayed in front of the virtual rectangle. See Figure 2.3. This approach works

well when the user does not need to see the background behind the selected object.

2.3.2 Inpainting

Inpainting is a popular object removal technique. Originating as a form of art restora-

tion centuries ago, it involves filling a region in an image using similar content within

the same image. Inpainting relies on the idea that patterns are common in nature
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and often repeated. By repeating nearby patterns in front of the selected region, the

object will appear to vanish. See Figure 2.4. In 2010, Herling and Broll demonstrated

the first real-time inpainting algorithm capable of running on commodity hardware

with simple setup, named PixMix [27, 28]. In 2017, Iizuka et al. further showed that

it was possible to use a neural network to learn and repeat patterns from similar

images to provide a realistic diminished result [29].

Figure 2.4: Inpainting a bungee jumper [40].

A common challenge faced by inpainting techniques is complex background geom-

etry. Most methods assume a planar background, leading to unrealistic perspective

distortions when moving the camera within a complex environment. See Figure 2.5.

However, methods exist that remedy this situation. In 2016, Kawai et al. extracted

and inpainted multiple planes from an environment to accurately simulate more com-

plex environments [30]. A limitation of inpainting is that it cannot recover informa-

tion for objects which are completely hidden behind the selected object. For this, a

see-through object removal technique must be used.
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Figure 2.5: Comparison of inpainting from different viewpoints [30]. Top:
input images. Middle: inpainting multiple planes. Bottom: inpainting a
single plane.

2.3.3 See-through

The final category of object removal is see-through techniques. These techniques

provide the user with a realistic view of the environment behind a removed object.

Unlike replacement and inpainting, see-through techniques have knowledge of the

content behind the selected object. The easiest way to accomplish this is with multiple

cameras as demonstrated by Zokai et al. [58]. One camera views the selected object

and another camera views the region behind the selected object. See Figure 2.6. Then

a homography is calculated and used to transform the output of the camera viewing

the background to the perspective of the camera viewing the selected object. The

selected region is cropped from the background camera and displayed on the main

camera. This provides an accurate and live view of the content behind the diminished

object.
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Figure 2.6: Seeing through a car using multiple cameras [43]. Top left
image is from the back car’s perspective. Top right image is from the
front car’s perspective.

Other approaches use a single camera from multiple viewpoints or previous images

of the environment. Yokoi and Fujiyoshi removed a professor from a lecture video

using a stationary camera where the subject was moving [56]. Previous frames were

used to fill the region containing the professor in the current frame. A method

proposed by Li et al. used a corpus of internet images taken at the same location to

construct a map of the environment offline and used this reconstruction to display

content behind the selected object [33]. Recent approaches have used SLAM to

construct a textured map of the environment as a single device moves throughout the

environment. Simpson used this technique to remove a small table using a Google

Tango device [47]. However, perceived content behind the removed object will become

invalid if the background content changes and a recent view of the background cannot

be obtained.

A challenge faced by see-through techniques is obtaining data for directly adjacent

surfaces. It is not possible to setup a camera to view the region connecting a couch to
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the floor. However, previous images of the environment without the selected object

can be used. When this data is not available, inpainting techniques ought to be used

to fill the region as realistically as possible.

Each object removal method has its benefits and challenges. Replacing the di-

minished region with a virtual object is simple, yet does not allow the user to see

content behind the object. Inpainting techniques generate convincing backgrounds

for which no data exists, but cannot recreate content that is completely hidden by the

selected object. See-through techniques allow the user to see content hidden by the

selected object, but require knowledge of the background content, which may not be

available. However, combining inpainting and see-through techniques compensates

for the limitations of each and achieves a more realistic diminished result.

2.4 Proposed Solution

The diminished reality solution proposed by this paper uses semi-automatic object

selection, SLAM for object tracking, and a combination of inpainting and see-through

diminished reality techniques for object removal. Specifically, we use the HoloLens,

an advanced augmented reality platform, to create a virtual representation of the real

environment. We then texture this virtual environment using one of two texturing

algorithms. The object is selected using a 3D point specified by the user which is used

to find nearby vertices belonging to the object. Tracking is achieved using the updated

camera position and spatial mapping obtained from the HoloLens. Object removal is

achieved by displaying the textured virtual environment behind the selected object

and by inpainting regions where no texture data exists.

14



2.5 Related Work

Some similar approaches exist, which also make use of virtual representations of the

real environment and inpainting. The first is the method proposed by Kawai et al.

where visual-SLAM is used to reconstruct background planes and inpainting is used

on each individual plane [30]. Previous diminished reality solutions assumed a planar

background and suffered from perspective distortion errors when the background was

composed of multiple planes. By finding multiple background planes, the method

proposed by Kawai et al. provides better results in a wider range of environments.

However, visual-SLAM only tracks 2D features within a series of RGB images and

requires diverse textures to work well. When the scene contains surfaces with minimal

texturing, this approach suffers. Instead, an RGB-D sensor combined with SLAM can

be used to track 3D features and reconstruct geometry even in scenes with limited

texturing.

A method proposed by Simpson reconstructs complex scene geometry using SLAM

with an RGB-D camera on a Google Tango device [47]. Scene geometry is textured

as the user moves around the environment. To diminish an object, the scene geom-

etry excluding the selected object is rendered in front of the object. The selected

object is assumed to be connected to a large planar surface, and any holes created

when removing the selected object from the surface are inpainted. However, this

approach maintains limited detail in its texturing of the environment and provides

a low-resolution result of the diminished region. Real-time performance is achieved

after an initial removal process of approximately 10 seconds.

Another method proposed by Nakajima et al. also reconstructs scene geometry

using SLAM with an RGB-D camera [38]. Scene geometry is obtained and textured

as the user moves around the environment. An automatic object selection method is

used which relies on a convolutional neural network to recognize categories of objects
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within its 3D reconstruction of the environment. An object of the chosen category is

automatically and immediately removed from the scene, providing a diminished view

of the object from the start. However, this method does not rely on inpainting or

other filling techniques to color regions where no 3D reconstruction exists. Thus, the

diminished region is black until the user moves around the environment and views

regions behind the object. This method provides high-resolution results and runs in

real-time. However, it was tested on a system containing 125 GB of RAM, which is

not representative of commodity hardware.

Our solution reconstructs complex scene geometry, runs in real-time with limited

memory constraints, provides high-resolution results, and inpaints regions where scene

geometry is nonexistant. The following chapter will discuss the architecture of our

solution.
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Chapter 3

ARCHITECTURE

In this chapter, we provide a high-level overview of the design of the diminished reality

solution proposed in this paper and describe each stage in our diminished reality

pipeline. The next chapter will go into detail on how each stage was implemented. The

minimum requirements of a diminished reality solution are object selection, object

tracking, and object removal. However, due to the nature of our implementation,

other important components include obtaining a spatial mapping of the environment,

texturing the spatial mapping, and performing post-processing after various stages of

the pipeline. The following sections will give a brief overview of each stage.

3.1 Spatial Mapping

The first stage in our diminished reality pipeline is to obtain a spatial mapping of the

environment. A spatial mapping is a detailed representation of real-world surfaces

in the environment around the user [57]. This detailed representation is a collection

of 3D points relative to the camera’s original position when starting the application.

These points are stored in a spatial data structure, making queries of specific points

extremely efficient. Additionally, color information is often stored for each point. The

density of the 3D points within an environment varies per system and is restricted

by hardware capabilities. Higher density provides a more accurate representation of

the real environment but at the cost of higher processing requirements.

A spatial mapping of the environment allows us to save background information

while using only a single device. As the user moves throughout the environment, the

spatial mapping is updated and made more accurate. See-through object removal is
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then performed by displaying the background information that has been saved in the

spatial mapping in front of the selected object and mapping each pixel to a color.

3.2 3D Post-Processing

The second stage in our diminished reality pipeline is to perform post-processing on

the spatial mapping obtained from the previous stage. This step is necessary because

the spatial mapping is often noisy and contains abnormalities. Post-processing of

the spatial mapping entails removing disconnected points, smoothing surfaces, filling

holes, and replacing flat surfaces with planes. Performing these operations on the

spatial mapping allow us to account for errors in the mapping process and provide

a better approximation of the real environment. Due to our choice of hardware,

the spatial mapping automatically undergoes smoothing and removal of disconnected

points. We further explore the filling of holes and replacing of flat surfaces with

planes.

3.3 Texturing

The third stage in our diminished reality pipeline is to texture the spatial mapping. A

textured spatial mapping is important to provide realistic see-through object removal.

This is accomplished by saving color information pertaining to the real environment

and mapping each rendered pixel of the spatial mapping to a color. Color infor-

mation is either directly stored within the spatial mapping or stored separately and

mapped to each pixel at runtime. Our approach explores two texturing methods and

their tradeoffs: projective texture mapping and sparse voxel octree texture mapping.

Projective texture mapping supports high levels of detail by storing high-resolution

images taken from different viewpoints. Sparse voxel octree texture mapping sup-

ports efficient mapping between colors and pixels by storing color in a spatial data
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structure.

3.4 Object Selection and Tracking

The fourth stage in our diminished reality pipeline is to select the object to diminish

and track it per frame. We use a semi-automatic object selection technique, which

requires the user to provide minimal input. The appropriate object is then automat-

ically selected. In our implementation, the user selects a single point in the spatial

mapping and the system automatically determines which object to remove by finding

nearby vertices. Using this technique, the user does not need to specify the exact

3D volume to be diminished, which is time-consuming. Once the object has been

selected, it is ready to be removed.

Object tracking is accomplished by tracking 2D or 3D features between frames.

In our solution, we use static objects and use SLAM to constantly update our spatial

mapping, which provides us with stable 3D positions of objects. After selecting the

3D volume to be diminished, no further action is necessary to track it.

3.5 Object Removal (Diminishing)

The fifth stage in our diminished reality pipeline is to diminish the selected object

and remove it from view. To create the illusion that the object has vanished, pixels

are displayed in front of the real object representing colors of the environment behind

the object. As the user moves throughout the environment, these pixels are updated

with colors from the appropriate background. In our solution, the textured virtual

environment from behind the object is rendered in front of the object, causing the

user to see through it. The next stage performs post-processing to further enhance

the diminished result.
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3.6 2D Post-Processing

The sixth and final stage in our diminished reality pipeline is to perform 2D post-

processing on the final diminished region to make it blend in better with its surround-

ings. By fading the transparency of the edges of the diminished region, color smoothly

transitions between the virtual environment and the real environment, preventing any

discrepancies between color at the edges of the region.

The most important 2D post-processing step in our solution is to apply inpainting

to the parts of the diminished region that do not have any textured spatial mapping

information. This arises when the user has not viewed the region behind the object

or when spatial mapping fails to capture areas that are far from the user. Inpainting

allows us to realistically fill these areas with color from surrounding pixels.
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Chapter 4

IMPLEMENTATION

In this chapter, we discuss the hardware and software used to develop our dimin-

ished reality solution and why each was chosen. We then take a deep dive into our

diminished reality pipeline and see how each stage was implemented.

4.1 Hardware

When implementing a mixed reality application, it is important to carefully consider

the hardware that will be used, as each comes with its own benefits and challenges.

Choosing one technology might make implementation easier while choosing another

might provide more accurate results. Throughout the development of this solution,

three different hardware platforms were explored: Google Tango, Microsoft HoloLens,

and Intel RealSense. The following sections discuss each piece of hardware, their

tradeoffs, and why we ended up settling with the Microsoft HoloLens. Other potential

hardware is also briefly touched on.

4.1.1 Google Tango

The first platform we explored was Google Tango. Google Tango was an augmented

reality platform developed by the Advanced Technology and Projects division at

Google that enabled smartphones and tablets with specialized sensors to map their

surroundings. This platform was originally released in June 2014, but a commercial

smartphone capable of running the framework wasn’t released until late 2016 with

the introduction of the Lenovo Phab 2 Pro. A second smartphone, the Asus Zenfone

AR, was released in August 2017. Prior to this, developers and researchers could
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purchase a tablet development kit from the Google Tango team that contained the

required sensors and internal processing capable of running the framework. The tablet

development kit was discontinued in May 2017 [48].

Originally, this platform was a good choice for implementing diminished reality.

Hardware costs were roughly $500 to acquire a smartphone capable of running the

framework. The framework also supported automatic texturing of the environment

during the spatial mapping stage. However, in mid-2017, both Apple and Google re-

leased augmented reality frameworks, ARKit and ARCore respectively, which enabled

most smartphones with no specialized sensors to run augmented reality experiences.

These frameworks do not provide a spatial mapping of the surrounding environment,

but instead detect vertical and horizontal planes, which is enough to enable simple

augmented reality experiences. These frameworks received wide adoption by con-

sumers and quickly dwarfed the popularity and adoption rates of Google Tango. By

December 2017, Google announced the termination of Google Tango beginning in

March 2018 [21]. As of May 2018, the Google Tango site and related documentation

is no longer available. This development shifted our focus to other platforms.

4.1.2 Microsoft HoloLens

Figure 4.1: The Microsoft HoloLens [12].
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The second platform we explored was the Microsoft HoloLens. See Figure 4.1. Mi-

crosoft HoloLens is a mixed reality headset developed and manufactured by Microsoft.

It was the first device to support Microsoft’s Windows Mixed Reality framework,

which enables developers to create apps for VR and AR devices running Windows

10. It also makes use of RGB-D cameras and technology similar to its predecessor,

the Kinect, to create a 3D map of the environment. The development edition of

the HoloLens was released in March 2016 and continues to be the most advanced

mixed reality headset that developers can purchase [39]. However, priced at $3000,

it still hasn’t seen wide adoption by developers. There is no consumer version of

the headset as of May 2018 and there has not been an update to the hardware since

its release. However, software updates have been released that enhance its spatial

mapping capabilities and user interface. The HoloLens’ primary forms of input are

hand gestures, voice commands, and a small, single-click remote. See Figure 4.2 for

additional hardware specifications [44].

With advanced spatial mapping capabilities, the HoloLens is a good candidate for

diminished reality. It generates a mesh of the environment in real-time and allows the

user to interact with virtual holograms placed throughout the environment within a

30 degree field of view [31]. The lack of color information provided in the environment

mesh is a limitation for our use case. However, this is compensated by exploring var-

ious texturing methods to obtain and map color information to the spatial mapping.

Termination of the Google Tango platform further solidified our decision to use this

platform. The future of augmented reality is not on our smartphones, but on our

heads. The eventual goal is to make the technology small enough to fit into a normal

pair of glasses.
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Figure 4.2: HoloLens hardware specifications [44].

4.1.3 Intel RealSense

The third platform we explored was the Intel RealSense depth camera. Specifically,

we looked at the Intel RealSense D415 and D435 Depth Cameras that Intel launched

in January 2018. See Figure 4.3. These cameras capture not just RGB data, but also

depth data per pixel. Using these depth images, spatial mapping can be performed on

an environment. Previously, developers and hobbyists used the Microsoft Kinect to

gather RGB images plus depth data (RGB-D images). However, Microsoft terminated

the Kinect in October 2017 and hobbyists were left with few great options. Intel’s

new depth cameras became the perfect replacement for the Kinect, especially at their

$150 and $180 price point respectively. They boast a maximum depth resolution of

1280x720 at 90 FPS compared to the Kinect’s 512x524 at 30 FPS [45]. See Figure
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Figure 4.3: Intel RealSense Depth Camera D400-Series [9].

4.4 for additional hardware specifications [17].

The Intel RealSense D400 Depth Cameras were incredibly popular upon launch,

such that Intel incurred shipping delays of several months from the overwhelming

amount of orders. Upon hearing the announcement from Intel, we too ordered one

of their cameras. Specifically, we ordered the Intel RealSense D435 Depth Camera,

which had a wider field of view than the D415 (85 vs 63 degrees). Unfortunately, due

to shipping delays, we were not able to acquire the camera until mid-March 2018.

One benefit the Intel RealSense cameras pose is access to raw depth data, which

allows for more efficient processing of data than is possible using a spatial mapping

provided by a third party framework. However, the developer is required to imple-

ment the algorithms to perform SLAM and generate the spatial mapping. Due to

shipping delays by Intel and already obtaining access to a HoloLens, we chose to

pursue development on the HoloLens.

4.1.4 Other Hardware

Other platforms that exist include the Microsoft Kinect, the Meta 2, and the up-

coming Magic Leap One. See Figure 4.5. The Kinect was a depth sensor developed
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D435PRODUCT BRIEF
Intel® RealSense™ Depth 
Camera D435
Powerful, Full-featured Depth Camera

Combined Solution for Development & Productization 
By introducing the Intel® RealSense™ Depth Camera D435 into the Intel® 
RealSense™ product lineup, Intel continues our commitment to developing 
cutting-edge new vision sensing products. Placing an Intel module and 
vision processor into a small form factor results in a combined solution 
ideal for development or productization. Lightweight, powerful, and low-
cost, this complete package pairs with customizable software to enable 
the development of next-generation sensing solutions and devices that 
can understand and interact with their surroundings. 

Ideal for Low Light and Wide Field of View
The D435 as a wide field of view solution using global shutter sensors.  
The combination of a wide field of view and global shutter sensor on 
the D435 make it the preferred solution for applications such as robotic 
navigation and object recognition. The wider field of view allows a single 
camera to cover more area resulting in less “blind spots”. The global 
shutter sensors provide great low-light sensitivity allowing robots to 
navigate spaces with the lights off.

Complete Suite for Simple Integration
The Intel® RealSense™ Camera D435 is part of the Intel® RealSense™ 
400 Series of cameras, a lineup that takes Intel’s latest depth-sensing 
hardware and software offerings and puts them into easy-to-integrate, 
packaged products. Perfect for developers, makers, and innovators 
looking to bring depth-sensing vision to devices, Intel® RealSense™ 400 
Series Cameras offer simple out-of-the-box integration and enable a 
whole new generation of intelligent vision-equipped devices.

Copyright © 2017 Intel Corporation. All rights reserved. Intel, the Intel logo and Intel RealSense are trademarks of Intel Corporation or its subsidiaries 

in the U.S. and/or other countries.

FEATURES

Minimum Depth Distance (Min-Z): 0.105m

Maximum Range: 10m+. Varies depending on performance 

accuracy, scene and light conditions

RGB Resolution: Up to 1920 x 1080 resolution

RGB FOV (H x V x D): 69.4 x 42.5 x 77 (+/- 3°)

FEATURES

Use Environment: Indoor/Outdoor

Depth Technology: Active IR Stereo

Image Sensor Technology: Global Shutter; 3um x 

3um pixel size

Depth Field of View (FOV)—(Horizontal x Vertical) 

for HD 16:9: 85.2° x 58° (+/- 3°)                            

Depth Output Resolution & Frame Rate: Up to 1280 

x 720 active stereo depth resolution. Up to 90fps

MAJOR COMPONENTS

Camera Module: Intel® RealSense™ Module D430 + 

RGB Camera

Vision Processor Board: Intel® RealSense™ Vision 

Processor D4

PHYSICAL

Form Factor: Camera Peripheral

Connectors: USB 3 Type-C

Length x Depth x Height: 90mm x 25mm x 25mm

Figure 4.4: Intel RealSense Depth Camera D435 Specifications [17].

by Microsoft for its gaming consoles, the Xbox 360 and the Xbox One. Microsoft

provided APIs that enabled full body tracking and even hand tracking in real-time.

These technologies were further refined for the Microsoft HoloLens, which provides a

spatial mapping of an environment. The Kinect was officially terminated in October

2017, when Microsoft announced they would stop producing the units [54].

The Meta 2 is another popular mixed reality headset. Created by the startup,

Meta, it projects images onto a see-through display in front of the user. According

to online reviews, the holograms displayed by the Meta 2 are not completely stable

as the user moves around the environment compared to the HoloLens which has very

accurate tracking. However, the Meta 2 boasts a much wider field of view, at 90

degrees compared to the HoloLens’ 30 degrees. Priced at $949, it is also considerably

cheaper than the HoloLens [51]. We did not pursue development with the Meta 2
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Figure 4.5: Other hardware platforms. From left to right: Kinect v2, Meta
2, Magic Leap One [5, 11, 6].

due to acquiring access to a HoloLens and due to the HoloLens’ enhanced spatial

mapping and tracking capabilities.

The most interesting mixed reality platform is the Magic Leap One, created by

the secretive company, Magic Leap. Founded in 2010, Magic Leap has developed

its advanced mixed reality technology in secret, only showing the technology to a

select few, including investors, under strict NDAs. In 2014, Magic Leap raised $540

million in venture funding with Google leading the pack [36]. As of May 2018, the

company has raised over $2 billion and is valued at over $6 billion. The company

also has the founder of Alibaba and the CEO of Google as board members [10]. In

December 2017, Magic Leap finally gave the world a glimpse of its mixed reality

platform, the Magic Leap One. In early 2018, they released a developer portal online

and announced that the developer edition of the Magic Leap One would ship in late

2018 [18]. With billions of dollars invested, and support from industry leaders like the

CEO of Google, Magic Leap is set to transform the mixed reality industry, which has

remained relatively stagnant for the last two years. This would be an ideal platform

for diminished reality, but due to it not being released, the HoloLens is the next best

thing.

4.2 Development Environment

Equally important as the hardware chosen when implementing a mixed reality ap-

plication is the development environment in which to create such application. With
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our chosen hardware platform of the Microsoft HoloLens, three development envi-

ronments were available: Unity, Unreal Engine and DirectX. The following sections

discuss each development environment, their tradeoffs, and why we chose to develop

with Unity.

4.2.1 Unity

Unity is a cross-platform game engine developed by Unity Technologies [19]. Since

its inception in 2005, it has quickly become one of the leading two game engines

that developers use to create amazing games. It supports content creation on most

platforms, including Windows Mixed Reality platforms like the Microsoft HoloLens.

Large game development studios such as Activision often develop their own game

engines, but for hobbyists and smaller game studios, Unity is a great tool that saves

significant development time.

Unity provides a set of APIs which support complex graphics concepts. Due to

Unity’s abstraction of core graphics APIs, less time and code is needed by develop-

ers to create amazing content. Unity also supports development of applications for

the HoloLens through the use of the Windows Mixed Reality APIs. Unity further

provides a holographic emulator which allows applications to run on the computer

rather than on the HoloLens so developers can perform tests prior to uploading their

applications to the device. Uploading applications to the HoloLens takes time, so

providing an emulator significantly speeds up the development process. Developers

can also connect to the HoloLens remotely via the Holographic Remoting app on

the HoloLens. This allows content to be streamed between the computer and the

HoloLens. This allows the developer to see the output of an application in Unity on

the device without actually uploading the application. These tools make Unity the

development platform of choice when developing for the HoloLens. Microsoft has also
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published several tutorials focused on developing HoloLens applications with Unity.

4.2.2 Unreal Engine

The Unreal Engine is a cross-platform game engine developed by Epic Games [20].

Since its inception in 1998, it has continued to evolve and has become one of the

leading two game engines preferred by game developers. It supports content creation

on most platforms, including popular virtual reality and augmented reality platforms

like the Oculus Rift, HTC Vive, and Magic Leap One. However, it does not officially

support the Windows Mixed Reality platform. Instead, it supports SteamVR, which

allows developers to create virtual reality games for Steam, a software distribution

platform used to download and play games. Through SteamVR, developers can also

interface with the Windows Mixed Reality APIs and create mixed reality content that

can run on Windows Mixed Reality devices such as the HoloLens [50].

Unity and Unreal Engine both dramatically speed up development time of a game.

Yet Microsoft has not published tutorials focused on developing HoloLens applications

with Unreal Engine. Due to the support of Unity by Microsoft and the lack of

immediate support of the Windows Mixed Reality platform by the Unreal Engine,

Unity is the clear development platform of choice for the HoloLens.

4.2.3 DirectX

DirectX is a set of APIs created by Microsoft to support video processing and game

programming on Windows platforms [2]. The X is a stand-in for different APIs includ-

ing Direct3D, Direct2D, DirectSound, and many more. These APIs allow developers

to integrate with low-level graphics hardware with fine-grain control. This also means

that developers need to write more code to tell the graphics hardware exactly how

to handle their data. Experienced developers can use these APIs to write more effi-
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cient algorithms than would be possible with a conventional game engine like Unity

and Unreal Engine. DirectX was first released in 1995, has seen significant changes

since its inception, and is currently at revision 12. Microsoft’s Windows Mixed Real-

ity platform supports applications created in DirectX and some tutorials have been

provided.

When considering the software platform for this project, we also considered the

amount of time it would take to develop a working solution. Due to our inexperience

with DirectX APIs and the increased amount of code necessary when working with

DirectX, we chose not to pursue development on this platform. Instead, we chose to

work with Unity, which is equally supported by Microsoft when creating applications

for the HoloLens. Unity also uses the DirectX APIs under-the-hood, but provides a

software abstraction to make development faster.

4.3 Diminished Reality Pipeline

Upon choosing hardware and software development platforms, we developed a di-

minished reality solution following a pipeline consisting of six stages, occurring in

order.

1. Spatial Mapping

2. 3D Post-Processing

3. Texturing

4. Object Selection and Tracking

5. Object Removal (Diminishing)

6. 2D Post-Processing
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The following sections discuss our specific implementation of each stage.

4.3.1 Spatial Mapping

Figure 4.6: Triangle mesh of an environment obtained via spatial mapping
[7].

For the spatial mapping stage, we used the internal representation of the environ-

ment provided by the HoloLens. Rather than provide developers with a set of points

containing color and depth information, the HoloLens processes this raw depth data

behind-the-scenes and provides developers with a mesh of the environment composed

of triangles. See Figure 4.6. The density of the triangle mesh can be changed through

an internal variable, named maxTrianglesPerCubicMeter. According to documenta-

tion, low, medium, and high resolutions are available at 100, 500, and 1000 triangles

per cubic meter respectively [52]. From testing, we found that medium resolution was

ideal. A spatial mapping can be obtained many times per second with low resolution,

but with poor quality. At medium resolution, the spatial mapping is moderately

detailed and can be obtained 1-2 times per second. At high resolution, the spatial
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mapping is only slightly better than at medium resolution and takes several seconds

to obtain the mesh. See Figure 4.7.

Figure 4.7: Low, medium, and high triangle densities [16].

To obtain the spatial mapping mesh from the HoloLens, we first create an instance

of the SurfaceObserver class, set its observation area, and then request a mesh of

the environment. The SurfaceObserver class is one of the many classes provided to

interface with the Windows Mixed Reality APIs. The SurfaceObserver converts the

HoloLens’ raw depth data into a triangle mesh usable by developers, which is an

expensive process. This triangle mesh is called a Surface, and many Surfaces can

be created per observation area. The HoloLens scans the environment within 0.8-3.1

meters in front of it in a 70-degree cone. A Surface is then constructed from what

the HoloLens scans over several frames. If the observable area is small, it will only be

composed of a couple Surfaces. If the observable area is large, it will contain many

Surfaces and become computationally expensive to update and render all Surfaces.

To reduce processing time, a mesh is only constructed when the developer requests an

update. The developer can request a mesh once or can assign a method to be called

when the SurfaceObserver finds new, updated, or removed surfaces. Each Surface is

also given an identifier so the developer can efficiently save, update, and delete old
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Surfaces [3].

Microsoft provides an additional set of APIs and tutorials for development with

Windows Mixed Reality called the Mixed Reality Toolkit [37]. The toolkit includes

classes to help manage the spatial mapping of an environment as well as performing

post-processing operations on the spatial mapping. Using these classes significantly

saved development time and allowed easy access to the Surfaces obtained from the

spatial mapping.

4.3.2 3D Post-Processing

In the 3D post-processing stage, several operations are performed to make the Surfaces

obtained from the spatial mapping more accurate, such as removing disconnected

points, smoothing surfaces, filling holes, and replacing flat surfaces with planes. The

HoloLens automatically performs smoothing and removal of disconnected points dur-

ing creation of the spatial mapping mesh. Further refinements are performed to

manually remove remaining holes in the environment and to improve mesh visibility.

To find planes in the environment, we use the PlaneFinding class provided by the

Mixed Reality Toolkit, which detects horizontal and vertical planes. Using this class,

we obtain a list of planes in the environment, create two triangles to represent each

plane, and then iterate through the Surfaces, removing any old vertices that overlap

with the new plane. This process reduces the total number of triangles rendered,

increasing performance a small amount. It further removes errors in the spatial

mapping by using a flat surface to approximate walls, floors, and tables. Another

benefit of plane finding is that any holes in the mesh that were identified as part of a

plane will be filled, making the mesh even more accurate. This is especially important

for the sides of an object touching a plane. The spatial mapping process cannot see

the region between two touching surfaces and thus will not map it. Instead, objects
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appear to be part of the floor and walls instead of separate from them. See Figure 4.8.

Plane finding remedies this issue by creating a surface between the object and the

plane. This further improves object selection by making a clear distinction between

the floor and an object.

Figure 4.8: An object connected to the floor before post-processing.

Additional operations performed on the mesh include modifying its default shad-

ing. Lighting was removed in order to save on processing time. However, removal

of lighting on a mesh that was arbitrarily colored white caused the entire mesh to

appear the same intensity of white and the contours of the mesh could not be ob-

served. Thus, we implemented a shader to color the mesh using each vertex’s normal

value, plus a black checkerboard pattern so that the real environment could also be

seen - black pixels are considered transparent by the HoloLens. Each checkerboard

square is 0.1 meters, which allows for easy measurement of real world surfaces. This

proved sufficient to observe the contour and shape of the spatial mapping mesh. See

Figure 4.9. In order to obtain the checkerboard normal shading, we added the ver-

tex’s world-space x, y, and z coordinates (each rounded down to nearest integer) and

modded the result by 2. If the result was 0, black was drawn. If the result was 1, the

normal color was drawn.
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Figure 4.9: Checkerboard normal shading.

4.3.3 Texturing

The third stage in our pipeline is the texturing of the spatial mapping mesh. This

stage is necessary to obtain a realistic virtual representation of the real environment.

Due to the lack of color provided in the HoloLens’ spatial mapping, manual capture

of environment textures is necessary. For this process, we utilize the HoloLens’ RGB

camera to take pictures of the environment at runtime and store this color data

along with the location where each image was take within the environment. The user

triggers the capture of an image by performing an air-tap gesture or through the use

of the HoloLens’ remote. Upon capturing an image, audio feedback is provided to the

user to indicate completion of the image capture. The air-tap gesture is performed

by quickly moving one’s pointer finger down and then back up while also within view

of the front-facing HoloLens sensors. The resulting image is then displayed on the

spatial mapping mesh so the user can see which areas have been textured and which

have not. In order to texture the environment mesh, two techniques are explored:

projective texture mapping and sparse voxel octree texture mapping.
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Projective Texture Mapping

Projective texture mapping is the projection of a texture onto a mesh, much like the

projection of a movie onto a screen in real life. In our case, we use multiple projectors

to project textures onto different sections of the mesh. This allows us to paint the

virtual environment with colors from the real world. See Figure 4.10.

Figure 4.10: Projective texture mapping with a single projector [25].

Projective texture mapping on the HoloLens involves acquiring a picture from the

HoloLens’ RGB camera, saving the image along with the camera’s view and projection

matrices, sending the texture and camera information to the shader responsible for

texturing the spatial mapping mesh, and then calculating the texture coordinates for

each pixel in view of the main camera by transforming the pixel to the coordinate

space of the projector. The following paragraphs explain this process in more detail.
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Resolution Horizontal Field of View

1280x720 45 degrees

2048x1152 67 degrees

1408x792 48 degrees

1344x756 67 degrees

896x504 48 degrees

Table 4.1: HoloLens camera resolutions, supported at 30, 24, 20, 15, and
5 fps [53].

To acquire an RGB image from the HoloLens’ camera, we first create an instance of

the PhotoCapture class provided by the Windows Mixed Reality framework. We then

specify camera properties such as resolution, pixel format, and hologram opacity. The

HoloLens supports five different resolutions that can be acquired at various framerates

[53]. See Table 4.1. We use the default pixel format of BGRA32, hologram opacity

of 0.0f, and resolution of 1280x720. Photo mode is then asynchronously enabled for

the PhotoCapture object and an image is asynchronously captured upon calling the

method to capture an image. The resulting image is provided to the developer in a

callback, wrapped in an instance of a PhotoCaptureResult class. We then copy the

image data from the PhotoCaptureResult into a Texture2D to more easily use the

data throughout our application.

The next step is to save the view and projection matrices from the camera’s

perspective when capturing the image along with the Texture2D. This allows us to

transform pixels from the main camera’s coordinate space into the coordinate space

of the projector. The result of the photo capture callback provides an instance of

a PhotoCaptureFrame, which contains methods to obtain the view and projection

matrices used by the camera to generate the image. These matrices are extracted

and stored in a struct along with the texture and sent to the shader for the spatial
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mapping mesh.

Sending data to shaders in Unity is straightforward. We attach a script to an

object, obtain a reference to the material used by the spatial mapping mesh, and

then call the material’s SetTexture() and SetMatrix() methods with the name of the

variable in the shader as the first parameter and the data as the second parameter. In

the shader, we define a Property for each texture and each matrix, create a sampler2D

for each texture and a float4x4 for each matrix, and use the values in the fragment

shader. Unity shaders can use the standard vertex and fragment shader stages, or

can use a surface shader stage which compiles into a vertex and fragment shader

stage. We chose the former method due to our familiarity with OpenGL vertex and

fragment shaders.

The final step is to use the view and projection matrices sent to the shader to

transform a pixel from the current camera’s perspective into the perspective of the

projector. To do this, we pass the vertex’s world location from the vertex shader to

the fragment shader, which automatically interpolates it. We then multiply the pro-

jector’s view and projection matrices by the interpolated world position and divide

the result by the w component of the vector to obtain the coordinate from the pro-

jector’s perspective in the range [-1,1] in the x and y axes. We then apply a viewport

transformation (add 1 and then divide by 2) to obtain the coordinate in the range

[0,1] in the x and y axes. If the coordinate is outside this range, then the projector

did not see it. For any pixel whose coordinate is within this range, we sample the

projector’s texture using the x and y components of this coordinate to get the color

for the pixel. All other pixels use the default checkerboard normal shading described

in the previous stage of the pipeline.

At this point, we have achieved a simple form of projective texture mapping.

However, our projector paints its texture onto all triangles within its view frustum,
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whether or not they are hidden. See Figure 4.12. In addition to this, our projector

suffers from back projection, where the texture is applied to triangles behind the

projector as well as in front of it. See Figure 4.11. Finally, when using multiple

projectors, some type of blending must be implemented when images overlap in order

to prevent obvious edges and to correct color discrepancies. See Figure 4.13. The

following paragraphs discuss how we address each of these issues.

Figure 4.11: The problem of back/reverse projection [25].

Figure 4.12: The problem of projecting onto triangles that the projector
can’t see [26].

Back projection is the simplest issue to resolve. To prevent back projection, we do

not sample the projector’s texture if the transformed coordinate’s z value is negative.
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Figure 4.13: Blending error on overlapping images.

To allow multiple projectors, we send each projector’s texture and matrices to the

same shader. From there, each pixel is transformed into each projector’s perspective

to determine if the pixel is within the projector’s view frustum and should derive its

color from the given projector. If two or more projectors overlap, their color values

are combined using a method similar to the one proposed by Debevec et al. in 1996

[23]. Each projector’s color value is assigned a weight, where the sum of all weights is

1 and each weight is in the range [0,1]. The weights are inversely proportional to the

magnitudes of the angles between the normalized view vector and projection vectors.

See Figure 4.14. Using this method, the contribution of each texture is dependent

upon viewing angle, unless it is the only texture for a given pixel. Additionally, to

prevent hard edges along the border of the textured region, we increase the alpha

component of the color near the edges to make it smoothly transition to transparent.

Projecting a texture only onto visible triangles is resolved through the use of

shadow mapping techniques. Shadow mapping techniques determine whether a pixel

is visible to a light source by storing a depth map of the scene from the perspective

of each light source. We use this technique to determine if a pixel is visible to a
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Figure 4.14: The weighting function used in view-dependent texture map-
ping. Weights w1 and w2 are inversely proportional to the magnitude of
the angles a1 and a2 [23].

projector by storing a depth map per projector. However, depth data is not provided

with the HoloLens’ RGB camera output. Instead, we use the spatial mapping mesh

that was created from the Spatial Mapping stage of the pipeline and render it into

a buffer for later use. For this, Unity provides the RenderBuffer class. Unity allows

a Camera game object to render the scene into a RenderBuffer object instead of

rendering it to a display. To use this functionality, we create a new Camera object

as a child of the main camera to allow it to match the main camera’s position and

orientation at all times. We further set the render target of this new Camera object

to a RenderBuffer instance with resolution of 1280x720 to match the RGB image

output from the HoloLens. When rendering to the depth buffer in Unity, a Camera’s

depth texture mode must be set to Depth or DepthNormals. We also set the depth

buffer’s precision to 32, which is the highest resolution setting, allowing 32 bits of

information per pixel. The result is a Camera game object capable of rendering the

scene into a buffer from the main camera’s perspective.

The next step is to use these depth buffers to determine which projectors are visible

to each pixel. An issue we ran into was that Unity only allows a single camera’s depth
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buffer to be bound and readable by a shader, yet we needed to access depth data from

multiple projectors within the same shader. To circumvent this constraint, we render

the scene per projector with an extra shader that converts the depth texture into

an RGB texture with grayscale values. Upon obtaining the new depth texture per

projector, we send the textures to the spatial mapping shader along with projector-

specific view and projection matrices used to render the depth image, which are

different than the HoloLens’ RGB camera’s view and projection matrices. Within

the shader, we transform each pixel’s position in the same way as before, but using

the new depth-specific view and projection matrices. This allows us to compare the

depth values in each projector’s depth map to the current pixel’s depth values seen

from the main camera’s perspective. If the computed depth value is smaller than the

value stored in the depth map, then the pixel is visible for the given projector. If

the computed depth value is larger than the value in the depth map, then it must

have been hidden when the projector’s depth map was created. Using these values,

we ensure pixels are only textured if they are visible to a projector. See Appendix A

for code.

The final result is a spatial mapping mesh that is textured with camera images

and smoothly blended when images overlap. See Figure 4.15.

An advantage of this approach is that detailed texture information is preserved.

The closer an image is taken to a surface, the more detailed the texture will be. This

approach also avoids the need to keep track of a texture atlas that maps texture

coordinates to triangle vertices.

A limitation of this approach is poor scaling in computational complexity. The

calculation of a pixel’s color scales linearly with the number of images that are taken.

This is due to the comparison of every pixel with every projector. However, no

noticeable difference was observed in the use of 1 image vs 10 images.

42



Figure 4.15: Spatial mapping textured with three overlapping images of
the real environment.

Sparse Voxel Octree on GPU

Our second approach is texture mapping with sparse voxel octrees (SVO). Rather than

use triangles to represent geometry within a scene, volume elements called voxels are

used. A voxel represents a location on a regularly sampled three-dimensional grid

where each voxel stores some kind of data specified by the developer. Voxels are

often visualized as 3D cubes tightly packed within a larger volume. See Figure 4.16.

A voxelization of a scene is the conversion from a triangle representation to a voxel

representation.

In our implementation, we use a sparse voxelization of scene data. In contrast

to a dense voxelization, where most or all of a volume is filled with voxels, a sparse

voxelization does not fill empty space with voxels. This saves a significant amount of

memory as most scenes contain vast amounts of empty space.

To improve performance of spatial queries, we store our scene voxelization in an

octree. An octree begins with a root node, or voxel, which encompasses the entire

scene. This node is split into 8 child nodes, which represent different equal-sized
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Figure 4.16: A volume element known as a voxel [8].

volumes within the root node. Each of these nodes is further split into child nodes

until a desired level of detail is achieved. See Figure 4.17. The nodes at the lowest level

contain the actual data while higher-level nodes contain averages of their children’s

data. When using a sparse voxel octree representation, a node is only split into eight

children if data is found that belongs to a voxel within the node’s volume.

Figure 4.17: An octree of varying resolutions [4].

In our case, we use a SVO to store color data from pictures taken at different

locations throughout the environment. This is accomplished by corresponding each

pixel to a voxel by using the pixel’s 3D position within the scene. However, pixels

only represent colors at 2D screen coordinates. To obtain a pixel’s 3D position, the

depth of the pixel within the scene is needed. We obtain this depth information by

rendering the spatial mapping mesh into a depth buffer from the viewpoint of the
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camera every time an image is taken. Using this depth data, we then unproject the

2D pixel to a 3D coordinate, map the 3D coordinate to a voxel, and store the color

data within the voxel.

Typical projection of a 3D point to a 2D pixel coordinate occurs through these

steps:

1. Transform the point from world space to normalized device coordinates (values

in range [-1,1]) by multiplying the view and projection matrices with the point.

2. Apply the perspective divide by dividing each component (x,y,z) of the point

by the point’s w component.

3. Convert the point to the range [0,1].

4. Transform the point into screen space coordinates by multiplying the x and y

components by the screen width and height respectively.

Unprojection occurs through a similar process, but in opposite order:

1. Divide the pixel’s x and y components by the screen’s width and height respec-

tively.

2. Convert the point to normalized device coordinates (values in range [-1,1]).

3. Set the point’s z value from the depth data, converted to the range [0,1].

4. Transform the point to world space by multiplying by the inverse perspective

and inverse view matrices.

After obtaining the 3D position for a pixel, we determine which voxel it belongs

to and fill that voxel with the color of the pixel. After all pixels have been stored
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in the sparse voxel octree, we use the same process to extract these values from the

SVO to color the environment.

Before diving into the details of our implementation, we first discuss the structure

of our SVO. In our implementation, an octree consists of a 2D array of int values,

one dimension representing voxels and the other dimension representing data within

a voxel. Nodes in the octree are also represented as voxels. Due to this structure,

voxels contain 8 ints representing child node indices, 3 ints representing RGB color

values, and 1 int representing a temporary value used in construction of the SVO.

Therefore, the total size of a voxel is 12 ints, or 48 bytes.

Using this information, space limitations of our SVO are calculated. Image resolu-

tion is 1280x720 and each pixel in the image corresponds to at most 1 voxel. By using

an octree data structure, for every eight voxels at a specific level of detail, there is

one parent voxel. This approximates to 1.15 times the space requirements without an

octree. However, use of an octree improves spatial queries from O(n3) to O(log(n)3),

n being the number of voxels in one dimension. To calculate the upper bound of the

total space required by our SVO, we use this equation:

ImageCount ∗ ImageResolution ∗ V oxelSize ∗OctreeFactor (4.1)

When only using a single image, the upper bound of the total space required is

1280 * 720 * 48 * 1.15 = 50,872,320 bytes = 50.87 MB. However, video memory on the

HoloLens is limited to 114 MB [44]. Thus, we restrict our SVO to a maximum of 100

MB. We further restrict our voxel size to 1x1x1 cm to support more images. Using

larger voxel sizes causes many pixels to map to the same voxel, which reduces the

total number of voxels, thereby also decreasing the resolution of the texturing. Pixels

from overlapping images will also map to the same voxel, saving additional space. In

practice, at least 8 images can be captured and used to texture the environment.

Our implementation of sparse voxel octree texture mapping consists of two phases:
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constructing the sparse voxel octree and texture mapping with the built sparse voxel

octree. The SVO is only constructed once and then used per frame to texture the pix-

els seen by the main camera. Construction occurs after all images of the environment

have been taken. This ensures spatial mapping is complete and a consistent depth

map is used for all images. Texture mapping is then performed per pixel per frame,

where each pixel is mapped to a voxel within the SVO and its color determined from

the voxel.

During the construction phase, we build the SVO level by level, starting with the

largest voxel sizes at the top layer of the octree. This supports construction on the

GPU and allows our SVO to be built as quickly as possible.

We construct the SVO on the GPU per level of the octree in two steps: flagging

and building. The first step involves flagging all nodes that contain pixels for a given

level of the octree. The second step involves creating the next level of the octree

based on the flagged nodes. The octree itself is allocated prior to construction to the

maximum size that will fit in video memory (100 MB).

Prior to performing the flagging step, we first convert our image data into a

structured buffer for easier processing. Each struct in the buffer contains 3 ints

representing an RGB color, 3 floats representing a 3D position, and 1 int representing

the index of the last node traversed in the octree for this pixel. There is a one-to-one

mapping of pixel to struct, making this an ideal candidate for parallelization. To

convert the image data into a structured buffer, we use a compute shader. Compute

shaders allow arbitrary batch computations to be performed on the GPU instead of

the CPU, taking advantage of many cores that can perform operations simultaneously.

Our compute shader runs per pixel and takes an RGB image, depth image, camera

matrices, and empty structured buffer as input. It then calculates the 3D position of

the pixel and creates a struct with the data mentioned above. The node index is set
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to 0. See Appendix B for code.

After converting the images to structured buffers, we perform the flagging and

building steps incrementally for each level of the octree. We also use compute shaders

to parallelize these steps. For the flagging step, a compute shader is run for every

struct in our structured buffer. The position for each struct is used to traverse the

SVO up to the current octree level, where the node containing the position is flagged

by setting the node’s index within its parent node to 1. Additionally, the color for

the struct is added to the node and the node’s temporary variable is incremented

and used to count the total number of pixels within the node. The count of pixels is

stored so we can later compute the average color for each node. We further set the

temporary variable within the struct to the node’s index to speed up octree traversal

in later iterations by skipping already-flagged levels of the octree. Upon completion

of the flagging step, the node indices of the octree level currently being processed will

either be 0 or 1 to indicate whether they contain pixels or not. See Appendix B for

code.

After flagging the nodes in the current level of the octree, we build the next level

of nodes. For this step, a compute shader is run for every node in the current level

of the octree. If the node’s index within its parent node is 0, then the compute

shader exits early. If the node’s index is 1, then the compute shader synchronously

gets the next available unused voxel index in the preallocated octree array. The next

available unused voxel index will always be a multiple of the size of a voxel and will

be constantly increasing. Upon synchronously reading this value, the compute shader

will synchronously increase this value by the size of one voxel. The synchronization

of compute shaders guarantees that each will get a unique index into the octree array

and that no collisions occur. The build step is skipped for the final level of the octree.

See Appendix B for code.
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After all levels of the octree have been built, a final compute shader pass is used

to average the colors for each node. During the flagging step, a pixel’s RGB color

was added to the node it was found within and a pixel counter on the node was

incremented. We now divide the RGB values per node by the total pixel count per

node to obtain the average color of all pixels within the node. See Appendix B for

code.

After constructing the SVO, we use it every frame to sample the texture per pixel

of the spatial mapping. We first send the SVO to the GPU so it can be accessed

within the spatial mapping shader. We then render the spatial mapping into a depth

texture for the main camera and send it to the spatial mapping shader. Using the

main camera’s depth texture, each pixel’s 3D coordinate is calculated. Finally, the

SVO is traversed using the 3D coordinate until a sufficiently small voxel is found.

The color stored in this voxel is returned as the pixel’s color. If no sufficiently small

voxel is found, the default color is used.

An advantage of SVO texture mapping is logarithmic performance scaling in con-

trast to linear scaling with projective texture mapping. The size of the SVO increases

with each image taken, but the time it takes to find the voxel for a given pixel in-

creases logarithmically. Another advantage is that the SVO is built level by level,

which allows early stopping if memory constraints become an issue while maintaining

a usable SVO of lower resolution.

A disadvantage of SVO texture mapping is the large amount of memory used in

the creation of the SVO. Additionally, due to memory constraints on the HoloLens,

voxel sizes must be large to allow texture mapping of an entire scene. However, large

voxel sizes reduce the amount of detail that can be captured in the SVO.
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4.3.4 Object Selection and Tracking

The fourth stage in our diminished reality pipeline is selecting the object to be re-

moved and tracking it per frame. In our implementation, object tracking is automatic

due to the SLAM being performed during the spatial mapping stage. SLAM contin-

uously determines the camera’s position relative to the origin of the environment and

all 3D locations are mapped relative to this origin as well. Once an object has been

selected, its 3D location within the spatial mapping is all that is needed to locate the

object per frame.

In order to select the object to be removed, we use a semi-automated process,

where the user provides a point in 3D space associated with an object and then the

object is automatically determined from their input. This is in contrast to manual

techniques where the user draws the entire outline of the region they want removed

and automated techniques where an algorithm determines the object to remove with-

out user input. User input is provided once and then the object is tracked per frame.

To obtain user input, we make use of the HoloLens’ ability to track hand gestures

and head movement. Specifically, we use the built-in air-tap hand gesture, where a

user makes a fist, points their index finger, and then quickly moves their index finger

down and back up. Performing this action in front of the HoloLens triggers a callback

in code, where we perform custom actions. Upon detection of this hand gesture, we

access the HoloLens’ position and orientation in 3D space and cast a ray from the

center of the HoloLens into the virtual scene along the viewing direction. The first

point that intersects the ray is used as the selected user input point. Feedback is

provided to the user in the form of a small circle in the center of their display to show

which point they are currently looking at, as well as a sound effect when the air-tap

gesture is recognized. This allows the user to provide more accurate input and to

know when their input has been recognized.
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After obtaining the user’s selected point, we automatically determine the object

to remove. We define the object as the collection of vertices within a set distance

from the selected input point and the triangles containing such vertices. We acquire

these vertices by looping through the spatial mapping mesh and create a copy of

every triangle that contains at least one vertex within the defined radius. We also

ignore triangles belonging to the floor and walls. We limit object selection to objects

larger than 1 ft in diameter due to the HoloLens’ spatial mapping not being capable

of accurately capturing the geometry of smaller objects.

Limitations of this object selection approach include only selecting a portion of

a large object and selecting multiple objects that are in close proximity. Since the

radius is a fixed size (1 meter in our implementation), other objects within this close

proximity can accidentally be captured as part of the selected object. Also, objects

that are larger than the set radius will not be captured in their entirety unless the

radius is expanded. For best results, objects that are spatially separated from other

objects by at least 0.5 meters and that fit within the set radius ought to be chosen.

4.3.5 Object Removal (Diminishing)

The fifth stage in our diminished reality pipeline is the perceived removal or diminish-

ing of the selected object. To diminish the selected object, we display pixels in front

of it that look like the region behind it. We accomplish this by removing the selected

object’s vertices from the spatial mapping mesh and then render the textured spatial

mapping only within the region of the selected object. This allows the user to see the

real world everywhere except in front of the selected object, where they instead see

the virtual textured environment behind the object.

Removing the selected object from the virtual mesh of the environment is simi-

lar to the automated object selection process, except we remove triangles instead of

51



copying them. This involves iterating over the vertices in the spatial mapping and

removing any triangles that contain vertices within a specified radius (1 meter) of

the originally selected point by the user. In our implementation, this step is com-

bined with the automated object selection process of the previous stage to improve

performance.

After removing the selected object from the virtual copy of the environment, we

clean up the geometry of our selected object and create an approximate representation

of it with no concavities, called a convex hull. See Figure 4.18. This approximation

is used to alleviate spatial mapping errors which cause the selected region to be too

small or to entirely miss parts of the object. The spatial mapping is not detailed

enough to capture small objects on top of surfaces and may also contain irregularities

within the mesh. See Figure 4.19. By approximating the selected object with a convex

hull, we increase the likelihood of capturing the entire bounds of the real object. We

also expand the convex hull by 0.05 meters to better capture corners and edges of

an object. We use an open source implementation of the quick hull algorithm for

generating a convex hull on GitHub called MIConvexHull, created by DesignEngrLab

[24].

Figure 4.18: Convex hull generation from a collection of points. Left is
the collection of points. Right is the convex hull around the collection of
points.

After creating a convex hull of our selected object geometry, we use a stencil buffer

to render the virtual environment only within the region of the selected object’s convex
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Figure 4.19: Spatial mapping of small objects on a table. Left is the
original image. Right is the spatial mapping at 500 triangles per cubic
meter.

hull. The stencil buffer is a special per-pixel integer buffer often used to render a scene

into a specific region of the screen. In our implementation, we make use of the stencil

buffer by performing two render passes. The first pass renders the selected object

without color and sets the stencil buffer for each pixel that contains the object to 2.

The second pass renders the virtual environment, but only in pixels where the stencil

buffer is set to 2 from the previous render pass. This ensures the virtual environment

is only rendered in pixels that contain the selected object. The final result is an image

of the real environment with pixels from the virtual environment rendered in front of

the selected real object.

4.3.6 2D Post-Processing

The final stage in our diminished reality pipeline is 2D post-processing on the result-

ing image from the previous stage to enhance the realism of the diminished result.

Specifically, we perform inpainting to fill regions where the virtual environment is

untextured and perform alpha blending near the edges of the diminished region to

hide obvious color discrepancies.

Untextured regions appear when the user has not viewed the surfaces behind

the selected object and when spatial mapping fails to generate geometry for surfaces

far from the user. During these scenarios, inpainting is used to fill in the holes.
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Specifically, we use the OpenCV implementation of inpainting, provided by Enox

Software through the Unity asset, ”OpenCV for Unity” [14]. OpenCV provides two

methods of inpainting, the first being an implementation of a 2001 paper by Bertalmio

et al. [22] and the second being an implementation of a 2004 paper by Telea [49] [15].

Both papers focus on quickly inpainting small regions within an image. See Figure

4.20. These inpainting techniques allow us to run inpainting at real-time rates and

fill holes for every frame that requires it.

Figure 4.20: Inpainting of small strokes in an image [22].

In our implementation, we use the OpenCV inpainting method based on the 2004

paper by Telea. Inpainting is performed by providing the algorithm with two images:

a source image and a mask image. The mask image is a grayscale image used to

determine which pixels to inpaint within the source image. White pixels within the

mask image are inpainted while black pixels are not. To support easy creation of a

mask image, we modify the spatial mapping shader to display bright green (00FF00)

when no texture information exists for a pixel. We then use a shader to create

the mask image by converting green pixels to white and all other pixels to black.

This mask image is fed into the inpainting algorithm along with the original image

provided by the previous stage of the pipeline. The resulting image is one where the

green pixels have been replaced with colors similar to their surroundings. See Figure

4.21.
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Figure 4.21: Inpainting green pixels.

The final post-processing step we perform is fading the edges of the diminished

region. When diminishing a region within an image, lighting inconsistencies often

cause seams to appear at the edges which degrade the realism of the experience. To

resolve this, we linearly fade the alpha component from 1 to 0 for all pixels within

20 pixels from an edge based on distance from the edge. Distance to edge for every

pixel is determined by passing the image mask into the OpenCV distanceTransform()

method, which labels every non-black pixel based on its Euclidean distance to the

nearest black pixel. We then pass this distance mask image into a shader to modify the

alpha values of pixels near edges of the diminished region. Any pixels with an alpha

value of 0 are rendered as completely transparent by the HoloLens whereas alpha

values of 1 are rendered as completely opaque. The result is a smooth transition

between the diminished region and reality.
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Chapter 5

RESULTS

This thesis demonstrates the perceived removal of an object in an augmented reality

context. Unity 2017.4.3f1 was used to develop our solution. Computation solely

takes place on the HoloLens. Images were captured using the Mixed Reality Capture

tool on the Windows Device Portal. We first compare our results internally. Both

texture mapping algorithms are analyzed as well as our results in simple and complex

environments. Then we compare our results to previous work.

5.1 Internal Comparisons

The first qualitative comparison we make is our solution with itself in various envi-

ronments and with different texture mapping algorithms. We compared our texture

mapping algorithms in a simple environment consisting of a single well-defined object,

a ground plane, and a wall plane. Both texture mapping approaches use the same

images captured of the real environment. Projective texture mapping provided high

resolution results but suffered from linear scaling in time and space complexity with

the number of images taken. Sparse voxel octree texture mapping provided lower res-

olution results but maintained logarithmic scaling in time complexity and constant

space complexity due to pre-allocating the SVO. Further, the result of projective

texture mapping was immediately viewable after each image was taken, whereas our

other approach required all images to be taken prior to constructing the sparse voxel

octree. Comparisons are summarized in Table 5.1.

We then compared our solution in simple vs complex environments. A simple en-

vironment was defined to be an environment consisting of a single well-defined object
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Projective Texture Mapping SVO Texture Mapping

High resolution Low resolution

Linear time complexity Logarithmic time complexity

Linear space complexity Constant space complexity

View immediately View after taking all images

Table 5.1: Texture mapping comparisons.

with ground and wall planes. A complex environment was defined to be an environ-

ment consisting of multiple objects with many planes. Our solution performed best

in the simple environment. When multiple objects existed in the environment, object

selection was less accurate due to accidental selection of nearby objects. Further,

the large number of planes in the complex environment required many images to be

taken to perform texture mapping, reducing performance and increasing the chance

of overlapping images. However, our solution provided convincing results in simple

environments and adequate results in complex environments. See Figure 5.1.

Figure 5.1: Simple vs complex environment. Left is a simple environment
containing a single table. Right is a complex environment containing many
small stools.
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5.2 Previous Work Comparisons

The second qualitative comparison we make is that of previous work vs our solution.

Much research has been conducted in the field of diminished reality, but few have

used a virtual representation of the environment to accomplish diminished reality

in arbitrarily complex environments. Two such examples exist; the first method was

proposed by Simpson and the second by Nakajima et al. Simpson achieved diminished

reality using a Google Tango device, which mapped the environment in much the same

way the HoloLens does, yet also provided texturing. Simpson’s results can be seen

in Figure 5.2. The spatial mapping obtained by Simpson is more dense than the one

obtained via the HoloLens and thus provides more accurate object selection. However,

our method provides higher resolution texturing of the environment.

Figure 5.2: Result of removing a chair from the diminished reality method
proposed by Simpson [47].

The method proposed by Nakajima et al. uses an RGB-D camera with SLAM

to construct a textured point cloud of the environment. They also use a state-of-
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the-art segmentation algorithm and a novel object recognition approach to recognize

objects within the point cloud and automatically select them without user input.

Their method achieves real-time results on a system with 125 GB of RAM. Our

method achieves real-time results on a system with 2 GB of RAM. Their method is

also capable of diminishing the object immediately, before background geometry has

been observed. However, they do not provide any means of filling missing regions

in their point cloud and instead display black pixels. See Figure 5.3. Our method

fills these empty regions with inpainting. Both our method and the method proposed

by Nakajima et al. maintain high quality texturing of the environment, although

Nakajima et al. handles borders of the diminished region better than ours.

Figure 5.3: Result of removing a cereal box from the diminished reality
method proposed by Nakajima et al [38].

After comparing our work qualitatively in various environments and with previous

work, it is found to be competitive with previous work and maintains high-quality
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results.

It is worth noting that the HoloLens uses an additive display to render holographic

content to the user, causing black colors to appear transparent and white colors to

appear very vibrant. This prevents any diminished object from perfectly matching

the color of its surroundings since it is only possible to diminish it by displaying pixels

in front of it, which will appear more vibrant than the real environment. However,

the results displayed in this paper are captured via the Mixed Reality Capture tool

on the Windows Device Portal, which does not suffer from this effect. Any lighting

discrepancies are artifacts of the texturing process and the exposure of the HoloLens

camera at the time of the image capture.
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Chapter 6

FUTURE WORK

Some challenges in the field of diminished reality include removing shadows and main-

taining consistent lighting. Shadows are particularly difficult as both the object being

removed may cast a shadow on its surrounding geometry and other geometry may

cast shadows on the selected object. To properly remove shadows from surround-

ing geometry and propagate shadows within the removed region, knowledge of the

lighting for the scene is necessary. Creating an accurate model of scene lighting is

an ongoing research topic. Some consumer products have started adopting lighting

estimation algorithms such as Apple’s ARKit framework which provides directional

lighting estimation. Beyond shadows, consistent lighting is also important for main-

taining specular highlights and propagating lighting gradients across the diminished

region. True diminished reality will need to accurately determine the current lighting

conditions and understand how lighting affects an environment. Color bleeding is also

difficult to approximate and can lead to less than realistic results when removing an

object.

Although our diminished reality solution provided high-quality results, a number

of items would be interesting to explore in future versions. First, our solution used

an older implementation of inpainting that has been improved upon in recent years.

Exploring Herling and Broll’s PixMix inpainting method would provide more realistic

inpainting results while maintaining real-time performance. Second, storing textures

in an environment map when the depth of an environment is too far for spatial

mapping to capture. When viewing content that is far away, little change is observed

while moving throughout an environment. This would allow detailed textures to be

used even when no spatial mapping data exists. Third, providing user control over
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the selection radius. In our implementation, the selection radius is a fixed size, which

limits the types of objects that can be removed. Implementing a technique such as

a pinch and drag gesture to modify radius size would be simple and provide users

with more choice over which object to remove. Finally, diminishing moving objects

rather than solely static objects. Our solution does not support removal of dynamic

content, but doing so is plausible. Due to our use of a virtual representation of

the real environment, displaying such an environment in front of a moving object

would obscure it from view. The difficulty lies in identifying the region containing

the moving object. Structure from motion techniques could be used for this.
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Chapter 7

CONCLUSION

This thesis provides a diminished reality framework that operates in real-time on a

state-of-the-art augmented reality headset. No external processing is necessary. To

the best of our knowledge, this is the first diminished reality solution implemented on

the HoloLens. Using a combination of inpainting and a textured virtual representation

of an environment obtained at runtime, high-quality object removal is achieved. We

further outline a six-stage pipeline which can be applied to other diminished reality

solutions. Each stage represents a feature that can be upgraded or replaced to achieve

an enhanced diminished result. Our work is found to be competitive with related work

in the field and operates in a wide range of environments previously constrained to

planar geometries.
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APPENDICES

Appendix A

PROJECTIVE TEXTURE MAPPING SHADER

Shader ”Custom/ Project iveTextureMapping ” {

P ro p e r t i e s {

ColorTexArray ( ” Color Texture Array” , 2DArray ) = ”” {}

DepthTexArray ( ”Depth Texture Array” , 2DArray ) = ”” {}

Count ( ”Number o f snapshots to use . ” , Int ) = 1

MainCamPos ( ”Main Camera Pos i t i on ” , Vector ) = (0 , 0 , 0 ,

1)

ShaderType ( ”The type o f mate r i a l to d i sp l ay [0= de fau l t

, 1=depth texture , 2=depth p r o j e c t i o n ] ” , Int ) = 1

}

SubShader{

Tags{ ”RenderType” = ”Opaque” }

LOD 200

S t e n c i l {

Ref 2

Comp equal

Pass keep

}
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Pass{

CGPROGRAM

#pragma ver tex ve r t

#pragma fragment f r a g

#pragma t a r g e t 4 . 0

#inc lude ”UnityCG . cg inc ”

// Can only have a maximum of 16 sampler2D t e x t u r e s

// Otherwise t h i s e r ror occurs : ”maximum ps 4 0

sampler r e g i s t e r index (16) exceeded at l i n e 76 (

on d3d11 )”

UNITY DECLARE TEX2DARRAY( ColorTexArray ) ;

UNITY DECLARE TEX2DARRAY( DepthTexArray ) ;

uniform f l o a t 4 x 4 VPArray [ 2 ] ;

uniform f l o a t 4 x 4 DVPArray [ 2 ] ;

uniform f l o a t 4 PosArray [ 2 ] ;

uniform int Count ;

uniform f l o a t 4 MainCamPos ;

uniform int ShaderType ;

struct v2f {

f l o a t 4 pos : SV POSITION ;

f l o a t 4 ver tex : VERTEX;

f l o a t 4 worldPos : VERTEX1;
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f l o a t 4 normal : NORMAL;

} ;

v2 f ve r t ( appdata base v ) {

v2f o ;

o . ve r tex = v . ver tex ;

o . pos = UnityObjectToClipPos ( v . ver tex ) ; //

Equ iva l en t to mul (UNITY MATRIX MVP, f l o a t 4 ( pos

, 1 .0 ) )

o . worldPos = mul (UNITY MATRIX M, v . ver tex ) ;

o . normal = mul (UNITY MATRIX M, v . normal ) ;

return o ;

}

// Ca l cu l a t e how much o f the t e x t u r e shou ld be

v i s i b l e g i ven the current v iewing ang le

f loat v i e w i n g A n g l e V i s i b i l i t y ( f l o a t 4 x 4 mvp, f l o a t 4

pro jectorPos , f l o a t 4 worldPos , f l o a t 4 normal ) {

f l o a t 3 p r o j e c t o r D i r = normal ize ( p ro j e c to rPos −

worldPos ) ;

f l o a t 3 viewDir = normal ize ( MainCamPos − worldPos

) ;

f loat co n t r i b u t i on = ( dot ( viewDir , p r o j e c t o r D i r )

+ 1) / 2 ;

return pow( cont r ibut ion , 10) ;

}
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f l o a t 4 ge tPro j e c to rCo lo r ( v2f input , int arrayIndex )

{

f l o a t 4 c o l o r = f l o a t 4 (0 , 0 , 0 , 0) ;

f l o a t 4 x 4 mvp = mul ( VPArray [ arrayIndex ] ,

UNITY MATRIX M) ;

f l o a t 4 x 4 dmvp = mul ( DVPArray [ arrayIndex ] ,

UNITY MATRIX M) ;

f l o a t 4 pro j e c to rPos = PosArray [ arrayIndex ] ;

// Unproject 3D po in t to snapshot l o c a t i o n

f l o a t 4 pro j = mul (mvp, input . ve r tex ) ;

// Prevent b a c kp ro j e c t i on

i f ( p ro j . z < 0) return c o l o r ;

// Apply p e r s p e c t i v e d i v i d e

pro j = ( ( pro j / pro j .w) + 1) / 2 ;

// Clamp t e x t u r e ; don ’ t a l l ow i t to repea t

i f ( p ro j . x < 0 | | pro j . x > 1 | | pro j . y < 0 | |

pro j . y > 1) return c o l o r ;

f loat distToEdge = max( abs ( pro j . x − 0 . 5 ) , abs (

pro j . y − 0 . 5 ) ) ∗ 2 ;

// Find con t r i b u t i on f o r each snapshot based on

i t s v iewing ang l e

f loat co n t r i b u t i on = Count >= arrayIndex ?

v i e w i n g A n g l e V i s i b i l i t y (mvp, pro jectorPos ,
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input . worldPos , input . normal ) : 0 ;

// Get depth va lue o f p i x e l a t unpro jec t ed po in t

f l o a t 4 depthProj = mul (dmvp , input . ver tex ) ;

depthProj = ( ( depthProj / depthProj .w) + 1) / 2 ;

f l o a t 4 depth = UNITY SAMPLE TEX2DARRAY(

DepthTexArray , f l o a t 3 ( depthProj . xy / 2 ,

arrayIndex ) ) ;

// Prevent shadow a r t i f a c t s ( shadow acne ) by

s e t t i n g a b i a s / o f f s e t

f loat b ia s = 0 .03 f ;

// Only app ly t e x t u r e i f p i x e l i s not hidden in

snapshot

// Inve r t pro j . z s ince depth i s from 1−0 in s t ead

o f 0−1

i f ( abs ( (1 − depthProj . z ) − depth . r ) < b ia s ) {

c o l o r = UNITY SAMPLE TEX2DARRAY( ColorTexArray

, f l o a t 3 ( pro j . xy / 2 , arrayIndex ) ) ;

} else {

co n t r i b u t i on = 0 ;

}

// Store c on t r i b u t i on in a lpha component

c o l o r . a = co n t r i b u t i on ∗ (1 − distToEdge ) ;

return c o l o r ;

}
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f i x e d 4 f r a g ( v2f i ) : SV Target {

f l o a t 4 c = f l o a t 4 (0 , 0 , 0 , 0) ;

f loat p r o j e c t o r C o l o r s [ 2 ] ;

f loat t o ta lCont r i bu t i on = 0 ;

for ( int index = 0 ; index < Count ; index++) {

f l o a t 4 p r o j e c t o r C o l o r = ge tPro j e c to rCo lo r ( i ,

index ) ;

p r o j e c t o r C o l o r s [ index ] = p r o j e c t o rC o l o r ;

t o t a lCont r i bu t i on += pr o j e c t o r C o l o r . a ;

c += f l o a t 4 ( p r o j e c t o r C o l o r . rgb ∗

p ro j e c t o rC o l o r . a , p r o j e c t o rC o l o r . a ) ;

}

// I f p i x e l i s not comp l e t e l y co l o r ed by a

t ex tu re , c o l o r the r e s t o f i t whi te

f loat checkerboard = ( ( int ) ( ( i . worldPos . x + 100 .0

f ) / 0 . 1 ) + ( int ) ( ( i . worldPos . y + 100 .0 f ) /

0 . 1 ) + ( int ) ( ( i . worldPos . z + 100 .0 f ) / 0 . 1 ) ) %

2 ;

f l o a t 4 de f au l tCo l o r = f l o a t 4 ( checkerboard ∗ i .

normal . r , checkerboard ∗ i . normal . g ,

checkerboard ∗ i . normal . b , 1) ;

// Normalize the c on t r i b u t i on from a l l p r o j e c t o r s
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i f ( t o ta lCont r i bu t i on > 0) {

c /= to ta lCont r i bu t i on ;

} else {

c = de f au l tCo l o r ;

}

// Reset a lpha component

c . a = 1 ;

return c ;

}

ENDCG

}

}

FallBack ” D i f f u s e ”

}

Listing A.1: Determine pixel color from projectors.
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Appendix B

SPARSE VOXEL OCTREE TEXTURE MAPPING SHADERS

// Each #ke rne l t e l l s which func t i on to compi le ; you can

have many k e rn e l s

#pragma ke rne l CSMain

struct SVOPixelData {

f l o a t 3 pos ;

u int3 c o l o r ;

int nodeIndex ;

} ;

RWStructuredBuffer<SVOPixelData> pixe lData ;

Texture2DArray<f l o a t 4> ColorTexArray ;

Texture2DArray<f l o a t 4> DepthTexArray ;

f l o a t 4 x 4 VPArray [ 2 ] ;

f l o a t 4 x 4 DVPArray [ 2 ] ;

f l o a t 4 x 4 InverseVPArray [ 2 ] ;

f l o a t 4 x 4 InverseDVPArray [ 2 ] ;

// Convert p i x e l and depth data in t o s t r u c t s f o r e a s i e r use

by SVO.

// To c a l c u l a t e the 3D po s i t i o n o f a p i x e l , we have to

unpro j ec t a p i x e l from the co l o r
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// t e x t u r e to the near plane , then p r o j e c t i t i n t o the depth

map to acqu i re the depth va lue ,

// and then unpro j ec t again from the co l o r t e x t u r e us ing the

co r r e c t depth va lue .

// The same po in t may be l o c a t e d at a d i f f e r e n t p i x e l in the

depth and co l o r t e x t u r e s s ince

// both t e x t u r e s were crea t ed us ing d i f f e r e n t view and

p r o j e c t i on matr ices .

[ numthreads (8 , 8 , 1 ) ]

void CSMain ( u int3 id : SV DispatchThreadID ) {

int dataIndex = ( id . z ∗ 1280 ∗ 720) + ( id . y ∗ 1280) + id . x

;

p ixe lData [ dataIndex ] . c o l o r . x = ( u int ) ( ColorTexArray [ id ] . x

∗ 255 .0 ) ;

p ixe lData [ dataIndex ] . c o l o r . y = ( u int ) ( ColorTexArray [ id ] . y

∗ 255 .0 ) ;

p ixe lData [ dataIndex ] . c o l o r . z = ( u int ) ( ColorTexArray [ id ] . z

∗ 255 .0 ) ;

// p i xe lDa ta [ dataIndex ] . c o l o r = ColorTexArray [ id ] ∗ 255.0 f

;

pixe lData [ dataIndex ] . nodeIndex = 0 ;

// Ca l cu l a t e p o s i t i o n o f co l o r p i x e l on near p lane

int tex = id . z ;

int row = id . y ;

int c o l = id . x ;
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// Use depth va lue o f 0 to unpro j ec t po in t onto the near

p lane

f l o a t 4 ndc = f l o a t 4 ( ( c o l / ( f loat ) 1280) ∗ 2 − 1 , ( row / (

f loat ) 720) ∗ 2 − 1 , 0 , 1) ;

f l o a t 4 worldPos = mul ( InverseVPArray [ tex ] , ndc ) ;

worldPos /= worldPos .w;

// Pro jec t i n t o depth map to ge t depth va lue

worldPos .w = 1 ;

f l o a t 4 ndc depth = mul ( DVPArray [ tex ] , worldPos ) ;

ndc depth /= ndc depth .w;

u int3 depthPixelPos = uint3 ( ndc depth . x ∗ 1280 , ndc depth .

y ∗ 720 , tex ) ;

f loat depthValue = DepthTexArray [ depthPixelPos ] . r ;

// Ca l cu l a t e the r e a l p o s i t i o n us ing depth va lue

ndc . z = 1−depthValue ;

f l o a t 4 realWorldPos = mul ( InverseVPArray [ tex ] , ndc ) ;

realWorldPos /= realWorldPos .w;

p ixe lData [ dataIndex ] . pos = realWorldPos . xyz ;

}

Listing B.1: Convert pixels to structs.

// Each #ke rne l t e l l s which func t i on to compi le ; you can

have many k e rn e l s

#pragma ke rne l CSMain
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struct SVOPixelData {

f l o a t 3 pos ;

u int3 c o l o r ;

int nodeIndex ;

} ;

struct SVONode {

int c h i l d r e n [ 8 ] ;

f l o a t 3 pos ;

u int3 c o l o r ;

u int pixelCount ;

} ;

RWStructuredBuffer<SVOPixelData> pixe lData ;

RWStructuredBuffer<SVONode> o c t r e e ;

int o c t r e e S i z e ;

[ numthreads (64 , 1 , 1 ) ]

void CSMain ( u int3 id : SV DispatchThreadID ) {

// Traverse oc t r e e

f l o a t 3 p ixe lPos = pixe lData [ id . x ] . pos ;

int oldNodeIndex = pixe lData [ id . x ] . nodeIndex ;

SVONode oldNode = o c t r e e [ oldNodeIndex ] ;

int ch i ld Index = ( p ixe lPos . z >= oldNode . pos . z ) ∗ 4 + (

p ixe lPos . y >= oldNode . pos . y ) ∗ 2 + ( p ixe lPos . x >=

oldNode . pos . x ) ;
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// Continue t r a v e r s i n g u n t i l a t l owe s t l e v e l o f o c t r e e

while ( oldNode . c h i l d r e n [ ch i ld Index ] > 0) {

oldNodeIndex = oldNode . c h i l d r e n [ ch i ld Index ] ;

oldNode = o c t r e e [ oldNodeIndex ] ;

ch i ld Index = ( p ixe lPos . z >= oldNode . pos . z ) ∗ 4 + (

p ixe lPos . y >= oldNode . pos . y ) ∗ 2 + ( p ixe lPos . x >=

oldNode . pos . x ) ;

}

// Flag the c h i l d node

o c t r e e [ oldNodeIndex ] . c h i l d r e n [ ch i ld Index ] = −1;

// Update the p i xe lDa ta ’ s nodeIndex

pixe lData [ id . x ] . nodeIndex = oldNodeIndex ;

// Increment p i x e l count

Inter lockedAdd ( o c t r e e [ oldNodeIndex ] . pixelCount , 1) ;

// Add co l o r to node

Inter lockedAdd ( o c t r e e [ oldNodeIndex ] . c o l o r . r , p ixe lData [ id .

x ] . c o l o r . r ) ;

Inter lockedAdd ( o c t r e e [ oldNodeIndex ] . c o l o r . g , p ixe lData [ id .

x ] . c o l o r . g ) ;

Inter lockedAdd ( o c t r e e [ oldNodeIndex ] . c o l o r . b , p ixe lData [ id .

x ] . c o l o r . b ) ;

}

Listing B.2: Flag nodes in the current LOD of the octree containing pixels.
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// Each #ke rne l t e l l s which func t i on to compi le ; you can

have many k e rn e l s

#pragma ke rne l CSMain

struct SVONode {

int c h i l d r e n [ 8 ] ;

f l o a t 3 pos ;

u int3 c o l o r ;

u int pixelCount ;

} ;

RWStructuredBuffer<SVONode> o c t r e e ;

RWStructuredBuffer<uint> octreeMetadata ;

// [ 0 ] == lastLODIndex

// [ 1 ] == las tNodeIndex

// [ 2 ] == currentLOD

int o c t r e e S i z e ;

f loat cur r entVoxe lS i z e ;

[ numthreads (64 , 1 , 1 ) ]

void CSMain ( u int3 id : SV DispatchThreadID ) {

int lastLODIndex = octreeMetadata [ 0 ] ;

u int nodeOf f se t = id . x / 8 ;

u int ch i ld Index = id . x % 8 ;

int nodeIndex = lastLODIndex + nodeOf f set ;
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// Do noth ing i f node i s not f l a g g e d

i f ( o c t r e e [ nodeIndex ] . c h i l d r e n [ ch i ld Index ] == 0) return ;

// Get l a s t node in oc t r e e and increment g l o b a l counter

int lastNodeIndex ;

Inter lockedAdd ( octreeMetadata [ 1 ] , 1 , lastNodeIndex ) ;

// Set c h i l d node to the new node index

int newNodeIndex = lastNodeIndex + 1 ;

o c t r e e [ nodeIndex ] . c h i l d r e n [ ch i ld Index ] = newNodeIndex ;

// Update the new node ’ s p o s i t i o n

f loat newVoxelRadius = cur r entVoxe lS i z e / 4 . 0 ;

o c t r e e [ newNodeIndex ] . pos . z = o c t r e e [ nodeIndex ] . pos . z +

newVoxelRadius ∗ ( ( int ) ( ch i ld Index / 4) ∗ 2 − 1) ;

o c t r e e [ newNodeIndex ] . pos . y = o c t r e e [ nodeIndex ] . pos . y +

newVoxelRadius ∗ ( ( int ) ( ( ch i ld Index / 2) % 2) ∗ 2 − 1) ;

o c t r e e [ newNodeIndex ] . pos . x = o c t r e e [ nodeIndex ] . pos . x +

newVoxelRadius ∗ ( ( int ) ( ch i ld Index % 2) ∗ 2 − 1) ;

}

Listing B.3: Build the next LOD of the octree.

// Each #ke rne l t e l l s which func t i on to compi le ; you can

have many k e rn e l s

#pragma ke rne l CSMain

struct SVONode {
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int c h i l d r e n [ 8 ] ;

f l o a t 3 pos ;

u int3 c o l o r ;

u int pixelCount ;

} ;

RWStructuredBuffer<SVONode> o c t r e e ;

int o c t r e e S i z e ;

// Average the co l o r o f each node .

[ numthreads (64 , 1 , 1 ) ]

void CSMain ( u int3 id : SV DispatchThreadID ) {

uint pixelCount = o c t r e e [ id . x ] . p ixe lCount ;

// Prevent index ing out o f bounds

i f ( ( int ) id . x >= o c t r e e S i z e ) return ;

o c t r e e [ id . x ] . c o l o r = o c t r e e [ id . x ] . c o l o r / pixelCount ;

}

Listing B.4: Average the color value for each node.
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