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  The greying of the American population is certain to prompt greater demand for assistance 

with key financial decisions.1 The consequences of poor financial capability for older adults can 

be numerous and serious, including being uninformed, making mistakes with credit, drawing down 

retirement assets too quickly, and being defrauded by financial predators. And because older 

persons are close to the peak of their wealth accumulation, they are an ideal target for fraud. 

Moreover, they may be unable to recoup financial losses, thereby becoming dependent on public 

assistance. Additional consequences for seniors include financial insecurity, loss of financial 

autonomy, emotional pain and suffering, and feelings of shame and depression (Button et al., 2010; 

Deem, 2000; FINRA Investor Education Foundation, 2015). In fact, a representative survey by the 

FINRA Investor Education Foundation (2013) found that more than 80% of adults of all ages had 

been solicited for potentially fraudulent offers; older Americans were particularly likely to be the 

targets and were more likely to lose money when targeted. Conservative estimates of fraud costs 

suggest annual losses of $50 billion among all U.S. adults (Deevy, Lucich, and Beals, 2012), with 

the older population at potentially greatest risk.   

 Despite the fact that media attention has increased regarding the threat of consumer fraud 

among the aging population, researchers have only made limited progress in identifying at-risk 

groups for targeted prevention and intervention (Deevy, Lucich, and Beals, 2012). One challenge 

has been inconsistent findings regarding how age, socioeconomic status, and financial 

sophistication shape the risk of fraud victimization. For example, financial literacy is thought to 

be a protective factor, yet in one study, investment fraud victims scored higher than non-victims 

on financial literacy questions (Consumer Fraud Research Group, 2006). Early survey research by 

                                                 
1 See Agarwal et al (2009) and Karp and Wilson (2012). Span (2011) noted, “Impaired seniors are at risk not only 
because unscrupulous outsiders (or their own family members) can defraud them, but because they themselves make 
self-destructive decisions as shoppers or investors.”  
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Lee and Soberon-Ferrer (1997) reported that consumers were more vulnerable if they were older, 

less educated, single, and poor, but more recent national telephone surveys by the Federal Trade 

Commission (FTC) indicated that victimization rates were highest among middle aged Americans 

and lowest among older adults age 65+ (Anderson, 2013; 2007; 2004).  

One potential explanation for these discrepancies is that prior studies have often been non-

representative and cross-sectional, focused on specific types of fraud, and conducted in 

laboratories where fraud was measured using behavioral susceptibility questions rather than actual 

experiences of victimization. For this reason, the Financial Fraud Research Center at the Stanford 

Center on Longevity recommended that representative longitudinal data be used to differentiate 

the antecedents from the consequences of fraud (Deevy, Lucich, and Beals, 2012). Accordingly, 

the present study uses the Health and Retirement Study (HRS), a nationally representative sample 

of U.S. adults over age 50, to identify what demographic, socioeconomic, health and cognitive 

factors are associated with fraud, and how mental health, physical health, and financial status are 

affected by victimization. An additional advantage of the HRS is that it is a particularly rich survey, 

providing an extensive set of information about the older population. 

In what follows, we first offer an overview of the literature regarding who tends to be 

victimized and what the consequences are of such patterns. Next we outline our research methods 

using the Leave Behind Questionnaires (LBQ) administered in the HRS, followed by a discussion 

of our findings. We conclude with some thoughts on limitations, paths for future research, and 

implications for policymakers.  

 

Prior Literature 
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Profiling Fraud Victims. It is well known that many older persons are financially unsophisticated, 

and financial illiteracy has been linked to a set of poor financial decisions. 2  Moreover, there is 

often a disconnect between actual financial knowledge and perceived financial knowledge, i.e., 

what people know versus what they think they know, and this disconnect is particularly large 

among the old (Lusardi and Tufano, 2015). Such disconnect can lead not only to poor retirement 

planning, but also to people falling for outright scams.   

Prior research has further shown that many areas of financial decision-making decline with 

age (e.g., Plassman et al., 2008; Tymula et al., 2013), and these declines can precipitate fraud and 

financial abuse (e.g., Litchtenberg, 2016; Stiegal, 2012). Han and colleagues (2016) found that, 

compared to cognitively normal adults, those with mild cognitive impairment demonstrated greater 

susceptibility to scams. This built on their previous research showing that, even among cognitively 

healthy older adults, those who demonstrated subclinical problems in decision-making were more 

vulnerable (Boyle et al. 2012). In neuroscience research, Asp et al. (2012) reported that damage to 

parts of the ventromedial prefrontal cortex, an area involved in appraising whether information is 

true or false and that sometimes atrophies with age, did result in greater credulity toward 

misleading advertisements. These studies, however, did not measure fraud victimization directly; 

rather they inferred susceptibility based on responses to a questionnaire on risky financial decision-

making or interest in purchasing items presented in hypothetical advertisements. Using brain 

imaging techniques, Spreng and colleagues (2017) found that elder financial exploitation victims 

had cortical thinning in brain regions associated with processing emotional and social information 

compared to a matched sample of targeted but non-victimized controls. Nevertheless, the 

                                                 
2 For a recent literature review, see Lusardi and Mitchell (2014) and Lusardi, Mitchell, and Curto (2014). 
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exploitation had occurred months and sometimes years prior to the neuroimaging study, and they 

were unable to assess participants’ functioning prior to or at the time they were exploited. 

According to Ross, Grossmann, and Schryer (2014), the perception that older adults are 

more likely to be victims of consumer fraud has been driven by laboratory research on age-related 

declines in cognitive functioning, as well as negative stereotypes of older people as being lonely 

and overly trusting. For instance, one laboratory study found that older adults were less sensitive 

to and poorer at recognizing untrustworthy facial characteristics than were younger adults (Castle 

et al., 2012). Similarly, Ruffman, Murray, Halberstadt, and Vater (2012) found that older adults 

performed worse than young adults when asked to determine whether people were telling the truth 

or lying. In other words, though laboratory studies can provide insights on how information-

processing changes with age, they may not necessarily translate to real-world behavior.  

Perhaps as a result of this, consumer fraud surveys find that older adults report lower rates 

of victimization than younger and middle-aged adults. Only 7.3% of adults age 65-74 and 6.5% of 

adults age 75+ reported being victimized by fraud in the past year, or about half the 14.3% of 

adults age 45-54 who said they had been victimized over the same time period (in 2011) 

(Anderson, 2013). An early study using a national random probability sample of Americans 18 

and older found that age was negatively associated with victimization (Titus, Heinzelmann, and 

Boyle, 1995). Similarly, three consecutive national telephone surveys by the FTC all supported 

the finding that older persons were less likely to be victims of most types of fraud relative to adults 

of other ages (Anderson, 2013, 2007, 2004), aside from bogus prize promotions (Anderson, 2013). 

Most recently, the Stanford Center on Longevity used an online survey panel that was 

demographically representative of the US adult population to pilot a fraud prevalence survey. The 
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average age of victims was nine years younger than the average age of non-victims (age 41 

compared to age 50) (DeLiema, Mottola, and Deevy, 2017).  

A concern with consumer fraud surveys is that respondents may be reluctant or unwilling 

to report incidences of fraud. Another concern is that many either rely on a non-representative 

sample of confirmed victims identified by law enforcement or complaint agencies (e.g., Pak and 

Shadel, 2011; Consumer Fraud Research Group, 2006), or a random sample of adults who may 

have experienced fraud but who did not necessarily report it to authorities or decide to disclose 

victimization when interviewed for the survey (e.g., Anderson, 2013, 2007, 2004; Schoepfer and 

Piquero, 2009; Titus Heinzelmann, and Boyle, 1995; Investor Protection Trust, 2016). Other 

victim profiling studies used experimental manipulations and proxy questionnaires to assess 

vulnerability, but they did not measure how subjects responded when confronted with an attractive, 

yet bogus, opportunity. These methodological inconsistences make it challenging to compare risk 

factors across studies and draw reliable conclusions about which elderly groups are most 

vulnerable.   

A major limitation of the aforementioned surveys is that they were cross-sectional and 

retrospective, so the analysts could not separate the antecedents from the consequences of 

experienced fraud. The FTC found that people who had experienced negative life events were also 

likely to report victimization by debt-related fraud and bogus prize promotion scams (Anderson, 

2013), and the Consumer Fraud Research Group (2006) reported that victims were more likely 

than non-victims to have experienced difficulties maintaining their homes, have been in financial 

trouble, suffered from serious injury or illness, or have been unemployed prior to falling for a 

lottery or investment scam. Yet these findings were based on victims’ retrospective reports, and in 

some cases may have immediately followed rather than preceded victimization. One research 
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group (Lichtenberg, Stickney, and Paulson, 2015) tried to untangle these endogeneity issues using 

the HRS, and the team reported that the younger and better-educated were more likely to report 

fraud between 2008 and 2012. It also found that depression and low social needs fulfillment were 

significant predictors. The limitation of that study was that some of the respondents had already 

experienced fraud up to five years before 2008, which obscured the direction of the relationship 

between psychosocial vulnerability and victimization. 

Consequences of Victimization. Relatively few clear research findings are available on the 

consequences of elder fraud. There have been efforts to estimate the total cost of consumer scams, 

with median losses ranging from $60 (Anderson, 2007) to $99 per victim (DeLiema, Mottola, and 

Deevy, 2017).3  Results are heterogenous, however, with some people suffering much greater 

losses. For example, in a small sample of 24 older fraud victims whose cases were investigated by 

adult protective services, mean losses were approximately $619,000 per victim, and they ranged 

from $1,700 to $5,000,000; moreover, that was in addition to residential and commercial real estate 

properties taken by financial predators (DeLiema, 2017).   

In addition to direct financial losses resulting from fraud, people may suffer other costs 

including legal fees and time off from work to report incidents, as well as emotional consequences 

such as shame, frustration, depression, and feelings of betrayal (Button et al. 2014; Deem 2000). 

The FINRA Investor Education Foundation (2015) assessed the non-traditional costs of financial 

fraud by surveying 600 victims (300 men and 300 women). Over half of them reported severe 

stress, 38% had difficulty sleeping, and 35% experienced depression as a direct result of the 

incident. Other reactions were anger (78%), regret (70%), and feeling betrayed (68%). Nearly half 

of the survey respondents paid $100-1,000 in additional costs associated with the incident such as 

                                                 
3 An earlier study (Titus, Heinzelmann and Boyle 1995) reported mean losses of $216 per victim in a representative 
probability sample of 1,246 respondents. 
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late fees and bounced check fees, and 29% paid over $1,000 in indirect costs. The Stanford Center 

on Longevity reported similar emotional and financial consequences of fraud using an online panel 

(DeLiema, Mottola, and Deevy, 2017). Thirteen percent of victims reported that, as a direct result 

of the incident, they had difficulty meeting their monthly expenses or paying their bills, and over 

half (52%) stated that the incident was moderately or severely distressing. Eleven percent sought 

professional or medical help such as visiting a doctor or nurse, seeking counseling/therapy, and 

taking medication.  

 While these findings shed light on the short-term impact of fraud victimization, long-term 

outcomes are unclear. And as with most research profiling the experience of victims, existing 

studies to date have all been cross-sectional and retrospective. In the next section we outline our 

approach to analyzing the questions at hand.   

 

Research Methodology Using the Health and Retirement Study  

Sample. The data used in the analysis below are drawn from the U.S. Health and Retirement Study 

(HRS), a nationally-representative longitudinal panel survey of about 22,000 individuals over the 

age of 50. The core survey, first administered in 1992, was divided into subject modules asking 

respondents about family structure, physical and cognitive functioning, health conditions, 

employment, finances, life experiences, attitudes, and behaviors. Subsequently, new cohorts have 

been added to the study every six years until their deaths. Additionally, African Americans and 

Hispanics are oversampled.4   

                                                 
4 For additional information on the HRS, see Survey Research Center (ND). All results use baseline HRS sample 
weights. 
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Our research uses information from the 2008-2012 core HRS surveys, as well as the 

Psychosocial Leave-Behind Participant Lifestyle Questionnaires (the “LBQ”). The LBQs were 

delivered to half of the eligible HRS sample on a rotating schedule, so that each respondent 

received the questionnaire every other wave (every four years). It was designed to be completed 

by the respondents and returned by mail. The samples available for our analysis were 5,180 for 

2008, 5,867 for 2010, and 414 for 2012; the pooled sample (with one observation per person) 

totaled 11,461.5 Unlike the core HRS, the LBQs were not administered to proxy respondents, so 

any fraud that might have been experienced by those with severe cognitive or physical impairment 

or those living in institutional settings could not be captured. 

Variables 

Measuring fraud victimization. The 2008, 2010, and 2012 LBQ asked respondents if they had 

been the victims of fraud in the past five years, which is the main question we focus on in our 

analysis in this paper. Additionally, if the respondent indicated that he or she had been victimized, 

the survey asked which year the fraud occurred. Fifty-five respondents who reported victimization 

mentioned a year that was more than five years in the past, namely prior to 2003 for the 2008 LBQ 

respondents, 2005 for the 2010 respondents, and 2007 for the 2012 respondents. These individuals 

were excluded from the analyses.6  

Socio-demographic control variables. Respondent characteristics included in all analyses below 

are a conventional set of controls including sex (male/female), age (in years), marital status 

(married/partnered versus single/divorced/separated/widowed), race (White/non-White), ethnicity 

(Hispanic/non-Hispanic), educational attainment (in years), number of children, total non-housing 

                                                 
5  Overall response rates for the LBQ were 90% (2006), 85% (2008), 77% (2010), and 74% (2012), out of LBQ 
eligible participants. 
6  Only 55 respondents failed to report a valid fraud year, and they were excluded from the analysis below. 
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wealth and total housing wealth. Total non-housing wealth includes the net value of stocks, mutual 

funds, investment trusts, checking, savings, money market accounts, CDs, government savings 

bonds, and T-bills, bonds and bond funds, and all other savings minus the value of all debt. Total 

housing wealth includes the net value of the household’s primary (and if relevant, secondary) 

residence. In the multivariate analyses, wealth variables were divided by 100,000. All wealth 

figures are in 2012 dollars.  

Cognitive functioning. To measure cognitive functioning, HRS respondents were administered 

the Telephone Interview for Cognitive Status (TICS) at each survey wave (Folstein, Folstein, and 

McHugh, 1975). The TICS is a standardized assessment containing 35 items that measure word 

list memory, semantic knowledge, orientation, language, attention, mathematical skills, repetition, 

and nonverbal praxis. One point is given for each correct answer and higher scores indicate better 

cognitive performance. Epidemiological studies and clinical trials using the TICS have shown it 

to have high reliability and validity (e.g., Brandt, Spencer, Folstein, 1988; Welsh et al., 1993).   

Physical and mental health. Depression was measured as the total number of symptoms of 

depression (yes/no) reported on the 8-item Center for Epidemiologic Studies Depression scale 

(CES-D; Radloff, 1977). Higher CES-D scores reflect more symptoms in the past week and 

include indicators such as feeling lonely, sad, and restless sleep. Self-rated health was 

dichotomized such that 1=Excellent/Very Good/Good health and 0=Fair/Poor health.  

Baseline characteristics (pre-fraud).  For time-varying characteristics such as wealth, cognitive 

functioning, and self-rated health, measures were drawn from the HRS survey administered six 

years before each respondent filled out the LBQ. For example, baseline data were drawn from the 

2002 HRS wave for those who completed the LBQ in 2008. For this group of respondents, fraud 

could have occurred between 2003 and 2008 (i.e., within the previous five years). Similarly, for 
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respondents who completed the LBQ in 2010, baseline data were drawn from 2004; and for those 

who completed the LBQ in 2012, baseline data were drawn from 2006. Twenty-six percent of the 

LBQ respondents were missing baseline data, and we dropped these cases from the analysis (more 

detail on sample construction is provided in Appendix Figure 1).  

Post-fraud outcomes. Our measures of post-fraud outcomes include the variables identified above 

including cognitive functioning, depression, non-housing net wealth, and housing net wealth. All 

outcomes were measured in 2008, 2010, and 2012, respectively, corresponding to the year when 

the participant completed the LBQ. To measure differences pre-post, we control for respondents’ 

baseline measures of each outcome as well as the self-report of whether he or she had been 

victimized. This represents a unique advantage of having longitudinal data. 

Methodology 

Factors associated with being victimized. Probit models were used to evaluate which factors 

were associated with people having reported being the subject of fraud victimization. We estimated 

separate models for each of the three cohorts (2008, 2010, and 2012) and also for a pooled sample. 

In addition, we used Latent Class Analysis (LCA) to categorize victims into subtypes based on 

their demographic characteristics. LCA tests the hypothesis that fraud victims differed from one 

another on key demographic and socioeconomic indicators, and it is a useful way to characterize 

heterogeneity across victims. LCA is similar to cluster analysis and uses a maximum likelihood 

approach to estimate the latent class structure based on the observed variables in the model, here, 

victim demographic and socioeconomic characteristics. These models do not rely on assumptions 

of linearity or normal distribution often violated in regression analysis, as this can lead to biased 

interpretations of the parameter estimates (Magidson and Vermunt, 2004).  
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All characteristics used to estimate the latent classes were categorical. The list includes age 

(less than 65 / age 65 or older), sex (male / female), race (white / non-white), marital status (married 

/ divorced or separated / widowed / never married), education (less than college / some college or 

more), and total household wealth. Total household wealth was divided into quartiles based on the 

overall income distribution of the pooled victim sample: 1=less than $87,780; 2=$87,781-

$309,824; 3=$309,825-$826,880; and 4=$826,881 or more). Figure 1 presents the latent class 

model. 

Figure 1 here  

We used SAS V9.4 to identify the number of distinct victim subtypes (classes, k) in the pooled 

sample of victims who reported fraud in the 2008, 2010, and 2012 LBQs (the number of 

observation is 5,362, 6,043, and 438 for 2008, 2010 and 2012, respectively, for a total sample of 

11,843 observations. This analysis also estimates the relative size of each subtype (proportion of 

victims within each subtype, γ,), and the distribution of characteristics within each subtype 

(probability of each characteristic based on subtype membership, ρ). Using stepwise addition, k+1 

classes were added until the best solution for the data was reached (Lanza and Rhoades, 2013). 

The optimal value of k was determined based on an assessment of which model, e.g., four classes 

versus five classes, offered the most parsimonious grouping of individuals into subtypes and on 

four indicators of model fit: the Akaike Information Criterion (AIC), the Bayesian Information 

Criterion (BIC), relative entropy, and the Likelihood Ratio Statistic (G2). Lower AIC, BIC, and G2 

values are preferred.7 The optimal class solution has high relative entropy, low AIC and BIC 

                                                 
7 Relative entropy is a measure from 0 to 1 of how well individuals are assigned to their latent classes. A value of 1 
means that respondents are perfectly assigned to into one and only one latent class, indicating excellent class 
differentiation. Values close to 0 indicate uncertainty in classification. The bootstrap likelihood ratio test (BLRT) 
assesses the relative improvement in fit between nested models such as a model with k classes (e.g., four victim 
subtypes) versus a smaller model with k-1 classes (e.g., three victim subtypes). 
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values, and a G2 value that is significantly smaller than the G2 value of the k-1 model based on the 

BLRT results. As important, the characteristics of victims within a subtype should be distinct from 

the characteristics of victims assigned to other subtypes. In other words, the subtypes must be 

qualitatively and conceptually distinct. 

Outcomes from fraud victimization. Ordinary least squares (OLS) regression models were used 

to determine the effects of victimization on cognitive functioning, depression, non-housing wealth, 

and net housing wealth, controlling for baseline status. Because self-rated health was coded 

dichotomously (poor/fair = 0; good/very good/excellent = 1), fraud’s impact on self-rated health 

was estimated using Probit regression. All outcome (post-fraud) variables were measured in 2008, 

2010, and 2012 as part of the core HRS, and these corresponded to when the participant completed 

the LBQ. As mentioned earlier, all baseline data were drawn from the corresponding HRS core 

survey administered six years before (i.e., 2002, 2004, or 2006). A dichotomous fraud 

victimization indicator is included as an independent variable in each of these models. As with the 

Probit models for fraud victimization, OLS models were weighted and estimated separately for the 

2008, 2010, and 2012 LBQ samples, as well as the pooled sample. 

 

Results 

Descriptive statistics 

Table 1 presents the characteristics of the 2008, 2010, and 2012 respondent samples and 

the pooled sample. Over half (54%) of respondents completed the LBQ in 2010, followed by 2008 

(41%). Only 5% of respondents in the sample completed the 2012 LBQ. The latter individuals 

were either new to the HRS or did not complete the LBQ in 2008 or 2010. The fraction of persons 

reporting they had been the victims of fraud within the five-year retrospective window was 4% (in 
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2008), 5% (in 2010), and 7% (in 2012). The overall rate for the pooled sample was 5%. These 

figures are less than half the national prevalence rate for all U.S. adults that was estimated for 2011 

(Anderson, 2013), but similar to AARP’s finding that 4% of adults ages 45 years and older were 

victims of a major consumer swindle in the past year (AARP, 2003). Both the AARP survey and 

the HRS used a single item to estimate fraud prevalence, whereas studies that report higher 

prevalence rates use multiple items to ask about specific subtypes.  

 Table 1 here 

Respondents for all three survey years combined (pooled sample) were 63.2 years old (SD= 

9.6), on average, at baseline; 45% were male, 71% were married, 88% were White, and 6% 

reported that they were Hispanic or Latino. On average, respondents had 12.9 years of education 

(SD = 3.0) and 3 children (SD=2.0). At baseline, respondents scored an average of 1.4 (SD = 1.9) 

on the CES-D, with average cognitive functioning of 24.0 (SD = 4.5).  Mean household net wealth 

was $569,209 (SD = $1,210,342), net housing wealth $376,051 (SD = $1,041,735), and non-

housing net wealth $376,051 (SD = $1,041,735).  

Follow-up was measured from the close of the five-year fraud reporting window. At that 

point, the average CES-D score for the pooled sample was 1.4 (SD = 2.0), cognitive functioning 

averaged 22.9 (SD = 4.9), total household net wealth was $507,679 (SD = $1,181,200), net housing 

wealth was $173,511 (SD = $411,076), and non-housing net wealth was $334,167 (SD = 

$934,145). Eighty percent of the sample reported good/excellent health at baseline, while 74% 

reported having this health status at follow-up. 

Predictors of fraud 

 Results from the Probit models of fraud victimization appear in Table 2. Our results 

indicate that there is considerable variability in risk factors by survey year. For instance, in 2008, 
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2010, and the pooled samples, age was negatively associated with fraud victimization. As age 

increased, the likelihood of reporting fraud occurring between one and six years after baseline 

decreased (βpooled= -.001, p < .001). Males were more likely to report victimization than females, 

but only among the 2012 respondents (β2012= .026, p < .01) and the pooled sample (βpooled= .009, 

p < .05). Educational attainment was significant in the 2010 sample and the pooled sample, such 

that as years of education increase the likelihood of reporting fraud increases (βpooled= .004, p < 

.001). Experiencing more symptoms of depression was also a significant predictor of fraud among 

the 2010 respondents (β2010= .004, p < .01) and the pooled sample (βpooled= .003, p < .01). Number 

of children and net housing wealth were the only significant predictors of fraud among respondents 

in the 2012 sample: β2012= .003, p < .01 and β2012= .002, p < .01, respectively. In the 2010 sample, 

good/excellent self-rated health was negatively associated with fraud occurring between one and 

six years after baseline (βpooled= -.017, p < .05). While in specific sub-samples some of the factors 

were associated with reporting fraud victimization, overall results suggest that there is no single 

reliable predictor of fraud victimization using longitudinal data from the HRS. The most robust 

predictor of fraud was younger age, consistent with cross-sectional survey research (Anderson, 

2013; Schoepfer and Piquero, 2009; Titus Heinzelmann and Boyle, 1995). 

Table 2 here 

Results from latent class analysis  

Model selection: Fit statistics for latent class solutions one through five are presented in Table 3. 

Overall, none of the class solutions offered excellent differentiation of the fraud victims. 

Classification certainly (relative entropy) was also low, suggesting that fraud victims did not fall 

into clear demographic subtypes. Still, the four-class solution offered the best delineation of fraud 

victims into groups. 
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Table 3 here  

From the one- to five-class solutions, G2 values decreased and the BLRT results showed a 

statistically significant improvement in model fit (p < .001). The AIC value was lower in the four-

class solution compared to the two-class solution (269 versus 304), and the three-class solution 

(277). There was little decrease in the AIC value in the five-class model (266), suggesting that this 

was not a better fit for the data. The BIC value in the four-class solution was 454, higher than the 

two-class (395) and three-class (415) solutions, but BIC penalizes models having more parameters. 

Because of this penalization, the BIC statistic provides a useful “upper bound” indicator for 

selecting the optimal class solution (Lanza and Rhoades, 2013). Relative entropy values were 

higher for the three- and four-class solutions (both 0.71) compared to the two-class (0.62) and the 

five-class (0.65) solutions.  

An equally important criterion for determining the optimal number of latent classes is the 

interpretability, or plausibility, of the subtypes within a latent class solution. This assessment is 

based on the conditional probabilities (ρ) within each subtype. Conditional probabilities represent 

the likelihood that a person assigned to a given subtype has a particular characteristic, such as the 

probability that a person in subtype 1 is male, or the probability that a person in subtype 3 is 

married. It is desirable to have ρ values that are close to 0 (low probability that a person possess 

that characteristic) or 1 (high probability that a person possess that characteristic). If ρ values are 

near 0.5, the probability of having that characteristic is near random chance and that subtype is 

poorly differentiated on that characteristic. Thus, high homogeneity on the ρ estimates suggests 

that each subtype is comprised of individuals well-differentiated by the characteristics selected to 

estimate the latent class model. In this analysis, item homogeneity was greater in the four-class 
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solution than the three-class solution, and the distribution of ρ values in the four-class solution was 

more plausible than the five-class solution.  

Victim subtypes: The results of the four-class solution appear in Figures 2 and 3. First we report 

the relative size of each of the four classes (γ), or the proportion of the victims within each subtype. 

Second, we present the distribution of probabilities for each socioeconomic/ demographic 

characteristic according to victim subtype.  

Figures 2 and 3 here 

We assigned the four victim subtypes descriptive labels based on the distribution of 

conditional probabilities. Subtype 1, labeled Low-education White married couples, have a high 

probability of being White (ρ=.96) and married (ρ=.91), and a low probability of having a college 

education or more (ρ=.03). This group is the largest subtype and comprises 40% of all fraud 

victims in the HRS sample. They were not well-differentiated on age, gender, or wealth.  Subtype 

2, Low-income young widows, is the smallest subtype with only 12% of victims. The probability 

that a person in Subtype 2 was younger than age 65 is ρ=.78, and the probability that this person 

was a widow is ρ=.79. Subtype 3, Low-income older adults, comprised one-quarter of the victims 

(24%). This group was likely to be age 65 and older (ρ=.85), and in the lowest wealth quartile (ρQ1 

= .58 versus ρQ4 = 0.002). Subtype 4, High education older White married couples, also made up 

24% of the victims. These individuals had the highest probability of attaining a college education 

(ρ = .94) and being White (ρ = .95). The majority of them were in the two highest wealth quartiles 

(ρQ4 = .49 and ρQ3 = .31).8  

As we can see from these four subtypes, most fraud (~75%) is perpetrated against 

vulnerable groups, such as widows and older couples who do not necessarily have a lot of financial 

                                                 
8 Conditional probabilities for the three-class and five-class solutions are available on request from the authors. 
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resources or education. Although these targets do not offer the same financial returns as wealthier 

targets, they nevertheless suffer financially or emotionally and may be easier to manipulate 

because of their more fragile social and economic status. 

Impact of fraud victimization on physical and mental health and wealth status 

Table 4 presents a summary of the impact of fraud victimization on health and wealth 

measures controlling for baseline status. Fraud had no consistent effect on any of these outcomes 

across all survey years, but was significant in some samples. For example, fraud victims in the 

2008 LBQ sample (who experienced fraud between 2003 and 2008) had poorer cognitive 

functioning at follow-up compared to non-victims (β2008= -0.623, p <.05) controlling on baseline 

characteristics in 2002, yet fraud was not associated with cognitive functioning for either the 2010 

or 2012 waves, nor in the pooled sample. Fraud victimization was also not significantly associated 

with declines in self-rated health or increase in symptoms of depression in any sub-sample or the 

pooled sample after controlling for baseline physical and mental health status and demographic 

characteristics.  

In both 2008 and the pooled sample, those who reported being victimized had less non-

housing wealth, controlling for other factors (β2008= -0.881, p <.05 and βpooled = -0.827, p <.01). 

Fraud victimization occurring sometime between 2005 and 2010 was negatively associated with 

net housing wealth measured in 2010, after controlling for baseline wealth and other characteristics 

(β2010 = -0.396, p <.01), but did not have a significant impact on housing wealth in the 2008, 2012, 

or in the pooled LBQ samples (βpooled= -0.157).9  

Table 4 here 

 

                                                 
9 Detailed results of OLS and probit regression models estimating the impact of fraud on each outcome measure are 
presented in Appendix Tables 1 through 5. 
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Discussion 

Though media reports (e.g., Lewis, 2012; Lloyd, 2012) have stated that older people are 

more susceptible than younger persons to fraud, our research provides a more nuanced set of 

conclusions. In particular, we see variability in the demographic, economic, and health 

characteristics associated with fraud victimization in the older population across survey years. For 

example, the risk associated with being male, in fair/poor health, and having more housing wealth 

differed across the 2008, 2010, and 2012 LBQ samples. Results of the latent class analysis using 

the pooled sample also suggest that victims cannot be classified precisely into distinct subtypes. 

Entropy was 71% for the four-class model and many of the demographic traits within subtypes 

were not well-differentiated: conditional probabilities were often close to 0.50 instead of 0 or 1.  

Taken together, our results suggest that there are no unique risk profiles that characterize 

older fraud victims in the U.S. A probable explanation for these findings is that fraud susceptibility, 

in general, is not specific to a particular demographic group. A variety of fraud schemes target 

different individuals who face particular life circumstances or engage in consumer behaviors that 

make them either more accessible to perpetrators or more susceptible to persuasion. In other words, 

anyone may become a victim under the right circumstances and incentives.  

While there has been considerable research exploring potential risk factors for fraud, no 

studies have previously used longitudinal data to understand the consequences of victimization, 

while controlling for baseline status. Most outcome studies are retrospective: that is, victims are 

asked to recall how the fraud incident affected their sense of well-being and their financial status 

(e.g., FINRA Investor Education Foundation, 2015; DeLiema, Mottola, Deevy, 2017). Our study 

is unique in using panel data to control for baseline characteristics, and it shows that there is no 

single unique outcome associated with reporting being defrauded.   
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Previous authors who profiled victims according to the type of fraud experienced tend to 

agree that people victimized by different scams have different social and demographic 

characteristics. For example, the Consumer Fraud Research Group (2006) and Pak and Shadel 

(2011) reported that not only do victims of investment fraud and bogus lotteries differ 

demographically and socioeconomically from non-victims, they also differ from one another. 

Compared to the general adult population, prize promotion victims are more likely to be single, 

female, less educated, and have an annual income of less than $50,000; by contrast, investment 

fraud victims are more likely to be male, better educated, and have an annual income of over 

$50,000 (Pak and Shadel, 2011). These victim profiles partially overlap with two of the victim 

subtypes identified in our study using LCA: Subtype 4—High education older White married 

couples, and Subtype 2—Low-education young widows. 

The notion that people’s life circumstances and behaviors can impact scam susceptibility 

is consistent with routine activity theory (Cohen and Felson, 1979). Applied to the context of 

financial fraud (DeLiema, 2017; Holtfreter, Reisig, and Pratt, 2008), routine activity theory 

proposes that day-to-day behaviors/routines affect the likelihood that motivated offenders will 

intersect in space and time with suitable targets in the absence of capable guardianship (or 

measures of protection). For example, consumers who engage in risky behaviors such as 

responding to telemarketers, opening spam mail, and making frequent online purchases, are more 

likely to be exposed to scams (AARP, 1996; Reisig and Holtfreter, 2013; Van Wyk and Benson, 

1997).  

Routine activity theory also posits that the “attractiveness” of a potential victim will 

influence the likelihood that someone is targeted by a motivated offender. Older adults with 

physical or mental health problems, along with those who are cognitively impaired, may be seen 
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as attractive targets because of their presumed functional and psychological vulnerability. In the 

HRS, baseline health and cognitive functioning were not associated with victimization, but 

depression symptoms were statistically significant. Lichtenberg, Stickney, and Paulson (2013) also 

found that depression measured in the HRS in 2002 was a significant predictor of fraud occurring 

sometime between 2003 and 2008. This is consistent with our findings using the 2010 LBQ 

respondents (baseline = 2004 survey) and in the pooled sample. Lichtenberg et al. (2013) 

speculated that self-reported symptoms of depression reflect disappointment over discrepancies 

between a person’s expectations for her life and the realities of her current situation. Based on this 

interpretation, a scam artist’s promise to transform financial status or improve emotional well-

being may hold greater appeal for those in a depressed psychological state, causing them to be 

more open to accepting a fraudulent offer. 

A potential victim’s perceived wealth or economic status is another factor that may increase 

his or her attractiveness to financial predators. Although we found no consistent relationship 

between wealth variables and fraud across survey years, prior analysis by the FTC (Anderson, 

2013) found that there was roughly a U-shaped association between income and fraud, such that 

rates of victimization were highest at both upper and lower levels of household income. Adults 

living in middle income households ($40,000-$60,000 per year) reported the lowest rates of 

victimization (Anderson, 2013). Perhaps the types of fraud targeting low-income persons differ 

from those focusing on the high-income. For instance, people facing financial hardship may 

consider prize promotions and debt consolidation services as opportunities to improve their 

financial situation, whereas wealthy socialites might purchase bogus weight-loss products or anti-

aging remedies. 
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Further evidence that different types of fraud appeal to different types of people was found 

by Schoepfer and Piquero (2009) in a telephone survey of US adults. They reported that being 

unemployed was associated with victimization by free prize and 800/900-number phone fraud, but 

not auto-repair or investment fraud. The only consistent demographic factor associated with nearly 

all scam types was being younger, a conclusion we also support in the present study (where most 

respondents were middle-aged and older).  

Another postulate of routine activity theory is that criminal activity is more likely to occur 

when targets lack appropriate guardianship or protective oversight. Shafer and Koltai (2014) found 

that older people with dense social networks were less likely to experience elder mistreatment, 

perhaps because network members deterred each other from exerting power and undue influence 

over vulnerable older persons. Network density was not measured in the HRS, but two proxy 

variables for social oversight, being married and the respondent’s number of children, were not 

significantly associated with lower rates of reporting fraud in the overall sample.  

In our research using the HRS, few characteristics were systematically and significantly 

associated with fraud across survey years, consistent with other surveys that rely on self-report 

(Anderson, 2013; Policastro and Payne, 2014; Schoepfer and Piquero 2009; Titus, Heinzelmann, 

and Boyle, 1995; Van Wyk and Mason, 2001). Yet being older was negatively associated with 

fraud in 2008, 2010, and in the overall sample, findings that contradict the common assumption 

that vulnerability increases with age, perhaps due to cognitive decline or detrimental changes in 

information processing (e.g., Castle et al., 2012; James, Boyle, and Bennett, 2014; Han et al., 

2015). Moreover, we find that cognitive functioning at baseline was unrelated to fraud 

victimization in the HRS, while victimization risk rose for the better educated. It may be, as 

suggested by routine activity theory, that middle-aged adults and the better-off experience the 
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highest rates of fraud because consumption peaks in middle-age. These groups participate most 

actively in the consumer marketplace providing opportunities for fraud exposure (Attanasio, 

Banks, Meghir, and Weber, 1999; Van Wyk and Mason, 2001).  

An alternative explanation is that older adults may actually experience higher rates of fraud 

but fail to report victimization to complaint agencies, law enforcement, and in surveys such as the 

HRS. Underreporting could be prevalent if older people’s subjective memory of past events 

declines with age (Craik, 1994). Also, older adults have a greater tendency to minimize 

emotionally negative experiences, and to remember autobiographical events more positively than 

do younger adults (Charles and Carstensen, 2010). They may also choose to hide victimization 

because of shame, embarrassment, or a belief that they are partially to blame for being complaisant 

in the scam (Deem, 2000; Ganzini, McFarland, and Bloom, 1990), and disclosure of victimization 

could lead to a loss of financial independence. Thus, analysis that relies on victim self-report may 

underestimate the frequency of fraud among older adults.  

 

Limitations of the study 

Victimization may have a serious impact on well-being that could only be measured 

imprecisely in this study, due to the infrequency with which HRS participants were surveyed and 

the long interval between baseline and follow-up. This study used baseline data from the core 

survey administered six years before respondents completed the LBQ regardless of when fraud 

may have happened during that time frame. Moreover, we did not model differences in outcomes 

based on when fraud occurred. Compared to respondents who were victimized soon after baseline, 

those who experienced fraud nearer to follow-up may still be recovering from the incident. In these 

cases, the psychological and financial effects of fraud may be more pronounced. 



25 
 

 
 

In other words, a five-year retrospective window may be too long for some older 

respondents to remember victimization, and one might expect higher rates of underreporting 

especially among participants with memory problems. Future surveys should ask respondents to 

report fraud that happened in just the last year, in addition to their experiences with fraud over 

longer spells. Despite the frustration, embarrassment, and loss of confidence that fraud inflicts 

(Deem, 2000), the financial and emotional aftermath of victimization may feel like a momentary 

dip in well-being over a multi-year period. These short-term effects and life disruptions may not 

be well-captured using a longer measurement period, and a narrower observation window would 

help us understand the immediate impact of victimization (though we may end up with a small 

number of respondents who experienced fraud).  

Financial fraud is defined very broadly across legal, consumer, and academic contexts. 

Individual conceptualizations/interpretations of fraud victimization vary across consumers 

(DeLiema, Mottola, and Deevy, 2017). Some respondents may have reported fraud victimization 

when they were targeted by a scam but experienced little to no financial consequences, whereas 

others who suffered large losses may not label the experience as fraud. A major limitation of the 

LBQ was that victims were not asked to report how much money they lost or the type of fraud 

they experienced, so it is not possible to distinguish serious incidents, such as loss of retirement 

assets in a Ponzi scheme, from minor incidents, such as being billed a reoccurring fee for a bogus 

magazine subscription. Having data on the amount of money lost allows for an assessment of how 

losses, relative to current wealth, impact the victim’s financial, mental, and physical well-being.  

Previous research has shown that victim profiles vary by scam type. More details on the 

type of fraud would allow for a more refined analysis of risk factors. This issue will be resolved in 

a future study using data from the 2016 HRS module on fraud that we designed and that was 
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administered to randomly selected HRS respondents. We will conduct separate analyses to identify 

whether risk factors differ according to fraud type (e.g., investment scams versus bogus 

sweepstakes). Another limitation of the present study is that the LBQ survey did not ask 

respondents about their lifetime experiences with fraud. As a result, those who were defrauded 

more than five years in the past are categorized as non-victims in the analysis, even if they might 

share some of the same risk profiles as recent victims. And finally, the LBQs are not administered 

to people living in institutions or to those who are too cognitively or physically impaired to 

complete the survey. For this reason, the analysis excludes potentially the most vulnerable adults 

who may be explicitly targeted by financial predators.   

 

Conclusions and Outstanding Research Questions 

A major advantage of the present study over prior telephone or internet surveys is that it 

relies on prospective longitudinal data to explore the antecedents and consequences of fraud 

victimization. Aside from a consistent negative association between age and risk of fraud 

victimization, we found considerable variability in the predictors and outcomes of fraud across 

survey years. There appears to be no simple set of “vulnerability traits” that can inform targeted 

prevention and intervention programs. Moreover, our results indicate that using a single item to 

measure fraud is insufficient to evaluate victimization more broadly. For this reason, more specific 

questions such as those included in the 2016 HRS fraud module, will be useful in estimating risk 

correlates for a wider variety of fraud schemes targeting older Americans.  

  Meanwhile, our findings will be of interest to the financial services industry as well as 

regulators concerned with protecting older Americans’ financial wellbeing (e.g., the Securities and 

Exchange Commission, the Financial Industry Regulatory Authority, the Consumer Financial 
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Protection Bureau, the Social Security Administration, and the National Association of Insurance 

Commissioners, among others). Many of these entities have expressed growing concern about how 

advisors, investment counsellors, and employers are managing workers’ and retirees’ difficulties 

with making financial decisions at older ages. 10  Older persons’ vulnerability to financial 

mismanagement is also particularly important as they decide when to claim Social Security 

benefits, spend down company pensions, downsize their homes, purchase health and longevity 

insurance, and undertake other financial transactions, all decisions which are consequential and 

can affect the financial security of older Americans. Our research indicates there is large variability 

among the characteristics of those who experienced fraud and that not just the wealthy and oldest 

adults can suffer from fraud. Thus, it is very important for regulatory authorities to be vigilant for 

large strata of the population and to equip and educate individuals, even the younger ones in the 

adult population, to protect themselves against fraud. 

                                                 
10For instance see FINRA, SEC, and NASAA (2008, updated 2010). 
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Table 1. Characteristics of the HRS analysis sample 

 

Note: This table reports means and standard deviations of the variables used in our empirical work 
using several waves of the HRS. 

2008 2010 2012 Pooled 
Variable Mean Sd.Dev. Mean Sd.Dev. Mean Sd.Dev. Mean Sd.Dev.
Fraud victim 0.04 0.21 0.05 0.22 0.07 0.25 0.05 0.22
self-reported good health 0.71 0.45 0.75 0.43 0.70 0.46 0.73 0.44
Cognition score 22.27 5.20 22.72 4.90 21.21 6.08 22.47 5.10
CESD score 1.34 1.87 1.29 1.89 1.56 2.20 1.33 1.90
Nonhousing wealth (/100K, 2012$) 3.94 10.73 3.80 9.02 3.61 9.32 3.85 9.77
Housing wealth (/100K, 2012$) 2.22 6.50 1.79 3.26 1.57 2.68 1.96 4.85
Age 64.86 9.07 62.06 9.87 62.48 9.35 63.23 9.62
Male 0.42 0.49 0.43 0.50 0.50 0.50 0.43 0.50
White 0.88 0.32 0.88 0.33 0.77 0.42 0.88 0.33
Hispanic 0.06 0.24 0.06 0.24 0.10 0.30 0.06 0.25
Education year 12.67 3.06 13.12 2.90 12.73 3.46 12.91 3.00
Married 0.68 0.47 0.73 0.44 0.70 0.46 0.71 0.45
Nkids 3.20 2.11 2.89 1.91 3.17 2.03 3.03 2.00
Cognition score 24.06 4.61 24.11 4.34 22.46 5.45 24.01 4.52
CESD score 1.38 1.90 1.30 1.88 1.72 2.04 1.35 1.90
Good health 0.79 0.40 0.80 0.40 0.74 0.44 0.80 0.40
Nonhousing wealth (/100K, 2012$) 3.45 9.19 3.94 10.83 4.39 14.79 3.76 10.42
Housing wealth (/100K, 2012$) 1.75 2.57 2.05 3.70 2.24 3.86 1.93 3.30
LBQ08 1.00 0.00 0.00 0.00 0.00 0.00 0.41 0.49
LBQ10 0.00 0.00 1.00 0.00 0.00 0.00 0.54 0.50
LBQ12 0.00 0.00 0.00 0.00 1.00 0.00 0.05 0.21
N 5,180 5,867 414 11,461
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Table 2. Probit models of fraud victimization 
 

 
 
 
  

Age -0.001 ** -0.001 *** -0.001 -0.001 ***
(0.000) (0.000) (0.000) (0.000)

Male 0.004 0.006 0.026 ** 0.009 *
(0.007) (0.006) (0.010) (0.005)

White 0.002 0.007 -0.003 0.005
(0.010) (0.010) (0.009) (0.007)

Hispanic 0.008 0.004 0.016 0.008
(0.017) (0.017) (0.023) (0.012)

Education year 0.002 0.005 *** 0.001 0.004 ***
(0.002) (0.002) (0.001) (0.001)

Married -0.004 0.002 -0.006 -0.002
(0.009) (0.008) (0.009) (0.006)

Nkids 0.000 -0.001 0.003 ** 0.000
(0.002) (0.002) (0.002) (0.001)

Cognition score 0.000 0.001 -0.001 0.000
(0.001) (0.001) (0.001) -0.001

CESD score 0.002 0.004 ** 0.002 0.003 **
(0.002) (0.002) (0.002) (0.001)

Good health -0.001 -0.017 * 0.009 -0.006
(0.009) (0.010) (0.008) (0.007)

Nonhousing wealth (/100K, 2012$) 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Housing wealth (/100K, 2012$) 0.001 0.000 0.002 ** 0.001
(0.002) (0.001) (0.001) -0.001

LBQ10 0.002
(0.005)

LBQ12 0.012
(0.015)

N 5,180 5,867 414 11,461
R-square 0.017 0.035 0.200 0.026
Mean of dep var 0.045 0.053 0.065 0.050
St.dev of dep var 0.207 0.225 0.247 0.219
Note: * p<0.10, ** p<0.05, *** p<0.01
Controlled with missing dummies, clustered on household

2008 2010 2012 Pooled
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Table 3. Indicators of model fit for latent class solutions two through five 
 
 
 
 
 
 
 
 
 
 
 

Note: Lower values of AIC, BIC, and G-squared are preferred.  

  Number of classes (k) 
Indicators of model fit 2 3 4 5 
G-squared 262.95 213.36 183.18 159.5 
AIC 304.95 277.36 269.18 267.5 
BIC 395.07 414.69 453.72 499.24 
Entropy 0.62 0.71 0.71 0.65 
Log-likelihood -2416.18 -2391.39 -2376.3 -2364.46 
Degrees of freedom 234 223 212 201 
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Table 4. Summary of health and wealth measures regressed on self-reported fraud 
victimization 
 

 Impact of fraud victimization on outcome measure 
(victim=1) 

Dependent (outcome) measure 2008 2010 2012 Pooled 
Self-rated good/excellent health 0.045   -0.029   0.040   0.003    

(0.037)   (0.032)   (0.116)   (0.024)   

Cognitive functioning -0.623 * 0.120  1.524  -0.041   
 (0.333)   (0.173)   (1.069)   (0.172)   

CESD score -0.066  0.181  -0.414  0.056   
 

(0.117)   (0.144)   (0.295)   (0.095)   

Net housing wealth (/100K, 2012$) 0.270  -0.396 ** -0.052  -0.157   
 (0.299)   (0.187)   (0.451)   (0.182)   

Non-housing wealth (/100K, 2012$) -0.881 * -0.743  -1.335  -0.827 ** 

 
(0.525)   (0.505)   (1.963)   (0.362)   

                
N 5,180   5,867   414   11,461   

Note: * p<0.10, ** p<0.05, *** p<0.01           
The impact of fraud victimization on health and wealth status was assessed in separate OLS or probit 
regression models for each of these measures. All models control for health and wealth status at baseline 
(survey administered six years before the LBQ), sex, age, race (White/non-White), ethnicity 
(Hispanic/non-Hispanic), education, marital status (married/not married), and number of children.  
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Figure 1. Latent class analysis model estimating fraud victim subtypes  

 

 
Source: Authors’ latent class analysis framework using the HRS. 
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Figure 2. Relative proportion of respondents in each fraud victim subtype (γ)  

 

Note: Subtype 1= “Low-education White married couples”; Subtype 2= “Low-income young 
widows”; Subtype 3= “Low-income older adults”; Subtype 4= “High education older White 
married couples”  
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Figure 3. Conditional probabilities (ρ) of demographic characteristics based on fraud victim 
subtype 

 

Note: WealthQ1=less than $87,780; WealthQ2=$87,781-$309,824; WealthQ3=$309,825-$826,880; 
WealthQ4=$826,881 or more   
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Appendix Table 1. Probit models of self-reported good health 

 
 
  

Fraud victim 0.045 -0.029 0.040 0.003
(0.037) (0.032) (0.116) (0.024)

Age -0.002 * -0.002 *** -0.002 -0.002 ***
(0.001) (0.001) (0.003) (0.001)

Male -0.036 ** -0.020 -0.042 -0.029 ***
(0.017) (0.014) (0.059) (0.011)

White 0.017 0.006 0.031 0.012
(0.025) (0.020) (0.062) (0.015)

Hispanic -0.054 -0.016 0.016 -0.027
(0.035) (0.030) (0.083) (0.022)

Education year 0.018 *** 0.009 *** 0.018 * 0.013 ***
(0.003) (0.003) (0.010) (0.002)

Married 0.017 0.032 * 0.046 0.025 *
(0.019) (0.017) (0.061) (0.013)

Nkids -0.001 -0.005 0.009 -0.003
(0.004) (0.003) (0.014) (0.003)

Cognition score 0.009 *** 0.007 *** -0.009 0.007 ***
(0.002) (0.002) (0.006) (0.001)

CESD score -0.032 *** -0.028 *** -0.025 * -0.030 ***
(0.004) (0.004) (0.015) (0.003)

Good health 0.424 *** 0.405 *** 0.376 *** 0.410 ***
(0.021) (0.021) (0.072) (0.015)

Nonhousing wealth (/100K, 2012$) 0.001 0.000 0.007 0.001
(0.001) (0.001) (0.007) (0.001)

Housing wealth (/100K, 2012$) 0.011 ** 0.009 0.013 0.010 **
(0.005) (0.005) (0.012) (0.004)

LBQ10 0.028 ***
(0.011)

LBQ12 0.025
(0.027)

N 5,180 5,867 414 11,461
R-square 0.235 0.233 0.214 0.231
Mean of dep var 0.708 0.753 0.700 0.733
St.dev of dep var 0.455 0.431 0.459 0.443
Note: * p<0.10, ** p<0.05, *** p<0.01
Controlled with missing dummies, clustered on household

2008 2010 2012 Pooled
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Appendix Table 2. OLS models of cognition score 

 
 
  

Fraud victim -0.623 * 0.120 1.524 -0.041
(0.333) (0.173) (1.069) (0.172)

Age -0.118 *** -0.117 *** -0.171 *** -0.120 ***
(0.009) (0.005) (0.032) (0.005)

Male -0.557 *** -0.031 0.172 -0.214 ***
(0.129) (0.091) (0.503) (0.077)

White 1.439 *** 0.722 *** 0.989 * 1.071 ***
(0.203) (0.140) (0.565) (0.119)

Hispanic 0.053 0.143 1.453 0.207
(0.277) (0.216) (0.893) (0.173)

Education year 0.326 *** 0.200 *** 0.274 *** 0.258 ***
(0.026) (0.020) (0.084) (0.016)

Married 0.002 -0.027 -0.449 -0.069
(0.154) (0.116) (0.588) (0.094)

Nkids 0.076 ** -0.023 0.156 0.029
(0.033) (0.025) (0.119) (0.020)

Cognition score 0.497 *** 0.649 *** 0.551 *** 0.576 ***
(0.017) (0.015) (0.053) (0.011)

CESD score -0.093 ** -0.131 *** -0.065 -0.116 ***
(0.039) (0.028) (0.120) (0.023)

Good health 0.755 *** 0.281 ** 1.242 ** 0.540 ***
(0.184) (0.130) (0.622) (0.110)

Nonhousing wealth (/100K, 2012$) -0.006 -0.002 0.015 -0.001
(0.007) (0.004) (0.010) (0.004)

Housing wealth (/100K, 2012$) 0.046 * 0.010 0.099 0.021
(0.028) (0.014) (0.060) (0.014)

LBQ10 -0.090
(0.082)

LBQ12 -0.374
(0.238)

Intercept 12.050 *** 11.070 *** 13.132 *** 11.732 ***
(0.817) (0.545) (2.645) (0.472)

N 5,180 5,867 414 11,461
R-square 0.493 0.613 0.622 0.557
Mean of dep var 22.269 22.724 21.214 22.467
St.dev of dep var 5.202 4.899 6.078 5.097
Note: * p<0.10, ** p<0.05, *** p<0.01
Controlled with missing dummies, clustered on household

2008 2010 2012 Pooled
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Appendix Table 3. OLS models of depression (CESD) score 

 
  

Fraud victim -0.066 0.181 -0.414 0.056
(0.117) (0.144) (0.295) (0.095)

Age 0.007 ** 0.006 ** 0.012 0.007 ***
(0.003) (0.003) (0.015) (0.002)

Male -0.112 ** -0.134 *** 0.082 -0.112 ***
(0.056) (0.051) (0.266) (0.038)

White -0.062 0.076 -0.530 * -0.020
(0.098) (0.080) (0.291) (0.062)

Hispanic -0.019 -0.151 0.058 -0.098
(0.140) (0.108) (0.378) (0.085)

Education year -0.023 ** -0.029 *** -0.003 -0.025 ***
(0.012) (0.011) (0.039) (0.008)

Married 0.005 -0.045 -0.596 * -0.045
(0.066) (0.066) (0.359) (0.048)

Nkids -0.002 -0.017 -0.067 -0.011
(0.013) (0.013) (0.056) (0.009)

Cognition score -0.018 ** -0.020 *** 0.015 -0.018 ***
(0.007) (0.007) (0.025) (0.005)

CESD score 0.420 *** 0.446 *** 0.454 *** 0.436 ***
(0.021) (0.020) (0.076) (0.015)

Good health -0.573 *** -0.690 *** -0.485 -0.625 ***
(0.088) (0.085) (0.343) (0.061)

Nonhousing wealth (/100K, 2012$) -0.007 *** -0.003 * 0.005 -0.004 ***
(0.002) (0.002) (0.006) (0.001)

Housing wealth (/100K, 2012$) -0.019 ** -0.005 -0.032 * -0.010 **
(0.008) (0.004) (0.019) (0.004)

LBQ10 0.025
(0.038)

LBQ12 0.054
(0.120)

Intercept 1.644 *** 1.846 *** 1.234 1.715 ***
(0.331) (0.295) (1.445) (0.224)

N 5,180 5,867 414 11,461
R-square 0.285 0.314 0.291 0.298
Mean of dep var 1.345 1.292 1.561 1.326
St.dev of dep var 1.873 1.887 2.198 1.897
Note: * p<0.10, ** p<0.05, *** p<0.01
Controlled with missing dummies, clustered on household

2008 2010 2012 Pooled



46 
 

 
 

Appendix Table 4. OLS models of non-housing wealth 

 
 
  

Fraud victim -0.881 * -0.743 -1.335 -0.827 **
(0.525) (0.505) (1.963) (0.362)

Age 0.011 -0.025 -0.026 -0.012
(0.016) (0.018) (0.034) (0.012)

Male 0.211 0.088 -0.456 0.078
(0.147) (0.159) (0.693) (0.115)

White -0.067 0.917 *** 0.181 0.498 **
(0.379) (0.264) (0.814) (0.231)

Hispanic 0.537 * -0.454 * 0.389 -0.075
(0.278) (0.235) (0.564) (0.174)

Education year 0.225 *** 0.185 *** 0.247 ** 0.216 ***
(0.073) (0.051) (0.125) (0.041)

Married 0.160 0.491 0.391 0.412
(0.390) (0.305) (0.739) (0.254)

Nkids -0.093 * -0.013 0.021 -0.061
(0.055) (0.067) (0.134) (0.042)

Cognition score 0.018 0.015 -0.038 0.016
(0.028) (0.028) (0.086) (0.020)

CESD score 0.016 -0.133 *** -0.003 -0.078 **
(0.051) (0.052) (0.144) (0.036)

Good health 0.519 * 0.177 0.439 0.250
(0.290) (0.211) (0.489) (0.158)

Nonhousing wealth (/100K, 2012$) 0.628 *** 0.395 *** 0.201 * 0.453 ***
(0.229) (0.076) (0.118) (0.079)

Housing wealth (/100K, 2012$) 0.656 ** 0.496 ** 1.263 *** 0.588 ***
(0.313) (0.222) (0.459) (0.191)

LBQ10 -0.729 ***
-0.199

LBQ12 -0.992 **
-0.47

Intercept -3.621 ** -1.099 -1.088 -1.580
(1.804) (1.570) (3.339) (1.180)

N 5,180 5,867 414 11,461
R-square 0.425 0.381 0.558 0.388
Mean of dep var 3.943 3.797 3.613 3.848
St.dev of dep var 10.730 9.023 9.319 9.774
Note: * p<0.10, ** p<0.05, *** p<0.01
Controlled with missing dummies, clustered on household

Nonhousing wealth (/100K, 2012$)
2008 2010 2012 Pooled
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Appendix Table 5. OLS models of net housing wealth 

  
 
  

Fraud victim 0.270 -0.396 ** -0.052 -0.157
(0.299) (0.187) (0.451) (0.182)

Age -0.018 ** -0.003 -0.006 -0.009 *
(0.008) (0.005) (0.009) (0.005)

Male 0.058 -0.031 0.100 0.011
(0.053) (0.061) (0.163) (0.039)

White -0.069 0.160 -0.292 0.032
(0.173) (0.102) (0.186) (0.088)

Hispanic 0.543 ** 0.055 0.543 * 0.261 **
(0.251) (0.110) (0.307) (0.121)

Education year 0.041 0.062 ** 0.032 0.062 ***
(0.032) (0.025) (0.033) (0.021)

Married 0.050 0.157 0.098 0.195
(0.171) (0.163) (0.159) (0.125)

Nkids 0.030 -0.016 -0.020 0.003
(0.044) (0.017) (0.038) (0.022)

Cognition score 0.006 0.002 0.014 0.009
(0.015) (0.010) (0.019) (0.009)

CESD score -0.020 -0.036 ** -0.047 -0.032 **
(0.020) (0.017) (0.044) (0.014)

Good health 0.119 0.160 ** (0.070) 0.118 *
(0.079) (0.080) (0.202) (0.067)

Nonhousing wealth (/100K, 2012$) 0.124 0.049 *** 0.003 0.074 ***
(0.081) (0.017) (0.006) (0.029)

Housing wealth (/100K, 2012$) 0.929 *** 0.444 *** 0.575 *** 0.566 ***
(0.143) (0.161) (0.075) (0.149)

LBQ10 -0.715 ***
(0.144)

LBQ12 -1.054 ***
(0.196)

Intercept 0.455 -0.280 0.155 0.286
(0.679) (0.647) (0.895) (0.506)

N 5,180 5,867 414 11,461
R-square 0.235 0.381 0.739 0.243
Mean of dep var 2.217 1.793 1.570 1.957
St.dev of dep var 6.503 3.256 2.684 4.851
Note: * p<0.10, ** p<0.05, *** p<0.01
Controlled with missing dummies, clustered on household

Housing wealth (/100K, 2012$)
2008 2010 2012 Pooled
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Appendix Figure 1: Sample construction 

 

Source: Authors’ analysis using the HRS. 
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