
TESSELLATED VOXELIZATION FOR GLOBAL ILLUMINATION USING

VOXEL CONE TRACING

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Sam Freed

June 2018

© 2018
Sam Freed

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Tessellated Voxelization for Global Illumi-

nation using Voxel Cone Tracing

AUTHOR: Sam Freed

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: Christian Eckhardt, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Maria Pantoja, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Tessellated Voxelization for Global Illumination using Voxel Cone Tracing

Sam Freed

Modeling believable lighting is a crucial component of computer graphics applica-

tions, including games and modeling programs. Physically accurate lighting is complex

and is not currently feasible to compute in real-time situations. Therefore, much

research is focused on investigating efficient ways to approximate light behavior within

these real-time constraints.

In this thesis, we implement a general purpose algorithm for real-time applications

to approximate indirect lighting. Based on voxel cone tracing [13], we use a filtered

representation of a scene to efficiently sample ambient light at each point in the scene.

We present an approach to scene voxelization using hardware tessellation and compare

it with an approach utilizing hardware rasterization. We also investigate possible

methods of warped voxelization.

Our contributions include a complete and open-source implementation of voxel

cone tracing along with both voxelization algorithms. We find similar performance

and quality with both voxelization algorithms.

iv

ACKNOWLEDGMENTS

Thanks to:

• My family, for always supporting me

• My friends, for the encouragement, laughs, and fun

• The wonderful professors at Cal Poly, especially Dr. Zoë Wood and my advisor

Dr. Christian Eckhardt

• Andrew Guenther, for uploading this template

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

1.1 Real-Time Global Illumination . 1

1.2 Our Contribution . 3

2 Background . 5

2.1 Representing Geometry . 5

2.1.1 Triangles . 5

2.1.2 Voxels . 5

2.2 Computer Graphics Primer . 6

2.2.1 The Graphics Pipeline and Rasterization 6

2.2.2 Transforms . 8

2.2.3 Compute Shaders . 10

2.2.4 Tessellation . 11

2.2.5 Textures and Mipmapping . 12

2.3 Spatial Data Structures . 13

2.3.1 3D Textures . 13

2.3.2 Clipmaps . 13

2.3.3 Octrees . 14

2.4 Radiance and the Rendering Equation 15

2.5 Raytracing . 17

2.5.1 Monte Carlo Raytracing . 17

2.5.2 Raymarching . 18

3 Related Work . 19

3.1 Reflective Shadow Maps . 19

3.2 Cascaded Light Propagation Volumes 20

3.3 Rasterized Voxel-Based Dynamic Global Illumination 21

vi

3.4 Voxel Cone Tracing . 22

4 Implementation . 24

4.1 Voxelization . 24

4.1.1 Rasterization-Based Approach to Voxelization 25

4.1.2 Tessellation-Based Approach to Voxelization 28

4.2 Shadow Mapping . 32

4.3 Radiance Injection . 33

4.4 Radiance Filtering . 34

4.5 Shading . 36

4.5.1 Direct Lighting . 37

4.5.2 Indirect Lighting (Voxel Cone Tracing) 39

4.6 Voxel Warping . 42

4.6.1 Using a Warp Function . 42

4.6.2 Perspective Warping . 46

4.7 Miscellaneous . 47

4.7.1 Depth Prepass . 47

4.7.2 Temporal Filtering . 47

5 Results and Discussion . 49

5.1 Test Setup . 49

5.2 Analysis . 50

5.2.1 Global Illumination . 50

5.2.2 Tessellated Voxelization . 51

5.2.3 Integration of Voxel Cone Tracing into Existing Engines . . . 55

5.2.4 Voxel Warping . 56

6 Conclusions . 59

6.1 Future Work . 59

BIBLIOGRAPHY . 62

vii

LIST OF TABLES

Table Page

5.1 Times measured for each render pass for various screen resolutions
and voxel grid resolutions. The total timer also accounts for any
other operations performed within each frame (i.e. the sum of the
render pass times is not necessarily the complete time for an entire
frame). Voxelization is done using the tessellation-based approach. 53

5.2 Time spent voxelizing the scene with varying voxel grid resolutions.
For the rasterization-based approach the MSAA method of conserva-
tive rasterization is used. 55

viii

LIST OF FIGURES

Figure Page

1.1 A scene—describing information like light sources, materials, and
geometry—is rendered by computing a color for each pixel of a screen.
The image on the left is rendered with global illumination whereas
the image on the right uses a constant ambient term for indirect
lighting. 2

2.1 Overview of the main stages of the graphics pipeline showing the
rasterization of a single triangle (source by Joey de Vries, CC BY
4.0 [15]). 7

2.2 Overview of the main coordinate systems used during rasterization
and the method of transformation between them (source by Joey de
Vries, CC BY 4.0 [15]). 9

2.3 A triangle tessellated with an inner tessellation level of 5 and outer
tessellation levels of 4, 1, and 6. The dashed lines show the new
triangles generated from the original triangle. (image from OpenGL
Wiki [3]). 11

2.4 A 2D diagram showing the multiple resolutions of a clipmap. Notice
that the inner levels have higher detail while each successive outer
level lowers the detail level by a factor of 2. 14

2.5 Diagram of a simple octree (image distributed under CC BY-SA
3.0 [47]). 15

3.1 The different components of a reflective shadow map (depth, world
coordinates, normal, and color) and the resulting image [14]. 20

3.2 A diagram demonstrating the grids used for cascaded LPVs [24]. . . 21

3.3 An illustration of the voxel cone tracing algorithm by Crassin et al. [13]. 23

4.1 Visualization of the voxels resulting from the rasterization-based
approach (without conservative rasterization). 27

4.2 With MSAA, multiple points within a pixel are used to determine
whether a fragment should be generated [5]. 29

4.3 Conservative rasterization produces ‘extra’ fragments in order to pro-
duce a more solid voxelization. The effects are particularly noticeable
on the pillar between the red and green curtain on the left. 30

4.4 Scene voxelized using tessellation-based voxelization. 31

ix

https://learnopengl.com/img/getting-started/pipeline.png
https://twitter.com/JoeyDeVriez
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://learnopengl.com/img/getting-started/coordinate_systems.png
https://twitter.com/JoeyDeVriez
https://twitter.com/JoeyDeVriez
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

4.5 An example of a shadowmap with the depth value mapped to the
red component of the image. 33

4.6 The radiance texture injects VPLs according to the shadowmap: only
voxels hit by the light source result in a VPL. 35

4.7 The first 4 levels of the radiance texture are shown here (using
GL_NEAREST_MIPMAP_NEAREST filtering for demonstration purposes). 36

4.8 The diffuse and specular contributions from cone tracing (before
multiplying by occlusion). 43

4.9 Occlusion values resulting from voxel cone tracing. The occlusion
is multiplied with the cone traced lighting in order to account for
occlusion of nearby objects (i.e. voxel based ambient occlusion). . . 44

4.10 Cracks in the voxels caused by higher voxel density (left) and filling
the holes by voxelizing with a higher resolution (right). 45

4.11 Diagram of the voxels resulting from perspective warping. 47

5.1 The scene rendered with voxel grid resolutions of 643, 1283, and 2563. 52

5.2 Graph showing the render pass times. Each bar shows the relative
time contributions of each render pass. The depth prepass is in-
corporated into the Final Shading category and the Other category
accounts for any other miscellaneous tasks done while rendering the
frame. 52

5.3 Comparison between the scene shaded based on the rasterized voxels
(left) and the tessellated voxels (right). 54

5.4 Image showing a limitation of the rasterized approach: the fragment
resolution must be large enough for a particular voxel density. Oth-
erwise, cracks will occur in the final voxelization. 54

5.5 The final rendered image for both voxelization methods have negligi-
ble visual differences. 55

5.6 Graph comparing the voxelization time for both approaches at differ-
ent voxel grid sizes. 56

5.7 The scene is colored based on its density along the x axis (derived
from the gradient of the warp function). Blue tints correspond to a
slope of 2 and green corresponds to a slope of 1 (same as no warping). 57

5.8 The voxel warping only has a small effect on lighting quality (the
reflection of the green curtain is slightly more detailed). 57

5.9 The perspective voxel warping has a noticeable effect on lighting
quality. 58

x

Chapter 1

INTRODUCTION

Computer graphics is the task of taking a virtual description of a scene, composed

of objects such as models and lights, and rendering that scene to an image. One of

the core components involved with this is computing realistic lighting. Although light

behavior is fairly well understood in the physical sense, accurately simulating this

behavior is a heavy computational task. The goal in computer graphics, then, is to

efficiently approximate light behavior where there are time and resources constraints.

Of particular importance in computer graphics are real-time applications, where

images, or frames, must be produced at an interactive speed, such as in video games.

Typically, the lower bound for this is considered 30 frames per second, or about 33

milliseconds per frame, with a target of 60 frames per second, or about 17 milliseconds

per frame. To meet this goal, researchers and engineers have designed many algorithms

and techniques. In this work, we implement and extend an algorithm to accomplish

fast and accurate lighting for fully dynamic scenes. An example of the result of our

global illumination algorithm is shown in Figure 1.1.

It is important to keep in mind that most lighting algorithms have many tradeoffs

and are adapted towards specific use cases. A complete lighting system may also

combine many different lighting algorithms in order to achieve the desired balance

between quality, performance, and ease of use.

1.1 Real-Time Global Illumination

In general, lighting at a given point is a combination of direct and indirect light.

Direct light is light accumulated directly from a light source, whereas indirect light is

1

(a) Global illumination (b) No global illumination

Figure 1.1: A scene—describing information like light sources, materials,
and geometry—is rendered by computing a color for each pixel of a screen.
The image on the left is rendered with global illumination whereas the
image on the right uses a constant ambient term for indirect lighting.

the light that comes from other non-light sources in the scene (e.g. the light that has

‘bounced’ off of objects in the scene).

In the beginnings of computer graphics simple lighting models were used in order

to maintain real-time performance. While the direct light was feasible to compute

in real-time (albeit with limitations on number of lights and other optimizations),

indirect lighting was often faked with a simple constant contribution. As hardware and

algorithms improved, more advanced techniques were developed and approximating

the indirect light became more feasible. Two methods, ambient occlusion [7, 5] and

baked lighting [43, 5], became standard ways of introducing simple global illumination,

the term given to techniques that improved indirect lighting. However, both of these

methods have drawbacks. Ambient occlusion, which approximates the effect of light

occlusion by nearby objects, provides a great improvement over the constant ambient

term used previously but does not accurately simulate the indirect light in its entirety.

Thus it is only ‘partial’ global illumination. Baked lighting involves pre-computing

light behavior of a scene prior to runtime and then utilizing the precomputation to

enable real-time realistic lighting. The drawback here is only static objects can have

their light baked—any dynamic objects or lights in the scene are not accounted for.

2

Full global illumination algorithms attempt to provide a complete approximation

of indirect light. Some, like baked lighting, only work for static scenes. For our work,

however, we are interested in dynamic global illumination. In other words, our goal

is full global illumination that can be performed completely for each frame. Any

changes in the scene—object movement, light movement or changes in intensity—will

be accounted for.

For dynamic real-time global illumination, a common approach is to first construct

a spatial representation of a scene’s radiance (light information) and then use that

representation to approximate the radiance at a given point in the scene. Popular

methods that follow this approach are light propagation volumes [24] and voxel cone

tracing [13]. Some challenges that arise from methods like these are issues with GPU

memory consumption and achieving adequate lighting detail.

1.2 Our Contribution

The main contribution of this work is a complete implementation of computing

global illumination based on voxel cone tracing with a focus on ease of use and speed

while still producing high quality results. We hope this provides a competitive

alternative to existing real-time global illumination systems that can be used for

educational purposes.

We also present an approach to scene voxelization using hardware tessellation

and compare it with an approach utilizing hardware rasterization. We find similar

performance to the raster approach but with promising results for perspective warped

voxels. We also investigate possible methods of nonuniform voxelization.

Another important part of our contribution is that the implementation is open-

source and cross platform (on Linux and Windows using modern OpenGL1). Many
1macOS is not supported since Apple only supports up to OpenGL 4.1 [1], whereas we require 4.5

3

graphics implementations are developed in the research or industrial space and are

often not made available to the public for various reasons (e.g. copyright). Even

implementations that are openly available often are tied to a specific game engine or

other large codebase2, making it difficult to understand or integrate into one’s own

project. Furthermore, many implementations utilize DirectX as their graphics API,

which limits the implementation to Windows only. We hope that providing an easy

to understand and cross platform implementation will help others learn more about

voxel cone tracing and dynamic real-time global illumination.

(for features like compute shaders, direct state access, and image objects).
2For example, NVIDIA’s VXGI is integrated into a custom branch of Unreal Engine 4 (distributed

as a binary) [2] and Light Propagation Volumes are implemented in CryEngine3 [23]. The Godot
engine [20] is a notable exception here and, while part of a large codebase, is relatively small and is
completely open source.

4

Chapter 2

BACKGROUND

2.1 Representing Geometry

2.1.1 Triangles

To develop an interactive 3D application a scene representation is needed. Tradi-

tionally, all geometric objects in a scene are represented by triangles. For example, to

model a simple cube we can represent each of its faces using two triangles, for a total

of 12 triangles. The reason for using triangles is due to their geometric simplicity

(triangles contain the fewest number of points that define a plane). Also, as dedicated

Graphics Processing Units (GPUs) became more common they were designed with

this traditional triangle rasterization in mind and have specialized hardware to operate

on triangles. In other words, triangles are fast to process.

But triangles have some issues. Primarily, they do a good job of representing

surfaces (since they are inherently 2D) but they don’t lend themselves well to volumetric

(3D) data. For example, a natural representation of a cloud would be a 3D volume

filled with the density of the cloud at a given point within the volume. There are

algorithms that can convert from a volumetric representation to a triangle one—

marching cubes [30] being the most popular—but it still only models an arbitrary

isosurface as opposed to the actual volume.

2.1.2 Voxels

Voxels (volume elements) represent 3D objects in a natural way. A volumetric

representation of an object is a 3D grid of cells (the voxels) which hold any data

5

relevant to that voxel: color, transparency, and normal, to name a few. Recently, voxels

have grown popular in the computer graphics field due to this natural representation of

3D objects. The main reasons voxels were not used much in the past were the amount

of memory required to store a voxelized representation and GPUs being specialized

for triangle rasterization. This restriction has largely been lifted since modern GPUs

have much more memory and general purpose GPU (GPGPU) computing has allowed

programmers to work more easily with non-triangle based data and algorithms [12, 10].

2.2 Computer Graphics Primer

This thesis has a heavy focus on implementation details and requires a solid

foundation in understanding computer graphics. Thus this brief primer will introduce

the most important topics including the graphics pipeline, transforms, and some

common graphics terminology and techniques. For more information, we recommend

Akenine-Möller et al.’s Real-Time Rendering [5] for a complete survey of real-time

rendering and the OpenGL and GLSL specifications [42, 27] for reference.

2.2.1 The Graphics Pipeline and Rasterization

The ultimate goal of most graphics work is to produce a 2D image from some set of

input data, typically a scene filled with triangle meshes and various light sources. This

process is accomplished in several distinct stages which compose the classic graphics

pipeline, some of which are configurable through shaders (a shader is a program

that runs on the GPU). We give a brief overview of the pipeline here, but encourage

reference to [5] for a more detailed explanation. A flowchart of the graphics pipeline

is shown in Figure 2.1.

The input to the pipeline is a series of vertices. Each vertex contains associated

information such as its position in 3D space, a surface normal, and a texture coordinate.

6

Figure 2.1: Overview of the main stages of the graphics pipeline showing
the rasterization of a single triangle (source by Joey de Vries, CC BY
4.0 [15]).

The first step in the pipeline is vertex shading, where a vertex shader is executed

for each input vertex. Most vertex shaders are fairly simple and perform the job of

transforming the input vertex’s position from one coordinate system to another.

After vertex shading, shape assembly occurs and forms geometric primitives

from the vertices. The most common primitive is the triangle, although other options

such as points and lines exist.

Optionally, geometry shading can take place to operate on the primitives gener-

ated from shape assembly. Some common uses here are to introduce more primitives

into the pipeline or to modify the input primitive before proceeding to rasterization.

Rasterization involves generating fragments for each primitive that will end up

on the screen1. Each fragment corresponds to one pixel in the final rendered image and

is generated by testing whether a given pixel is contained within an input primitive.

The resolution of the fragments is determined by the viewport resolution, which is
1The primitives go through clipping immediately before rasterization, which removes fragments

outside the screen

7

https://learnopengl.com/img/getting-started/pipeline.png
https://twitter.com/JoeyDeVriez
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

generally set to the resolution of the framebuffer being rendered to.

During fragment shading, a fragment shader is executed for each fragment

generated during rasterization. The output of this shader is typically the color of the

pixel for the final image, which is written into a framebuffer. This stage is also where

the majority of shading effects occur, including lighting.

Finally, each shaded fragment goes through a testing and blending phase. Depth

testing is used to determine whether one fragment is in front of or behind the value

currently in the framebuffer. Alpha testing and blending occur when the fragment is

transparent (the alpha, or opacity, value is less than one). The tests and blending can

be configured and enabled/disabled as desired (but is not performed programmatically

in a shader).

2.2.2 Transforms

A crucial part of computer graphics is transforming points from one coordinate

system to another. Transformations are needed to ensure objects are placed correctly

in the virtual world and then to project them from 3D space into a 2D space that

can be rasterized and displayed on the screen. Most transformations are represented

as matrices. Therefore applying a transformation T to a particular vector v is just

multiplication, Tv. Note that OpenGL uses a right-handed coordinate system: if the

coordinate system is aligned with our screen then the x axis points right, y points up,

and z points out of the screen (the ‘forward’ direction is −z).

Some important coordinate systems for computer graphics and this work, some of

which are shown in Figure 2.2 are:

Object Space: the local coordinate system for an object. This is the initial space

all vertex coordinates are in when loaded from a mesh.

8

Figure 2.2: Overview of the main coordinate systems used during raster-
ization and the method of transformation between them (source by Joey
de Vries, CC BY 4.0 [15]).

World Space: the global coordinate system for the virtual world. Objects are placed

into the world using a model matrix.

View Space: the virtual world given from the perspective of a camera (the viewer).

In this space, the camera is located at the origin, (0, 0, 0), and faces in the −z

direction. The transformation from world space to view space is accomplished

using a view matrix.

Normalized Device Coordinates (NDC): a coordinate system in the range [−1, 1]

that defines the region that will be sent to be rasterized. Also, the z axis is

‘flipped’ compared to the standard OpenGL right-handed coordinate system. A

projection matrix is used to transform from view space to clip space2 to NDC.

There are two general kinds of projection matrices: perspective, which emu-

lates how objects further away from a camera appear smaller, and orthographic,

which preserves size regardless of distance from camera.
2Clip space is the intermediate coordinate space between view space and NDC. A homoge-

neous divide by the fourth component of a vector is used to transform from clip space to NDC:
(xc, yc, zc, wc) → (xc

wc
, yc

wc
, zc

wc
, 1). If any coordinate is outside the range [−1, 1] the coordinate is

‘clipped’; the rasterizer will not produce fragments for those clipped coordinates.

9

https://learnopengl.com/img/getting-started/coordinate_systems.png
https://twitter.com/JoeyDeVriez
https://twitter.com/JoeyDeVriez
https://creativecommons.org/licenses/by/4.0/

Screen Space: the coordinate space representing a typical 2D screen or image. The

x and y coordinates are the respective pixel position (treating the bottom left

corner as (0, 0)). The z axis is usually interpreted as the depth of the pixel as

a value within the range [0, 1]. The conversion from clip space to screen space

is done automatically by the GPU during rasterization based on the viewport

resolution.

Texture Space: the coordinate space used when sampling a value from a texture.

The coordinates are within the range [0, 1], with (0, 0) being the bottom left

corner. Sampling outside this range results in behavior defined by a texture’s

wrapping mode (e.g. clamp to the edge value or repeat the texture).

Image Space: the coordinate space used when indexing into an image. The range is

defined by the target image and uses integral numbers.

Light Space: similar to the view space, but instead of the camera defining the origin

and orientation a light source is used.

Tangent Space: a coordinate system defined with respect to a surface and its normal.

2.2.3 Compute Shaders

While most graphics work follows the graphics pipeline, it is possible to use a more

abstract model suited towards general purpose computing. Compute shaders provide

an interface to performing this GPGPU work (similar to how CUDA exposes GPGPU

operation). At the most basic level, dispatching a compute shader launches many

threads that all execute the same program, or kernel, defined in a compute shader.

Besides the built-in inputs for determining a thread’s location within the compute

space, all inputs and outputs are accessed through explicitly defined objects such as

textures, images, or buffers.

10

2.2.4 Tessellation

An optional stage in the pipeline between vertex shading and geometry shading is

tessellation. The goal of tessellation is to take a patch—a fixed number of vertices—

and subdivide the patch into more vertices. The number of vertices generated from

the subdivision is controlled either from a fixed constant (defined in the application)

or from the optional tessellation control shader. The generated vertices are then

passed through the tessellation evaluation shader, which performs vertex processing

just like the vertex shader.

A triangular patch (defined by three vertices) is subdivided into multiple subtri-

angles. There are four total tessellation levels: one which corresponds to the inner

tessellation and three for the outer tessellation. Loosely speaking, the inner tessel-

lation determines how many inner triangles are generated and the outer tessellation

determines how many vertices are placed along each outer edge. See Figure 2.3 for an

example.

Figure 2.3: A triangle tessellated with an inner tessellation level of 5
and outer tessellation levels of 4, 1, and 6. The dashed lines show the
new triangles generated from the original triangle. (image from OpenGL
Wiki [3]).

11

2.2.5 Textures and Mipmapping

A texture in the most basic sense is a linear data buffer. In computer graphics,

the most common texture type is a 2D texture where each texel—a single element

of a texture—stores a color and opacity value, requiring four components—three

for the RGB color and one for the opacity. However, 1D and 3D textures are also

possible (and 3D textures are a core part of this thesis) as well as various data formats.

Textures can also contain multiple levels, often used for mipmapping. OpenGL and

GPUs have native support for working with multi-level textures and sampling from

them appropriately.

Typically, textures can be considered read-only: they are only sampled from inside

a shader. To write to a texture, there are two common approaches: render-to-texture

and binding the texture as an image. Render-to-texture refers to attaching the texture

to a framebuffer object which can then be used as the target for rasterization. The

other method involves binding a single level of a texture as an image object which can

then be written to inside a shader (usually a fragment or compute shader).

Mipmapping involves keeping multiple detail levels of the same source data. The

base level is the highest resolution available and each successive level is downscaled

(typically in powers of two: a texture with a base level resolution of 256x256 would

have mipmaps with resolutions of 128x128, 64x64, and so on). While this does

require increased memory usage, it can smooth out aliasing issues caused by sampling.

Mipmapping also generally increases performance as it improves GPU texture cache

locality.

12

2.3 Spatial Data Structures

Many algorithms in computer graphics require a way to query aspects of a particular

point or object in space. These queries could be something like “which side of a

plane is this object on” or, more relevant to our work, “how much light is present

at this point”. Of course, this data could be stored in a simple array but oftentimes

this leads to poor runtime performance. Using a more advanced data structure to

represent spatial data is crucial to achieving real-time rendering performance. We

briefly describe some common data structures relevant to global illumination.

2.3.1 3D Textures

One of the simplest approaches to storing spatial data is to simply define a uniform

mapping from 3D space into a 3D texture. While this is straightforward to visualize

and is easy to work with, 3D textures require a large amount of memory. If the data

to be stored is sparse (i.e. most positions in space do not have a corresponding or

useful value) this memory is wasted. However, GPUs are able to take advantage of

spatial coherency in 3D textures and can provide fast caching and filtering of the data.

2.3.2 Clipmaps

In a 3D texture we essentially have a uniform grid of values: the resolution, or

level of detail, of data remains constant throughout the entire texture. With many

types of data we don’t need the same resolution—for example, in many applications,

the farther away from the viewer we are the less detail we need. A clipmap [46, 31] is

based on this concept and represents 3D space using multiple levels of detail. The

resolution at each level of detail is halved, reducing the amount of memory needed

to represent the same 3D space as an equivalent 3D texture. The issue with sparse

13

memory still exists, but it is alleviated greatly. Figure 2.4 shows a diagram of the

multiple levels of detail in a clipmap.

Figure 2.4: A 2D diagram showing the multiple resolutions of a clipmap.
Notice that the inner levels have higher detail while each successive outer
level lowers the detail level by a factor of 2.

2.3.3 Octrees

Another way of representing 3D space can be done using a tree structure. An

octree [34] is a tree where each child node is an octant of its parent (see Figure 2.5).

This representation is very efficient memory wise when it comes to sparse data since

there is no requirement the tree has to be full: if there is no data in an octant it can

be left empty. The tradeoff, however, is the need to recurse through the octree for

every query. Both building and recursing an octree can be difficult to do efficiently on

the GPU and does not leverage the hardware support for caching and filtering of 3D

textures.

14

Figure 2.5: Diagram of a simple octree (image distributed under CC BY-
SA 3.0 [47]).

2.4 Radiance and the Rendering Equation

As our goal is to accurately model light in our virtual scene, it makes sense

to base our shading model on the behavior of real light. The theoretical basis

for understanding and measuring light is confined within the field of radiometry.

Fortunately, for our purposes, we can focus more on the applied aspects of radiometry

for computer graphics—for example, the wave-like nature of light is mostly ignored in

favor of particle based behavior.

Fundamentally, light is energy. Therefore, our goal is to compute the amount of

light energy at a surface point from a given viewpoint (our camera). This quantity,

called radiance, is the instantaneous amount of light energy emitted along the ray of

light from the point to the camera. Kajiya [21] presents this problem mathematically

in the rendering equation:

Lo(x, ωo) = Le(x, ωo) +
∫

Ω
fr(x, ωi, ωo) Li(x, ωi) (ωi · n) dωi

where

x is a point in space,

15

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

ωo is the direction of outgoing light from x,

ωi is the direction of incoming light to x,

n is the surface normal at x,

Lo is the total radiance at x in the direction ωo,

Le is the emitted radiance at x in the direction ωo,

Li is the incoming light (irradiance) at x from direction ωi,

fr is the bidirectional reflectance distribution function (BRDF) at x, and

Ω is the unit hemisphere at x centered around n.

Although it looks complex, the result Lo is radiance (our final shaded color) at

a given point when viewed from a particular angle (the view vector), the term Le

accounts for emissive light (e.g. from emissive materials), and the integral is calculating

how much incoming light at a point is transferred towards the viewer. The dot product

(ωi · n)—which is cos(θi), where θi is the angle between ωi and n—attenuates the

incoming light based on the angle between the incoming light and the normal (as light

direction and normal become perpendicular less light hits the surface).

In order to compute a solution to the rendering equation, the problem must first be

discretized. Thus the integral will be approximated by a finite sum over the incoming

light. Recall that, in general, the incoming light is broken into two parts: direct

light and indirect light. To compute the direct light, the contributions from each

light source are summed together: this is accomplished with a straightforward loop

over each light. The indirect light, however, is more difficult as there are effectively

infinite indirect light sources due to light scattering, reflections, and so on. Naturally,

this means there is great interest in being able to accurately and efficiently compute

indirect lighting. For real-time applications heavy approximations are made and it

16

can be difficult to connect the rendering equation with the resulting approximation.

To better illustrate the connection, as well as cover a core technique also adapted for

use in real-time applications, is helpful to understand raytracing.

2.5 Raytracing

Raytracing is a common alternative to rasterization and is a natural way of

calculating light. The idea is for each pixel of our final rendered image we cast a ray

from the camera into our scene. If the ray hits an object, the object’s material and

the light sources in the scene can be used to calculate a color value. Using this model

it is simple to extend the basic shading model to support shadows, reflections, and

refractions.

Predictably, the downside of raytracing is a high computational cost as calculating

ray-object intersections and performing advanced lighting calculations becomes over-

whelming. Various techniques to reduce the amount of computation done, such as

representing the scene inside a spatial data structure, help tremendously but perfor-

mance is still not acceptable in real-time applications. Still, many real-time techniques

do perform some raytracing in limited capacities: SSR (screen space reflections) and

voxel cone tracing being two relevant examples.

2.5.1 Monte Carlo Raytracing

The indirect lighting can be computed in an intuitive way using Monte Carlo

raytracing, which approximates the integral from the rendering equation in a straight-

forward fashion. Ideally, to calculate the integral over the hemisphere Ω, an infinite

number of rays would be cast from the point of interest x and the result would be

the accumulation of all the ray’s values. With Monte Carlo raytracing, the goal is to

approximate the integral using a finite number of randomly generated rays. While

17

these rays can be generated following a uniform distribution, it is common to instead

perform importance sampling, preferring rays that align more with the surface normal

n. The reason stems from the (ωi · n) term in the rendering equation: rays that

are aligned more with the normal contribute ‘more’ to the final integral than those

perpendicular. Using Monte Carlo methods with importance sampling essentially

means that fewer rays are needed to obtain an accurate estimate compared to using a

basic uniform distribution. We will see the influence of Monte Carlo methods in the

implementation of voxel cone tracing.

2.5.2 Raymarching

Consider wanting to render the effects of participating media: some type of

semi-transparent object, such as dust or a cloud. With raytracing, intersections

occur at discrete points between the casted ray and the object it hits. Therefore

straightforward raytracing will not work, as there is no single intersection when dealing

with participating media. Raymarching is an extension of raytracing that involves

sampling multiple points along the casted ray in defined intervals. The values sampled

along the ray are accumulated and blended based on opacity.

18

Chapter 3

RELATED WORK

Global illumination is a broad topic that can be approached in many ways. With

respect to this thesis, we only focus on comparisons with other real-time, fully dynamic

techniques. Many of these techniques borrow similar ideas and build off of each

other. The implementations for a single technique can also vary greatly based on data

structures used, shading models, and other considerations. The different tradeoffs

made and how they affect the final implementation are important to understand, as

there is often not a single best way to approach the problem of global illumination.

Here we present some of the more popular and relevant methods of achieving full

global illumination and attempt to note the major differences between them and our

implementation.

3.1 Reflective Shadow Maps

Dachsbacher and Stamminger introduced the idea of Reflective Shadow Maps

(RSMs) in 2005 [14]. Their work extends traditional shadow mapping to support

single bounce indirect illumination. The main idea is to treat each pixel in the shadow

map as a virtual point light (VPL)—i.e., each pixel in the shadow map corresponds

to a directly lit point—which illuminates the rest of the scene1. The information

gathered for each reflective shadow map is shown in Figure 3.1. In order to efficiently

compute the contribution of the VPLs for a point in the scene a fixed number of

samples are taken from the shadow map. They also apply an interpolation scheme to

reduce computation on smooth parts of the scene.
1VPLs were introduced in Keller’s work on Instant Radiosity [26].

19

Figure 3.1: The different components of a reflective shadow map (depth,
world coordinates, normal, and color) and the resulting image [14].

A notable downside of this method is occlusion information is not accounted for:

a point y could contribute indirect lighting to another point x even if there is other

geometry blocking the path between x and y. The authors apply a separate ambient

occlusion pass to partially mitigate this problem. The method is also only designed for

low frequency lighting details. Also, while directional, point, and spot lights should

theoretically work, objects that themselves emit light were not addressed.

3.2 Cascaded Light Propagation Volumes

Light Propagation Volumes (LPVs) are another method for approximating low

frequency indirect lighting, developed by Kaplanyan and Dachsbacher in 2010 [24].

The method relies on an iterative based light propagation algorithm within a volumetric

grid structure. This structure, the LPV, is initialized by injecting VPLs into its

cells—for example, by using RSMs. Next, the light is propagated multiple times

between adjacent cells; each propagation results in the LPV having a more complete

representation of the indirect light in the scene.

LPVs improve on the basic RSM idea by filtering the light in multiple steps. It

also stores low resolution geometry information for occlusion purposes. They also

tackle the issue of handling large scenes with the concept of cascaded LPVs: multiple

individual LPV structures are used with different sizes, focusing detail near the camera

(shown in Figure 3.2).

20

Figure 3.2: A diagram demonstrating the grids used for cascaded
LPVs [24].

The main drawback of this method is the lighting is low frequency only. Proper

glossy (specular) reflections are still wanted in many applications. Also, the geometry

information obtained is not complete: it is created by reusing other results from

shadow mapping and depth peeling.

3.3 Rasterized Voxel-Based Dynamic Global Illumination

Rasterized Voxel-Based Dynamic Global Illumination described by Doghramachi [16]

is based heavily on LPVs but uses a voxelized scene representation for the initial steps

of LPV creation. This avoids some of the difficulties when injecting VPLs compared

to LPVs. In addition, the geometry information made available by voxelization is

complete (although low-resolution) and does not require external inputs like shadow

maps or depth peeling.

Just like LPVs, the main downside here is the lack of specular reflections, which

stems from the low resolution grid used for the LPV (32x32x32, as mentioned in the

implementation, whereas we aim for somewhere on the order of 1283 to 2563). Also,

the method does suffer from some light leaking due to how point lights are injected

into the scene: instead of creating an RSM (which handles occlusion properly), all

voxels within a defined distance of the point light are injected into the initial LPV.

21

3.4 Voxel Cone Tracing

In 2011, Crassin et al. introduced Interactive Indirect Illumination Using Voxel

Cone Tracing [13]. A primary improvement over the existing methods sought in this

method was to obtain higher frequency lighting details, such as specular reflections.

The core idea to balance performance with lighting detail is to make use of a filtered

radiance representation which is then sampled using voxel cone tracing, a concept

they introduce.

The first step in the algorithm is to create a high resolution radiance representation.

Crassin et al. inject radiance into the leaves of an octree using the familiar RSM

technique. An octree is used to reduce memory consumption, a consequence of using

such a high resolution radiance representation. The octree is then filtered recursively

bottom up until all inner nodes in the octree have a filtered radiance value. The final

step, voxel cone tracing, is essentially a combination of raymarching and mipmapping:

raymarched samples are taken from successively lower levels of detail. An illustration

of this is shown in Figure 3.3.

Although the octree representation does help alleviate issues when dealing with

sparse scenes, GPU memory consumption is still an issue especially for larger scenes.

In addition, due to their tree-like nature, octrees are awkward for GPU use and do not

benefit from things like hardware supported texture filtering. To address this, NVIDIA

decided to use a clipmap instead of an octree in their standard implementation of

voxel cone tracing, VXGI [2].

22

Figure 3.3: An illustration of the voxel cone tracing algorithm by Crassin
et al. [13].

23

Chapter 4

IMPLEMENTATION

At its core, the application we created for this thesis is a standard forward rendering

engine supporting multiple lights, shadow mapping, and normal mapping—in addition,

of course, to full real-time dynamic global illumination. The scene to be rendered is

composed of one or more actors, which are simply meshes loaded from the generic

Wavefront OBJ file format. Actors are also capable of rigid body animations.

The rendering pipeline can be broken down into several render passes, each of

which will be explained in its corresponding section. In general, the main steps taken

are generating a voxelized representation of the scene, creating a filtered representation

of light from the voxels and light sources, and, finally, shading the scene.

The application itself is written in C++11 and uses OpenGL as the graphics API.

In order to make use of modern graphics features like compute shaders and direct state

access we require OpenGL version 4.5 (released in 2014). The project uses CMake as

its build system and has been tested on Linux and Windows.

4.1 Voxelization

The goal of voxelization is to create a sparse 3D representation of the geometry in

the scene. The information associated with each voxel is stored in two 3D textures:

one for color and opacity and another for surface normal. We refer to these textures as

voxelColor and voxelNormal, respectively. Each texture has an internal format of

RGBA16F or RGBA8, depending on hardware capabilities. The resolution of the textures

is configurable at runtime, although the default is 2563.

The extents of our voxelization volume—the area in world space that will end

24

up inside the voxel textures—is also configurable and by default is set to enclose the

entire scene. This volume can be static or can track the camera (with the camera

being at the center of the textures). In addition, to prevent some issues with temporal

artifacts, the voxel textures are snapped to a discrete grid corresponding to the size of

each voxel cell in world space.

We present two different approaches for scene voxelization: one utilizing hardware

rasterization and the other hardware tessellation.

4.1.1 Rasterization-Based Approach to Voxelization

The first method for voxelization utilizes the GPU rasterization pipeline and is

based on [11]. The voxelization is performed completely in a single render pass. The

basic idea is to rasterize the scene such that each fragment generated by the GPU

corresponds to a single voxel in the 3D texture.

One of the main challenges with voxelization is ensuring there are no holes or cracks

in the resulting grid. Two techniques are used to mitigate this (and will be covered

in-depth in the following paragraphs). First, for each triangle we project along the

triangle’s normal’s dominant axis. This maximizes the number of fragments generated

for a given triangle. Second, we perform conservative rasterization. Normally, the

GPU only generates a fragment for a given pixel if a triangle overlaps the center of

the corresponding pixel. This results in cracks in the voxelized grid since even if a

triangle is inside a voxel it may not be rasterized.

Before the draw call, the necessary matrices to project the geometry into the

voxelization volume are created. The projection matrix is orthographic, with bounds

corresponding to the extents of the voxelization volume. In order to project along

each triangle’s dominant axis, we also need three view matrices: for each axis a view

matrix is constructed where the view position is at the edge of the voxel volume and

25

looks down its respective axis. The final matrix used to transform a point in world

space to a point in the voxel texture for a particular axis is composed by multiplying

the orthographic matrix with the appropriate view matrix.

For the shader program, the voxel textures are bound as image3D objects (as

textures are read-only in shaders). Following from that, since the framebuffer is not

being written to, color writing is disabled. Lastly, depth testing and depth writes are

also disabled, since the goal is to voxelize the entire scene. The algorithm is shown in

Algorithm 1 and explained in detail below.

Algorithm 1 Voxelization
for each triangle t do

find dominant axis of t using surface normal

apply projection matrix corresponding to the dominant axis

end for

Rasterization . Performed by hardware

for each rasterized fragment do . position is in NDC

transform NDC coordinates to texture space ([0, 1])

Realign NDC coordinates with standard coordinate system

Insert fragment into voxel texture

end for

Starting in the vertex shader, the only operation performed is transforming the

object from object space to world space using its appropriate model matrix. In the

geometry shader we take a single triangle in world space, transform it based on its

dominant axis, and output the resulting triangle in clip space. The triangle’s dominant

axis is determined by finding the largest component of its normal (by absolute value)1.

We then apply the appropriate projection matrix according to the dominant axis
1Finding the dominant axis is really finding the maximum dot product of each axis with the

normal, but since we use the standard basis this reduces to just finding the largest component of the
normal.

26

and output the resulting triangle to be rasterized. In the fragment shader, each

fragment’s position in Normalized Device Coordinates can be used to determine

its position within the voxel textures. Note, however, that the components of each

fragment’s position need to be realigned due to projecting along different axes. Finally,

the voxel information can be written into the voxel textures, which are bound as

image3D objects in the shader. The result of this voxelization is shown in Figure 4.1.

However there is still one more issue: multiple voxel fragments can be mapped

to the same cell in the voxel textures. Without any synchronization, the final voxel

values are not deterministic and can result in temporal artifacts. To solve this, we

average the resulting color value using atomic operations2.

Figure 4.1: Visualization of the voxels resulting from the rasterization-
based approach (without conservative rasterization).

2Other approaches to this problem (with various tradeoffs) can be used (Doghramachi uses an
atomic max operation on a custom defined metric in order to avoid needing to perform an average [16]).
These are generally used to combat performance issues or hardware limitations.

27

Conservative Rasterization

As mentioned previously, we need conservative rasterization to minimize holes and

cracks in the voxelization. To achieve this, we use an MSAA-based approach [45].

MSAA (multi-sample anti-aliasing) is a technique used for smoothing out ragged

edges (aliasing) in a rasterized image. Instead of only sampling at one position

inside a pixel to determine if a fragment should be generated multiple samples are

used (hence the name). These samples are typically distributed to maximize the

possibility of a rasterized fragment being produced. If any of the samples overlap with

the triangle a fragment is generated for that pixel. An illustration of MSAA is shown

in Figure 4.2. Applied to voxelization, this means there is a smaller chance that a

triangle will fail to produce a fragment for any voxel it only partially occupies. While

the MSAA method of conservative rasterization is not perfect (a partially occupied

voxel won’t always produce a fragment), it is cross-platform, simple to use, and efficient.

Other notable methods would be manually dilating each triangle in a geometry

shader (better quality but slower) [4] or using a GPU vendor specific extension, like

GL_NV_conservative_raster (better quality but not cross-platform). A comparison

between no conservative rasterization, MSAA-based conservative rasterization, and

the NVIDIA extension is shown in Figure 4.33.

4.1.2 Tessellation-Based Approach to Voxelization

The other method for voxelization relies completely on hardware tessellation: no

rasterization required. Instead of generating fragments for each voxel we instead

attempt to generate vertices for each voxel. One benefit of this method is the

mapping from vertex to voxel position is fairly straightforward and does not require
3Also note the erroneous fragments generated when using the NVIDIA extension. These extra

fragments are produced by some methods of (overly) conservative rasterization and the user must
manually cull these fragments.

28

Figure 4.2: With MSAA, multiple points within a pixel are used to deter-
mine whether a fragment should be generated [5].

multiple projection matrices like in the rasterization-based approach. Fei et al. [18]

also developed an algorithm similar to ours using tessellation.

The core part of this approach is determining the appropriate tessellation level for

a given triangle. Recall that this step is the responsibility of the tessellation control

shader. Afterwards, tessellation primitive generation produces the tessellated vertices

and provides them to the tessellation evaluation shader, where we compute each

vertex’s position in the voxel texture and store the vertex’s color. The final voxelized

scene is shown in Figure 4.4.

The desired level of tessellation will produce one vertex for each voxel the triangle

covers. Therefore, for a particular triangle, the tessellation level is determined based

on the triangle’s size in world space. Recall that for triangular tessellation patches

there are four values: three outer tessellation levels (one for each edge) and one inner

tessellation level. To determine the outer tessellation level for an edge E, we effectively

determine how many voxels E passes through (accounting for the direction of E):

outerLevel = |E|
(E

||E|| · voxelSize)
. To determine the inner tessellation level, we find the

maximum altitude of the triangle and then perform a similar computation as with the

outer level. With a, b, and c being the lengths of the triangle edges, the altitude from

a side x ∈ {a, b, c} is given by

hx =
2

√
s(s − a)(s − b)(s − c)

x

29

(a) No conservative rasterization

(b) MSAA-based conservative rasterization

(c) NVIDIA’s conservative rasterization extension

Figure 4.3: Conservative rasterization produces ‘extra’ fragments in order
to produce a more solid voxelization. The effects are particularly notice-
able on the pillar between the red and green curtain on the left.

30

where s = (a + b + c)/2 is the semiperimeter and the square root term is the triangle’s

area using Heron’s Formula. The maximum altitude is then hmax = max(ha, hb, hc).

Finally, we have innerLevel = hmax/voxelSize.

After specifying the tessellation levels in the tessellation control shader, tessellation

primitive generation produces the vertices that correspond to the voxels. In the

tessellation evaluation shader the vertex position (in world space) is used to determine

the final voxel position and is written out to the voxel texture.

An important consideration for this method is the maximum tessellation level

supported by the hardware. For large triangles it is possible the tessellation will not

produce a solid voxelization. A simple way to address this issue is to break large

triangles into smaller ones when loading the mesh. Another consideration is for small

triangles where all vertices occupy a single voxel. To reduce the number of writes to

the voxel texture the contributions of these vertices can be consolidated in the shader

into a single operation.

Figure 4.4: Scene voxelized using tessellation-based voxelization.

31

4.2 Shadow Mapping

Shadow mapping is a well known technique used for efficiently creating shadows [48].

Similar to the related works, the resulting shadow map is also treated similarly to an

RSM for radiance injection.

To generate a shadow map for a light, we render the scene from the light’s

perspective and gather the depth values of the fragments. Since we need the GPU

to write to an arbitrary texture (the shadowmap), we create a framebuffer object

(FBO) and attach the texture as a depth attachment4. The FBO does not require

any color attachments, as we are only interested in the depth. The matrix used to

transform vertices from world space to light space is an orthographic projection matrix

multiplied with a view matrix generated from the light. This matrix is often called the

light view matrix. Since the GPU will automatically write depth values, the fragment

shader can be completely empty. The resulting shadow map contains floating point

depth values (in the range [0, 1]) which represent the distance of each point visible

to the light itself. Also note that these depth values are linear since an orthographic

projection matrix is used: if a perspective projection matrix is used, the depth values

scale logarithmically. Figure 4.5 shows the contents of a shadowmap for our scene.

The only difference between generating a shadow map and a complete RSM is

to also store the diffuse color and normal along with the depth values. Since our

implementation stores voxel colors and normals already, a full RSM isn’t necessary for

injecting the VPLs into the radiance texture.
4This general technique is referred to as render-to-texture.

32

Figure 4.5: An example of a shadowmap with the depth value mapped to
the red component of the image.

4.3 Radiance Injection

In this render pass, we fill a 3D texture with virtual point lights from the shadow

map. Recall that the VPLs are light sources which represent the light being bounced

off of geometry within the scene. Following from RSMs, the points at which this

happens are precisely where the light hits the geometry, which is stored in the shadow

map. Therefore, this pass involves taking all points in the shadow map and projecting

the color of the corresponding geometry into the radiance texture.

The radiance texture, voxelRadiance, has dimensions equal to that of the other

voxel textures. It has a format of RGBA8 and stores a color value and opacity.

The most straightforward way to accomplish radiance injection from the shadow

map is to use a compute shader and launch one thread for each pixel in the shadow

map. Each thread first reads the depth value at its respective pixel, which can then

be used to reconstruct the pixel’s position in light space. Then, by using the inverse

33

light view matrix, we project it from light space to world space. The world space

position is used to calculate the voxel position, which is used to sample from the voxel

textures and finally write the color into the radiance texture, as seen in Figure 4.6.

It is important that the shadowmap is rendered with a high enough resolution

(relative to the voxel texture resolution) to ensure a smooth radiance injection. If

the shadowmap resolution is too low, there will be gaps between voxels which cause

lighting artifacts. Note also that we do not need to be concerned with synchronization

and atomic operations in the case that multiple threads access the same voxel position

since we are only interested in the base color.

In addition to injecting the VPLs, we also transfer occlusion information (opacity)

stored in the completely voxelized scene into the radiance texture. This operation is a

straightforward transfer accomplished using another compute shader.

Algorithm 2 Radiance Injection
for each pixel coordinate p = (px, py) in shadowmap do . px, py ∈ [0, 1]

depth = sampleDepthFromShadowmap(p)

ndc = (px, py, depth) ∗ 2 − 1 . Convert coordinate to NDC

worldPosition = inverseLight ∗ ndc

voxelPosition = computeVoxelPosition(worldPosition)

end for

4.4 Radiance Filtering

With the highest level of detail of the radiance texture filled, the next step is

creating the filtered representation. Each successive level is half the resolution of the

previous level. Therefore, the maximum number of levels the texture may have is

log2(max(width, height)) + 1.

OpenGL is able to automatically generate mipmaps for 3D textures by calling

34

Figure 4.6: The radiance texture injects VPLs according to the shad-
owmap: only voxels hit by the light source result in a VPL.

glGenMipmaps(GL_TEXTURE_3D), however manually filtering the textures using a

compute shader turned out to be much faster for this application (how OpenGL

calculates mipmaps is implementation defined, so the performance can vary between

systems and drivers). To perform the filtering, a compute shader kernel is launched

for each level of the radiance texture (not including the base level). The kernel is

launched with one thread for each voxel in the current level. Each thread can be

conceptually located at the corners of each voxel in the previous level and average the

surrounding 8 values to compute the filtered value of its respective voxel.

The other benefit to manually filtering is that different methods can be used. For

example, adjusting the size or weights of the filtering kernel could result in different

effects.

35

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

Figure 4.7: The first 4 levels of the radiance texture are shown here (using
GL_NEAREST_MIPMAP_NEAREST filtering for demonstration purposes).

4.5 Shading

The final shading step takes all of the previously generated information and renders

the scene. Direct lighting is computed from multiple lights and uses the physically

based Cook-Torrance shading model [9]. The classic Blinn-Phong shading model [40]

is also supported. Indirect lighting is computed using voxel cone tracing. Normal

mapping (similar to bump mapping [6]), shadow mapping, and post processing effects

also occur here. A complete outline of computing the final shaded color is shown in

Algorithm 3.

Two important inputs for the fragment shader are material information and

light information. The material information for each fragment is provided in a

struct Material, uploaded as a uniform buffer object, and contains color and texture

36

information. Lights are stored as an array of struct Lights and contain information

associated with them such as light type (e.g. directional or point light), position, and

color. The array is uploaded as a shader storage buffer object, which allows the array

to have a dynamic size queryable at shader runtime.

4.5.1 Direct Lighting

We calculate direct lighting by iterating over each light source in the scene and

summing all lighting contributions. We compute diffuse and specular lighting according

to the Cook-Torrance shading model [9] (without the ambient term, which is computed

by the voxel cone tracing):

r =
n∑

i=0
lic ∗ (n · li) ∗ (d ∗ rd + s ∗ rs)

where r is the resulting color, n is the number of lights, lc is the light color, n is

the surface normal, l is the light vector, d and s are scaling factors, and rd and rs

are the diffuse and specular components (the BRDFs). The diffuse component rd is

calculated with the Lambertian model for diffuse light, which is simply c/π, where c

is the material’s surface color. The specular component is

rs = DGF

π(n · l)(n · v)

where D is a Normal Distribution Function, G is the Geometric Attenuation Function,

F is the Fresnel term, n is the surface normal, l is the light vector, and v is the view

vector. The Cook-Torrance model allows for different choices of D, G, and F . Our

implementation uses the Trowbridge-Reitz GGX Normal Distribution Function, Smith

Schlick-GGX Geometric Attenuation Function, and Schlick’s approximation for the

37

Algorithm 3 Final Shading (performed on each rasterized fragment)
directLighting = 0

for each light in the scene do

directLighting = directLighting + computeDirect() . Diffuse and specular

lighting

if in shadow then

shadowFactor = computeShadowAmount()

directLighting = shadowFactor ∗ directLighting

end if

end for

indirectLighting = 0

for each diffuse cone do

Transform cone direction to world space . Using TBN matrix

color, occlusion = coneTrace() . Perform cone tracing, resulting in a color and

occlusion factor

indirectLighting = indirectLighting + occlusion ∗ color

end for

reflectedDirection = reflect() . Compute direction of reflected ray

reflectColor, reflectOcclusion = coneTrace()

indirectLighting = indirectLighting + reflectOcclusion ∗ reflectColor

finalColor = directLighting + indirectLighting

finalColor = finalColor/(finalColor + 1) . Tone map

finalColor = finalColor
1

2.2 . Gamma correction

38

Fresnel term5:

D(n,h, α) = α2

π((n · h)2(α2 − 1) + 1)2

G1(n,v, k) = n · v
(n · v)(1 − k) + k

G(n,v, l,k) = G1(n,v, k)G1(n, l, k)

F = F0 + (1 − F0)(1 − cos θ)5

where α is material roughness, h is the half vector, k = (α+1)2

8 , θ is the angle between

h and v, and F0, the surface reflection at zero incidence, is 0.04 for dielectrics and

the surface albedo for metals6.

4.5.2 Indirect Lighting (Voxel Cone Tracing)

To compute the indirect lighting at a given point, we perform voxel cone tracing.

Recall that to compute indirect light we are effectively approximating a surface integral

over a hemisphere. With voxel cone tracing, this integral is reduced to summing the

contributions of several cones, each of which are defined by a direction and cone angle7.

To compute the integral perfectly would require infinitely many cones. Instead, we

use six cones: five for diffuse light and one for a specular highlight8.

For the diffuse cones we chose an aperture of 45◦ with one cone oriented in the

direction of the surface normal and the others evenly distributed around the normal

and tilted up at an angle of 45◦. We also assign weights to each cone based on a

uniform distribution. Note that in order to compute the orientation of each cone in
5These choices for D, G, and F are the same as in Unreal Engine 4 [25].
6This is not completely physically accurate but is a good and fast approximation.
7Note that as the cone angle approaches zero we effectively have a ray. In fact, the main difference

between classic raymarching and cone tracing is the cone angle (which is used to determine which
level of the filtered radiance to sample from).

8The number of cones and their associated directions and angles are determined experimentally.

39

world space we must multiply the chosen cone directions by the TBN matrix, since

the cone directions are defined in tangent space. To get the final diffuse contribution,

the cone tracing is performed for each cone and the values are weighted and summed

appropriately.

The specular cone is oriented in the direction of the reflection vector, which is

calculated as −v − 2 ∗ (n · −v) ∗ n, or by using the GLSL function reflect(). The

aperture is derived from the material’s roughness according to the following formula9:

0.1 ∗ π ∗ roughness.

The radiance texture is sampled at varying levels of detail in order to approximate

the amount of indirect light at that point. At it’s core, voxel cone tracing is raymarching

through a mipmapped texture. In order to determine which miplevel to sample from,

the idea of cone tracing is introduced. Instead of having a simple ray, we imagine

a cone with a particular aperture (angle). The cone’s height is analogous to a ray’s

length and the size (diameter) of the cone’s base grows as the height increases. We

can then map the diameter to a level of detail.

Combining this all together, we sample from the radiance texture at a level of

detail related to the height of the cone at our sampling point. In this way, samples

close to the start of the cone come from higher detailed data and samples far from

the start come from lower detailed data. This allows the voxel cone tracing to gather

both high frequency and low frequency details of the indirect light.

The implementation of a single cone tracing instance is done entirely within a

fragment shader. The main inputs are the radiance texture, the position to start

tracing from, and the direction in which to trace. There are also several configurable

parameters that influence the cone tracing. We have steps, the maximum number of

samples to take; bias, the initial offset from the starting position (in order to avoid
9Determined experimentally.

40

self illumination); coneAngle, the angle of the cone; coneHeight, the starting height

of the cone; and lodOffset, a constant offset used when determining the level of the

radiance texture to sample from. Also, since the cone tracing is performed in texture

space, a scale is applied to normalized direction vectors. For each step, the cone’s

radius is computed from the cone’s height and angle. From this, we compute the level

of detail to sample from. After getting the sample color and alpha value a forward

blending scheme is used. Finally, the cone’s height is increased for the next iteration

of the loop. The complete shader code for cone tracing is shown in Listing 4.1. The

lighting contribution from the indirect light (both diffuse and specular) is displayed in

Figure 4.8 and the occlusion values are displayed in Figure 4.9.

1 vec4 traceCone(sampler3D voxelTexture , vec3 position, vec3 normal, vec3

direction , int steps, float bias, float coneAngle , float coneHeight ,

float lodOffset)

2 {

3 vec3 color = vec3(0);

4 float alpha = 0;

5

6 float scale = 1.0 / voxelDim;

7 vec3 start = position + bias * normal * scale;

8 for (int i = 0; i < steps && alpha < 0.95; i++) {

9 float coneRadius = coneHeight * tan(coneAngle / 2.0);

10 float lod = log2(max(1.0, 2 * coneRadius));

11 vec3 samplePosition = start + coneHeight * direction * scale;

12

13 vec4 sampleColor = textureLod(voxelTexture , samplePosition , lod

+ lodOffset);

14 float a = 1 - alpha;

15 color += sampleColor.rgb * a;

16 alpha += a * sampleColor.a;

17 coneHeight += coneRadius;

41

18 }

19

20 return vec4(color, alpha);

21 }

Listing 4.1: Shader function for performing voxel cone tracing.

4.6 Voxel Warping

The goal of voxel warping is to vary the density of the voxel resolution according

to some metric. This effectively increases the detail of the voxelization, leading to

better global illumination. We present two different approaches for voxel warping:

warp functions and perspective warping.

4.6.1 Using a Warp Function

Previously, voxel positions were determined linearly from their position inside

the voxel volume to a position in the voxel texture. This approach takes that linear

position and applies a mapping to it to find the final position inside the voxel texture.

With an appropriate warping function, the voxel density can be modified. For this

approach, the warping function’s job is to increase detail near the camera and then

smoothly fall off for objects further away.

Linear Warp Function

Recall from voxelization that in order to determine the location in the voxel texture

for a given fragment we perform a linear mapping from world space to image space.

As an intermediate step, we have the voxel position in texture space (in the range

[0, 1]). Thus, for example, if the position along the y axis is 0, it will go into the

42

(a) Diffuse indirect light

(b) Specular indirect light

Figure 4.8: The diffuse and specular contributions from cone tracing (be-
fore multiplying by occlusion).

bottom of the voxel texture and if 1, it will go into the top part of the voxel texture.

Now, consider mapping the coordinate in texture space to so-called warp space, which

43

Figure 4.9: Occlusion values resulting from voxel cone tracing. The oc-
clusion is multiplied with the cone traced lighting in order to account for
occlusion of nearby objects (i.e. voxel based ambient occlusion).

is also in the range [0, 1]. Without any modifications, this is a straight line with a

slope of 1, representing a linear ‘warping’ function. If we let wlinear : [0, 1] → [0, 1] be

the warping function and x ∈ [0, 1] be the coordinate in texture space then we have

wlinear(x) = x. Of course, this warping function does not do anything useful. For that,

we need a different, nonlinear, warping function.

Nonlinear Warping

Consider the function wlogistic(x) = 1
1+e−x (a basic logistic function, a type of

“S”-shaped curve). Notice how as x approaches 0 or 1 the slope decreases and in the

middle the slope is greater than one. If we draw lines up and over from the curve

for x = 0.4 and x = 0.6 we see that the range of wlogistic(x) is greater than that of

wlinear(x). In other words, the positions within those particular x values ‘take up more

space’ in the voxel texture. Likewise, towards the ends, the slope decreases towards

44

zero and thus takes up less space. This achieves the goal of varying the voxel density

resolution according to a simple function. We also see that the slope, w′(x), represents

the voxel density: if w′(x) = 1, the density is the same as the linear mapping; if

w′(x) > 1, the density is greater than the linear mapping; if w′(x) < 1, the density is

less than the linear mapping.

The ideal warping function increases voxel density near the camera and decreases

voxel density further away. The logistic function provided does this10, however there

are some issues. Recall from Voxelization (section 4.1) that, with the rasterized

approach, the scene is rendered with a viewport of dimensions equal to that of the

voxel texture. The discretized fragment positions will therefore all be in step sizes

corresponding to this viewport resolution. When the warp function is applied where

w′(x) > 1, we can run into issues where adjacent fragments will ‘skip’ a position in

the voxel texture. In essence, the voxel fragments are not generated with fine enough

resolution to smoothly transition after being warped 11. To resolve this, the scene

must be voxelized with a viewport resolution scaled by the maximum derivative of

w(x). In design terms, this means choosing a warping function with a steep slope will

result in needing to voxelize the scene with a larger viewport resolution, which can

hurt performance. Figure 4.10 demonstrates this issue.

Figure 4.10: Cracks in the voxels caused by higher voxel density (left) and
filling the holes by voxelizing with a higher resolution (right).

10The camera is at the center of the voxel grid, so it corresponds to x = 0.5 in the warping function.
11This is similar to the concept of the Nyquist Frequency, where we are not sampling the signal at

a high enough rate

45

Using the logistic function as the warping function also has another issue: the slope

at the ends approaches zero. This leads to a large portion of the voxelized region ending

up in relatively few voxels, which diminishes the accuracy of the voxelization greatly.

Instead, we want to place a lower bound on w′(x). The solution to this is to use a cubic

spline, i.e. w(x) = a + bx + cx2 + dx3. Then, with α as the desired end slope, we use

the constraints w(0) = 0, w(1) = 1, and w′(0) = w′(1) = α and solve for the variables

a, b, c, and d. This gives the warping function: w(x) = αx + (3 − 3α)x2 + (2α − 2)x3.

For our implementation, α = 0.25.

4.6.2 Perspective Warping

The other method of warping implemented is based on perspective projection.

Recall that when transforming coordinates from view space to clip space we use a

projection matrix. To emulate the visual effect of distant objects appearing smaller,

a perspective projection matrix applies a scaling factor to any transformed position

coordinate. This scaling effectively causes distant objects to occupy less area in screen

space in the final rendered image. Similarly, for our perspective warping, we use a

perspective matrix to manipulate the final voxel position.

To determine the voxel position from a position in world space, we apply both a

perspective projection and view matrix. This results in a point in NDC corresponding

to its position within the view frustum12. This value is then shifted and scaled to be

in texture space, which is the voxel position.

A visualization of the voxels resulting from perspective warping is shown in

Figure 4.11. The view frustum is divided into voxels where voxels closer to the camera

end up being smaller and those further away are bigger.
12We also must linearize the depth (z) component of the position, as a perspective projection

causes the depth to be logarithmic.

46

camera

near plane

far plane

view
frustum

Figure 4.11: Diagram of the voxels resulting from perspective warping.

4.7 Miscellaneous

4.7.1 Depth Prepass

With voxel cone tracing, each fragment shader invocation is quite expensive. If we

have overlapping objects in the scene then fragments will be shaded for each pixel, but

only one will be the final color. To ensure we only shade the final fragment, we have a

prepass which rasterizes the scene and only writes the depth value. This operation is

extremely quick. Now, the depth buffer contains only the depth of the fragment that

will end up on the screen. When the full shading pass is performed all fragments that

fail the depth test can be immediately discarded, avoiding the expensive voxel cone

tracing13.

4.7.2 Temporal Filtering

Typically the radiance texture is cleared completely at the beginning of each

frame. Due to the discrete nature of the voxel grid, moving objects and lights can
13This technique is only needed for a forward rendering engine: for a deferred rendering engine the

final depth values are calculated when generating the G-buffer (geometry buffer).

47

cause temporal artifacts (flickering) as the voxels are updated. These artifacts can be

improved by incorporating previous radiance values into the current frame’s radiance.

To do this, we can blend some factor of a voxel’s previous radiance value with its new

value14.

14This factor is configurable at runtime.

48

Chapter 5

RESULTS AND DISCUSSION

Here we examine both the performance and visual quality of our global illumination

algorithm. The primary means of evaluating performance is based on frame time. The

times of each render pass are recorded as well as a total frame time. Evaluating visual

quality is based largely on whether the lighting appears smooth and believable with a

minimal amount of noise and artifacts.

We also discuss the application of voxel warping and how it compares with other

global illumination methods. Unfortunately, direct performance and visual quality

comparisons are difficult to objectively measure as there are many contributing

factors—mesh complexity and optimizations, texture resolution and format, shading

model, graphics API, hardware, GPU driver version, and more—that affect the final

comparison, in addition to the exact implementation details. Nevertheless, we provide

motivations and tradeoffs between our method and others and their potential impact

on performance and quality.

5.1 Test Setup

All results are obtained from a system with an i5-2400 CPU, 8GB of DDR3

RAM, and an NVIDIA GeForce GTX 970 GPU. The system is running Arch Linux

kernel 4.16.8-1 and uses the proprietary NVIDIA graphics driver version 396.24. The

application uses an OpenGL 4.5 context and the scene is rendered with a window

resolution of 1920x1080.

The model used in the test scenes is the Crytek Sponza scene1. The textures
1The original Sponza model can be acquired from Crytek [35]. The model we use is modified by

Alexandre Pestana [38].

49

from the original Sponza scene are replaced with ones necessary for physically-based

rendering (materials are defined by a diffuse color, roughness, metallic coefficient,

normal, and optionally an alpha texture). Mipmaps for the original textures were also

precomputed and stored along with the full size 1024x1024 textures as DDS (Microsoft

DirectDraw Surface) files using the compressed DXT5 format for faster scene loading.

To measure performance timings for each render pass we make use of OpenGL

timer queries using the GL_TIME_ELAPSED query type. The results of the query object

are double buffered to ensure introducing the timer query does not affect the total

render time.

Unless otherwise mentioned, voxel resolutions are 256x256x256 with 6 mipmap

levels.

5.2 Analysis

In the following sections we evaluate various aspects of our work. First, we discuss

the global illumination algorithm as a whole. Second, we compare the rasterization-

based and tessellation-based voxelization algorithms. Lastly, we provide the results of

our voxel warping and some insights on future improvements.

5.2.1 Global Illumination

We test the algorithm with different screen resolutions and voxel grid resolutions.

The rendered images with different voxel grid resolutions are shown in Figure 5.1. We

see that the main difference with different voxel grid resolutions is how far the light

spreads due to the larger voxels.

Table 5.1 shows timing results from the complete global illumination algorithm

and Figure 5.2 plots the data as a stacked bar chart. Recall that a minimum goal

50

for real-time is 30 frames per second and a target is 60 frames per second, which

correspond to individual frame times of 33.3ms and 16.7ms, respectively. We see that

the total frame time always meets the goal of 60 frames per second.

The data shows that shadowmap creation and radiance injection was independent

of screen resolution and voxel resolution2. The voxelization and radiance filtering steps

both only depended on voxel grid resolution. The depth prepass also only varied with

respect to screen resolution. The final shading predictably depended on both voxel

grid resolution and screen resolution. However, larger voxel grid resolutions did not

affect the final shading times by much at a given screen resolution, with approximately

a 1.5ms difference between using a voxel resolution of 64 versus 256. Ultimately, the

time spent for the shading dominates all other render passes and thus makes itself a

prime target for any future work on optimizing for speed.

5.2.2 Tessellated Voxelization

The result of shading the scene with both voxelization methods is shown in

Figure 5.3. First, we notice the rasterized approach generates ‘smoother’ voxels.

This is a result of the rasterization discretizing the fragments as well as possibly

not generating fragments for small triangles. The tessellated approach, since it

uses the raw vertex positions to compute the voxel position, does not exhibit this

smoothing effect. Also, with the rasterized approach we see cracks on the archs from

imperfect conservative rasterization. The tessellated approach does not have issues

with conservative rasterization. Instead, the issue is with large triangles (such as the

floor): the GPU has a maximum supported tessellation level. Triangles that require a

higher tessellation level than this hardware maximum will end up having holes3.
2As expected, since the main factor for both of these render passes is the size of the shadowmap,

which remained constant at 4096x4096.
3A possible workaround for this would be to subdivide large triangles before voxelizing, such as

when loading in the mesh.

51

(a) (b)

(c)

Figure 5.1: The scene rendered with voxel grid resolutions of 643, 1283, and
2563.

0

5

10

15

7.1
8.2

11.1
9.5 10.2

13.4
11.2

12.8

16.2

Screen Resolution x Voxel Grid Size

T
im

e
(m

s)

Frame Times

Voxelize
Shadowmap

Radiance Injection
Radiance Filtering

Final Shading
Other

Figure 5.2: Graph showing the render pass times. Each bar shows the rel-
ative time contributions of each render pass. The depth prepass is incor-
porated into the Final Shading category and the Other category accounts
for any other miscellaneous tasks done while rendering the frame.

52

Render Pass Render Pass Time (ms)

1280x720 1600x900 1920x1080

64 128 256 64 128 256 64 128 256

Voxelize 0.90 1.13 2.40 0.70 1.12 2.39 0.72 1.15 2.41

Shadowmap 0.69 0.69 0.69 0.69 0.69 0.69 0.68 0.68 0.69

Radiance Injection 0.92 0.92 0.93 0.92 0.92 0.93 0.92 0.92 0.93

Radiance Filtering 0.04 0.10 0.55 0.05 0.10 0.56 0.04 0.10 0.55

Depth Prepass 0.20 0.20 0.20 0.25 0.26 0.25 0.31 0.31 0.36

Final Shading 3.89 4.81 5.32 5.98 6.42 7.10 8.23 9.40 9.75

Total 7.02 8.21 11.12 9.46 10.15 13.43 11.23 12.83 16.31

Table 5.1: Times measured for each render pass for various screen reso-
lutions and voxel grid resolutions. The total timer also accounts for any
other operations performed within each frame (i.e. the sum of the render
pass times is not necessarily the complete time for an entire frame). Vox-
elization is done using the tessellation-based approach.

In terms of both performance and visual quality both voxelization methods are

very similar. Voxelization times for each method are shown in Table 5.2 and graphed

in Figure 5.6, where we see the tessellation-based voxelization is slightly slower than

the rasterization-based approach4. Figure 5.5 compares the final rendered scene with

both voxelization methods. The differences are minor.

Another limitation specific to the rasterized approach is shown in Figure 5.4. The

fragment resolution must be set appropriately for the voxel density5. The tessellated

voxels do not suffer from this issue since we do not rely on the rasterizer to produce

fragments.

Ultimately, both voxelization methods are sufficient for real-time global illumination.
4However both implementations were not heavily optimized.
5This is especially important for the warped voxelization approaches, since the density is not

uniform

53

(a) Rasterized voxels (b) Tessellated voxels

Figure 5.3: Comparison between the scene shaded based on the rasterized
voxels (left) and the tessellated voxels (right).

Figure 5.4: Image showing a limitation of the rasterized approach: the
fragment resolution must be large enough for a particular voxel density.
Otherwise, cracks will occur in the final voxelization.

The (unoptimized) tessellation-based approach is slightly easier to implement and

debug6 but is slower than the rasterization-based approach.
6Since the voxels are written in the tessellation evaluation stage, it is simple to add a geometry

shader that takes the vertices and expands them into cubes, which are then rasterized and shaded
with the vertex color (the same color inserted into the voxel texture).

54

(a) Rasterized voxels (b) Tessellated voxels

Figure 5.5: The final rendered image for both voxelization methods have
negligible visual differences.

Voxel Grid Size
Voxelization Time (ms)

Rasterization-Based Tessellation-Based

64x64x64 0.53 0.70

128x128x128 0.85 1.12

256x256x256 1.91 2.35

Table 5.2: Time spent voxelizing the scene with varying voxel grid resolu-
tions. For the rasterization-based approach the MSAA method of conser-
vative rasterization is used.

5.2.3 Integration of Voxel Cone Tracing into Existing Engines

Voxel cone tracing is an attractive method for adding full global illumination to

existing engines. The necessary information needed for the algorithm should already

be available in most engines. A voxelized representation of the scene can be generated

from any arbitrary triangle mesh using either of the voxelization methods presented.

Other methods for voxelization could also be used if, for example, some geometry is

generated procedurally. For radiance injection the only external inputs required are

shadowmaps (or RSMs) for any lights that will contribute to the indirect lighting.

55

0

0.5

1

1.5

2

2.5

0.53
0.85

1.91

0.7

1.12

2.35

Voxel Grid Size

T
im

e
(m

s)

Voxelization Time

Rasterized
Tessellated

Figure 5.6: Graph comparing the voxelization time for both approaches
at different voxel grid sizes.

Finally, the cone tracing needs surface normals and a TBN matrix (to transform the

cone directions to world space), which will already be available for any engine which

supports normal mapping.

5.2.4 Voxel Warping

Recall that the goal of voxel warping is to achieve a nonuniform voxel density.

Ideally, this results in finer lighting detail for those areas that have increased density.

Other approaches to increasing voxel resolution include clipmaps and octrees, as

discussed in the Related Works. Fundamentally, however, the voxel resolutions were

restricted to fixed sizes. With voxel warping we investigated how lifting this restriction

would affect the voxelization quality.

The first method of voxel warping used a warp function to adjust the voxel density

based on distance from the camera. Figure 5.7 shows a visual representation of the

density. The effect of the warping on the final lighting is fairly minimal, as seen in

Figure 5.8. The big problem with voxel warping arises when the camera moves, since

the continuously changing resolution causes voxels to flicker as they move throughout

56

the voxel grid. Typically when the voxel sizes are all uniform this is fixed by snapping

the voxel grid to discrete steps; but, with voxel warping, there is no single step size

appropriate for all voxels.

Figure 5.7: The scene is colored based on its density along the x axis
(derived from the gradient of the warp function). Blue tints correspond to
a slope of 2 and green corresponds to a slope of 1 (same as no warping).

(a) Without voxel warping (b) With voxel warping

Figure 5.8: The voxel warping only has a small effect on lighting quality
(the reflection of the green curtain is slightly more detailed).

The second method of voxelization utilizes perspective projection to determine

the voxel sizes. The motivation behind this is for voxel sizes to correspond to their

respective sizes in screen space. The lighting quality for this approach is noticeably

more detailed than with the warp function, as seen in Figure 5.9, however the temporal

flickering issues are still apparent. With future work, we think this can be alleviated

or eliminated.

57

(a) Without voxel warping (b) With voxel warping

Figure 5.9: The perspective voxel warping has a noticeable effect on light-
ing quality.

58

Chapter 6

CONCLUSIONS

In this work we implemented a real-time global illumination algorithm based on

voxel cone tracing. We experimented with a tessellation-based voxelization method

and nonuniform voxelization. Various aspects of our algorithm, including performance

and visual quality, are evaluated and discussed. We find both rasterization-based and

tessellation-based voxelization are similar in terms of both performance and voxelization

quality. The voxel warping techniques provide promising results for further research.

Most importantly, we provide a simple and cross platform implementation for future

work.

6.1 Future Work

The goal of voxel warping was to increase voxel density for more detailed lighting as

well as more efficiently use space within a 3D texture (and without the complexities of

a sparse voxel octree). Unfortunately, having continuous voxel sizes makes minimizing

temporal flickering difficult. To achieve the same goals while still having fixed voxel

sizes, an approach to storing the voxels based on cascaded sparse 3D textures seems

promising. Sparse textures (provided via the ARB_sparse_texture extension for

OpenGL) are analogous to classic virtual memory systems: not all parts of the

texture are actually allocated in memory. Only the parts of the voxel texture that

are used would require memory (of course the implementation allocates in fixed-sized

chunks, similar to pages in virtual memory). This approach would (ideally) combine

the adaptive storage of octrees with the adaptive detail and hardware texture filtering

of cascaded 3D textures.

59

For continued work on perspective voxel warping, exploring how to reduce temporal

flickering would be worthwhile. Currently, voxels are aligned perpendicularly to

the camera (a result of the view frustum having perpendicular near and far planes).

Instead, curving the voxels may help reduce flickering when rotating the camera since

the boundaries between adjacent voxels would be smooth. A possible way to do

this might be to represent the voxels using spherical coordinates instead of cartesian

coordinates.

Tessellated voxelization may lend itself well to a single-pass multi-resolution

voxelization. Consider voxelizing a scene when using a cascaded 3D texture. With

rasterization-based voxelization, the fragment resolution must be set to the maximum

density required (for a single pass approach). This is wasteful for all areas of the

texture where that high density isn’t required. A multi-pass approach could be used

instead, but this introduces overhead based on how many passes are needed. With

tessellation-based voxelization, the density is configured dynamically in the tessellation

control shader, and thus a multi-resolution voxelization should be achievable in a

single pass without ‘over-voxelizing’ the lower resolution parts of the scene.

Another potential area of improvement is using alternative methods for storing

radiance. For example, a spherical harmonics representation or ambient dice [19]

representation could be used. This would have impacts on both lighting quality,

performance, and memory usage. In addition, the use of anisotropic methods to reduce

light filtering through solid objects could also be added.

An interesting topic to explore is dynamically adjusting the cone tracing step based

on factors such as local geometric surface complexity or distance from the camera. For

example, Panteleev discusses computing indirect lighting at a reduced resolution and

then interpolating the resulting lighting for smooth surfaces [36]. Interpolation was

also used for RSMs to reduce the amount of computation [14]. Other miscellaneous

60

optimizations for voxel cone tracing could also be pursued, such as only updating

subregions of the voxel volume or filtered radiance at a time [33].

61

BIBLIOGRAPHY

[1] Mac computers that use OpenCL and OpenGL graphics.

https://support.apple.com/en-us/HT202823. Accessed: 2018-05-11.

[2] NVIDIA VXGI. https://developer.nvidia.com/vxgi. Accessed: 2017-10-19.

[3] Tessellation — OpenGL Wiki, 2017. [Online; accessed 26-May-2018].

[4] T. Akenine-Möller and T. Aila. Conservative and tiled rasterization using a

modified triangle set-up. Journal of graphics tools, 10(3):1–8, 2005.

[5] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering 3rd

Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[6] J. F. Blinn. Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph.,

12(3):286–292, Aug. 1978.

[7] M. Bunnell. Dynamic ambient occlusion and indirect lighting. Gpu gems,

2(2):223–233, 2005.

[8] B. Burley and W. D. A. Studios. Physically-based shading at disney. In ACM

SIGGRAPH, volume 2012, pages 1–7, 2012.

[9] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics.

ACM Trans. Graph., 1(1):7–24, Jan. 1982.

[10] C. Crassin. In SIGGRAPH 2012 Course : Beyond Programmable Shading. ACM

SIGGRAPH, 2012.

[11] C. Crassin and S. Green. Octree-based sparse voxelization using the gpu

hardware rasterizer. In P. Cozzi and C. Riccio, editors, OpenGL Insights, pages

303–319. CRC Press, July 2012.

62

https://support.apple.com/en-us/HT202823
https://developer.nvidia.com/vxgi

[12] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: Ray-guided

streaming for efficient and detailed voxel rendering. In Proceedings of the 2009

Symposium on Interactive 3D Graphics and Games, I3D ’09, pages 15–22, New

York, NY, USA, 2009. ACM.

[13] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann. Interactive indirect

illumination using voxel cone tracing. In Computer Graphics Forum, volume 30,

pages 1921–1930. Wiley Online Library, 2011.

[14] C. Dachsbacher and M. Stamminger. Reflective shadow maps. In Proceedings of

the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05, pages

203–231, New York, NY, USA, 2005. ACM.

[15] J. de Vries. LearnOpenGL. Licensed under CC BY 4.0 by

https://twitter.com/JoeyDeVriez.

[16] H. Doghramachi. Rasterized voxel-based dynamic global illumination. In

W. Engel, editor, GPU Pro 4, pages 155–171. CRC Press, 2013.

[17] E. Eisemann and X. Décoret. Single-pass gpu solid voxelization for real-time

applications. In Proceedings of graphics interface 2008, pages 73–80. Canadian

Information Processing Society, 2008.

[18] Y. Fei, B. Wang, and J. Chen. Point-tessellated voxelization. In Proceedings of

Graphics Interface 2012, GI ’12, pages 9–18, Toronto, Ont., Canada, Canada,

2012. Canadian Information Processing Society.

[19] M. Iwanicki and P.-P. Sloan. Ambient Dice. In M. Zwicker and P. Sander,

editors, Eurographics Symposium on Rendering - Experimental Ideas &

Implementations. The Eurographics Association, 2017.

[20] Juan Linietsky, Ariel Manzur, and contributors. Godot engine.

63

https://creativecommons.org/licenses/by/4.0

[21] J. T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,

20(4):143–150, Aug. 1986.

[22] V. Kämpe, E. Sintorn, and U. Assarsson. High resolution sparse voxel dags.

ACM Transactions on Graphics (TOG), 32(4):101, 2013.

[23] A. Kaplanyan. Light propagation volumes in cryengine 3. ACM SIGGRAPH

Courses, 7:2, 2009.

[24] A. Kaplanyan and C. Dachsbacher. Cascaded light propagation volumes for

real-time indirect illumination. In Proceedings of the 2010 ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, I3D ’10, pages 99–107, New

York, NY, USA, 2010. ACM.

[25] B. Karis and E. Games. Real shading in unreal engine 4. Proc. Physically Based

Shading Theory Practice, 2013.

[26] A. Keller. Instant radiosity. In Proceedings of the 24th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pages 49–56,

New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[27] J. Kessenich. The OpenGL Shading Language. The Khronos Group Inc., June

2017. Version 4.5.

[28] S. Lagarde and C. Rousiers. Moving frostbite to physically based rendering. part

of ACM SIGGRAPH2014 Course: Physically Based Shading in Theory and

Practice, 2014.

[29] S. Laine and T. Karras. Efficient sparse voxel octrees. IEEE Transactions on

Visualization and Computer Graphics, 17(8):1048–1059, 2011.

[30] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface

construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, Aug. 1987.

64

[31] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain rendering using nested

regular grids. ACM Trans. Graph., 23(3):769–776, Aug. 2004.

[32] M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke. Real-time global

illumination using precomputed light field probes. In Proceedings of the 21st

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’17,

pages 2:1–2:11, New York, NY, USA, 2017. ACM.

[33] J. McLaren. Graphics deep dive: Cascaded voxel cone tracing in the tomorrow

children. https://www.gamasutra.com/view/news/286023/Graphics_Deep_

Dive_Cascaded_voxel_cone_tracing_in_The_Tomorrow_Children.php, 2016.

Accessed: 2017-10-19.

[34] D. Meagher. Geometric modeling using octree encoding. Computer Graphics and

Image Processing, 19(2):129 – 147, 1982.

[35] F. Meinl. Sponza atrium.

http://www.crytek.com/cryengine/cryengine3/downloads/.

[36] A. Panteleev. Practical real-time voxel-based global illumination for current gpus.

http://on-demand.gputechconf.com/gtc/2014/presentations/S4552-rt-

voxel-based-global-illumination-gpus.pdf, 2014. Accessed: 2018-05-02.

[37] M. Paulin. GigaVoxels: A voxel-based rendering pipeline for efficient exploration

of large and detailed scenes. PhD thesis, Karlsruhe Institute of Technology, 2011.

[38] A. Pestana. Base color, roughness and metallic textures for sponza.

http://www.alexandre-pestana.com/pbr-textures-sponza/.

[39] M. Pharr, W. Jakob, and G. Humphreys. Physically based rendering: From

theory to implementation. Morgan Kaufmann, 2016.

65

https://www.gamasutra.com/view/news/286023/Graphics_Deep_Dive_Cascaded_voxel_cone_tracing_in_The_Tomorrow_Children.php
https://www.gamasutra.com/view/news/286023/Graphics_Deep_Dive_Cascaded_voxel_cone_tracing_in_The_Tomorrow_Children.php
http://www.crytek.com/cryengine/cryengine3/downloads/
http://on-demand.gputechconf.com/gtc/2014/presentations/S4552-rt-voxel-based-global-illumination-gpus.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4552-rt-voxel-based-global-illumination-gpus.pdf
http://www.alexandre-pestana.com/pbr-textures-sponza/

[40] B. T. Phong. Illumination for computer generated pictures. Commun. ACM,

18(6):311–317, June 1975.

[41] M. Schwarz and H.-P. Seidel. Fast parallel surface and solid voxelization on gpus.

ACM Trans. Graph., 29(6):179:1–179:10, Dec. 2010.

[42] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification. The

Khronos Group Inc., June 2017. Version 4.5.

[43] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments. ACM

Trans. Graph., 21(3):527–536, July 2002.

[44] J. Story. Don’t be conservative with conservative rasterization.

https://developer.nvidia.com/content/dont-be-conservative-

conservative-rasterization, November 2014.

[45] M. Takeshige. Basics of GPU voxelization.

https://developer.nvidia.com/content/basics-gpu-voxelization,

March 2015.

[46] C. C. Tanner, C. J. Migdal, and M. T. Jones. The clipmap: A virtual mipmap.

In Proceedings of the 25th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’98, pages 151–158, New York, NY, USA,

1998. ACM.

[47] WhiteTimberWolf. Octree2.

https://commons.wikimedia.org/wiki/File:Octree2.svg, 2010. Licensed

under CC BY-SA 3.0 by WhiteTimberWolf.

[48] L. Williams. Casting curved shadows on curved surfaces. SIGGRAPH Comput.

Graph., 12(3):270–274, Aug. 1978.

66

https://developer.nvidia.com/content/dont-be-conservative-conservative-rasterization
https://developer.nvidia.com/content/dont-be-conservative-conservative-rasterization
https://developer.nvidia.com/content/basics-gpu-voxelization
https://commons.wikimedia.org/wiki/File:Octree2.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Real-Time Global Illumination
	Our Contribution

	Background
	Representing Geometry
	Triangles
	Voxels

	Computer Graphics Primer
	The Graphics Pipeline and Rasterization
	Transforms
	Compute Shaders
	Tessellation
	Textures and Mipmapping

	Spatial Data Structures
	3D Textures
	Clipmaps
	Octrees

	Radiance and the Rendering Equation
	Raytracing
	Monte Carlo Raytracing
	Raymarching

	Related Work
	Reflective Shadow Maps
	Cascaded Light Propagation Volumes
	Rasterized Voxel-Based Dynamic Global Illumination
	Voxel Cone Tracing

	Implementation
	Voxelization
	Rasterization-Based Approach to Voxelization
	Tessellation-Based Approach to Voxelization

	Shadow Mapping
	Radiance Injection
	Radiance Filtering
	Shading
	Direct Lighting
	Indirect Lighting (Voxel Cone Tracing)

	Voxel Warping
	Using a Warp Function
	Perspective Warping

	Miscellaneous
	Depth Prepass
	Temporal Filtering

	Results and Discussion
	Test Setup
	Analysis
	Global Illumination
	Tessellated Voxelization
	Integration of Voxel Cone Tracing into Existing Engines
	Voxel Warping

	Conclusions
	Future Work

	BIBLIOGRAPHY

