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ABSTRACT

Determining Feasibility of a Propulsionless Microsatellite Formation Flight Mission

Aaron A. Levis

Benefits of developing missions with multiple formation flying spacecraft as an alter-

native to a traditional monolithic vehicle are becoming apparent. In some cases, these

missions can lower cost and increase flexibility among other situational advantages.

However, there are various limitations that are imposed by these missions that are

centered on the concept of maintaining the necessary formation. One such limitation

is that of the propulsion system required for each spacecraft. To mitigate the com-

plexity and mass of the onboard propulsion, the pairing of electromagnetic actuators

and differential drag to replace the functionality of a propulsive system is investigated.

By using COTS magnetorquer boards to command satellite orientation, a scenario in

which two 3U CubeSats are initially deployed from the ISS NanoRacks at an altitude

of 400 km. They are then commanded to achieve a relative separation of 1 km and

hold the spacing to demonstrate the capability of formation flight. The scenario was

simulated through the MATLAB/Simulink platform and the magnitude of the nec-

essary command torques were determined. By comparison to the ISIS magnetorquer

board, the necessary command torques seem relatively high than compared to what

the actuator is capable of. The ISIS board may supply ∼ 5e-6 Nm of torque while the

mission requires as much as 3e-3 Nm at times. However, by extending the settling

time of the control law at the expense of absolute orientation control, the control

torques necessary to carry out the simulated mission are well within the bounds of

the ISIS magnetorquer boards as well as other COTS boards. With this alteration,

mission feasibility is determined. It should be noted that further analysis should be

conducted regarding concerns with CubeSat detumble to further confirm feasibility.
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Chapter 1

INTRODUCTION

The main focus of this study is to model with medium to high fidelity the complex

satellite dynamics incorporating magnetorquer ADCS. The electromagnetic fields pro-

duce will allow for varying spacecraft geometries to induce differential drag for the

maintenance of formation flight.

1.1 Previous Work

Within the last decade there have been several missions which utilize multiple smaller

spacecraft as an alternative to a traditional monolithic spacecraft. Some of the ben-

efits of this approach include but are not limited to: synthesis of large sensor aper-

tures, mission flexibility, increased reliability, upgradeability, staged deployment, and

lower costs[3]. This ideology is exemplified through the missions of CLUSTER and

tanDEM-X. In order to achieve the science objectives for the CLUSTER mission,

the European Space Agency (ESA) placed four identical spacecraft in a tetrahedral

configuration to better measure the 3-dimensional structure of the magnetosphere[4].

Similarly, tanDEM-X involves two satellites at close proximity flying in a helical

formation[5].

While distributed satellite formations offer several advantages over large multi-

instrumented spacecraft for earth and space science applications, there are a num-

ber of significant technical challenges that must be overcome to transition these

systems from concept to reality. Current approaches to meet these challenges in-

clude the use of global positioning systems for satellite tracking and navigation, au-

tonomous spacecraft control algorithms to correlate observations and maintain precise
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inter-satellite separations, and electric or chemical microthrusters to provide satellite

station-keeping, drag make-up, and array reconfiguration[6]. Each of these techniques,

while promising, have inherent limitations that make their implementation exceed-

ingly difficult to put into practice. Electric propulsion systems, such as pulsed plasma

thrusters, can provide the fine control required for drag makeup and station-keeping

but will compete for limited spacecraft power. Chemical microthrusters can pro-

vide higher thrust than their electric thruster counterparts, but use more propellant

due to their lower specific impulse values, resulting in a larger propellant mass frac-

tion or a reduced operational life. In addition, potential contamination of neighboring

spacecraft by propellant exhaust plumes and the possibility of pulsed electromagnetic

interference with low power inter-satellite communications remain a real concern for

tightly grouped clusters[6].

To mitigate the complexity of a propulsion system onboard a formation flying

spacecraft, the concept of electromagnetic formation flight (EMFF) was developed.

EMFF is a recent concept, aiming to control relative motions of formation flying satel-

lites using magnetic interactions[7]. By equipping satellites with an electromagnetic

actuator, each spacecraft can then create a dipole that interacts with the Earth’s

magnetic field and other spacecraft dipoles, inducing a desired torque that can be

used to control the relative positions of the vehicles within the formation.

The study put forth in this paper has heritage from several of these concepts being

discussed. The scenario being simulated stems from some of the EMFF applications

being researched in current missions. Each spacecraft being modeled is void of a

propulsive system and relies entirely on magnetorquers for GN&C. By omitting on-

board propulsion, the CubeSats being modeled have reduced mass and complexity. In

previous missions, the use of electromagnetic actuation is used solely for the purpose

of maintaining the necessary orientation of each spacecraft within a constellation.

However, the study being presented pairs EMFF with aerodynamic forces to execute

2



orbital maneuvers. The study will determine if the use of differential drag forces will

appropriate the mitigation of a propulsive device while still enabling the option of

formation flight spatial alteration. Agreeably, studies focusing on CubeSat formation

flight through differential drag have conceptual traction through extensive knowledge

of CubeSat drag and deorbit analysis[8]. This paper aims at validating the feasibility

of commanding the orientations necessary for achieving orbital separation by way of

COTS electromagnetic actuators.

1.2 Magnetorquers

One concept imperative to this project is that of electromagnetic actuator imple-

mentation. Electromagnetic actuators have been used on spacecraft for the past 50

years[9]. Magnetorquers, or torque rods, flow current through an electromagnetic coil

to produce a dipole field. This dipole will then interact with the Earth’s magnetic

field to induce a torque on a spacecraft. These actuators has been used extensively

in spacecraft ADCS applications including the desaturation of reaction wheels in a

process known as momentum unloading[10].

In the case being studied, the 3U CubeSats being modeled will alter their orien-

tations by the use of these magnetorquers. In order to verify the feasibility of the

system, the magnitude of the control torques necessary to commit these maneuvers

must be less than or equal to that which can be provided by COTS magnetorquer

boards. Such boards measure performance in Am2 designating the magnitude of the

dipole moment supplied. The torque that can then be provided by these boards is

determined by the specific orbit at which the device is operated. This relationship is

shown below in Equation 1.1[11] where τ is the torque that is provided in Nm and

B is the Earth’s magnetic field measured in Teslas.

τ = Am2 ·B (1.1)
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To determine the amount of torque available from the magnetorquer, first one

board must be selected. In Fig. 1.1, a commonly used ISIS CubeSat magnetorquer

board is pictured. This magnetorquer board can be used on 3U CubeSat missions

and supplies the spacecraft with a maximum dipole moment of 0.2 Am2. For COTS

magnetorquer boards 0.2 Am2 is accepted to be the upper limit of performance.

This allows the ISIS board to be a valid representation of what could used when

transitioning the simulated mission to a space application.

Figure 1.1: 3U CubeSat ISIS Magnetorquer Board.[1]

While the magnitude of Earth’s magnetic field varies throughout altitude as well

as time, the mission being modeled is carried out is at an altitude of 400 km where

the magnetic field is roughly 26,000 nT [12]. When combining the magnetic field

at this altitude with the dipole moment available from the magnetorquers, it can

then be determined that the 3U CubeSat will be able to execute maneuvers with

a maximum torque magnitude of 5.2e-6 Nm. In order to verify the feasibility of

the mission, the control torques necessary to command the orientations necessary to

induce differential drag as well as overcome orbital perturbations must not exceed the

magnitude of available torque.
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1.3 Differential Drag

Differential drag makes use of differing surface areas between spacecraft, causing

varying drag force to be experienced, and thus changing the spacecraft motion. The

effect of surface area on the drag force experienced by a spacecraft is made evident

in Equation 1.8[13] where A is the surface area normal to the velocity vector of the

spacecraft.

FD =
1

2
CDAρV

2 (1.2)

This drag force is then modeled as one factor in the spacecraft motion shown by

Equation 1.3.

r̈d =
1

2m
CDAρV

2 (1.3)

By controlling the orientations of the spacecraft that expose alternating surface

areas in the v-bar direction, desired motion can be commanded. In the case of this

study, two 3U CubeSats are being modeled in the simulation with a simplified geom-

etry shown in Fig. 1.2 with units in meters and the reference origin being that of the

spacecraft body frame.

Figure 1.2: 3U CubeSat Geometry
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By commanding various CubeSat orientations, the surface areas exposed to be

normal to the velocity vector are shown in the figures below. To minimize the drag

force on the satellite, the vehicle is controlled to maintain the orientation in Fig. 1.3

with an incident surface area of .01 m2. To maximize the drag force on the satellite

and lower its orbital altitude, the satellite is controlled to maintain the orientation in

Fig. 1.4 with an incident surface area of .03 m2.

Figure 1.3: 3U CubeSat minimum
drag configuration.

Figure 1.4: 3U CubeSat maximum
drag configuration.

By altering their orientations, the two spacecraft aim to achieve a relative sepa-

ration of 1 km and then hold this distance. If the two spacecraft are able to execute

these maneuvers through use of magnetorquers, the feasibility of a propulsionless

microsatellite formation flight mission may be confirmed.

1.4 Formation Flight

The concept of formation flight has come to have a wide range of definitions through-

out its development in various missions. Most loosely, formation flight must consist of

one or more chaser satellites that utilize active control in order to maintain a desired

relative position to a passive target satellite[7]. The nonlinear equations of motion for

both spacecraft are functions of their spatial location and the forces acting on them
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at that point[13]. While the target spacecraft motion is uncontrolled and governed

by these forces, the chaser spacecraft utilizes a propulsion system to apply an exter-

nal force and alter its relative distance to a target location. This propulsive force

is represented by u in Equation 1.5[14] where the subscript 2 designates the chaser

satellite. However, the omission of this propulsion is shown in Equation 1.4[14] where

the subscript 1 designates the target satellite. It should also be noted here that only

magnitude of a variable is to be assumed if no vector notation is made clear in the

indicated equation.

~̈r1 = f(~r1) (1.4)

~̈r2 = f(~r2) + ~u (1.5)

The propulsive force ~u will force δ~r, shown in Equation 1.6[14], to be driven to

zero as the position of the chaser satellite, ~r2, is driven to the desired position, ~r2d .

δ~r = ~r2 − ~r2d (1.6)

However, the purpose of this study is to eliminate the propulsive force u and use

the orientation of the spacecraft to alter the dynamics of the nonlinear motion that

the spacecraft experiences. This simplifies Equation 1.5 to omit the use of propulsion

as shown in Equation 1.7.

~̈r2 = f(~r2) (1.7)

In order to model the complex dynamics contained within Equation 1.7, several

orbital perturbations must be included.

1.5 Perturbations

In order to model the mission with medium to high fidelity, the inclusion of orbital

perturbations and the accuracy at which they are calculated is vital. In the model,
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drag, solar radiation pressure (SRP), and Earth oblateness are modeled to alter the

spacecraft motion while propagating the motion in a 3-body system to include the

effects of the sun on spacecraft acceleration.

For the purposes of this study, the most important perturbation being modeled is

that of drag for several reasons. Firstly, due to the fact that the mission being modeled

in Low Earth Orbit (LEO), aerodynamic drag will impose the largest magnitude

perturbation on the spacecraft motion. Next, the success of the mission is reliant on

accurately determining the magnitude of drag imposed on the 3U CubeSats being

modeled. As such, the drag calculated by Equation 1.8[13] must be done so with

high accuracy. To determine the drag perturbation, several parameters about the

spacecraft must be known including CD the coefficient of drag, A the area incident

to the v-bar direction, ρ being atmospheric density, and V being the velocity of the

spacecraft relative to Earth’s rotation. For the purposes of this study a value of 4

was assigned for CD as it models a flat plate normal to the v-bar direction[15].

~̈rd = − 1

2m
CDAρV · ~V (1.8)

In addition to drag, SRP is being modeled. SRP is created by the highly energetic

particles emitted by the Sun that travel towards Earth and collide with the spacecraft.

The impulse of these particles then cause a small deceleration in the direction parallel

and opposite to the direction of travel. In addition, the SRP perturbation is only

apparent when the spacecraft is in daylight. Once the vehicle has entered eclipse,

the Earth blocks the direction at which the particles are travelling and the value

of the shadowing function ν becomes 0. The acceleration that SRP creates when

the spacecraft has line of sight to the sun and ν is equal to 1 is shown below in

Equation 1.9[13]. The momentum flux of the solar radiation is designated by PSR

and has a value of 4.56e-6 N
m2 [13]. The radiation pressure coefficient being CR has a

value between 1 and 2 and is assigned a value of 1.2 for this specific simulation but

8



is ultimately spacecraft specific. A is the area exposed to the Sun, and mSC is the

mass of the spacecraft. it should be noted that an assumption being made is that

the acceleration due to SRP will be an average for the entirety of its pass through

sunlight. This detracts from the fidelity of the simulation, but does not violate the

validity of the model as SRP is not a dominant perturbation in LEO orbits.

~̈rSRP = −ν PSRCRA

mSCr⊕−�
~r⊕−� (1.9)

Along with aerodynamic drag and SRP, Earth oblateness has a significant effect

of spacecraft motion. Due to Earth’s oblateness, there are zonal harmonics at which

an orbiting spacecraft will deviate from its 2-body orbital path. These harmonics

can be modeled with accuracy up to over 100 distinct zones at which the Earth’s

shape causes slightly different gravitational pull as the spacecraft passes[13]. These

zones are represented by the letter J followed the number of that divisional zone.

For the purposes of this model, J2 is the most concerning perturbation in need of

modeling. In addition, the J3 perturbation is modeled to increase fidelity. The

equations for modeling these zones comes partially from experimentation, allowing

the coefficients J2 and J3 to be constant where they are found in Equations 1.10[13]

and 1.11[13]. These constant coefficients were found scientifically and are equivalent

to 1.08262668355e-3 and 2.53265648533e-6 respectively[13]. The components of the

calculated acceleration due to J2 are shown here.

r̈J2x = −3

2

J2µr
2
⊕rx

r5

(
1 − 5r2z

r2

)

r̈J2y = −3

2

J2µr
2
⊕ry

r5

(
1 − 5r2z

r2

)

r̈J2z = −3

2

J2µr
2
⊕rz

r5

(
3 − 5r2z

r2

) (1.10)

9



With the J3 zonal perturbations calculated slightly differently as displayed here.

r̈J3x = −5

2

J3µr
3
⊕rx

r7

(
3r2z −

7r3z
r2

)

r̈J3y = −5

2

J3µr
3
⊕ry

r7

(
3r2z −

7r3z
r2

)

r̈J3z = −5

2

J3µr
3
⊕

r7

(
6r2z −

7r4z
r2

− 3

5
r2

) (1.11)

Combined together the acceleration due to J2 is determined in Equation 1.12.

~̈rJ2 =


r̈J2x

r̈J2y

r̈J2z

 (1.12)

With the acceleration due to J3 shown here in Equation 1.13.

~̈rJ3 =


r̈J3x

r̈J3y

r̈J3z

 (1.13)

Finally, it is necessary to model the spacecraft motion within the 3-body system

it inhabits. This system involving the spacecraft, the Earth, and the Sun is modeled

below in Equation 1.14[13] where G is the gravitational constant, m� is the mass of

the Sun, Earth is represented by the symbol ⊕, and ~r1−2 designates the vector from

object 1 towards object 2 with SC being the spacecraft.

~̈r3−body = Gm�

(
~rSC−�

r3SC−�
− ~r⊕−�

r3⊕−�

)
(1.14)

With these four orbital perturbations being modeled, the complete nonlinear sys-

tem can be modeled as a sum of the accelerations. This transforms Equations 1.4

and 1.7 into Equations 1.15 and 1.16 as shown.

~̈r1 = f(~r1) = − µ

r31
~r1 + ~̈r3−body1 + ~̈rd1 + ~̈rSRP1 + ~̈rJ21 + ~̈rJ31 (1.15)
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~̈r2 = f(~r2) = − µ

r32
~r2 + ~̈r3−body2 + ~̈rd2 + ~̈rSRP2 + ~̈rJ22 + ~̈rJ32 (1.16)

For this study, the difference in motion between the two spacecraft is determined

within the ~̈rd term where the term A is varying as the orientation of both spacecraft

1 and 2 is commanded to achieve the desired relative distance.

1.6 Coordinate Transformations

For the propagation of motion within the simulation, it is important to keep track of

which reference frame in which the physics of the system is being accounted for. For

this study, three reference frames are essential to determine the spacecraft dynamics.

These three reference frames are the Earth Centered Interial frame (ECI), Local

Vertical Local Horizon frame (LVLH), and the Body frame, all of which are defined

and displayed in Fig. 1.5[16].

Figure 1.5: ECI, LVLH, and Body Frame coordinate systems.

While the ECI frame is necessary to determine orbital position along with the

magnitude of the orbital perturbations at that point, the Body frame is necessary

to determine the effects of disturbance torques on the spacecraft and the magnitude

of the control torques necessary to apply. And finally, the LVLH frame allows the
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spacecraft to determine the orientation at which to fly to maintain the correct face in

the v-bar direction. It is important to note the definition of both the LVLH and Body

frames as they may vary when referencing alternative sources. Within the simulation

modeled, the LVLH frame is defined to have the ẑ unit vector pointing nadir, the

ŷ directed in the cross track direction, and the x̂ unit vector completing the right-

handed coordinate system. The Body frame is right-handed as well with the x̂ unit

vector pointing in the longitudinal axis of the 3U CubeSat and both the ŷ and ẑ unit

vectors pointing in the latitudinal axes completing the system.

It also should be noted that all physics must be modeled within the same reference

frame for the calculations to be correct. To propagate the orbital dynamics of the

system, all vectors must be represented in the ECI frame. However, when looking

at spacecraft torsional dynamics, all vectors must be represented within the Body

frame. In addition, tracking the desired orientation of the spacecraft relative to its

actual position requires the propagation of vectors in the LVLH frame. In order to

keep track of the physics in each of these frames, it is necessary to switch between the

representation of a vector in different frames. This is achieved through coordinate

transformations[16].

The necessary coordinate transformations are made possible by the calculation of

euler angles and, by extension, quaternions throughout the simulation.
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Chapter 2

SIMULATION

The mission being modeled is that of two 4 kg 3U CubeSats initially deployed with

a relative position of 30 cm to each other. The mission goal is to use differential

aerodynamic drag between the two spacecraft to acquire and maintain a relative

position of 1 km. In order to simulate the dynamics of the mission with medium

to high fidelity, the space environment was modeled within the Simulink platform of

Matlab.

2.1 Matlab/Simulink Implementation

With its massive collection of toolboxes and proven capability, Matlab was chosen as

a means to build the model for the space environment and the simulated dynamics

therein. Matlab works with the Simulink environment to provide a powerful tool

for model-based design [17]. The Simulink platform allows for the user to build a

model with whatever fidelity level is desired. For this study, a model with medium to

high fidelity was achieved to determine feasibility with high confidence. The model

constructed in Fig. 2.1 includes the satellite dynamics and control feedback for the

mission.

As the figure suggests, the most basic segmentation of the model is into three

main components: spacecraft dynamics, control determination, and system feed-

back. Within the blocks labeled Spacecraft A and Spacecraft B lies the complete

nonlinear model of the space environment and its effect on spacecraft linear and

torsional motion. From these blocks, the states of the spacecraft are fed into the

Control Determination block by which the model determines the orientation at which
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Figure 2.1: Complete Simulink model of satellite dynamics and control.

both spacecraft should be commanded. From this determination, commanded quater-

nions and resultant areas are fed back through both respective System Feedback blocks

to determine the control torques necessary to maintain the desired orientations. It is

through the magnitude of the control torques by which feasibility of the mission is

determined.

2.2 Space Environment Model

The most essential goal of this study was to model the space environment with

medium to high fidelity in order to provide accurate simulation results of space-

craft dynamics. To ensure the model created emulates the proper environment, sev-

eral aspects of the model were analyzed and validated. To validate these aspects,

14



the simulation was run for the first two days of the mission and the magnitudes of

each perturbation experienced by the spacecraft were compared to the magnitudes of

known models. It should be noted that the first maneuver in the simulated mission

takes place at T+4 hours after deployment at which time spacecraft A changes its

orientation to the maximum drag configuration. This maneuver will be reflected in

each of the perturbations tracked during this two day period.

2.2.1 Drag Model

The most essential variable in the calculation of the drag perturbation is the atmo-

spheric density at the spacecraft altitude. While there are many atmospheric density

models available for implementation, the 1976 exponential model for atmospheric

density was chosen. The resultant density modeled over the first two days of the

mission are displayed in Table 2.1[13].

Table 2.1: Atmospheric density for the first two days of mission.

Satellite A Satellite B

Atmosheric Density [ kg
m3 ] 3.561e-15 3.561e-15

Over the first two days, the satellites only alter their altitude by 30 m which does

not constitute an alteration in the calculation of density within the 1976 exponential

model. The magnitude of the density is consistent between both satellites due to

their close proximity.

In addition to the calculation of density, a coefficient of drag must be chosen in

order to calculate drag accelerations. For this mission, a coefficient of 4 was chosen

to model a flat plat normal to the velocity vector. The resultant accelerations of

both spacecraft due to drag are shown in Fig. 2.2. At 4 hours, the magnitude of

the acceleration on Spacecraft A increases drastically indicating a successful change
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Figure 2.2: Accelerations due to drag over first two days of mission.

in spacecraft orientation to the maximum drag configuration as it is commanded at

that time. The magnitudes of the accelerations are consistent with the density being

determined by the 1976 exponential model as well as the drag formula described in

Equation 1.3. As a result, the drag calculations can be validated within the model.

Over the course of time, the density at a given altitude is known to have both

short term and long term fluctuations [15], those which are not captured by the model

used. The argument is then made for the implementation of a higher fidelity density

model. The main driver in the decision for utilizing the exponential model is that of

computational time. While there are several density models including NRLMSISE-00

and JB2008 that provide more accurate calculations, the computational expense is

too large for this application[15].
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2.2.2 SRP Model

In order to determine accelerations due to SRP accurately, the position of the Sun

relative to the Earth and spacecraft must be determined as well. This will cause the

acceleration due to SRP to be zero when the spacecraft is in eclipse. The magnitudes

of the SRP accelerations on both spacecraft are displayed in Fig. 2.3.

Figure 2.3: Accelerations due to SRP over first two days of mission.

Similar to the drag perturbation, the increase of the magnitude of SRP accelera-

tion on spacecraft A increases after 4 hours. This increase is due to the orientation

of spacecraft A commanding a larger surface area normal to the velocity in order to

increase spacecraft separation. Also shown on the plot are discontinuities in acceler-

ation effects due to the time of eclipse for both satellites. These times of eclipse last

for roughly 1/3 of each orbit in which the spacecraft are not affected by SRP.
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2.2.3 Earth Oblateness Model

Another orbital perturbation taken into account is that of Earth’s oblateness. Because

Earth is not perfectly spherical, small variations in the magnitude of gravity cause

alterations in a spacecraft’s orbit. The small accelerations due to this oblateness can

be calculated using Equations 1.10 and 1.11. From implementing these equations

within the simulation, the resulting accelerations on the CubeSats are shown in Fig.

2.4.

Figure 2.4: Accelerations due to Earth’s oblateness over first two days of
mission.

The periodicity of the perturbation is consistent with zonal modeling of the Earth’s

oblateness. As the spacecraft travel through different parts of their orbits, they

experience different magnitudes of gravity at those points. While only spacecraft A

is represented in the plot, the behavior of spacecraft B is almost identical due to

the close proximity of the vehicles. It is also important to note the relatively high

magnitude of the accelerations as opposed to the SRP and drag perturbations. The
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inclusion of the J2 and J3 zonal harmonics are essential in simulating a high fidelity

model for satellite dynamics.

2.2.4 3-Body Model

Another important perturbation to include is that of gravitational disturbances caused

by the Sun. While low fidelity models will propagate spacecraft dynamics in a 2-body

system involving only the satellite and the Earth, higher fidelity models will include

other celestial bodies such as the Sun, Moon, or even Jupiter. To create a medium

to high fidelity model, the 3-body system of the spacecraft, Earth, and Sun were

modeled. The accelerations on the spacecraft within this system are shown in Fig.

2.5.

Figure 2.5: Spacecraft accelerations due to 3-body system over first two
days of mission.

The magnitude of the 3-body perturbation is consistent with those observed by

spacecraft at similar altitudes confirming the accuracy of the calculations.
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2.3 Initial Conditions

In order to verify the feasibility of a CubeSat mission involving formation flight, a

concept of operations including the initial stages must be detailed. The formation

flight mission was modeled to imitate the ISS NanoRack deployment capability[18].

Both 3U CubeSats were modeled to simultaneously leave the ISS with a low relative

velocity to the station and an even lower relative velocity to each other. The ISS

was assumed to have the capability to deploy the satellites into circular orbits at

their altitude of roughly 405 km. The initial orbital elements of both satellites are

displayed in Table 2.2. To obtain these orbital elements, an arbitrary TLE from the

ISS was obtained from March 28, 2018. This epoch was then designated as the time

of simulated deployment from the NanoRacks aboard the ISS. This designation along

with the assumption of a circularized deployment allows for the determination of the

orbital elements in Table 2.2.

Table 2.2: Initial satellite orbital elements.

Satellite a [km] e i [◦] ω [◦] Ω [◦] ν [◦]

3U CubeSat 6783.273 1.2991e-4 51.6425 232.39 61.1386 269.992

Both satellite states vary by decimals lower than stated above due to their simulta-

neous deployment. A variance in their semimajor axes of ∼ 1e-4 indicates separation

in their initial positions by a distance of approximately 30 cm as would be appropri-

ate for the NanoRack initialization[19]. From this initial configuration, the simulation

proceeds to control the satellite orientation to achieve a desired 1 km separation. The

achievement and maintenance of this separation over time will validate the feasibility

of the CubeSat formation flight mission.
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2.3.1 NanoRack Deployment

For this study, the scenario in which two 3U CubeSats are deployed simultaneously

from the ISS NanoRack system. Although documentation is lacking for this deploy-

ment technique, several videos exists that capture what the process may entail[19].

From these videos, the initial conditions of satellite deployment were modeled to im-

itate what was filmed. As such, the two 3U CubeSats were modeled to be deployed

simultaneously from the ISS at the designated epoch.

2.3.1.1 Relative Velocity

From observing film of NanoRack deployment, the CubeSats appear to have a small

relative velocity to the ISS and even smaller relative velocities to each other as they

drift off screen[19]. However, the magnitude of this relative velocity is uncertain. As

stated, the CubeSats were assumed to have an initial relative position of 30 cm. From

this configuration, the satellites were assumed to drift in position by a few meters

each orbit when uncontrolled. This situation is corroborated with what is observed

in film[19].

2.3.1.2 Orbit Circularization

For the purpose of the mission, it is important that the CubeSats be injected into

circular orbits. While the ISS already sits in a mostly circular orbit, it is unverified

whether the NanoRacks deployment system can deliver the satellites into similar

circular orbits. With the low relative velocity between the ISS and the deployed

satellites, it was assumed that the NanoRacks were able to maintain the circularized

orbits of the CubeSats, allowing for the mission to proceed.
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2.4 Model Constraints

The most limiting factor in achieving a higher fidelity model is that of time. While

running the model in the Simulink environment, the dynamics are integrated and

propagated utilizing the built-in Matlab numerical solver ode45[20]. The solver em-

ploys a adaptive Runge-Kutta integration method represented by the Butcher tableau

displayed in Fig. 2.6[20].

Figure 2.6: Finite differencing for adaptive Runge Kutta 45 method.

The adaptive Runge-Kutta 45 method is different from the Runge-Kutta 4 method

in that it has a 5th-order method for step size control [20], effectively changing the

time step when the global error drifts farther than desired. While altering the step

size when necessary provides a more accurate model, it can cause the simulation of a

nonlinear system to slow down to an undesirable pace. This being the case, a higher

fidelity model increases the nonlinearity of the spacecraft dynamics and causes the

simulation to slow down until results cannot be produced at a reasonable pace. Two

options exist to mitigate this problem. One option would be to use a lower order finite

differencing method to propagate the equations of motion at the expense of accuracy.

The second option would be to limit the level of fidelity of the model to effectively

limit the time it takes to simulate the higher order solver. It is for this reason that

the fidelity of some environmental parameters was sacrificed for the sake of time.
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Chapter 3

SYSTEM CONTROL

A key component to proper execution of the mission is the control law used for

commanding orientation. With the control used, the magnitude of control torques

necessary for these commands is compared against the torque available from the

magnetorquer actuators. If the command torques necessary to execute maneuvers is

less than the torque available from the actuators, then the feasibility of the mission

can be confirmed.

3.1 PD Control

In order to command spacecraft orientation, a Proportional Derivative, or PD, con-

troller is designed as shown in Equation 3.1[16] where εe is the error in spacecraft

attitude from the commanded attitude represented in quaternion notation and ωe is

the error is spacecraft angular velocity from the desired angular velocity.

Tc = −Kpεe −Kdωe (3.1)

The PD controller is analogous to a mass-spring-damper system. The proportional

control acts as a spring with constant Kp > 0 to scale the error signal[16]. However,

solely proportional control results in undesirable undamped oscillatory motion con-

stantly overshooting the desired attitude. Therefore, adding a derivative term Kd > 0

will allow the system to settle on the commanded orientation. With a constant ref-

erence attitude, any oscillatory behavior will die out due to the damping term[16].

To implement the PD control, quaternion multiplication between the commanded

quaternion conjugate, q∗c and the current spacecraft quaternion, q is used to extract

εe as shown in Equation 3.2. In addition, the error in angular velocity is shown in
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Equation 3.3 with ω being the spacecraft’s current angular velocity and ωc being the

reference angular velocity.

qe = q∗cq = ηe + εe (3.2)

ωe = ω − ωc (3.3)

As a mass-spring-damper system would exhibit a natural frequency, so does the

spacecraft control behavior. To approximate the natural frequency of the system, a

desired settling time and damping coefficient is assumed. The natural frequency is

then approximated using Equation 3.4[16] where ts is the desired settling time and ζ

is the damping coefficient of the system.

ωn ≈ 4.4

ζts
(3.4)

Once the natural frequency of the system is calculated, both proportional and

derivative gains are determined using Equations 3.5[16] and 3.6[16] where J is the

inertia matrix of the spacecraft.

Kp = 2Jζωn (3.5)

Kd = 2Jω2
n (3.6)

For the mission being modeled, the assumed and calculated control parameters

are displayed in Table 3.1. With a three dimensional non-symmetric spacecraft, dif-

ferent values are assigned for the inertia along each axis. For this reason, although

the settling times and damping coefficients were chosen to be the same in all axes,

the proportional and derivative gains vary between axes. In alternative simulations,

settling times and damping coefficients can be altered to optimize gains for most ef-

fective control. For the purposes of this simulation, the consistent damping coefficient

and settling time are sufficient for validation of initial results.
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Table 3.1: Spacecraft control parameters.

CubeSat Axis ts [s] ζ ωn [rad/s] J [kg m2] Kp Kd

X - longitudinal 30 0.65 0.2256 0.0067 6.8e-4 0.0019

Y - lateral 30 0.65 0.2256 0.0417 3.39e-3 0.0097

Z - lateral 30 0.65 0.2256 0.0417 3.39e-3 0.0097

3.2 Timing Control

For the mission being analyzed, open loop control is utilized for spacecraft orientation

control. For implementation, a schedule is determined over the course of the mission

to achieve the desired 1 km separation. In order to determine the desired schedule,

several aspects of the mission were taken into account.

To begin the mission, the spacecraft would have left the ISS from the NanoRack

deployment system. For the first few hours, it can be imagined that this time would

be used for detumble, health checks, and subsystem monitoring. It is for this reason

that the first four hours allow the spacecraft to fly passively, only maintaining their

initial orientation.

After the first four hours, the spacecraft at a lower altitude (Spacecraft A) is

commanded to turn its orientation so that the maximum drag configuration is expe-

rienced. This shift in orientation marks the initialization of the separation maneuver.

Due to the fact that the desired separation distance is 1 km, the two spacecraft are

allowed to drift to a relative position of 500 m. At this time, Spacecraft A returns

its orientation to the minimum drag configuration while spacecraft B simultaneously

alters its orientation to the maximum drag configuration. This maneuver marks the

midway point of the spacecraft separation phase. The two spacecraft are held in these

orientations for the second half of the separation phase until the two spacecraft have

a relative position of 1 km.
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Once the desired separation of 1 km is reached, spacecraft B returns its orientation

to the minimum drag configuration so that both vehicles hold their longitudinal axes

in the v-bar direction. For this final phase, the spacecraft are intended to hold their

relative distance of 1 km for the remainder of the mission.

It was determined that the mission described will take just under 2 weeks to

complete. The mission schedule is concisely laid out in Table 3.2.

Table 3.2: Mission schedule.

Time [days] Spacecraft A Spacecraft B Relative Distance [m]

0 Min. Drag Min. Drag 0.3

0.167 Max. Drag Min. Drag 0.3

5.208 Min. Drag Max. Drag 500

10.25 Min. Drag Min. Drag 1000
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Chapter 4

RESULTS

After running the simulated two week mission, it was determined that the pre-

determined schedule successfully achieved a result of the 1 km separation between

spacecraft. Several parameters were retrieved from the simulation and analyzed to

assess the success of the mission.

4.1 Control Verification

To verify mission success, the attitudes of both spacecraft were tracked throughout

the two week period and performance was assessed based on the scheduled maneuvers.

In order to acquire the proper orientations, commanded quaternion components were

determined for the maximum and minimum drag configurations. These quaternions

used for attitute control throughout the mission are listed in Table 4.1.

Table 4.1: Quaternion Commands

CubeSat Orientation η ε1 ε2 ε3

Maximum Drag 0.7071 0 0.7071 0

Minimum Drag 1 0 0 0

Over the course of the mission, both spacecraft A and spacecraft B executed

maneuvers to change their attitude to either configurations. In order to verify these

maneuvers were executed correctly, the quaternion components of the spacecraft were

tracked during the simulation to ensure the commanded quaternions were met. The

scheduled maneuvers at 4 hours, 5.208 days and 10.25 days can be identified in Fig.

4.1 where the corresponding quaternion components of each CubeSat are altered
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indicating a change in attitude.

Figure 4.1: Quaternion components over mission lifetime.

As commanded, spacecraft A is the first spacecraft to alter its orientation to be

experiencing the maximum drag for a period of 5 days. After these first few days,

spacecraft A returns to the minimum drag configuration while spacecraft B alters its

orientation to experience maximum drag. After another 5 days, spacecraft B returns

to the minimum drag configuration to maintain its relative position with spacecraft

A. All maneuvers are identifiable in Fig. 4.1 and verified to be executed as planned.
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4.2 Spacecraft Altitude

With the deployment from the ISS NanoRacks, the CubeSats have an initial altitude

of 405 km. However, Earth’s oblateness causes the altitude of both spacecraft to vary

periodically, as shown in Fig. 4.2.

Figure 4.2: Altitude of spacecraft A over mission lifetime.

As predicted, the lower bound of the altitude drops as the spacecraft continually

experiences the drag force of the atmosphere. A unique quality of the effect of Earth’s

oblate nature is that it will tend to increase the eccentricity of a spacecraft’s orbit

if it is not accounted for with stationkeeping. This quality is also illustrated by Fig.

4.2. It is for this reason that although the lower bound of the spacecraft altitude

decreases, the upper bound of the altitude increases as well, described by an increase

in eccentricity of the orbit. This behavior is also experienced with the altitude of

spacecraft B.
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4.3 Relative Position

Being the focus of the mission objective, relative position of the spacecraft was

recorded over time. While the altitude of both spacecraft tends to fluctuate due

to Earth’s oblateness, their relative position is not affected by this behavior as they

both experience it similarly and at relatively the same time. It is for this reason that

only small fluctuations of relative position are noticeable. The relative position of the

spacecraft over the lifetime of the mission is displayed in Fig. 4.3.

Figure 4.3: Relative position of spacecraft over mission lifetime.

With all maneuvers executed correctly, the two spacecraft are able to achieve and

maintain a relative distance of 1 km over the course of the 2 week mission. The

success of the simulation again reinforces the idea of mission feasibility.
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4.4 Control Torques

In order to further verify mission feasibility, the magnitude of the control torques

required was determined over the course of the mission. the control torques necessary

to carry out the mission are displayed in Fig. 4.4.

Figure 4.4: Spacecraft control torques over mission lifetime.

At first glance, the most notable aspect of the plot are the spikes in torque mag-

nitude. These spikes indicate a spacecraft maneuver. From previous determination,

the ISIS Magnetroquer Board discussed will only allow for the application of ∼5e-6

Nm of torque. While this may seem discouraging, paths of mitigating these spikes in

torque magnitude will be discussed momentarily.

More importantly are the torques necessary for maintaining a commanded ori-
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entation during the longer phases of the mission. During these phases, disturbance

torques including drag, gravity gradient, and SRP are modeled. In order to main-

tain the necessary orientations, both satellites must use their magnetorquer boards to

combat these disturbances. The magnitude of the required control torque to mitigate

these disturbances is displayed in Fig. 4.5.

Figure 4.5: Spacecraft control torques during nominal phase.

As determined from the plot, the required torque for maintaining a spacecraft

attitude is ∼1e-5 which is slightly above the available torque.

In order to rectify this glaring issue, attention was turned towards the control law

implementation. As displayed in Table 3.1, a settling time of 30 seconds was used for

control. While this provided apt orientation control, this response is not consistent

with electromagnetic actuation as it is implemented in a much more extended process.

For this reason, a new settling time of 15 minutes was chosen to better reflect a

space mission application. The simulation was run again with the spacecraft control
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parameters as shown in Table 4.2 and mission schedule displayed in Table 4.3.

Table 4.2: Alternative spacecraft control parameters.

CubeSat Axis ts [min] ζ ωn [rad/s] J [kg m2] Kp Kd

X - longitudinal 15 0.65 0.00752 0.0067 7.54e-7 6.51e-5

Y - lateral 15 0.65 0.00752 0.0333 3.77e-6 3.26e-4

Z - lateral 15 0.65 0.00752 0.0333 3.77e-6 3.26e-4

Table 4.3: Alternative mission schedule.

Time [days] Spacecraft A Spacecraft B Relative Distance [m]

0 Min. Drag Min. Drag 0.3

0.167 Max. Drag Min. Drag 0.3

5.208 Min. Drag Max. Drag 500

10.25 Min. Drag Min. Drag 1000

With this new simulation, all parameters were tracked just as they were previously.

To verify the mission was just as successful as the prior mission architecture, the

relative distance of the satellites is displayed in Fig. 4.6. Here it is shown that the

satellites were still able to achieve a relative distance of 1 km and hold the spacing

for the remainder of the two week mission.

While the relative position is a good indicator for whether the desired mission

outcome was achieved, the control torques and resultant quaternion components from

the alternative control implementation are more valuable in terms of determining

mission feasibility. These results were tracked throughout the simulation and are

displayed in Fig. 4.7 and Fig. 4.8

From these figures, the reduction in control torque magnitude is apparent. In

order to perform the maneuvers necessary for the mission, the control scheme never

requires torques greater than 4e-6 Nm, well within the range of COTS magnetor-
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Figure 4.6: Relative position of spacecraft for alternative mission.

Figure 4.7: Control torque magnitudes for alternative mission.
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Figure 4.8: Quaternion components for alternative mission.

quer boards such as the ISIS board. However, a less than ideal result is apparent

when viewing the quaternion components over the course of the alternative mission.

With a settling time of 30 seconds, the spacecraft is able to maintain the desired

orientations without much variance whereas the settling time of 15 minutes causes

both satellites to oscillate around the desired orientations for each command. This

oscillation causes some assumptions in the simulation to breakdown and may or may

not be crucial in determining mission success or failure in a space application. In the

model, it is assumed that the spacecraft maintain the incident surface areas associ-

ated with the maximum and minimum drag configurations when either spacecraft is

commanded to the desired orientation. With a shorter settling time this assumption

was valid. Now, with the introduction of a longer settling time and the observed os-

cillation that accompanies it, the incident surface area will vary based on the slightly

correcting and re-correcting spacecraft orientation during the commanded schedule.

When commanding a minimum drag configuration, the spacecraft will expose a larger
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wetted area than what is simulated. Similarly, when commanding the maximum drag

configuration, the spacecraft will expose a smaller wetted area than indicated due to

the oscillation. This behavior is indicative of lower fidelity physics within the model

and raises concern. Depending on the application, this lack of pointing control could

prove troublesome for mission success. In order to model this behavior properly, the

wetted area incident to the v-bar direction would be calculated at each time step and

fed back into the spacecraft dynamics. Without this higher fidelity modeling, it is not

possible to tell whether this alteration in spacecraft performance is critical to mission

success. Although this behavior raises concerns, the overarching reduction in control

torque magnitudes is a major indicator of mission feasibility.

4.5 Alternative Solutions

For the entirety of this study, the control torques required by the mission have been

compared to what is available from the ISIS magnetorquer board as it is a good

representation of a COTS electromagnetic actuation board. However, alternative

solutions exist. Firstly, while it is widely accepted that 0.2 Am2 is the upper limit

of magnetorquer performance, some sources such as the University of Michigan boast

a higher performance. In this instance, Michigan claims a performance of 0.36 Am2

with their specially designed CADRE coils[11]. Operating at 400 km with a magnetic

field of approximately 26,000 nT , this would allow for a control torque of ∼ 9e-6 Nm.

This capability, if made readily available, would allow for the reduction of settling

time for control and mitigation of the observed oscillations.

However, this proposed solution still implies a spacecraft under the sole influence of

electromagnetic actuation. There are COTS units for CubeSats such as the Maryland

Aerospace Incorporated 400 Mini ADACS Unit that incorporate both magnetorquers

and reaction wheels to provided larger torque than a single actuator would apply
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independently[2]. With the addition of reaction wheels, the ADACS can provide

torques up to 6e-3 Nm[2], a substantial jump from the ISIS board. The 400 Mini

ADACS Unit is pictured in Fig. 4.9.

Figure 4.9: MAI 400 Miniature Attitude Determination and Control
System.[2]

If a unit such as this were implemented, a propulsionless microsatellite mission

would still be realized and the upper bound of control torque magnitude would be

increased greatly. Mission complexity and cost would be raised, but whether that

proves troublesome would be mission specific.
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Chapter 5

CONCLUSIONS

With the medium to high fidelity model being implemented, the feasibility of the

simulated mission was assessed. Incorporating higher order perturbational effects,

spacecraft dynamics and control were determined. With the data retrieved from two

simulation of varying control implementation, results were analyzed and logged.

5.1 Discussion

From the simulated results, feasibility is confirmed for the 3U CubeSat differential

drag mission. However, some caveats exist surrounding this conclusion highlighting

the limitations of the simulation and subsequent concerns. Some assumptions made

and exterior considerations must be brought to light that may affect the application

of this mission in the space environment.

5.1.1 Spacecraft Characteristics

The schedule for the simulated mission and the resulting time required for the desired

satellite separation stems from the assumed spacecraft characteristics. Table 5.1

displays these characteristics.

With this geometry and mass previously defined, the areas incident during each

mission phase can be calculated as well as the resulting area to mass ratio. These

values are displayed in Table 5.2.

By altering the spacecraft geometry and as a result, the incident areas, the mission

profile will be altered. Higher fidelity models should incorporate more complex space-

craft geometry as well as more accurate mass estimates to correctly model spacecraft
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Table 5.1: Sapcecraft Characteristics

Characterstic Assumed Value

x-axis 0.3 [m]

y-axis 0.1 [m]

z-axis 0.1 [m]

Mass 4 [kg]

Table 5.2: Sapcecraft Characteristics

Spacecraft Orientation Incident Area [m2] A
m

[m2/kg]

Maximum Drag 0.03 0.0075

Minimum Drag 0.01 0.0025

behavior.

5.1.2 Control Torques

While the primary focus of this study was to determine the capabilities of electro-

magnetic actuation paired with differential drag and the feasibility of its application

on a CubeSat mission, some alternative solutions were not assessed that still may

lead to the overarching goal of propulsionless microsatellite formation flight. These

alternatives include investigating stronger magnetorquer designs as well as integrated

magnetorquer and reaction wheel systems. The incorporation of these solutions may

provide further confirmation of mission feasibility.

5.1.3 Detumble

One phase that was neglected from the simulated mission is detumble. Both space-

craft are assumed to be deployed from the ISS NanoRacks with the desired initial

orientation and no angular velocity. From the film studied, this is not an accurate
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representation of the deployment method. A more accurate model would incorporate

a low angular velocity at the beginning of life. The CubeSats would then have to

correct their angular rates using their magnetorquer boards and implementing what

is known as B-dot control. B-dot control is a simple but powerful way to detum-

ble spacecraft. The control law works by applying torque in the opposing direction

that matches the rate of change of the magnetic field[2]. In order to incorporate this

detumble regime, Earth’s magnetic field and its directionality would be calculated

at each time step, greatly increasing the fidelity of the model and its computational

expense consequently. To better determine feasibility, detumble would be simulated

and the control torques would be tracked and compared with the available torque.

5.1.4 Perturbations

With the medium to high fidelity model generated, the orbital perturbations mark

periodic trends in the spacecraft positions and altitudes that cannot be mitigated

by traditional stationkeeping methods. It is necessary to determine whether these

periodic trends are disconcerting or if they may be ignored. By looking at these

trends in relative position over the mission lifetime, one may be able to determine

if the periodicity of distance proves to be mission threatening. For analyzing this

periodicity, the final phase of the simulated mission in which the two spacecraft

attempt to maintain a fixed relative distance is shown in Fig. 5.1.

The first trend to notice is the rapid periodic movement over the course of each

orbit. The spacecraft tend to vary in relative distance by a few meters during each

revolution. The determination of whether this behavior is mission threatening is

mission specific and cannot be discussed relevantly within this context. The downward

trend that is also exhibited by the CubeSats is not a result of orbital perturbations

but rather the result of inaccurate final positioning. If both spacecraft were to end
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Figure 5.1: Periodicity in relative position.

the mission in the same orbit, this trend would not exist. A more strenuous control

scheme may allow for this to be achieved.

5.2 Future Work

For continuing the study put forth by this thesis, the main goal is to increase the

fidelity of the model created. While the model stands with medium to high fidelity,

several aspects must be included to determine feasibility with absolute confidence.

The simulation of the 2 week mission requires a 45 minute time span to compute.

This being noted, a higher fidelity model will require more time. Things to be included

in future simulations:

• Detumble and B-dot control implementation.

• Optimized closed loop control law.
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• Well defined spacecraft characteristics.

For the detumble regime, it will be necessary to determine what the magnitude of

control torques will be and if they can be supplied by a COTS magnetorquer board

with the performance of 0.2 Am2. An optimized control law will allow for defining

a mission schedule for increased spacecraft performance. In addition, the use of

closed loop control will allow both spacecraft to enter the same final orbit, enabling

efficient maintenance of relative position after the desired separation is achieved.

Finally, a more well defined mission will determine realistic spacecraft characteristics

for simulation. Spacecraft mass and geometry will determine the mission profile and

overall performance.
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APPENDICES

Appendix A

COMPLETE RESULTS FROM PRIMARY SIMULATION

Figure A.1: Relative position of spacecraft over mission lifetime.
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Figure A.2: Accelerations due to drag over mission lifetime.

Figure A.3: Accelerations due to SRP over mission lifetime.
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Figure A.4: Accelerations due to Earth oblateness over mission lifetime.

Figure A.5: Accelerations due to 3-body system over mission lifetime.
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Figure A.6: Spacecraft quaternions over mission lifetime.

Figure A.7: Control torques required over mission lifetime.
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Appendix B

COMPLETE RESULTS FROM ALTERNATIVE SIMULATION

Figure B.1: Relative position of spacecraft over mission lifetime.
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Figure B.2: Accelerations due to drag over mission lifetime.

Figure B.3: Accelerations due to SRP over mission lifetime.
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Figure B.4: Accelerations due to Earth oblateness over mission lifetime.

Figure B.5: Accelerations due to 3-body system over mission lifetime.

53



Figure B.6: Spacecraft quaternions over mission lifetime.

Figure B.7: Control torques required over mission lifetime.
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