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ABSTRACT 

Evaluating Recruitment Seasonality of Red Abalone (Haliotis rufescens) to Inform 

Fisheries Management and Conservation Policy 

Leslie Christine Hart 

Recruitment, the addition of new individuals to a population, must be understood 

to make predictions about population growth of marine invertebrates. Red abalone 

(Haliotis rufescens) represent a former important commercial fishery in California, and 

until recently, supported a major recreational fishery. However, there have been statewide 

declines since the 1960s due to overfishing, disease, and climatic factors. Thus, 

understanding population dynamics to inform management and population restoration is 

critical. Recruitment dynamics of red abalone are poorly understood, with no prior 

knowledge of seasonal trends. To address this knowledge gap, I assessed monthly (July 

2016-June 2017) and annual (2012-2016) settlement rates of red abalone in the Monterey 

Bay, which has low density abalone populations due to sea otter predation. I evaluated 

associations between abalone recruitment and oceanographic factors (temperature, wave 

forces, and upwelling index) and food availability (kelp density) to understand potential 

predictors of recruitment. Abalone recruitment occurred year round, with generally 

higher recruitment in late summer to early fall (July-October) and peaks in August and 

October. This is the first demonstration of year-round abalone recruitment in the field. On 

a monthly basis, there were no statistically significant relationships between recruitment 

and oceanographic factors or food availability. Annual abalone recruitment was 

consistent in all years, with the exception of 2015 when recruitment majorly decreased 

during the second year of the North Pacific marine heatwave (i.e., warm blob and El Niño 
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Southern Oscillation (ENSO) events). The failure of recruitment during only the second 

year of warm temperature suggests that prolonged extreme temperatures lead to 

reproductive failure. The consistent annual recruitment in the Monterey Bay contrasts 

with sporadic recruitment observed in Sonoma and Mendocino Counties in northern 

California. This finding was unexpected because red abalone in northern California were 

twice as dense as those in Monterey Bay at the time of the study. Possible hypotheses 

behind the observed consistent recruitment in Monterey Bay despite low densities include 

that: sheltered embayments retain larvae and promote recruitment, predation by sea otters 

aggregates abalone in crevices and promotes fertilization success, and the perennially 

present Macrocystis pyrifera kelp forests better support abalone growth and fecundity 

than northern California forests dominated by annual Nereocystis leutkeana. 

 

Keywords: red abalone, larval recruitment, settlement, population dynamics, coastal 

oceanography, broadcast spawning 
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1. INTRODUCTION 

Population growth cannot be predicted without understanding recruitment: the 

addition of new individuals to a population. Furthermore, recruitment can fluctuate due to 

both environmental (density independent) and population (density dependent) factors 

(Connell 1985; Ebert & Russell 1988; Broitman et al. 2008). Most marine species 

undergo broadcast spawning events, where individuals release their eggs and sperm into 

the surrounding seawater for fertilization (Roughgarden et al. 1988; Levitan and Sewell 

1998; Baker and Tyler 2001). Broadcast spawning can increase variability in recruitment 

due to mortality and transport during the larval phase. For marine invertebrate species, 

most studies measure recruitment on timescales of weeks, months, or years after 

settlement due to the difficulty of finding new settlers (Wing et al. 1995; Soria et al. 

2013; Wasson et al. 2016). Understanding the processes affecting the arrival of recruits 

(i.e., settlement) is critical and the focus on my thesis. 

1.1 California abalone population and management history 

To provide context to my work, I summarized the history of abalone management 

and declines in California. The seven species of abalone in California supported a 

recreational and commercial fishery prior to the 1960s (Rogers-Bennett et al. 2002). 

Rapid declines occurred in the abalone fisheries from the 1960s to 1990s, most severely 

in southern California (e.g., south of Santa Barbara), as a result of overharvesting and 

disease (Rogers-Bennett et al. 2002). Overharvesting caused abalone catches to drop 

from a peak of 24,000 tons in the late 1960s to 115 tons by 1995 (Figure 1, Karpov et al. 

2000; Micheli et al. 2008). The fisheries were managed from density dependent data only 

and all abalone landings were grouped together, irrespective of the species. This grouping 
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masked significant depletions of certain species (Karpov et al. 2000). In addition to 

fishing induced declines, a chronic wasting disease, withering syndrome, reduced black 

abalone (Haliotis cracherodii) populations (Altstatt et al. 1996), and impacted farmed red 

abalone between 1985 and 1998 (Moore et al. 2000). Following sharp decreases in 

populations, the commercial and recreational fishery for all abalone species closed south 

of San Francisco in 1997 (Rogers-Bennett et al. 2002). Currently, pink (Haliotis 

corrugata), green (Haliotis fulgens), and pinto (Haliotis kamtschatkana) abalone are 

species of concern, and white (Haliotis sorenseni) and black (Haliotis cracherodii) 

abalone are endangered species. Southern California red abalone populations remain very 

low (0-0.18/m2; CDFG 2012; Karpov et al. 2000, CDFG 2005).  

Commercial fishing was prohibited north of Point Lobos (San Francisco County) 

in 1949. Since 1953, only recreational-free dive fishing of red abalone has been permitted 

in northern California (north of San Francisco) in an attempt to protect the remaining 

population (Haaker et al. 1996; Karpov et al. 2000; CDFG 2004). Across northern 

California, red abalone populations were thought to be sustainably managed with average 

densities of 0.53 individuals/m2 as of 2010 (CDFG 2010). However, several sites have 

shown signs of decline in abundance since 2008 (CDFG 2010). In 2018, the California’s 

Fish and Game Commission announced a red abalone fishery closure for the northern 

California recreational fishery due to ongoing environmental conditions that caused 

population declines to 0.15 individuals/m2 (Rogers-Bennett pers. comm. 2018). The 

decision came shortly after the North Pacific marine heatwave from 2014-2016 (warm 

blob of 2014 and El Niño Southern Oscillation (ENSO) of 2015), which caused 

abnormally high water temperatures (Di Lorenzo & Mantua 2016; Gentemann et al. 
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2017), kelp die offs, and abalone starvation (Rogers-Bennet et al. 2016). Existing data on 

juveniles indicates that there are large temporal gaps in red abalone recruitment in 

northern California of up to 10 years (CDFG 2010; Rogers-Bennett et al. 2016).  

In the Monterey Bay in central California, my study region, population densities 

have been stable from 1972 to 2004 at 0.20 individuals/m2 (Micheli et al. 2008; Rogers-

Bennett et al. 2013). However, in 2017 one survey at Otter Point in Monterey Bay found 

0.13 individuals/m2 (Rogers-Bennett pers. comm. 2018). These populations are at the 

threshold of the Allee effect (Allee 1931), where reproduction dramatically reduces 

because individuals are too far apart for successful broadcast spawning. Population 

increases are unlikely in this region due to sea otter predation (Hines & Pearse 1982; Leet 

et al. 2001).  

1.2 Prior knowledge of red abalone recruitment  

Since there is a history of abalone fishery collapses in southern California and 

recent major declines in northern California, understanding population replenishment 

through recruitment is critically important. In 2007, the California Department of Fish 

and Wildlife (CDFW) adopted methods to assess early abalone settlement by collecting 

recruits from cobbles (~15 cm diameter) covered with crustose coralline algae (CCA), a 

benthic substrate that provides a critical chemical settlement cue for abalone (Morse et al. 

1979; Roberts et al. 2004; Waal et al. 2012; Rogers-Bennett et al. 2011). This method 

allows for the enumeration of abalone settlers from settlement to three months old, and 

has been previously practiced in Japan (Tanaka et al. 1986; Takami et al. 2006; Horii et 

al. 2006), New Zealand (Aguirre and McNaught 2011), Australia (Nash 1992, 1995; 

Keesing et al. 1995), and Mexico (Rosetto et al. 2013). Using this method, CDFW found 
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that settlement in northern California is sporadic, with boom and bust, non-synchronous 

settlement across multiple sites (Figure 2; Rogers-Bennett et al. 2016). The factors 

contributing to these recruitment fluctuations are unknown. CDFW has also performed 

abalone larval tows in northern California from 2007-2015, and found abalone larval 

concentrations to be widely variable in space and time (Rogers-Bennett et al. 2016). 

There have been no prior field evaluations of seasonality in red abalone recruitment (e.g. 

monthly settlement trends) or potential correlations with physical oceanographic factors.  

1.3 Oceanographic influences on early recruitment 

For the production of a strong year class for marine invertebrates with a bipartite 

life cycle, adults in a population must be healthy enough to produce gametes and spawn 

eggs and sperm in synchrony. Larvae must survive the pelagic transport period before 

settlement on the benthic habitat, and new settlers must be able to metamorphose and 

survive (Rogers-Bennett et al. 2016).  Differences in the number of early recruits on 

monthly scales can be affected by reproductive output, reproductive timing, larval 

transport, settlement success, or survival after settlement, all of which may correspond to 

changes in environmental conditions. Physical and biological variability along the 

California Current is largely driven by seasonal coastal upwelling, whereby alongshore 

equatorward winds drive the transport of cold, nutrient rich waters from depth to the 

surface (Parrish et al. 1981). Upwelling leads to strong seasonal changes in water 

temperature and water movement (Pennington and Chavez 2000; Garcia-Reyes and 

Largier 2012; Walter et al. 2018). To generate hypotheses about what might drive the 

timing of abalone recruitment seasonally, I reviewed the literature to understand what is 
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known about the effects of temperature and wave forces on reproduction, transport, 

settlement, and post-settlement survival/growth.  

Previous field and laboratory studies have shown that warm temperatures have a 

negative effect on reproduction and development of larvae (Table 1). Two studies found 

that temperature increases of 2.5-5 °C above ambient were detrimental to gonad 

development and fecundity (Table 1). Furthermore, two studies found that cooler 

temperatures, 2.5-4 °C below ambient promote higher gonadal development and 

fertilization (Table 1). Thus, generally, warm temperatures appear to have a detrimental 

effect on red abalone reproduction. There are contradicting results on how wave forces 

influence reproduction (Table 2); limited wave forces enhance reproduction for some 

abalone species, however, increased wave forces serve as a trigger for spawning for other 

abalone species (Table 2).   

Previous studies have investigated the role and timing of upwelling and relaxation 

cycles on larval transport. Larvae are transported offshore during strong upwelling and 

are transported back to shore during relaxations (Roughgarden et al. 1991, Le Fevre & 

Bourget 1992). Upwelling in coastal embayments can affect larval transport through the 

formation, propagation, and modulation of upwelling fronts that tend to accumulate 

larvae (Woodson et al. 2009; Ryan et al. 2014). However, for California red abalone, 

larval transport processes are thought to play a minor role in recruitment dynamics. 

California red abalone are nonfeeding lecithotrophic larvae that spend approximately 6-7 

days as pelagic larvae before they settle on a benthic habitat (Morse et al. 1979, Ebert & 

Houk 1984, Rogers-Bennett et al. 2016). With a short larval duration and reproduction in 
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kelp forests that limits transport (Gaylord et al. 2007), red abalone are thought to settle 

near parental populations (McShane and Smith 1991).  

Temperature fluctuations appear to have mixed effects on larval development 

negatively or positively depending on the magnitude of the temperature change (Table 1). 

For red abalone, the most rapid growth and survival of larvae has been found to occur 

with a 1°C temperature increase above ambient temperature (Table 1; Leighton 1974). 

However, another study showed that a 2°C temperature increase above ambient 

temperature caused decreases in larval competency (Table 1; Searcy-Bernal 1999). 

Furthermore, extended larval competency periods of red abalone have been seen at an 

ambient temperature of 14°C (Table 1; McCormick et al. 2012).  

There are contrasting results of the effects of temperature on abalone settlement, 

with cases where increased temperatures were associated with both increased and 

decreased numbers of settlers (Table 1). For red abalone, there is only one prior study, 

where high temperatures associated with an ENSO event decreased the abundance of 

small size classes (Table 1; Tegner et al. 2001). Wave forces for other species seem to 

have differing effects on settlement (Table 2). One study found that high wave forces 

from typhoons enhanced the abundance of new settlers, but another found that areas with 

high wave action had lower numbers of settlers (Table 2). For red abalone, a laboratory 

study found that settlement is more likely under small scale flows (Table 2; Boxshall 

2000), but there were no publications on the effects of wave forces. 

Most studies do not distinguish between settlement and post-settlement survival, 

so it is difficult to find studies focusing only on the post-settlement stage. For red 

abalone, a small temperature increase of 0.5 °C increased growth for red abalone (Table 
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1, Searcy-Bernal et al. 2007). Studies on other abalone showed mixed effects on growth 

at higher temperatures ranging from 4-18 °C above ambient (Table 1).  However, 

survival always decreased at increased temperatures ranging from 3-18 °C above 

ambient. Wave exposure caused more post-settlement mortality in the rainbow and 

variously colored abalone species (Table 2; H. iris, Naylor & McShane 2001, H. 

diversicolor, Onitsuka 2010), however this has not been evaluated for red abalone.  

In summary, reproduction, larval transport, settlement, and post-settlement 

survival appear to be negatively influenced by temperatures ranging from 2-18 °C above 

ambient, though a slight increase in temperature (less than 1°C) may positively influence 

post-settlement growth rates. High wave exposure seems to have negative effects on post-

settlement survival, but may have both positive or negative effects on reproduction. Since 

most of these studies were conducted in the laboratory and on non-California species, a 

key need is to evaluate whether these factors correlate with monthly and annual 

recruitment patterns for red abalone in field settings in California.  

1.4 Study system and questions 

I evaluated red abalone recruitment in central California at two temporal scales 

(monthly and annually) to understand recruitment dynamics and their association with 

environmental conditions (temperature, waves, and upwelling) and food availability 

(kelp). I asked the following questions: 1) How does annual recruitment in central 

California (Monterey Bay) where abalone population densities are low compare with 

recruitment in northern California where abalone densities are relatively high 2) Are there 

seasonal patterns in red abalone recruitment? 3) Are there oceanographic factors that 

correlate with annual and seasonal recruitment trends? I hypothesized that red abalone 
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recruitment at my study site in central California would be lower than the recruitment 

found in the last decade in northern California due to lower adult densities (~half of those 

of northern California). Further, I hypothesized that recruitment will occur during cooler 

upwelling periods (April-June), before seawater temperatures warm during upwelling 

relaxation (months).  
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2. MATERIALS & METHODS 

2.1 Sampling newly settled abalone 

Newly settled abalone were collected from crustose coralline algae (CCA)-

covered cobbles at Hopkins Marine Life Refuge (HMLR) 36°37'12.44"N, 121°54'8.28"W 

in Pacific Grove, CA. In order to investigate yearly recruitment trends, I used data 

collected in the fall months (September-November) by Dr. Jennifer O’Leary (California 

Sea Grant, California Polytechnic State University) from 2012-2015 (unpublished data), 

and I collected cobbles in 2016. In addition, in 2012, Dr. O’Leary collected cobbles at 

three sites in Monterey Bay (HMLR, Lover’s Point, and Point Pinos) to investigate any 

differences in abalone abundance between the sites (unpublished data). To investigate 

seasonality in recruitment, I collected cobbles monthly using SCUBA for a one-year 

period from July 2016 to June 2017 (with the exception of March, when it was not 

possible due to weather conditions). I targeted cobbles that had 50% coverage or more of 

CCA, and were approximately 4-6 cm in diameter. Each month, I collected 30-37 cobbles 

equally stratified across three depths (3, 6, and 9 m), representing the depth range of the 

kelp forest at HMLR, and bagged each cobble at the site of collection in two ziplock 

bags. Cobbles were then transported to shore and stored in running seawater from waters 

near the collection site. Once cobbles were measured onshore, they were processed 

within 3 hours to remove all settlers. To process the cobbles, each cobble was placed in 

an individual 5-gallon (18.9 liters) bucket with enough seawater to cover the top of the 

cobble (8-11 liters) and a 120 ml of 95% ethanol for 10 minutes to anesthetize all the 

mobile invertebrate settlers. To ensure that all settlers were removed from the cobble, I 

used soft brushes to gently scrub each surface of the cobble and then the cobble was 
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rinsed with seawater over the bucket. The contents of the bucket (rinsed material) were 

poured through an 80-µm mesh sieve and then the sieve contents were rinsed into a 

sample jar fixed with 43 ml of 95% ethanol. The samples were stored into a -18 °C 

freezer for 1-3 months before samples were sorted microscopically to count abalone 

recruits and determine the abundance. Samples were individually placed in a black s-tray 

and newly settled abalone were identified and counted under an Olympus SZ61 

dissecting microscope with 3x magnification (see Section 2.2 below). Following the 

CDFW protocol (Rogers-Bennett et al. 2016), abalone recruit abundance is reported as 

the average number of recruits per cobble.  

2.2 Species identification 

 Morphological identifications were based on an extension of the radial lamellae 

underneath the spire (Figure 3). However, for abalone <360 µm, the radial lamellae 

extension had not developed and identification is difficult. Because these small abalone 

could be confused with other species, I counted two size classes separately: <360 µm 

(potential abalone) and >360 µm (identifiable abalone). I photographed each individual 

and measured lengths of a subset of samples using ImageJ. Each abalone was stored in its 

own strip tube vial with 95% pure ethanol in a -18°C freezer to allow for genetic 

confirmation of identity. To confirm species identity, I collaborated with Dr. Peter Shum, 

a postdoctoral researcher at Stanford University. Dr. Shum sequenced 22 abalone >360 

µm and 55 specimens, <360 µm in length. All samples were pulse centrifuged to collect 

specimens to the bottom of the tube. Ethanol was removed leaving the early settlers 

inside the tubes and the remaining ethanol was evaporated in a fume hood. DNA was 

extracted using a commercial kit NucleoSpin 96 (Macherey-Nagel GmbH & Co. KG, 
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Düren, Germany). An approximately 650 base pair (bp) fragment of the coding 

mitochondrial cytochrome oxidase 1 was amplified using degenerate Folmer primers 

(Folmer et al. 1994); LCO1490: 5’-TAA ACT TCA GGG TGA CCA AA-3’ AND 

HCO2198: 5’-GGT CTA CTA ATC ACA AAG AYA THG G-3’.). Reactions were 

carried out in 20 µl volumes containing 1× PCR buffer, 2 mM MgC12, 4 mM dNTPs, 0.5 

µM of each primer, 0.05 units Taq DNA polymerase, with 2 µl of DNA template. 

Amplifications were performed in an Eppendorf Vapo Protect Thermocycler (Hamburg 

Germany) using the following temperature profiles: 94 °C (2 min), 35 cycles of [94 °C 

(30 s), 50 °C (30 s), 72 °C (60 s)], followed by 7 min at 72 °C. A positive and negative 

control was included in all reactions, however if the positive control failed to amplify or 

there was a visible band in the negative control the PCR was re-run. PCR products were 

subjected to electrophoresis through a 1% Sodium-Borate acid (1X SB) gel stained with 

GelRed for visualisation via a UV-transilluminator. PCR products were purified using 

magnetic beads (0.5x) to remove unincorporated primers and deoxynucleotides in 

preparation to sequencing. Purified products were sequenced by ELIM BIOPHARM 

(ElM BIOPHARM, USA; https://www.elimbio.com). Resulting sequences were 

manually checked for quality, edited and trimmed using Chromas Lite 2.1.1 

(http://technelysium.com.au/?page_id=13).  

2.3 Macrocystis pyrifera surveys 

To determine food resources available to abalone over the course of the study, I 

used kelp data collected by Dr. James Watanabe in July each year within 30 m of my 

collection site (at 36°37'12.69"N, 121°54'7.86"W). Kelp data was collected on SCUBA. 

Divers counted Macrocystis pyrifera plants with four or more fronds (i.e., adult kelp) in 
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circular plots with an area of 7.26 m2, or in 10 x 2 m2 transects. Data were collected 

annually from 2012-2016. Circular plots and transects were chosen using random 

compass bearings and fin kicks. All data were normalized per 10 m2.  

2.4 Temperature, wave, and upwelling index data 

 I obtained seawater temperature (ºC) data from the Monterey Bay Aquarium’s 

intake pipe, located in 17 m of water (at 36°37'8.42"N, 121°54'4.67"W) and in close 

proximity (155 m) to my collection site. Temperature data were recorded every 5 minutes 

from an RTD temperature sensor. Calculations were made for yearly temperature 

averages, standard deviations, and minimum/maximum temperatures from 2012-2016, as 

well as monthly from July 2016-June 2017.  

I obtained wave data from the Cabrillo Point National Data Buoy Center (NDBC) 

wave buoy were obtained. This is NDBC buoy 46240 (36°37’35”N, 121°54’25”W), and 

it is adjacent (0.8 km) to my collection site. Wave statistics were reported every 30 

minutes. I calculate monthly averages and standard deviations of the significant wave 

height annually from 2012-2016 and monthly from July 2016-June 2017.  

Continuous wind vector data were not available from Monterey-area buoys (e.g. 

NDBC 46042, 46092) over the entire time series. Therefore, I used the Bakun Upwelling 

Index, which provides estimates of offshore Ekman transport (Bakun 1975). Data for the 

index were collected for the grid point just offshore of Monterey Bay (at 36 °N, 122 °W) 

https://www.pfeg.noaa.gov/products/PFELData/upwell/daily/p10dayac.all), which is 72 

km from my collection site. These data represent wind-driven cross-shelf transport per 

100 meters of coastline. I calculated annual averages and standard deviations of the 

upwelling index from 2012-2016 and monthly from July 2016-June 2017. 
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2.5 Data analysis 

Based on the size of the abalone included in this study’s recruitment estimates 

(from 360-1303 µm), and growth rates based on a range of laboratory studies (mean of 27 

µm /day, Table 3), the sampled abalone were determined to be 2 weeks to 2 months old 

(with a mean of 1 month old). Oceanographic factors can influence recruitment during 

pre-settlement phases (reproduction) as well as settlement and post-settlement survival. 

Therefore, simply looking at the oceanographic conditions around the time of sample 

collection could miss prior periods of influence. I summarized the oceanographic data in 

four 30-day periods back-dated from each monthly date of collection (0-30, 30-60, 60-90, 

and 90-120 days back). For each oceanographic parameter, I independently used a 

Granger causality test to evaluate whether there was an association between that 

parameter and recruitment at any of the four time lags. For significant wave height and 

the Bakun index, I used the mean values in each of the 30-day periods. For temperature, I 

independently evaluated the mean, standard deviation, minimum, and maximum values 

for the 30-day periods. 
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3. RESULTS 

3.1 Species identification and sizes 

In my monthly samples (2016-2017), I collected a total of 49 abalone >360 µm and 

92 potential abalone <360 µm. Of the 22 samples sequenced that were >360 µm, 17 were 

successfully sequenced and all were red abalone (H. rufescens, >99% similarity). For the 

potential newly settled abalone, <360 µm, only five of the 55 were successfully 

sequenced because most (44) did not amplify and some (6) were contaminated with 

human DNA. Of the five sequenced, only one was a red abalone (>99% similarity H. 

rufescens; Figure 4), one was a flat abalone (>99% similarity H. walallensis), one was an 

opalescent nudibranch (>99% similarity Hermissenda crassicornis), and two were brown 

turban snails (>99% similarity Tegula brunnea). Given that there were only five non-

contaminated and successful sequenced samples, and only one of these was a red 

abalone, the potential abalone (<360 µm) were not included in my recruitment estimates. 

Confirmed newly settled abalone ranged in size from 300-1303 µm, with an 

average size of 790 µm (Figure 4). Based on a range of laboratory studies conducted on 

red abalone growth rates (Table 3), using a mean growth rate of 27 µm/day, I estimated 

that abalone in my samples were between 2 weeks and 2 months old (mean of 1 month 

old).  

3.2 Annual recruitment patterns  

Collected cobbles were measured onshore, and ranged in size from 40-4,353 cm3 

(Figure 5). Though cobbles with a high CCA cover were targeted, sometimes cobbles 

meeting this criteria were not found. As a result, cobbles ranged from 0-97% cover based 
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on visual estimates. Recruit density estimates show no patterns in relation to cobble size 

or CCA percent cover (Figures 6 and 7).  

The average number of newly settled abalone found per cobble at HMLR ranged 

from 0.36-0.48 abalone/cobble for all years except 2015 (Figure 8). In 2015, the average 

abalone/cobble decreased to 0.08 (Figure 8). Though in my thesis, I only sampled at one 

site in the Monterey Bay, in 2012, O’Leary sampled three sites in southern Monterey Bay 

during the same fall month and found similar recruitment levels: 0.38 abalone/cobble at 

Lover’s Point (36°37’30.30”N, 121°54’56.07 W) and Point Pinos (36°38’16.99”N, 

121°56’2.04”W), and 0.49 abalone per cobble at HMLR. 

The average number of newly settled abalone found per cobble was fairly 

consistent at the HMLR in the Monterey Bay across years (2012-2016) with the 

exception of 2015. Fall recruitment in 2012-2014, and 2016 ranged from 0.36-0.49 

abalone/cobble but dropped to 0.08 in 2015. CDFW sampled one site in northern 

California consistently across the same time period, Van Damme in Mendocino County 

(Rogers-Bennett et al. 2016). In contrast with annually present recruits in the Monterey 

Bay, recruitment at Van Damme was sporadic with boom and bust years (Figure 8). From 

2012 to 2016, the only year that Van Damme had abalone recruits was 2013, with an 

average of 1.05 red abalone/cobble. In 2013, Van Damme had recruitment 2.5 times 

higher than recruitment in that year in the Monterey Bay. However, all other years had no 

recruitment at Van Damme. CDFW sampled three sites per year from 2007-2015 and 

found similar boom and bust recruitment across sites in northern California. 
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3.3 Annual patterns of environmental conditions 

Kelp density consistently ranged between 1.0 and 3.4 plants per 10m2 at HMLR 

from 2012-2016, with no clear temporal trends (Figure 9D). Annual mean temperatures 

ranged from 11.7-12.6°C, with the exception of 2014 and 2015, when there was both an 

ENSO event and the North Pacific marine heatwave. During 2014-2015, annual mean 

temperatures increased to 13.2°C both years (Figure 9C). In the fall (September-

November) when abalone recruits were collected annually, mean temperatures ranged 

from 12.4 to 13.4°C in 2012, 2013, and 2016, and increased to 14.5°C in 2014-2015. Red 

abalone recruitment did not show any apparent change during the first year of high 

temperature (2014) with 0.45 abalone/cobble in that year. However, recruitment 

decreased to 0.08 abalone/cobble in 2015, the second year of anomalously high 

temperatures.  

The Bakun upwelling index shows a strong and persistent seasonal pattern every 

year, following the well-established upwelling seasonality in central California, whereby 

upwelling increases during the early spring and persists until the so-called relaxation 

season in fall months (Figure 9A, e.g., Pennington and Chavez 2000; Garcia-Reyes and 

Largier 2012; Walter et al. 2018). Surface gravity waves consistently came from the 

north or northwest (Figure 10). On an annual scale, there was a distinct seasonal pattern 

of strong waves in the winter months (November-February) and weaker waves during the 

remaining seasons, however, there was no apparent change in pattern between years 

(Figure 9B).  
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3.4 Monthly recruitment patterns  

Newly settled abalone at HMLR were found throughout the year, with the 

exception of May, when no recruits were found (Figure 11). The average recruitment 

from July 2016 to June 2017 during which monthly samples were collected was 0.13 ± 

0.04 abalone/cobble. The late summer and early fall showed the highest recruitment from 

0.29 ± 0.10 abalone/cobble in August to the annual maximum of 0.36 ± 0.12 

abalone/cobble in October. Recruitment significantly decreased in November through 

January with an average of 0.10 ± 0.07 to 0.03 ± 0.03 abalone/cobble. There appears to 

be another relatively small increase in recruitment in February with an average of 0.19 ± 

0.11 abalone/cobble.  

3.5 Monthly environmental conditions 

During 2016 and 2017, the period in which I collected monthly samples, HMLR 

experienced colder temperatures during the transition to upwelling in early spring that 

persists throughout the summer as expected in the region (Figures 12A and 12C, 

Pennington and Chavez 2000; Booth et al. 2012; Garcia-Reyes and Largier 2012; Walter 

et al. 2018). During the fall, a large-scale relaxation of the upwelling favorable winds 

resulted in an expected increase in temperatures (Figure 12C). The fall relaxation had 

strong temperature fluctuations, which are associated with 1-2 week period 

upwelling/relaxation cycles, as well as higher-frequency fluctuations associated with 

strong internal wave and nearshore bore activity documented at this location (Figure 12B; 

Booth et al. 2012; Walter et al. 2012; Walter et al. 2014; Walter and Phelan 2016). Also 

as expected in the region, the winter had minimal temperature variability (Figure 12C), 
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because the offshore thermocline deepens and results in minimal internal wave and bore 

activity in the nearshore (Booth et al. 2012; Walter and Phelan 2016).  

Red abalone recruitment was generally high in the late summer/fall (August-

October), when temperatures were relatively warmer (13.4°C) and variable (σ = 1.05°C, 

where σ denotes the standard deviation over the time period of interest; Figure 12C). 

However, there was also an increase in abalone recruitment in February when 

temperatures were lower (mean temperature of 12.8°C) and much less variable (σ = 

0.23°C; Figure 12C). The lowest recruitment occurred in months of warmer and highly 

variable temperature (e.g. November, mean = 13.7°C, σ = 0.96), and also in months with 

colder and less variable temperature (e.g. December-January, mean = 12.1°C and 12.8°C, 

σ = 0.24°C and 0.23°C respectively), and when temperatures were moderate and variable 

(e.g. May, mean = 10.9°C, σ = 1.01°C; Figure 12C). Based on the Granger causality test, 

the mean, standard deviation, minimum, and maximum temperatures were not associated 

with monthly red abalone recruitment at any of the tested time lags (Table 4).  

The annual wave cycle from 2016-2017 shows larger waves in the winter as 

expected for the region, however red abalone recruitment does not appear to correspond 

to the significant wave height (Figure 12B). The Granger causality test did not find any 

associations between the significant wave height and monthly abalone recruitment during 

any of the tested time lags (Table 4).  

The annual upwelling index from 2016-2017 demonstrates an expected increase 

in upwelling during the spring and summer months, followed by declines in the late fall 

and winter (Figure 12A). The Granger causality test did not find an association between 

the upwelling index and abalone recruitment for any of the time lags tested (Table 4).  
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4. DISCUSSION  

This is the first study to assess red abalone recruitment in the field throughout an 

entire annual cycle. This study shows that red abalone are capable of both reproducing 

and spawning throughout the year in the field. Within the 2016-2017 monthly sampling 

period, there was no statistically significant relationships between abalone recruitment 

and temperature, surface waves, or wind-driven coastal upwelling. In contrast, on an 

annual scale from 2012-2016, it appears that large temperature anomalies, such as those 

observed during the North Pacific marine heat wave, can decrease abalone recruitment. 

Recruitment was maintained during the first year of abnormally warm temperatures 

(2014), but decreased by 82% during the second year of abnormally warm temperatures.  

Consistent annual recruitment in Monterey Bay is in stark contrast with boom and 

bust recruitment in northern California populations during the same time period. This is 

surprising, because at the time of the study, northern California abalone population 

densities were ~2.7 time greater than those in central California with 0.53 abalone/m2 

across 8 sites in northern California versus 0.13-0.2 abalone/m2 in the southern Monterey 

Bay (CDFG 2010; Rogers-Bennett pers. comm. 2018; Micheli et al. 2008). The factors 

leading to the moderate, but consistent, recruitment observed in central California are not 

entirely clear. One possibility is that since abalone in Monterey Bay are aggregated in 

cracks and crevices due to sea otter predation (Lowry and Pearse 1973; Hines and Pearse 

1982), the abalone have localized areas of high density that helps overcome the Allee 

effect and increases fertilization success. Thus, though densities are higher in northern 

California, it is possible that individual abalone are more dispersed in the absence of otter 

predation, and fertilization success varies widely. Another possible reason for different 
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annual recruitment patterns in central and northern California may be differences in 

regional oceanography and coastline features. Coastal embayments, such as Monterey 

Bay, often have increased retention times due to shielding from strong regional 

upwelling, and less surface wave forcing (Graham and Largier 1997, Walter et al. 2018). 

In these upwelling shadow systems, convergent fronts and enhanced residence times 

allow for the accumulation of buoyant organisms (Graham and Largier 1997, Ryan et al. 

2014). The sites CDFW surveyed in northern California, including Van Damme, 

represent a much more open coastline. Thus, it is possible that the sheltered embayment 

of Monterey Bay provides a region where recruitment might be more consistent than an 

open coastline in northern California that experiences stronger upwelling. If this is the 

case, sheltered embayments along California’s coast may provide recruitment hotspots, 

and this should be further evaluated.  

A third possibility explaining more consistent annual recruitment in central 

California is that food resources are less limiting. Central California kelp forests are 

dominated by Macrocystis pyrifera, which is perennially present and continually releases 

large blades which can be consumed by abalone. In contrast, in northern California, kelp 

forests are dominated by Nereocystis leutkeana, which typically dies back annually. Lack 

of food for red abalone can negatively affect sperm and egg production (Rogers-Bennett 

et al. 2010), and it is suggested that in northern California reproduction failure may have 

occurred recently as a result of poor food resources as kelp died back due to high 

temperatures (Rogers-Bennett et al. 2016). However, there were recruitment failures in 

previous years when kelp densities were normal (Rogers-Bennett et al. 2016). Thus, the 

role of food limitation on long-term recruitment dynamics remains unclear in northern 
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California. At my study site in the Monterey Bay, though there were two years of 

elevated temperatures, there was no indication of reduced kelp (Macrocystis pyrifera) 

density, and does not appear that the 2015 recruitment crash was due to food limitation. 

During the warm temperature anomaly from 2014-2015, red abalone recruitment 

was normal in the first year of warming, but dramatically declined during the second year 

of warming (2015) in the southern Monterey Bay. This suggests that an increase in water 

temperature may be impacting reproduction rather than settlement and survival. Increased 

sea surface temperatures began in late summer and early fall of 2014 (Leising et al. 

2015). Thus, though recruits collected in October of 2014 would have been affected by 

the warming, adult abalone had been exposed to warmer temperatures for a relatively 

short period of time. There was no evidence of increased post-settlement mortality due to 

the warming in 2014. However, as the warming trend continued through October in 2015, 

prolonged heat stress may have caused abalone to reallocate energy resources from 

gamete production to survival, leading to the low recruitment observed in the fall of 

2015. Thus, for red abalone, reproduction may be more susceptible to the negative effects 

of warming than survival of recruits post-settlement. 

 California red abalone populations collapsed in southern California in the 1990s 

largely due to poor fisheries management that grouped multiple species and used only 

fisheries dependent data (Karpov et al. 2000). In northern California, abalone were fished 

recreationally and was previously thought to be persistent. However in 2018, the fishery 

was closed due to population declines attributed to warming-induced food limitation. 

Thus, statewide, red abalone have been subjected to heavy fishing pressure, and have 

shown high susceptibility to changing environmental conditions, particularly increased 
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temperature. Further, though populations in central California have been persistent over 

time at low densities, they face high predation from sea otters and are at maximum 

density for the region (Lowry and Pearse 1973; Hines and Pearse 1982). Given the low 

abundance of abalone in southern California, and declining stocks in northern California, 

red abalone may be at risk statewide. When a fished resource like abalone is subject to 

both human and environmental impacts, it is critical to understand population 

replenishment through recruitment. This study demonstrates that even low density 

populations of abalone can persist through constant, moderate recruitment, and suggests 

that certain locations (e.g. coastal embayments) could be recruitment hotspots for this 

species. To better understand the complex spatial and temporal patterns of recruitment 

statewide, recruitment samples should be collected at numerous locations at finer 

temporal scales. However, it is extremely labor intensive processing recruit samples and 

identifying new settlers using microscopy. Sorting each cobble sample takes between 1 

and 4 hours (dependent on the abundance of settlers), limiting the ability to collect and 

process daily samples. At a monthly scale, I found no association between recruitment 

and temperature, upwelling conditions, or wave forces. However, daily samples might 

reveal associations with temperature, upwelling, or waves that I did not find in my study. 

In the future, new techniques like metagenomics might allow rapid processing of samples 

of mixed settlers to determine if abalone DNA is present. Since most cobbles contained 

0-3 abalone, presence or absence of abalone DNA from numerous field samples through 

metagenomics would allow mapping of temporal and spatial patterns in recruitment. This 

could provide information not just on abalone, but dozens of new settlers found on CCA 

covered cobbles or other collection devices.  
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One limitation of my study was the lack of confidence in identifying abalone <1 

month old (<360 µm), which I therefore did not include in my recruitment estimates. 

Based on the five sequenced specimens in this size range, it is possible that up to 20% of 

the 92 specimens I found in this size range were abalone. Using this estimate, average 

monthly recruitment for 2016-2017 would have increased only marginally from an 

average of 0.13 ± 0.04 abalone/cobble to 0.18 ± 0.04 abalone/cobble. Thus, even though I 

likely underestimated recruitment by missing abalone <2 weeks old, the data appear to be 

robust. Evaluating recruitment at this stage on a monthly scale has never been done 

before for red abalone. Though the annual and monthly recruitment samples I evaluated 

came from only one site in the Monterey Bay, in 2012, samples were collected from three 

sites in the fall (O’Leary unpublished data) and recruitment was broadly similar across 

sites. Thus, it seems likely that the results described here represent broader conditions of 

the southern Monterey Bay. 

This study has implications for management of the red abalone fishery and for 

recovery efforts. This study shows that red abalone have the capacity to spawn and 

recruit year round in the field, with a general increase in recruitment from August to 

October and in February. CDFW has traditionally closed the northern California fishery 

for the month of July each year to allow for spawning and recruitment. It does not appear 

that July is a peak recruitment period, and the CDFW might want to re-evaluate this 

closure month in the future when abalone fishing is reopened in northern California. 

However, the month-long closure during the middle of the open season in northern 

California still acts to alleviate overall fishing pressure, and may be kept in place for that 

reason. The time period CDFW (Rogers-Bennett et al. 2016) has been using for its annual 
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sampling in northern California (August-October) seems to be an appropriate to evaluate 

trends. While I found no clear environmental cues which predict monthly recruitment 

peaks, prolonged warming events are detrimental to abalone recruitment due to 

reproductive failure, as shown in our annual time series.  

In coral research, people are searching for climate refugia, locations where either 

temperature does not fluctuate as much or where organisms are better adapted to 

temperature fluctuations (Lesser et al. 2009, Bongaerts et al. 2010, Langlais et al. 2017). 

If warming events increase in frequency along the California coastline, identifying 

resistant abalone populations and areas with less variable temperature may be critical to 

ensure adequate abalone reproduction. Further, my study indicates that embayments 

(such as  the Monterey Bay) may have more consistent red abalone recruitment than open 

shorelines (such as Van Damme in northern California). If this is borne out through 

further research, embayments may represent recruitment hotspots that should be 

protected, and could be used as locations for restorative outplanting to maximize 

population reestablishment.  
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5. TABLES 

Table 1: Literature review on the effects of temperature on abalone reproduction, 
transport, settlement, and post-settlement survival/growth. Because there were few 
publications on red abalone, the review includes multiple species globally. The 
“Temperature Change” column represents the change in temperature from the average 
ambient temperature. In the “Recruitment Stage” column, R = recruitment, LD = larval 
development, S = settlement, and PS = post-settlement. In the “Study Type” column, L = 
laboratory, F = field, and M = model. 
 

 



 26 

Table 2: Literature review on the effects of wave forces/water movement on abalone 
reproduction, transport, settlement, and post-settlement survival/growth. Because there 
were few publications on red abalone, the review includes multiple species globally. In 
the “Recruitment Stage” column, R = recruitment, and PS = post-settlement. In the 
“Study Type” column, L = laboratory, F = field, and R = review paper. 
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Table 3: Literature review of laboratory studies on red abalone (Haliotis rufescens) post-
settlement growth per day.  
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Table 4: Granger causality test results for oceanographic parameters. Non-significant p-
values indicate that there was no correlation between the parameter and recruitment at 
any of the time periods evaluated (0-30, 30-60, 60-90, and 90-120 days back from the 
date of collection).  

 

Predictor F Statistic Numerator 
df 

Denominator 
df 

p-value 

Temperature  
Mean 

1.895249 4 6 0.2306326 

Temperature  
Standard Deviation 

2.276225 4 6 0.1760146 

Temperature  
Minimum 

1.523069 4 6 0.3067987 

Temperature  
Maximum 

2.184267 4 6 0.1875189 

Significant Wave 
Height 

1.978149 4 6 0.2170654 

Upwelling Index 1.005436 4 6 0.4729517 
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6. FIGURES 

 

Figure 1: Time series of commercial landings highlighting the decline of abalone (red, 
pink, green, black, and white abalone combined). Bars represent the commercial landings 
(metric tons) of the California abalone fishery. Regression lines for each divided period 
are represented by solid red lines (figure from Karpov et al. 2000). 
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Figure 2: The number of newly settled abalone captured from cobbles (± SE) northern 
California (Mendocino and Sonoma Counties) from 2007 to 2015 (figure from Rogers-
Bennett et al. 2016). In any given year, three sites were surveyed, but as the sites 
surveyed varied, a total of eight sites are represented.  One site, Van Damme, in 
Mendocino County, was surveyed every year as one of the three sites. 
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Figure 3: The extension of the abalone shell under the spire was characteristic of a newly 
settled abalone using morphological identification.  
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Figure 4: The size frequency distribution of newly settled abalone found on crustose 
coralline covered cobbles at HMLR. The blue bars indicate the genetically or 
morphologically confirmed abalone (>360 µm). The gray bar, in the smallest size class 
(<360 µm), indicates the total number of “suspected” newly settled abalone counted. 
However, since only five of these sequenced, and only one of the five of was an abalone, 
the green bar is my estimate of how many abalone would have been in this size class if 
1/5 is a good estimate. However, due to uncertainty in identifications of these small 
specimens, I only included sizes >360 µm in my analyses.  
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Figure 5: The size frequency distribution of cobbles (cm3) collected at HMLR. 
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Figure 6: The number of newly settled abalone found per cobble as a function of the 
cobble size at HMLR.   
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Figure 7: The number of newly settled abalone found per cobble as a function of the 
crustose coralline algae on the cobble at HMLR.  
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Figure 8: The average number of newly settled abalone (± SE) per crustose coralline-
covered cobble collected annually at Hopkins Marine Life Refuge in central California 
(blue) and Van Damme State Park in northern California (yellow) from 2012 to 2016. 
Van Damme was the only site that was consistently surveyed in northern California 
across this time period. The number of cobbles sampled at each site during each year is 
shown at the bottom of the bars.  
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Figure 9: Time series of environmental conditions (left y-axis) and annual abalone 
recruitment (right x-axis) at HMLR from 2012-2017. For environmental conditions, gray 
lines denote the raw data, while black dots and error bars represent the monthly mean and 
standard deviation, respectively. For abalone recruitment, blue dots and error bars 
represent the mean and standard deviation, respectively. (A) Bakun upwelling index 
(m3/s per 100 m of coastline) (B) Significant wave height (C) Temperature, and (D) mean 
kelp (Macrocystis pyrifera) density.  
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Figure 10: Directional wave rose showing the distribution of significant wave height as a 
function of the dominant wave direction.  
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Figure 11: The average number of newly settled abalone (± SE) per crustose coralline-
covered cobble collected monthly at HMLR in central California from July 2016 to June 
2017. The number of cobbles sampled at each site during each year is also shown at the 
bottom of the bars.  
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Figure 12: Time series of environmental conditions (left y-axis) and monthly abalone 
recruitment (right x-axis) at HMLR from July 2016-June 2017. For environmental 
conditions, gray lines denote the raw data, while black dots and error bars represent the 
monthly mean and standard deviation, respectively. For abalone recruitment, blue dots 
and error bars represent the mean and standard deviation, respectively. (A) Bakun 
upwelling index (m3/s per 100 m of coastline) (B) Significant wave height, and (C) 
Temperature.  
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