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ABSTRACT

Optimizing the Distributed Hydrology Soil Vegetation Model For Uncertainty

Assessment with Serial,

Multicore and Distributed Accelerations

Andrew Adriance

Hydrology is the study of water. Hydrology tracks various attributes of water

such as its quality and movement. As a tool Hydrology allows researchers to inves-

tigate topics such as the impacts of wildfires, logging, and commercial development.

With perfect and complete data collection researchers could answer these questions

with complete certainty. However, due to cost and potential sources of error this is

impractical. As such researchers rely on simulations.

The Distributed Hydrology Soil Vegetation Model(also referenced to as DHSVM)

is a scientific mathematical model to numerically represent watersheds. Hydrology,

as with all fields, continues to produce large amounts of data from researchers. As

the stores of data increase the scientific models that process them require occasional

improvements to better handle processing the masses of information.

This paper investigates DHSVM as a serial C program. The paper implements

and analyzes various high performance computing advancements to the original code

base. Specifically this paper investigates compiler optimization, implementing par-

allel computing with OpenMP, and adding distributed computing with OpenMPI.

DHSVM was also tuned to run many instances on California Polytechnic State Uni-

visity, San Luis Obispo’s high performance computer cluster. These additions to

DHSVM help speed-up the results returned to researches, and improves DHSVM’s

ability to be used with uncertainty analysis methods.
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This paper was able to improve the performance of DHSVM 2 times with serial

and compiler optimization. In addition to the serial and compiler optimizations this

paper found that OpenMP provided a noticeable speed up on hardware, that also

scaled as the hardware improved. The pareallel optimization doubled DHSVM’s

speed again on commodity hardware. Finally it was found that OpenMPI was best

used for running multiple instances of DHSVM. All combined this paper was able to

improve the performance of DHSVM by 4.4 times per instance, and allow it to run

multiple instances on computing clusters.
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Chapter 1

INTRODUCTION

Hydrology examines our planets most important natural resource, water. The Dis-

tributed Hydrology Soil Vegetation Model (henceforth referred to as DHSVM) gives

researchers a helpful look at hydrologic processes in watersheds by numerically sim-

ulating different elements of the hydrologic cycle based on climate inputs [19]. In

DHSVM’s current implementation as a serial C program model run times are lengthy.

On modern commodity hardware the example data set that comes with the code base

takes anywhere from twelve to twenty minutes for a 3 year hydrologic simulation.

While that is not an unreasonable amount of time to wait for a single data set, if

researchers wish to optimize input parameters and perform uncertainty analysis or

evaluate long term processes the programs speed presents a significant bottle neck

to researchers. Optimization requires an iterative process of modifying input param-

eters and re-running DHSVM’s simulation. Uncertainty analysis requires numerous

model repetitions to produce a sufficient data set to evaluate the modeled environ-

ment. These multi-run uses of DHSVM take significant amounts of time. This paper

focuses on DHSVM’s ability to produce many results sets for uncertainty analysis,

but the speed increases can be utilized for other applications such as parameter op-

timization.

This project is being done in conjunction with the Natural Resources Management

(NRES) and Environmental Sciences at California Polytechnic State University of San

Luis Obispo. They have a grant from the California Department of Forestry and Fire

Protection to study the Caspar Creek watershed with DHSVM. This collaboration

was born to assist their research by equipping DHSVM to better utilize the high

performance computing resources available to them. Their grant seeks to simulate
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different changes to the California Forest Practice Rules on forest roads, silviculture,

and water lake protection zones. By creating these simulations researchers will be

able to investigate potential hydrologic impacts of these rules.

DHSVM requires detailed climate measurements of solar radiation, relative hu-

midity, wind speed, air temperature, land elevation, roads, and vegetation to create

the model. These inputs will be used to run DHSVM within an uncertainty analysis

framework. Instead of creating a single optimal parameter set, uncertainty analysis

uses a range of parameters through many iterative simulations. This produces a range

of acceptable model outputs to allow for improved interpretation of the simulated en-

vironment. In its current state DHSVM cannot adequately take advantage of modern

hardware to produce results quickly for many runs.

The original collaboration was to configure many instances of DHSVM to run

on California Polytechnic State University of San Luis Obispo’s computing cluster.

However, this paper goes beyond that. In an attempt to make the best use of available

computing resources this paper analyzes the original code base to utilize multi-core

parallelism on modern hardware, and equip DHSVM to scale for the future.

To the best knowledge of the authors of this paper this is the first attempt at

studying the original code base and applying modern high performance computing

techniques to it. There have been a number of studies done on the model itself

from validation, to parameter optimization [20, 6]. Yao et al. did work on genetic

algorithms to optimize DHSVM’s input parameters [20]. Their genetic algorithm

approach serves as an alternative to the uncertainty analysis method this paper seeks

to bolster. The genetic algorithm optimizes a single ideal set of parameters instead

of producing a range of results as uncertainty analysis does. DHSVM continuities

to be a model of interest, as in 2014 Du et al. did work to investigate DHSVM’s

effectiveness in a forested mountain watersheds [6]. None of these examples have
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focused on making running the model faster. These papers simply seek to analyze

and improve upon the results from the model itself.

While DHSVM has not been specifically analyzed there are many ongoing ef-

forts to speed up existing scientific simulations. One such example is the Regional

Oceanic Modeling System (ROMS) [4]. While the subject matter of ROMS is dif-

ferent, the computational backbone is similar. ROMS works to traverse 2D and 3D

data structure that represent oceanic regions, similar to DHSVM’s computation over

2D structures that represent land. This paper will borrow from these similar works

for improving DHSVM.

Currently, a single average run of the DHSVM tutorial lasts twelve and a half

minutes in this paper’s ideal test environment. For a single result set this is not

unreasonable. As the number of runs scales up to one thousand it would take almost

a week and a half, assuming continuous runs of the calculation without interruption

or downtime. Of course, when running real results on compute clusters, other users

and potential maintenance makes continuous ideal conditions unlikely to be achieved.

It is in this multi-thousand run environment this paper will analyze DHSVM, and

work to bring down its run times.

To achieve the desired speed increase this paper will analyze and apply several

different techniques. First serial and compiler optimizations are applied to the pro-

gram. Compiler optimizations will focus on testing both the GNU C Compiler (gcc)

and Intel’s C Compiler (icc) and their various optimization flags. Serial optimization

will focus on improving slow system calls such as printing and memory management.

These are especially important as any time saved in repetitively called code will mul-

tiply once parallel computing is added to the program. Even if a segment of code

isn’t repetitively called with-in the normal run of a single simulation, shaving off a

few seconds can produce significant savings when aggregated over multiple thousands
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of runs. An individual saving of ten seconds will scale to be a savings of almost three

hours for every thousand runs.

In addition to the serial optimizations, parallel computing is added to the program.

At its core DHSVM is a program that takes a large spatial data structure and loops

over it many times to perform calculations. By distributing the work of looping over

these spatial data structures to more threads on a computer, performance improves

significantly. In addition to measuring the raw performance increase on the test

system, this paper also analyzes the scalability of the improvements. As the industry

shifts away from clock speed increases in processors and towards adding more cores

to computers this becomes increasingly important [8]. Programs will no longer speed

up as new processors are released unless they make adequate use of the increasing

number of cores. This paper uses OpenMP as its tool of choice for implementing

these parallel optimizations.

Finally, distributed computing abilities are added to DHSVM. By adding Open-

MPI, DHSVM gains the ability to be running multiple instances of the simulation

with varying inputs at any given time. As the goal of this paper is to increase multi-

thousand sets of runs of DHSVM using MPI to cooperatively run many instances of

the program provides a better overall speed increase oppose to using MPI to speed

up a single instance of the program.

This paper finds that DHSVM was able to effectively be optimized for both current

commodity hardware, and for scaling up with future hardware. DHSVM was able to

perform 4.4 times faster on current commodity hardware and almost 6 times faster

on powerful server hardware. This shows that DHSVM is not only able to take better

advantage of current hardware, but it will continue to improve as CPUs continue to

raise their core counts.

Additionally, DHSVM is now able to use OpenMPI to take advantage of high
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performance computing clusters to produce many results. On a four node cluster

with each node having 2x 12 core Intel Xeon processors DHSVM can now produce

80 result sets in about the same amount of time it took to produce one result set

with the original code on the cluster. The fast production of many result sets will aid

researchers interested in uncertainty or optimization applications with DHSVM.

The rest of the paper proceeds as follows: chapter two is the background section.

The background section will cover various libraries and concepts utilized in the rest

of this paper. Chapter 3 is the Implementation section. Here the exact changes to

the program will be discussed. Chapter 4 discusses insights to help future researchers

optimize other programs. Chapter 4’s insights gained through this project could help

save significant time upfront on future projects. Chapter 5 is the validation section.

Here the process for validating the integrity of DHSVM and recording program speed

improvements are discussed. Chapter 6 and the various changes to DHSVM and how

they contributed to improved performance. Chapter 7 will discuss works related to

this project that contributed to the foundation of DHSVM’s improvements. Chapter

8 summarizes the conclusions of this paper, and finally, Chapter 9 discusses potential

future work for DHSVM and high performance computing.
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Chapter 2

BACKGROUND

Prior to discussing DHSVM and how to improve it, some background information

is required. DHSVM is an interesting piece of software, and it warrants its own

introduction as a code base and a tool. Additionally to fully understand the usage of

the thousands of results this paper plans to produce uncertainty analysis is described

in detail. Finally, a general discussion about types of parallelism and libraries is

provided for understanding the implementation details of this paper.

2.1 Distributed Hydrology-Vegetation Model - DHSVM

DHSVM is an open source implementation of Wigmosta et al.’s Distributed Hydrology-

Vegetation Model [15, 19]. DHSVM provides an accurate model for vegetation changes,

water quality, and run off production for complex terrain. The model takes informa-

tion about an area of land and climate as input and iteratively and water balances at

each time step. Researchers can use this information to investigate the water resources

across space and time. DHSVM is specifically used for investigating watersheds, and

the water resources they hold.

The source code of DHSVM is implemented in approximately 23,000 lines of C

code. While the program originated in the early 1990s with Wigmosta et al. paper,

it has been maintained as a collaboration between the Pacific Northwest National

Laboratory and the University of Washington [15]. Despite this maintenance, the code

base still performs all of its operations serially. There have been studies conducted on

the performance of the model, but to the best of the writer’s knowledge no one has

attempted to apply high performance computing techniques to the code base [10].
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DHSVM takes as spatial input a digital elevation model of the land. The model

represents vegetation and soil as grids. A water balance calculation is done for each

cell of the spatial grid using weather conditions, soil type, typography, and vegetation

of the area. DHSVM takes this model constructed by the researchers and iterates

through it over a configurable period of time. At the end of this process DHSVM will

produce a series of output files that contain information such as total water in the soil

and canopy, how much water evaporated over time, and the amount of water gained

through precipitation. The dimensions of the model can vary, but are usually in the

hundreds. This can produce a data structure with anywhere in the tens to hundreds

of thousands of grid cells.

2.1.1 Uncertainty Analysis

While DHSVM is a useful model, there is a level of uncertainty to its outputs. The

parameters DHSVM needs to run can be hard to collect, collection methods may be

prone to error, and measured values can vary by as much by 150% depending on how

and when data is collected [17]. Uncertainty analysis helps combat these levels of

variability. It offers an alternative to defining one optimal set of input parameters.

Uncertainty analysis is attempting to create equifinality, this recognizes that there is

no one optimal set of input parameters, and there may be many valid models that

produce equally possible outputs. The generalized likelihood uncertainty estimation

(GLUE) procedure is one such analysis method, and is the method that will be used

with the final version of DHSVM produced by this paper [3].

Uncertainty analysis can be understood by the general steps researchers take when

utilizing it. First, a reasonable range of input parameters must be defined. In the

case of DHSVM this allows researchers to express the fact that measured values can

vary by 150% without having to settle on one concrete value. Then many instances
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of the model must be ran with varying combinations of reasonable input parameters.

As outputs are produced, goodness of fit tests determine if a particular set of random

parameters and outputs are reasonable. The exact statistical analysis applied will

vary depending on use case. Finally, the remaining results can be used to construct

a graph that contains a region of reasonable solutions.

2.2 Types Of Parallelism

High performance computing utilizes the multiple cores CPUs to allow for simulta-

neous calculations to take place. A program may utilize multiple cores by either

assigning different pieces of data, or different tasks for each core to process. Each

method offers its own distinct advantages. This section will serve as a basic introduc-

tion to these types of parallelism.

2.2.1 Data Parallelism

Data based parallelism is the most common form of parallelism. In this style of

parallelism different pieces of data are all processed using the same set of code. This

form of parallelism can be equated with SIMD(Single instruction, multiple data)

operations, or single instruction multiple data operations. Data parallelism comes

naturally when many items need to be processed in a similar fashion, such as adding

1 to every element of an array. Many modern CPUs are equipped with SIMD machine

instructions and special registers for parallel computations [14]. GPUs also operate

with data based parallelism. The nature of computer graphics often has the same

operation being applied to every pixel on a screen. As programmers have needed to

process more and more data over the years data based parallelism has become a more

general purpose item for day to day programming needs [18].

Data parallelism isn’t without its flaws. Most data based parallelism paradigms
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assume uniform data and uniform operations on that data. If the system allows di-

vergence of operations, such as the use of conditionals, performance can be greatly

impacted [7]. This sometimes constrains the types of work loads data based paral-

lelism can effectively handle.

Large matrix multiplications are good examples of data parallelism. A program-

mer can partition the matrix data by row, column, or square chunks. Each thread

can then handle calculating results for its chunk of the matrix. At the end the results

of each thread are combined to present a fully multiplied matrix.

2.2.2 Task Parallelism

Task based parallelism focuses on accomplishing more than one task at a time, rather

than processing more than one piece of data at a time. This form of parallelism can

be equated with MIMD(multiple instruction, multiple data) operations, or multiple

instruction multiple data operations. This form of parallelism has different cores

operating asynchronously to process different results from different data sets. A

good mental model for task based parallelism is how an OS may run more than one

process at a time. Each process the OS executes is a ’task’ that is being handed to the

various cores of a computer. Task parallelism is advantageous for work that operates

on irregular data sets that can’t be easily generalized into the same set of processing

steps. Each task can also implement data based parallelism to provide even greater

speedups. Until recently combining data and task based parallelism was difficult [2].

While task based parallelism can be powerful it requires careful consideration by

the programmer. The programmer must keep the data being processed by different

tasks synchronized. The programmer must also ensure that two tasks can execute

independently of each other to avoid incorrect output. Additionally, if tasks are too

tightly coupled the time spent synchronizing data can consume any benefit gained by
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using multiple cores.

Game engines are a good example of task based parallelism. One thread can be

handling the networking code for a multiplayer game, one thread can be handling

physics calculations, and another can be handling user input. By having threads

working on different tasks it takes less total time to perform logic updates, and thus

the game can present new frames to a user faster.

2.3 Parallel Libraries

While languages like C contain built in constructs for parallelism like pthreads, they

put much of the parallel programming burden on the developer. There are many

libraries that offer useful abstractions to lower the burden of programming. This

section will discuss two such popular libraries utilized in this paper, OpenMP and

OpenMPI. This section offers a overview of what these libraries have to offer. How-

ever, it is not a beginners tutorial for working with them.

2.3.1 OpenMP

OpenMP (Open Multi-Processing) is an industry standard library for shared-memory

parallel computing [5]. OpenMP is supported on most systems, and allows for a

programmer to easily annotate existing C, C++, and Fortran code to add parallelism.

OpenMP excels at data based parallelism by allowing programmers to simply annotate

existing loops in a program. Code List 2.1 shows a simple example of an OpenMP

program that adds one to each element of an array.
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Code Listing 2.1: OpenMP data based loop parallelism

//add i to each element o f a . S e r i a l .

for ( int i = 0 ; i < 10 ; i++) {

a [ i ] = a [ i ] + 1 ;

}

//add i to each element o f a . P a r a l l e l .

#pragma omp p a r a l l e l for

for ( int i = 0 ; i < 10 ; i++) {

a [ i ] = a [ i ] + 1 ;

}

OpenMP’s shared memory model allows for any thread generated by OpenMP

to, by default, access and modify data visible to other threads. The only data that

is explicitly safe are variables declared as private in the OpenMP pragmas, or are

not accessible due to differences in scope. Due to this shared memory model a pro-

grammers largest concern when working with OpenMP are often the race conditions

created by two threads trying to work on the same data. OpenMP does provide

tools for programmers to avoid and mitigate such race conditions. Firstly, if offers

atomic operations to protect the common issues of read and modify operations such

as incriminating a variable. Secondly, it offers the ability to define a section of code

as critical. Critical sections of OpenMP code will be forced to run serially, with only

one thread being able to enter and execute the section of code at a given time.

OpenMP primarily focuses on making data level parallelism easy, but Code List 2.2

shows an example of task based parallelism in OpenMP. While it is possible, it does

require more annotation on the side of the programmer.
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Code Listing 2.2: OpenMP task based parallelism

#pragma omp p a r a l l e l shared (n , a , b ) p r i v a t e ( i ) {

#pragma omp s e c t i o n s nowait {

#pragma omp s e c t i o n

for ( i =0; i<n ; i++)

a [ i ] = a [ i ] + 1 ;

#pragma omp s e c t i o n

for ( i =0; i<n−1; i++)

b [ i ] = b [ i ] − 1 ;

}

}

2.3.2 OpenMPI

OpenMPI (Open Message Passing Interface) is a high performance, open source im-

plementation of the Message Passing Interface standard [9]. The Message Passing

Interface (MPI) is a standard created and maintained by the MPI Form. MPI’s origi-

nal purpose was to unify the semantics of message passing system, which is a popular

paradigm for parallel and distributed computing [9].

MPI revolves around asynchronous workers who explicitly communicate as needed.

The explicit passing of data and messages in a MPI system allows additional flexibility

over OpenMP. Unlike OpenMP, the workers of MPI tasks don’t need to share memory,

if needed the messages can be passed over a network. This allows for distributed

computing where several computers are all working towards the same goal. The

down side of MPI’s message passing is that it requires more effort for a programmer

to express. Code List 2.3 Shows a simple example of adding one to each elements of

an array, contrasted with Code List 2.1 it looks much different than standard C code.
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Code Listing 2.3: OpenMPI data parallelism

int a [ 1 0 ] ;

int myA;

int root = 0 ;

int rank ;

// s e t up MPI environment

MPI INIT(NULL, NULL) ;

//Get the id o f t h i s worker

MPI Comm rank(MPI COMM WORLD, &rank ) ;

//worker wi th rank = 0 sends data to a l l workers

MPI Scatter ( a , 1 , MPI INT , &myA, 1 , MPI INT , root , MPI COMM WORLD) ;

myA = myA + 1 ;

//worker wi th rank = 0 ga the r s data from a l l workers

MPI Gather(&myA, 1 , MPI INT , a , 1 , MPI INT , root , MPI COMM WORLD) ;

//Commnication between workers shut o f f

MPI Final ize ( ) ;

While the explicit sending and receiving of information requires addition expres-

sion on the part of the programmer, it does make task based parallelism much more

natural. In Code List 2.4 two different MPI workers are assigned two different func-

tions to run. If no data needs to be passed between the two processes then nothing else

needs to be done. It gives the programmer the benefit of having many independent

processes executing, and only sharing information between them as needed.
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Code Listing 2.4: OpenMPI task parallelism

int root = 0 ;

int rank ;

// s e t up MPI environment

MPI INIT(NULL, NULL) ;

//Get the id o f t h i s worker

MPI Comm rank(MPI COMM WORLD, &rank ) ;

i f ( rank == 0) {

f unc t i on1 ( ) ;

} else i f ( rank == 1) {

f unc t i on2 ( ) ;

}

/∗ . . . ∗/

MPI Final ize ( ) ;

This model of programming offers a distinct advantage, there are no race condi-

tions. Without shared memory there is no way for two MPI workers to trend on one

each others work. Thus MPI doesn’t offer anything in terms of serialization or atomic

operations. Instead MPI focuses on forms of communication. It offers the ability to

communicate one-to-one, one-to-all, and all-to-one. Additionally in cases where MPI

workers need to all reach the same of execution before continuing the library offers

what it calls barriers. MPI barriers are simply a way for a programmer to have every

MPI worker stall at a barrier until all workers have reached that point in the code.
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Conversely, this model of programming can potentially perform worse. The ex-

plicit message passing without shared memory means data synchronization between

workers is at the mercy of their communication medium. If the communication

medium is a slow ethernet connection MPI’s message transfer will adopt the slowness

of the ethernet connection. Fortunately, with modern networking hardware this is

rarely an issue unless great distances are involved between the two computers.
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Chapter 3

IMPLEMENTATION

The goal of this paper is to provide a modern version of DHSVM that can assist future

researchers. To accomplish this software upgrades were made in four distinct phases.

First additional features were added for users of DHSVM to leverage the new high

performance changes and optimize workflows involving uncertainty analysis. Then

serial optimizations were added to optimize DHSVM’s current code. Thirdly paral-

lel optimization were introduced to take advantage of multi-core hardware. Finally

distributed computing was introduced to produce many DHSVM result sets at a time.

3.1 Software Feature Additions

The first added feature allows users to specify the desired number of DHSVM runs.

DHSVM will continue to execute new instances of the simulation until the input goal is

achieved. Each simulation’s output is prefixed with a number for future analysis. The

run number is taken as a new runtime argument to the program from the command

line. This allows researchers to launch one job for any number of desired simulation

results.

Figure 3.1: An example section of a DHSVM input file with a random
range. In this example values for ground roughness will be selected from
the range of 0.02 - 0.05m.
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In addition to specifying a number of instances the ability to randomize inputs is

added. While each instance of the simulation could use a different input file, it would

be time consuming for researchers to create that many files. Instead any integer

or floating point parameter in an input file can now specify a random range. To

specify a number from 0.1 to 0.5 for example a user would list <0.1-0.5> as an input

parameter. Figure 3.1 shows an example input file with a random range for ground

roughness. Each run, in addition to DHSVM’s standard output will also output a

list of the random values chosen for each input parameter. This allows researchers to

analyze and fine tune the random ranges in their input files for models.

The random number range is inclusive. To generate a random number in the

range first the delta between the lower bound and upper bound of the range is found.

A random double value ranging from 0 to 1 is then produced. The result of the

random generation is then multiplied by the delta to find an offset. The offset is then

added to the lower bound of the range to finally produce the random number. As the

generation allows for the production of 0 and 1 the result ends up being inclusive of

the two endpoints.

3.2 Serial Optimization

Prior to spreading work across multiple cores it is important to make the program run

faster serially. Any serial speed increases inside of loops will compound once parallel

computations are introduced. Serial optimizations additionally allow for performance

gains in serial code that can’t benefit from additional cores. This paper utilizes both

automatic optimizations from compilers, and manual optimization applied to the

code.
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3.2.1 Compiler Optimization

Modern compilers offer a wide variety of automatic optimization schemes. The general

goal of these schemes is to reduce the number of instructions to complete tasks,

and improve cache coherency. Reducing instruction counts results in fewer CPU

clock cycles being required to complete a chunk of code. Improving cache coherency

encourages a program to use data that already exists in a CPU’s cache and thus

reduces the time spent fetching data. In-depth discussion of these methods such as

loop unrolling and data access ordering can be found in other literature such as the

survey work of Bacon et al. [1].

Code Listing 3.1: gcc flags

gcc −O3

Code Listing 3.2: icc flags

i c c −O3 −prof−use −xCORE−AVX2 −ipo −no−prec−div

This paper specifically utilizes the GNU C Compiler (gcc) and the Intel C Com-

piler (icc). For gcc enabling optimization level 3 and removing all debugging and

profiling flags was sufficient for optimization purposes. The same was done for icc.

In addition to the basic compilation options icc offers a profile optimization mode.

To utilize this option first a version of the program is built with icc that generates

profiling information once the program is executed. The statistics created by running

the program are then used to recompile the program. This gives the compiler a real-

istic understanding of memory and instruction usage to better guide the optimization

processes. The specific compiler flag set for gcc is shown in Code List 3.1 and the flags

for icc are shown in Code List 3.2. The ’ipo’ optimization in icc allows the compiler

to inline functions that exist in different files. The icc ’no-prec-div’ option enables

faster floating point divisions. This flag can degrade the accuracy of the floating
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point values however. In DHSVM this flag did not significantly impact the results

files. Finally in icc the ’xCORE-AVX2’ option allows for icc to do processor specific

optimizations based on the available instruction set.

3.2.2 System Call Optimization

System calls can be particularly costly. They require a context switch from the

requesting process to the kernel, and then for the kernel to execute the code to

handle it. This locks up the program and incurs additional clock cycles while the

kernel handles the request. Therefore it is desirable to reduce the usage and impact

of system calls where possible to avoid the expensive context switches.

The first optimization work is to remove unneeded print statements. By default

DHSVM continuously prints out progress makers for the current step of the simula-

tion. The program calls print several times every second to produce these progress

makers. For a single running instance of DHSVM these progress markers help users

track the simulation to completion. However, in an environment where many simu-

lations will be run at a time constant updates are not vital to the user tracking the

programs progress.

The next set of optimizations focus on the memory based system calls such as mal-

loc and free. These calls incur extra overhead as the kernel manages virtual memory.

Two different methods are implemented for optimizing these calls. The first opti-

mization uses gperftools as an alternative to the compilers default malloc libraries

[12]. While gperftools provides a variety of helpful profiling options, it most impor-

tantly contains TCMalloc. It offers up to 4 times the performance over other malloc

implementations, and specifically favors threaded environments [13]. TCMalloc gives

each thread a cache of memory on top of a central memory cache used for storing

larger objects. When objects are freed from TCMalloc they enter a list of available
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memory that can be used by future memory requests. These features of TCMalloc all

serve to reduce the reliance on context switches into kernel space to handle memory.

In addition to using TCMalloc this paper also investigates manually reducing

system memory calls. Each iteration of the simulation mallocs and frees the same

data structures. To reduce these system calls malloc and free will only be called for

these common data structures once. At the start of the program all these common

structures will be initialized with malloc. At the end of the program all these common

data structures will be released using free. Each iteration of the simulation where

malloc is normally called is replaced with calls to memset for zeroing out the memory

of the data structures. The free at the end of each simulation step are no longer

needed and are removed all together.

3.3 Parallel Optimization

DHSVM spends a large portion of time traversing the two dimensional grid structure

of the spatial data input. It has to traverse it to calculate and aggregate new values

each iteration of the program. Additionally there is certain setup up and cleanup work

required at each simulation time step that requires traversal of the whole structure.

These frequent traversals are the primary target of this paper’s parallel optimizations.

OpenMP is used for implementation of parallel optimizations.

The traversals appear in the code using nested for loops. One traverses the rows,

one traverses the columns. The traversal is parallelized by distributing with fine

granularity. Each cell in the two dimensional grid is available to schedule on any

thread. This is accomplished by using openMP’s collapse feature to turn each iteration

of the nested loop into an individual piece of work. The collapse directive effectively

rewrites the nested loop at compile time to be a single loop and makes each iteration

available to run on any thread. Without the collapse directive a coarser granularity
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Figure 3.2: A small example of the potential issues of dividing work only
by row or column. In this case two threads end up with no work due to a
lack of columns in the grid.

can be used to distribute individual rows or columns of the traversal to threads. This

coarse granularity is not as scalable, shown in Figure 3.2, and can lead to some threads

not getting any work at all. By distributing just rows or columns to threads you end

up with either N or M work units. By distributing individual cells you end up with

N*M work units. By increasing the number of work units DHSVM will better be able

to take advantage of computers in the future with many more cores than currently

available.

In addition to these traversals various administrative work for the simulation

was distributed to various threads. Each simulation iteration has many malloc and

free calls to set up and tear down data structures. All of this work was spread

between the available cores. In general any loop with a significant number of iterations

(approximately 100 iterations per core) or did non-trivial work (free, malloc, large

simulation calculations) were spread to additional cores. Trivial loops (low number

of iterations, or simple calculations such as a single add) where left serial due to the

administrative costs incurred by distributing work to threads.

For reference appendix B provides the full main file of DHSVM, which contains a

significant loop utilizing OpenMP. This can be compared to the original code provided

21



in appendix A to see an exact application of OpenMP pragmas, and the changes made

to facilitate them.

3.4 Distributed Optimization

Distributed computing can be used to speed up the individual run times of a program.

This paper seeks to produce many DHSVM results in a short amount of time. As

such the optimal strategy is to have each distributed node run a different instance

of DHSVM. By having worker nodes run individual instances the amount of commu-

nication between nodes is kept to a minimum, allowing for additional results to be

produced with reduced overhead. OpenMPI is utilized to handle distributing the var-

ious DHSVM instances. Since DHSVM’s input file was changed to allow randomized

parameters, each DHSVM instance on the cluster can use the same input file with a

different set of randomized parameters.

Figure 3.3: Each distributed worker node computes new simulation results.
All results are sent to a master node and written to disk.

Each worker node in the cluster runs its own instance of DHSVM. When the

simulation finished the results are sent back to the master node and written to disk

for future analysis. A visual representation of this setup is shown in Figure 3.3.

While it is necessary to aggregate the results to a single location it creates a bottle
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neck. DHSVM’s runtimes are not highly variable, thus worker nodes may request the

master node to write results to disk at the same time. This bottle neck becomes a

bigger problem as the size of the cluster increases. To help mitigate this problem the

initial DHSVM jobs are slightly offset from one another. The initial variation in start

times reduces the chance that two worker nodes will try to have their results written

to disk at the same time.
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Chapter 4

SUGGESTIONS FOR MODIFYING OTHER PROJECTS

While improving DHSVM this paper found several steps and tools were to assist in the

process. These processes and tools would have saved multiple weeks of development

time.

4.1 Useful First Steps

In the early stages of modifying the code several steps were developed to help mitigate

errors. These two steps covered the root causes of some of the most enigmatic bugs

that arose during DHSVM’s optimization. After applying these two initial steps to

functions before optimization the code worked more reliably.

4.1.1 Non-initialized Memory

One of C’s common stumbling blocks is non-initialized memory. Variables without

a value assignment end up with whatever random data is in RAM. Before too many

optimizations the effects of such issues might not arise. However, once threads start

using memory simultaneously chances increase that uninitialized memory will start

reading data left behind by other threads.

Compilers will give warnings for uninitialized basic variables, but they won’t warn

about uninitialized struct fields. These uninitialized fields can cause incorrect output

or crash the program. These errors don’t give any indication of the uninitialized field,

they look just like a coding error. In a code base as large as DHSVM it benefited

to side on the error of caution for struct initialization. To avoid the possibility of

uninitialized memory in structs all structs where zero initialized in DHSVM using the
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syntax in Code List 4.1. This zero initialization syntax will recursively set all field

values to zero. This makes numerical values 0 and pointer values NULL. Appendix

B provides a real file of code with these modifications applied.

Code Listing 4.1: Safely initialized structs

STRUCT TYPE myStruct = {0} ;

4.1.2 Limiting Scope

When using OpenMP the programmers’ main responsibility is analyzing the code

to prevent data race conditions. Limiting the scope of variables will help reduce

the number of variables in consideration for data race conditions. In older C code

variables exist in scope much larger than necessary, often being defined at the top

of functions. Any integer not contained within the scope of the OpenMP loop needs

to be explicitly made private, or have atomic operations applied to it such as Code

List 4.2.

Code Listing 4.2: Explicit private variables

int i j ;

#pragma omp p a r a l l e l for p r i v a t e ( i j )

for ( int i = 0 ; i < 10 ; i++) {

for ( int j = 0 ; j < 10 ; j++) {

i j = i ∗ j ;

a r r [ i ] [ j ] = i j ;

}

}
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By pushing variables down as far as possible in scope they become explicitly

private such as in Code List 4.3. When working with large legacy code there are

often many variables at play in a loop. Reducing the number the programmer has to

explicitly work with protecting saves production bandwidth for optimizations. Refer

to appendix B to see a real file of code with these modifications applied.

Code Listing 4.3: Implicit private variables

#pragma omp p a r a l l e l for

for ( int i = 0 ; i < 10 ; i++) {

for ( int j = 0 ; j < 10 ; j++) {

int i j = i ∗ j ;

a r r [ i ] [ j ] = i j ;

}

}

4.2 Useful Tools

Several tools contributed to increasing productivity through helping track bugs and

address run time inefficiencies. These tools consisted of gprof, and the PRUNERS

tool collection.

4.2.1 gprof

gprof is a GNU standard tool for profiling programs. Using the tool will give a list of

function calls in the program along with how many times they were called, how long

the functions ran for, and what percentage of run time they account for. This gives

a detailed list of functions that can be optimized using high performance computing
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methods. To use gprof a program needs to be compiled through gcc using the ’-pg’

flag. After that gprof can be used to run the program and gather statistics.

This paper used gprof to track expensive operations in DHSVM. However, opti-

mizations were not always applied directly to the slow functions. In general, once a

slow function was found both the function itself was investigated, and the series of

calls that lead to that function. In certain cases the slow function had a large series

of calculations that could be distributed to different cores. More often though these

functions where called hundreds of times inside a for loop traversing a data structure.

In these cases it was better to distribute the iterations of the for loop to different

threads. Then multiple threads could be executing these expensive calculations along

with the additional work inside the for loop.

4.2.2 PRUNERS

A particularly interesting tools set is the ”Providing Reproducibility for Uncovering

Non-deterministic Errors in Runs on Supercomputers” (PRUNERS) project done

by the University of Utah and Lawrence Livermore National Laboratory [16]. The

PRUNERS toolset offers a variety of tools for trouble shooting common problems in

highly optimized programs. The toolset consists of Archer, FLiT, Ninja, and ReMPI.

Archer provides troubleshooting output for race conditions in OpenMP programs.

FLiT provides floating point variablilty checking for heterogeneous environments.

Ninja provides nosiy network injection for testing MPI programs. ReMPI offers a

way to capture the communications of an MPI program and replay them for analysis.

This paper particularly found Archer to be a great tool. When modifying large

code bases race conditions can be hidden deep within function calls. Archer helped

remove some of the guess work required for tracking these unknown race conditions

down.
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4.3 printf Rounding Errors

One troublesome error found during development had to do with different platforms

implementation of printf. This paper found that on macOS 10.13.3 printf would not

make consistent rounding decisions when multiple cores were in use. Figure 4.1 shows

an example of printf choosing to round the second decimal place differently between

two runs of the same program, even though the third decimal places value was the

same. This same issue was not encountered when testing on OpenSuse however.

Figure 4.1: Output of %.2f and %.3f from printf

If rounding direction and floating point accuracy are important it can be advanta-

geous to do rounding operations before a printf statement. This way platform specific

issues can be avoided, and output can be consistently reliable.
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Chapter 5

VALIDATION

Validation of DHSVM was handled as two separate tasks. To ensure correctness

every change to DHSVM’s code base checked against the output of the original code

base. This ensured that program output was not being mangled by optimizations.

To ensure the effectiveness of every change to DHSVM’s code base time results were

gathered each run. To complete these tasks a simple Python test suite was created.

This tool automated the process of program correctness checks, and provided timing

outputs for gathering results.

Tests were run using various hardware throughout the paper. Three machines

were used in particular, their CPU specifications are listed in Table 5.1. For the

remainder of the paper Table 5.1 can be referred too. If a graph displays results from

a ”consumer” CPU then it specifically refers to the Intel Core i7-7700HQ listed in

Table 5.1. Additionally appendix C provides the input file used for these experiments.

Table 5.1: CPUs used for experiments

Type Model Cores Clock Speed

Consumer Intel Core i7-7700HQ 4 2.80GHz

Server Intel Xeon E5-2695 v3 12 2.30GHz

Research Intel Xeon Phi 7210 64 1.30GHz

5.1 Guaranteeing Correctness

The Python test suite used the output of the original, known working DHSVM code

as an oracle. Each iterative update to the program was then run through the suite,

which would compare all new program outputs to the old ones. If any differences
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occurred the tool would inform the user which outputs differed and to what degree.

Code updates often cause issues later on in data processing rather than immediately

where the updates occur. Tracking exactly which outputs differed in the testing suite

allowed these downstream issues to be identified by starting with the final result and

working backwards towards the change. This gave a simple single path of code to

follow. Without this, issue tracking would require starting at a change, and following

all code paths affected.

Race conditions and general non-deterministic program behaviors where the biggest

concern this paper guarded against. A single vote of correctness from the test suite

didn’t fully prove the absence of these abnormalities. A program modification would

be run at least once in ideal conditions, and once with other tasks on the computer

demanding resources to move threads in and out of the CPU. By introducing con-

tention it gave threads a higher chance to swap in and out of the CPU and execute

in a different order which can reveal subtle threading errors.

Correctness was not always a binary yes or no when compared to the oracle

programs outputs. When compiler options or whole compilers, were switched during

the project floating point numbers would not always maintain the same precision.

To verify changes to floating point outputs, first a sanity check of the output was

completed. This sanity check consisted of ensuring the two outputs still agreed on the

most significant decimal places, and that the number itself differed by an insignificant

amount (less than 0.01%). After verifying the relative accurateness of the output,

the program was run again, but this time compared to its own output. As long as

the second programs run matched the first the floating point error was considered

insignificant. If they did not match the code was analyzed under the assumption a

race condition was introduced.
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5.2 Timing Comparisons

Timing comparisons are gathered as an average of runs in ideal conditions. DHSVM

is executed five times, and the average of those runs is used for the final result. Time

measurements represent the total wall clock time required for DHSVM to complete

from the time the user issues the command to the final output being written.
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Chapter 6

ANALYSIS

The original code base of DVSHM took approximately 13 minutes (780.52 seconds)

for a single run to complete when running in ideal conditions. After applying all

optimizations this paper investigated, a single instance completed in about 3 minutes

on consumer hardware and just over 2 minutes on server hardware. This is an overall

speed increase for a single run of 440%. Figure 6.1 shows the difference between

the original DHSVM code base, and the code base with every optimization enabled.

Section 6.1 will analyze the various serial optimizations applied to the code base.

Section 6.2 will investigate the parallel optimzations and how well they scaled as

cores were added. Section 6.3 will investigate the time and resource trade offs based

on how many cores you allocate per DHSVM instance when producing many result

sets.

Figure 6.1: A comparison of times between the original program and the
most optimized on consumer hardware.
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6.1 Serial Optimizations

Serial optimizations accounted for approximately half of DHSVM’s speed increases.

With serial speed increases the program ran in a little under 6 minutes. That’s

220% faster than the original code. Figure 6.2 shows the difference between the

original program and the best serially optimized version of the program. The biggest

speed increases for serial optimization were gained through compiler optimization and

system call optimizations.

Figure 6.2: A comparison of times between the original program and the
best serially optimized version on consumer hardware.
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6.1.1 Compiler Optimizations

This paper investigated the various effects of using Intel’s specific compiler for Intel

CPUs (icc), versus the GNU C compiler (gcc). Figure 6.3 shows the original serial

version of the program compiled with both gcc and icc. icc gains a constant 20 second

speed increase over gcc. This 20 second constant speed increase also persists when the

program is ran with multiple cores. This speed increase is not significant for single

runs of DHSVM, but can net large gains over large numbers of runs.
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Just using gcc with its basic -O3 flag shows a significant improvement over the

original code base, shaving off almost 300 seconds of run time, for an overall 50%

increase in speed. For many uses of DHSVM the additional 20 seconds saved with

icc will be unnecessary. However, for the many results set required for uncertainty

analysis 20 seconds is a helpful increase in speed.

Using icc does take significantly longer to compile, especially when using profile

optimizations. These upfront costs are only incurred once and pale in comparison to

the long term time spent producing simulation results.

Figure 6.3: A comparison of times between the original serial program
compiled with gcc optimizations and one compiled with icc optimizations
on consumer hardware.
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For many large programs compiler optimizations will be an excellent starting

point. Enabling optimizations isn’t totally free of development time, as it will reveal

subtle bugs that may not affect optimized code (such as uninitialized memory). How-

ever, these subtle issues will also often cause problems with parallel code and should

be worked through before any serious optimization work can take place.
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6.1.2 printf Optimizations

The first system call to be optimized was printf. Removing printfs for unnecessary

progress updates successfully shaved about 10 seconds off the program. When running

many instances of DHSVM a user won’t need updates on the progress of an individual

run. Instead, the concern is about completed instances of DHSVM. Figure 6.4 shows

the most optimized serial version of the program with the printf calls left in, and with

the calls removed.

As with icc, this savings is not critical for users who will only run DHSVM a few

times, and would likely want to see the progress of a signal simulation instance. A

savings of ten seconds translates to almost 17 minutes of time saved for every 100

instances of DHSVM that run in succession. Therefore, the optimization is worthwhile

for uncertainty analysis.

Figure 6.4: A comparison of times between the optimized serial program
compiled with and without printfs being removed on consumer hardware.
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6.1.3 Memory Optimization

Optimizing system calls for memory provided the second best returns for serial opti-

mizations netting an additional 25% performance improvement. Figure 6.5 shows the
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difference in run times between using the original code base with the default malloc

library, reducing the number of calls to calloc by holding onto memory, and using

TCMalloc to replace the default malloc library.

Figure 6.5: A comparison of times between the different memory options.
One holds memory and uses memset instead of calloc and free, one uses a
3rd part malloc library. Testing ran with consumer hardware.
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Reducing the calls to calloc did give some tangible results, about a 15 second speed

increase. However, it required some significant development time to analyze existing

code to determine what callocs could be turned into memset calls of existing memory.

While 15 seconds is a noticeable increase when running many instances, it was not a

good return for the amount of development time invested in it. On the other hand,

TCMalloc reduced run times by a minute and a half, a 25% improvement. TCMalloc

required very little development time, but does require a version of the library to

be available at compile time. TCMallocs optimization for parallel environments and

reuse of memory allowed it to excel in DHSVM’s environment. Using a third party

implementation to improve all uses of the malloc library provided good results for the

whole program without having to manually analyze and modify the programs memory

usage. In general, replacing existing libraries with use case specific implementations

can give significant improvements, as shown by TCMalloc.
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6.2 Parallel Optimizations

DHSVM’s parallel optimizations reduced runtimes by almost three minutes on con-

sumer hardware. These optimizations took run times from 350 seconds down to 180.

Figure 6.6 shows how DHSVM scaled on a commodity Intel CPU with 4 physical

cores and Hyper Threading. The graph initially looks like DHSVM can only effec-

tively utilize two cores, however this is not the case. DHSVM’s performance actually

depends on how many cores are available on the machine physically.

Figure 6.6: A graph that shows the most optimized version of DHSVM’s
performance relative to number of threads on consumer hardware. The
CPU contains 4 physical cores with Hyper Threading.
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Figure 6.7 shows DHSVM’s performance on server hardware with 12 physical core

available. This graph gives a clearer picture of DHSVM’s performance per thread.

First, the two graphs show that virtual cores provided through Hyper Threading on

Intel CPUs do not greatly benefit DHSVM. After reaching the physical core limit

performance hovers around the same range. Secondly, the graphs show that DHSVM

stops getting significant performance improvements after about 75% of the cores are

in use. In Figure 6.6 performance improvements become very minimal after 3 cores are

in use, and in Figure 6.7 performance improvements start to level off around 9 cores.
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Additionally by switching to server hardware DHSVM reduces runtimes by almost

a whole minute. The servers individual cores were also slower than the commodity

hardware with serial DHSVM taking 395 seconds on the server versus 350 seconds on

the commodity CPU. That means with even faster server hardware DHSVM could

continue to improve.

Figure 6.7: A graph that shows the most optimized version of DHSVM’s
performance relative to number of threads on server hardware. The CPU
contains 12 physical cores with Hyper Threading.
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DHSVM was able to run twice as fast on commodity hardware with 4 cores, and

three times faster on server hardware with 12 cores. This paper was not able to

determine why DHSVM’s speed decreases when cores are added. It may be due to

false cache sharing or scheduling issues. The data show that DHSVM should be able

to continue to scale up despite these issues, the net gain per core will simply continue

to drop. Exactly how many cores DHSVM can utilize will depend on the size of the

land area being simulated.

To test the potential edge of DHSVM’s scalability in the future DHSVM was run

on a machine with 64 cores. The results in Figure 6.8 show that DHSVM continues

to scale in a similar fashion. The curves on all three graphs show that in general

DHSVM can now scale in a 1/x fashion relative to the number of cores on the CPU.
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Figure 6.8: A graph that shows the most optimized version of DHSVM’s
performance relative to number of threads on research hardware. The
CPU contains 64 physical cores.
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The actual times on the research hardware are noticeably slower than the consumer

hardware. This is due to the research CPU clock speeds being significantly lower and

optimizing for vector operations. Currently, DHSVM needs the higher clock speeds

for the complex floating point operations it performs. Additionally DHSVM’s code

base is not tooled to utilize the vector operations of the CPUs.

Overall these results show that DHSVM can effectively scale to machines with a

wide variety of CPU core counts. If in the future massively parallel machines with

low powered cores become the norm for computing DHSVM’s code base would have

to be reworked to efficiently function.

6.3 Multi-core VS. Multi-instance

This papers modifications to DHSVM allow for both multiple cores and multiple

instances of DHSVM to be run it is also desirable to understand how to balance

computer resources. While allotting more cores per DHSVM instance will return

individual result sets faster, the scaling provides diminishing returns. To investigate
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this a single server computer was used in three different configurations. The first

configuration ran DHSVM serially, allowing for up to 12 simultaneous instances. The

second allotted 2 cores to each DHSVM instance, allowing for up to 6 simultaneous

instances. The final configuration had 6 cores per instance, allowing for 2 running

concurrently. Each set up was asked to produce 1, 6, 12, and 24 sets of DHSVM

results. Figure 6.9 shows the raw time recordings from each of these experiments and

Figure 6.10 graphs total time divided by the number of result sets produced. The

results of this experiment provide three interesting insights.

Figure 6.9: A graph that plots total time required to execute a certain
number of DHSVM instances. The graph gives a comparison of time
trade offs based on number of cores per DHSVM instance using server
hardware.
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Figure 6.10: A graph that plots time per instance produced. The graph
gives a comparison of time trade offs based on number of cores per DHSVM
instance using server hardware.
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Both Figure 6.9 and 6.10 show that running extra instances of DHSVM scales

linearly. This is particularly evident in the data for the instance with 6 cores where

additional runs were needed for every instance. Figure 6.10 also shows that once the

hardware was fully utilized the time per instance held reasonably constant. These

results show that DHSVM’s run time required for an arbitrary number of results is

reasonably calculable. It simply requires a user to find how long it takes DHSVM to

produce its first set of results, and then interpolate linearly to the desired amount of

results.

The results gathered also show that DHSVM for uncertainty analysis will scale

well to arbitrarily sized compute clusters. Figure 6.9 shows that there is very little

overhead to run additional instances of DHSVM. This is best exemplified by the data

points of 1, 6, and 12 result sets produced by DHSVM in serial. Therefore, DHSVM

will be able to leverage arbitrary numbers of cores and nodes in a compute cluster by

running multiple instances of the simulation with minimal overhead.
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Most importantly to future users of DHSVM, for large sets of results it makes

little sense to use multiple cores for DHSVM. The almost perfect scaling of running

multiple instances quickly outperforms the benefits of using multiple cores to accel-

erate DHSVM. However, the multi-core version is still helpful for researchers who are

using workflows other than uncertainty analysis and initial configuration and testing

of model inputs.

6.4 Profile Analysis

Figure 6.11: The slowest functions in the original program, and time spent
executing them compared against speeds after optimization.
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A profiling analysis of run times before and after optimization gives a clear pic-

ture of where speedups were gained. Figure 6.11 shows the top five functions DHSVM

spends time executing in the original code, and how much time they took after op-

timizations. The slowest function, MassEnergyBalance had some speed-ups from
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optimizations, but was hindered from further speedups by data dependencies. Each

of the remaining four function operated a significant amount to individual cells of the

lands model grid. These operations could easily be split between cores and allowed

for noticeable speedups.
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Chapter 7

RELATED WORKS

Even without research about accelerating DHSVM it has been an interest to re-

searchers in other ways. Several papers have focused on optimizing the results re-

ceived from DHSVM. DHSVM has been analyzed for its correctness and applicability

in different circumstances. This paper doesn’t seek to analyze or improve the correct-

ness of DHSVM as those works have done. Rather, this paper seeks to aid researchers

looking to utilize DHSVM by providing a faster feedback loop and a few additional

novel features such as randomized input.

DHSVM has many inputs required to run its computational model that can have a

significant impact on the output. These inputs are manually gathered by researchers

and can have errors and potential variability introduced depending on method and

location of data collection. This paper seeks to extend upon these works by making

DHSVM capable of using random ranges of input for analysis, along with speeding-up

general model execution times to make the overall analysis time faster.

For programmatic optimizations this paper looks outside of DHSVM to other

scientific simulations such as ROMS. ROMS, or the Regional Ocean Modeling System,

is a scientific model of similar form to DHSVM. While the two subject matters of

the simulations are different, their computational skeleton is similar. ROMS already

had parallel and distributed computing models implemented into it, but the specific

compiler tricks and optimizations used to increase its speed are easily applied to

DHSVM as well.
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7.1 DHSVM Research

Despite its age DHSVM continues to be analyzed for validation in different environ-

ments. In 2014 Du et al. completed a validation and sensitivity test for DHSVM

in the Mica Creek Experimental Watershed in northern Idaho [6]. They found that

DHSVM did give acceptable output, but required iterative parameter refinement.

The refinement of DHSVM’s parameters has been an active area of research, and has

several recent papers that approach it differently.

In order to improve upon DHSVM’s output Yao et al. utilized genetic algorithms

to optimize 5 of DHSVM’s input variables [20]. Yao et al. were able to show their

genetic method was feasible for improving DHSVM output by doing a case study on

the Lushi Watershed of the Yellow River Basin. The goal of genetic algorithms is

to simulate the process of gene mutation an natural selection in nature. Some set

of parameters are randomly mutated over time, and as they are mutated they are

measured for fitness. Fitness is represented by the creator of the algorithm as some

function that has an expected result to compare against. In this case, fitness would

be measured by looking at the outputs of DHSVM itself. This process continues until

an acceptable fit is found.

Surfleet et al. used uncertainty analysis to optimize the interpretation of model

results rather than just specific input parameters [17]. By varying model inputs

within certain ranges and applying the generalized likelihood uncertainty estimation

(GLUE) procedure developed by Beven and Binley, a stronger body of results was

able to be produced by DHSVM[17, 3].

Both the genetic algorithm and uncertainty analysis require a feedback loop that

involves running DHSVM simulations. The genetic algorithm must mutate its input

parameters, run a new DHSVM instance, and analyze the fit of the new results. The
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uncertainty analysis requires creating many slightly varying result sets to compare

and analyze. Uncertainty analysis lends itself better to parallelization as any set of

concurrent DHSVM result sets can be generated at a given time. Genetic algorithms

must analyze results before creating a new generation of varied parameters, this cre-

ates a data dependency with a more serial nature that can limit the parallelization

of these tasks. Thus the work of this paper better aids research utilizing uncertainty

analysis, although genetic approaches could still benefit from the raw speed improve-

ments of DHSVM.

7.2 ROMS Optimization

The Regional Ocean Modeling System (ROMS) is a scientific simulation that is an

open source free-surface, primitive equation ocean model used by the scientific com-

munity for a diverse range of applications. ROMS is a highly parallelized simulation

that operates over a three dimensional data structure, and comes with the option

to utilize either MPI, or OpenMP. The choice to use MPI or OpenMP is made at

compile time by the user.

Due to the existence of a modern parallel code for ROMS research has been focused

on maximizing its utility. Both Lupo et al. and Bhaskaran & Gaurav optimized

ROMS by using hardware specific parallel accelerators [4, 11]. Both utilized the Intel

Xeon Phi architecture. Lupo et al. were able to improve the performance of ROMS by

6 times compared to a modern high-performance Xeon CPU without having to change

to code base [11]. Bhaskaran & Gaurav were able to speed up ROMS by over 50%

on the Xeon Phi. Most interestingly they achieved significant gains just by slightly

modifying the compiler time optimization flags [4]. They focused on modifying the

code to assist automated compiler vectorization of operations. This involved manual

data alignment and simplifying code structures such as nested if statements.
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While DHSVM requires the code base to be modernized with parallel features,

these articles give insight into maximizing the utility of the parallel features that

were implemented. By utilizing powerful compilers, like the Intel compiler used by

Bhaskaran & Gaurav, and giving DHSVM access to additional computing hardware

this paper was able to push the limits of its additions to DHSVM.
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Chapter 8

CONCLUSIONS

This paper successfully updated DHSVM to allow for single instances of DHSVM

to better utilize modern hardware and to run multiple instances for producing large

sets of results. Applying serial optimizations through both the compilers flags and

optimized versions of malloc allowed for DHSVM to half run times serially. Using

OpenMP allowed DHSVM to better utilize modern multicore hardware and half run

times once again.

Tests against hardware ranging from consumer to research grade show DHSVM’s

ability to continue to scale as more resources are provided. The scalability follows

a 1/x shaped curve relative to the number of cores available. This means DHSVM

can effectively take advantage of a wide range of hardware, but the more cores on a

machine that are dedicated to a single instance the lower the returns.

OpenMPI allowed for DHSVM to run multiple instances of a simulation to produce

many result sets. Analysis of run times required to produce multiple result sets

shows that multiple instances of DHSVM can run on a single machine with minimal

overhead. This gives DHSVM almost perfect scalability for producing multiple results

sets. Researchers using DHSVM can utilize this to run many serial instances of

DHSVM on compute clusters to produce many sets of results for uncertainty analysis

in a short amount of time.

Overall DHSVM is over 4 times faster than the original code base, with the po-

tential to continue improving with newer hardware in the future. More importantly,

the code base is now equipped to allow future researchers to more effectively perform

uncertainty analysis.
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Chapter 9

FUTURE WORK

There are several ways research on DHSVM as a code base can continue. Firstly,

extending off of this work directly, DHSVM’s bottleneck as core count rises can be in-

vestigated. This would allow for DHSVM to make better use of future hardware, and

likely give additional performance gains over the initial findings of this paper. Sec-

ondly, OpenMP version 4.5 is on its way to compilers. This new version of OpenMP

allows for tasks to be offloaded to accelerators such as GPUs and Intel Xeon Phis. This

would allow for additional hardware utilization by DHSVM that would equip it to

even better utilize new hardware, and potentially start returning results in real time.

Due to the math heavy computations of DHSVM, an optimized math library may

also be an additional way to research optimizing DHSVM. Tools such as the BLAS

(Basic Linear Algebra Subprograms) library may give noticiable speed benefits in the

future.

Instead of doing more research on the existing code base itself, future research

can additionally be done on DHSVM as an algorithm. By first expressing DHSVM

as an algorithm parallel portions of the code can be identified upfront and optimized

for asynchronous computation. This would allow for a new DHSVM code base that

is inherently parallel and might scale to future hardware better than the current code

base can. It would also serve as an interesting comparison of how much software can

be improved if it is rebuilt from the ground up versus being modified in the future.

Another interesting topic of future research would be a survey type paper involving

papers that improve and modernize simulations such as DHSVM and ROMs. Such

research could serve to determine a generic set of appropriate first steps for improving

upon existing code bases. A survey of papers on this topic could aid programmers in
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the workforce, and future researchers looking to improve upon existing code bases.
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APPENDICES

Appendix A

ORIGIN MAINDHSVM.C

Code Listing A.1: The original MainDHSVM.c
/∗

∗ SUMMARY: MainDHSVM. c − D i s t r i b u t e d Hydrology−So i l−Vege ta t i on Model

∗ USAGE: DHSVM

∗

∗ AUTHOR: Bart N i j s s en

∗ ORG: Un i v e r s i t y o f Washington , Department o f C i v i l Eng ineer ing

∗ E−MAIL: n i j s sen@u . wash ing ton . edu

∗ ORIG−DATE: Apr−96

∗ DESCRIPTION: Main r ou t i n e to d r i v e DHSVM, the D i s t r i b u t e d

∗ Hydrology−So i l−Vege ta t i on Model

∗ DESCRIP−END. cd

∗ FUNCTIONS: main ( )

∗ COMMENTS:

∗ $ Id : MainDHSVM. c , v 1 .42 2006/10/12 20 : 38 : 11 n a t h a l i e Exp $

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ INCLUDES ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <time . h>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include ” s e t t i n g s . h”

#include ” constants . h”

#include ”data . h”

#include ”DHSVMerror . h”

#include ” func t i on s . h”

#include ” f i l e i o . h”

#include ” g e t i n i t . h”

#include ”DHSVMChannel . h”

#include ” channel . h”

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ GLOBAL VARIABLES ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ g l o b a l f u n c t i o n p o i n t e r s ∗/

void (∗CreateMapFile ) ( char ∗FileName , . . . ) ;

int (∗Read2DMatrix ) (char ∗FileName , void ∗Matrix , int NumberType , int NY, int NX, int NDataSet ,

. . . ) ;

int (∗Write2DMatrix ) ( char ∗FileName , void ∗Matrix , int NumberType , int NY, int NX, . . . ) ;
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/∗ g l o b a l s t r i n g s ∗/

char ∗ ve r s i on = ”Vers ion 3 . 1 . 1 ” ; /∗ s t o r e v e r s i o n s t r i n g ∗/

char commandline [BUFSIZE + 1 ] = ”” ; /∗ s t o r e command l i n e ∗/

char f i l e e x t [BUFSIZ + 1 ] = ”” ; /∗ f i l e e x t e n s i o n ∗/

char e r r o r s t r [ BUFSIZ + 1 ] = ”” ; /∗ e r r o r message ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ MAIN ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int main ( int argc , char ∗∗argv )

{

f loat ∗Hydrograph = NULL;

f loat ∗∗∗MM5Input = NULL;

f loat ∗∗PrecipLapseMap = NULL;

f loat ∗∗PrismMap = NULL;

unsigned char ∗∗∗ShadowMap = NULL;

f loat ∗∗SkyViewMap = NULL;

f loat ∗∗∗WindModel = NULL;

int MaxStreamID , MaxRoadID ;

f loat SedDiams [NSEDSIZES ] ; /∗ Sediment p a r t i c l e d i ame t e r s (mm) ∗/

c l o c k t s ta r t , f i n i s h 1 ;

double runtime = 0 . 0 ;

int t = 0 ;

f loat roadarea ;

t ime t t l o c ;

int f l a g ;

int i ;

int j ;

int x ; /∗ row coun te r ∗/

int y ; /∗ column counte r ∗/

int s h ad e o f f s e t ; /∗ a f a s t way o f hand l i n g arraay p o s i t i o n g i v en

the number o f mm5 inpu t o p t i on s ∗/

int NStats ; /∗ Number o f m e t e o r o l o g i c a l s t a t i o n s ∗/

uchar ∗∗∗MetWeights = NULL; /∗ 3D array w i th we i g h t s f o r i n t e r p o l a t i n g me t e o r o l o g i c a l

v a r i a b l e s be tween the s t a t i o n s ∗/

int NGraphics ; /∗ number o f g r a p h i c s f o r X11 ∗/

int ∗which graph ics ; /∗ which g r a p h i c s f o r X11 ∗/

char bu f f e r [ 3 2 ] ;

AGGREGATED Total = { /∗ Tota l or average va l u e o f a v a r i a b l e over t h e e n t i r e

ba s i n ∗/

{0 .0 , NULL, NULL, NULL, NULL, 0 .0} ,

/∗ EVAPPIX ∗/

{0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , NULL, NULL, 0 . 0 , 0 , 0 . 0} ,

/∗ PRECIPPIX ∗/

{{0 .0 , 0 .0} , {0 .0 , 0 . 0} , {0 .0 , 0 . 0} , 0 . 0 , 0 . 0 , 0 . 0} ,

/∗ PIXRAD ∗/

{0 .0 , 0 . 0} ,

/∗ RADCLASSPIX ∗/

{0 .0 , 0 . 0 , 0 , NULL, NULL, 0 . 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , NULL,

NULL, NULL, NULL, NULL, NULL, 0 .0} ,

/∗ ROADSTRUCT∗/

{0 , 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .0} , /∗ SNOWPIX

∗/
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{0 , 0 . 0 , NULL, NULL, NULL, 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0} , /∗

SOILPIX ∗/

{ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0} ,

/∗SEDPIX ∗/

{ 0 . 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .0} ,

/∗FINEPIX ∗/

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 l , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .0

} ;

CHANNEL ChannelData = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL} ;

DUMPSTRUCT Dump;

EVAPPIX ∗∗EvapMap = NULL;

INPUTFILES InF i l e s ;

LAYER So i l ;

LAYER Veg ;

LISTPTR Input = NULL; /∗ Linked l i s t w i t h i npu t s t r i n g s ∗/

MAPSIZE Map; /∗ S i z e and l o c a t i o n o f model area ∗/

MAPSIZE Radar ; /∗ S i z e and l o c a t i o n o f area covered by

p r e c i p i t a t i o n radar ∗/

MAPSIZE MM5Map; /∗ S i z e and l o c a t i o n o f area covered by MM5 inpu t

f i l e s ∗/

METLOCATION ∗Stat = NULL;

OPTIONSTRUCT Options ; /∗ S t r u c t u r e w i th in f o rma t i on which program op t i on s to

f o l l o w ∗/

PIXMET LocalMet ; /∗ Me t e o r o l o g i c a l c o n d i t i o n s f o r cu r r en t p i x e l ∗/

FINEPIX ∗∗∗FineMap = NULL;

PRECIPPIX ∗∗PrecipMap = NULL;

RADARPIX ∗∗RadarMap = NULL;

RADCLASSPIX ∗∗RadMap = NULL;

PIXRAD ∗∗RadiationMap = NULL;

ROADSTRUCT ∗∗Network = NULL; /∗ 2D Array wi th channe l i n f o rma t i on f o r each p i x e l ∗/

SNOWPIX ∗∗SnowMap = NULL;

MET MAP PIX ∗∗MetMap = NULL;

SNOWTABLE ∗SnowAlbedo = NULL;

SOILPIX ∗∗SoilMap = NULL;

SEDPIX ∗∗SedMap = NULL;

SOILTABLE ∗SType = NULL;

SEDTABLE ∗SedType = NULL;

SOLARGEOMETRY SolarGeo ; /∗ Geometry o f Sun−Earth system ( needed f o r INLINE

r a d i a t i o n c a l c u l a t i o n s ∗/

TIMESTRUCT Time ;

TOPOPIX ∗∗TopoMap = NULL;

UNITHYDR ∗∗UnitHydrograph = NULL;

UNITHYDRINFO HydrographInfo ; /∗ In fo rmat ion about un i t hydrograph ∗/

VEGPIX ∗∗VegMap = NULL;

VEGTABLE ∗VType = NULL;

WATERBALANCE Mass = /∗ parameter f o r mass ba l ance c a l c u l a t i o n s ∗/

{ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .0 } ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

I n i t i a l i z a t i o n Procedures
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i f ( argc != 2) {

f p r i n t f ( s tder r , ”\nUsage : %s i n p u t f i l e \n\n” , argv [ 0 ] ) ;

f p r i n t f ( s tder r , ”DHSVM uses two output streams : \n” ) ;

f p r i n t f ( s tder r , ”Standard Out , f o r the major i ty o f output \n” ) ;

f p r i n t f ( s tder r , ”Standard Error , f o r the f i n a l mass balance \n” ) ;

f p r i n t f ( s tder r , ”\nTo pipe output c o r r e c t l y to f i l e s : \n” ) ;

f p r i n t f ( s tder r , ” (cmd > f 1 ) >& f2 \n” ) ;

f p r i n t f ( s tder r , ”where f1 i s s t d o u t f i l e and f2 i s s t d e r r o r f i l e \n” ) ;

e x i t (EXIT FAILURE) ;

}

s p r i n t f ( commandline , ”%s %s” , argv [ 0 ] , argv [ 1 ] ) ;

p r i n t f ( ”%s \n” , commandline ) ;

f p r i n t f ( s tder r , ”%s \n” , commandline ) ;

s t r cpy ( I nF i l e s . Const , argv [ 1 ] ) ;

p r i n t f ( ”\nRunning DHSVM %s\n” , ve r s i on ) ;

p r i n t f ( ”\nSTARTING INITIALIZATION PROCEDURES\n\n” ) ;

/∗ S t a r t r e c o r d i n g t ime ∗/

s t a r t = c lock ( ) ;

ReadIn i tF i l e ( I nF i l e s . Const , &Input ) ;

In i tConstant s ( Input , &Options , &Map, &SolarGeo , &Time) ;

I n i tF i l e IO ( Options . FileFormat ) ;

In i tTab l e s (Time . NDaySteps , Input , &Options , &SType , &So i l , &VType , &Veg ,

&SnowAlbedo ) ;

InitTerrainMaps ( Input , &Options , &Map, &So i l , &TopoMap , &SoilMap , &VegMap) ;

CheckOut ( Options . CanopyRadAtt , Veg , So i l , VType , SType , &Map, TopoMap ,

VegMap , SoilMap ) ;

i f ( Options . HasNetwork )

In itChannel ( Input , &Map, Time .Dt , &ChannelData , SoilMap , &MaxStreamID , &MaxRoadID , &Options ) ;

else i f ( Options . Extent != POINT)

InitUnitHydrograph ( Input , &Map, TopoMap , &UnitHydrograph ,

&Hydrograph , &HydrographInfo ) ;

InitNetwork (Map.NY, Map.NX, Map.DX, Map.DY, TopoMap , SoilMap ,

VegMap , VType , &Network , &ChannelData , Veg , &Options ) ;

In i tMetSources ( Input , &Options , &Map, S o i l . MaxLayers , &Time ,

&InF i l e s , &NStats , &Stat , &Radar , &MM5Map) ;

/∗ t h e f o l l o w i n g p i e c e o f code i s f o r t h e UW PRISM p r o j e c t ∗/

/∗ f o r r ea l−t ime v e r i f i c a t i o n o f SWE at Sno t e l s i t e s ∗/

/∗ Other users , s e t OPTION.SNOTEL to FALSE, or use TRUE wi th cau t i on ∗/

i f ( Options . Snote l == TRUE && Options . Outside == FALSE) {

p r i n t f

( ”Warning : Al l met s t a t i o n s l o c a t i o n s are being s e t to the vege ta t i on c l a s s GLACIER\n” ) ;

p r i n t f
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( ”Warning : This r e qu i r e s that you have such a vege ta t i on c l a s s in your vege ta t i on tab l e \n” ) ;

p r i n t f ( ”To d i s ab l e t h i s f e a tu r e s e t Snote l OPTION to FALSE\n” ) ;

for ( i = 0 ; i < NStats ; i++) {

p r i n t f ( ”veg type f o r s t a t i on %d i s %d ” , i ,

VegMap [ Stat [ i ] . Loc .N ] [ Stat [ i ] . Loc .E ] . Veg) ;

for ( j = 0 ; j < Veg . NTypes ; j++) {

i f (VType [ j ] . Index == GLACIER) {

VegMap [ Stat [ i ] . Loc .N ] [ Stat [ i ] . Loc .E ] . Veg = j ;

break ;

}

}

i f ( j == Veg . NTypes ) { /∗ g l a c i e r c l a s s not found ∗/

ReportError ( ”MainDHSVM” , 62) ;

}

p r i n t f ( ” s e t t i n g to g l a c i e r type ( assumed bare c l a s s ) : %d\n” , j ) ;

}

}

InitMetMaps (Time . NDaySteps , &Map, &Radar , &Options , I nF i l e s .WindMapPath ,

I nF i l e s . Prec ipLapseFi le , &PrecipLapseMap , &PrismMap ,

&ShadowMap , &SkyViewMap , &EvapMap , &PrecipMap ,

&RadarMap , &RadMap, SoilMap , &So i l , VegMap , &Veg , TopoMap ,

&MM5Input , &WindModel ) ;

I n i t I n t e rpo l a t i onWe igh t s (&Map, &Options , TopoMap , &MetWeights , Stat , NStats ) ;

InitDump ( Input , &Options , &Map, S o i l . MaxLayers , Veg . MaxLayers , Time .Dt ,

TopoMap , &Dump, &NGraphics , &which graph ics ) ;

i f ( Options . HasNetwork == TRUE) {

InitChannelDump(&Options , &ChannelData , Dump. Path ) ;

ReadChannelState (Dump. In i tStatePath , &(Time . Star t ) , ChannelData . streams ) ;

}

InitSnowMap(&Map, &SnowMap) ;

In i tAggregated (Veg . MaxLayers , S o i l . MaxLayers , &Total ) ;

In i tMode lState (&(Time . Star t ) , &Map, &Options , PrecipMap , SnowMap , SoilMap ,

So i l , SType , VegMap , Veg , VType , Dump. In i tStatePath ,

SnowAlbedo , TopoMap , Network , &HydrographInfo , Hydrograph ) ;

InitNewMonth(&Time , &Options , &Map, TopoMap , PrismMap , ShadowMap ,

RadMap, &InF i l e s , Veg . NTypes , VType , NStats , Stat ,

Dump. In i tStatePath ) ;

InitNewDay (Time . Current . JDay , &SolarGeo ) ;

i f ( NGraphics > 0) {

p r i n t f ( ” I n i t i a l z i n g X11 d i sp l ay and graph i c s \n” ) ;

InitXGraphics ( argc , argv , Map.NY, Map.NX, NGraphics , &MetMap) ;

}

s h ad e o f f s e t = FALSE;

i f ( Options . Shading == TRUE)

s h ad e o f f s e t = TRUE;
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/∗ Done wi th i n i t i a l i z a t i o n , d e l e t e t h e l i s t w i t h i npu t s t r i n g s ∗/

De l e t eL i s t ( Input ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Sediment I n i t i a l i z a t i o n Procedures

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i f ( Options . Sediment ) {

time (& t l o c ) ;

srand ( t l o c ) ;

/∗ Randomize Random Generator ∗/

/∗ Commenting t h e l i n e above and uncommenting t h e l i n e be low

a l l ow s f o r t h e comparison o f s c e n a r i o s . ∗/

/∗ srand48 (0) ; ∗/

p r i n t f ( ”\nSTARTING SEDIMENT INITIALIZATION PROCEDURES\n\n” ) ;

ReadIn i tF i l e ( Options . SedFi le , &Input ) ;

In i tParameters ( Input , &Options , &Map, &Network , &ChannelData , TopoMap ,

&Time , SedDiams ) ;

In i tSedimentTables (Time . NDaySteps , Input , &SedType , &SType , &VType , &So i l , &Veg) ;

InitFineMaps ( Input , &Options , &Map, &So i l , &TopoMap , &SoilMap ,

&FineMap) ;

i f ( Options . HasNetwork ){

p r i n t f ( ” I n i t i a l i z i n g channel sediment\n\n” ) ;

InitChannelSedimentDump(&ChannelData , Dump. Path , Options . ChannelRouting ) ;

InitChannelSediment ( ChannelData . streams , &Total ) ;

InitChannelSediment ( ChannelData . roads , &Total ) ;

}

InitSedMap ( &Map, &SedMap) ;

/∗ Done wi th i n i t i a l i z a t i o n , d e l e t e t h e l i s t w i t h i npu t s t r i n g s ∗/

De l e t eL i s t ( Input ) ;

}

/∗ s e t up f o r mass ba l ance c a l c u l a t i o n s ∗/

Aggregate(&Map, &Options , TopoMap , &So i l , &Veg , VegMap , EvapMap , PrecipMap ,

RadMap, SnowMap , SoilMap , &Total , VType , Network , SedMap , FineMap ,

&ChannelData , &roadarea ) ;

Mass . StartWaterStorage =

Total . S o i l . IExcess + Total . CanopyWater + Total . Soi lWater + Total . Snow . Swq +

Total . S o i l . SatFlow ;

Mass . OldWaterStorage = Mass . StartWaterStorage ;

i f ( Options . Sediment ) {

Mass . StartChannelSedimentStorage = Total . ChannelSedimentStorage ;

Mass . LastChannelSedimentStorage = Mass . StartChannelSedimentStorage ;

}
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/∗ computes t h e number o f g r i d c e l l c o n t r i b u t i n g to one segment ∗/

i f ( Options . StreamTemp)

I n i t s e gmen t n c e l l (TopoMap , ChannelData . stream map , Map.NY, Map.NX, ChannelData . streams ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Perform Ca l c u l a t i o n s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

while ( Before (&(Time . Current ) , &(Time .End) ) | |

IsEqualTime (&(Time . Current ) , &(Time .End) ) ) {

ResetAggregate(&So i l , &Veg , &Total , &Options ) ;

i f ( IsNewMonth(&(Time . Current ) , Time . Dt) )

InitNewMonth(&Time , &Options , &Map, TopoMap , PrismMap , ShadowMap ,

RadMap, &InF i l e s , Veg . NTypes , VType , NStats , Stat ,

Dump. In i tStatePath ) ;

i f ( IsNewDay (Time . DayStep ) ) {

InitNewDay (Time . Current . JDay , &SolarGeo ) ;

PrintDate (&(Time . Current ) , stdout ) ;

p r i n t f ( ”\n” ) ;

}

/∗ de termine s u r f a c e e r o s i on and r ou t i n g scheme ∗/

SedimentFlag(&Options , &Time) ;

InitNewStep(& InF i l e s , &Map, &Time , S o i l . MaxLayers , &Options , NStats , Stat ,

I nF i l e s . RadarFile , &Radar , RadarMap , &SolarGeo , TopoMap , RadMap,

SoilMap , MM5Input , WindModel , &MM5Map) ;

/∗ i n i t i a l i z e channe l / road ne tworks f o r t ime s t e p ∗/

i f ( Options . HasNetwork ) {

c h a nn e l s t e p i n i t i a l i z e n e two r k (ChannelData . streams ) ;

c h a nn e l s t e p i n i t i a l i z e n e two r k (ChannelData . roads ) ;

}

for ( y = 0 ; y < Map.NY; y++) {

for ( x = 0 ; x < Map.NX; x++) {

i f (INBASIN(TopoMap [ y ] [ x ] . Mask) ) {

i f ( Options . Shading )

LocalMet =

MakeLocalMetData (y , x , &Map, Time . DayStep , &Options , NStats ,

Stat , MetWeights [ y ] [ x ] , TopoMap [ y ] [ x ] . Dem,

&(RadMap [ y ] [ x ] ) , &(PrecipMap [ y ] [ x ] ) , &Radar ,

RadarMap , PrismMap , &(SnowMap [ y ] [ x ] ) ,

SnowAlbedo , MM5Input , WindModel , PrecipLapseMap ,

&MetMap , NGraphics , Time . Current .Month ,

SkyViewMap [ y ] [ x ] , ShadowMap [ Time . DayStep ] [ y ] [ x ] ,

SolarGeo . SunMax , SolarGeo . S in eSo l a rA l t i tude ) ;

else

LocalMet =

MakeLocalMetData (y , x , &Map, Time . DayStep , &Options , NStats ,

Stat , MetWeights [ y ] [ x ] , TopoMap [ y ] [ x ] . Dem,

&(RadMap [ y ] [ x ] ) , &(PrecipMap [ y ] [ x ] ) , &Radar ,

RadarMap , PrismMap , &(SnowMap [ y ] [ x ] ) ,

SnowAlbedo , MM5Input , WindModel , PrecipLapseMap ,
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&MetMap , NGraphics , Time . Current .Month , 0 . 0 ,

0 . 0 , SolarGeo . SunMax ,

SolarGeo . S in eSo l a rA l t i tude ) ;

for ( i = 0 ; i < So i l . MaxLayers ; i++) {

i f ( Options . HeatFlux == TRUE) {

i f ( Options .MM5 == TRUE)

SoilMap [ y ] [ x ] . Temp[ i ] =

MM5Input [ s h ad e o f f s e t + i + N MM5 MAPS ] [ y ] [ x ] ;

else

SoilMap [ y ] [ x ] . Temp[ i ] = Stat [ 0 ] . Data . Tso i l [ i ] ;

}

else

SoilMap [ y ] [ x ] . Temp[ i ] = LocalMet . Tair ;

}

MassEnergyBalance(&Options , y , x , SolarGeo . S ineSo la rA l t i tude , Map.DX, Map.DY,

Time .Dt , Options . HeatFlux , Options . CanopyRadAtt , Options . RoadRouting ,

Options . I n f i l t r a t i o n , Veg . MaxLayers , &LocalMet , &(Network [ y ] [ x ] ) ,

&(PrecipMap [ y ] [ x ] ) , &(VType [VegMap [ y ] [ x ] . Veg−1]) , &(VegMap [ y ] [ x ] ) ,

&(SType [ SoilMap [ y ] [ x ] . So i l −1]) , &(SoilMap [ y ] [ x ] ) , &(SnowMap [ y ] [ x ] ) ,

&(EvapMap [ y ] [ x ] ) , &(Total . Rad) , &ChannelData , SkyViewMap) ;

PrecipMap [ y ] [ x ] . SumPrecip += PrecipMap [ y ] [ x ] . Prec ip ;

}

}

}

/∗ Average a l l RBM inpu t s over each segment ∗/

i f ( Options . StreamTemp) {

channe l g r id avg ( ChannelData . streams ) ;

i f ( Options . CanopyShading )

CalcCanopyShading ( ChannelData . streams , &SolarGeo ) ;

}

#i f n d e f SNOWONLY

/∗ s e t sed iment i n f l o w s to z e ro − t h ey are incremented e l s ewhe r e ∗/

i f ( ( Options . HasNetwork ) && ( Options . Sediment ) ){

In i tChanne lSedInf low (ChannelData . streams ) ;

In i tChanne lSedInf low (ChannelData . roads ) ;

}

RouteSubSurface (Time .Dt , &Map, TopoMap , VType , VegMap , Network ,

SType , SoilMap , &ChannelData , &Time , &Options , Dump. Path ,

SedMap , FineMap , SedType , MaxStreamID , SnowMap) ;

i f ( Options . HasNetwork )

RouteChannel(&ChannelData , &Time , &Map, TopoMap , SoilMap , &Total ,

&Options , Network , SType , PrecipMap , SedMap ,

LocalMet . Tair , LocalMet .Rh, SedDiams ) ;

/∗ Sediment Rout ing in Channel and ou tpu t to sed iment f i l e s ∗/

i f ( ( Options . HasNetwork ) && ( Options . Sediment ) ){

SPrintDate (&(Time . Current ) , bu f f e r ) ;
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f l a g = IsEqualTime (&(Time . Current ) , &(Time . Star t ) ) ;

i f ( Options . ChannelRouting ){

i f ( ChannelData . roads != NULL) {

RouteChannelSediment ( ChannelData . roads , Time , &Dump, &Total , SedDiams ) ;

channe l s av e s ed ou t f l ow t ex t ( bu f f e r , ChannelData . roads ,

ChannelData . sedroadout ,

ChannelData . sedroadf lowout , f l a g ) ;

RouteCulvertSediment(&ChannelData , &Map, TopoMap , SedMap ,

&Total , SedDiams ) ;

}

RouteChannelSediment ( ChannelData . streams , Time , &Dump, &Total , SedDiams ) ;

channe l s av e s ed ou t f l ow t ex t ( bu f f e r , ChannelData . streams ,

ChannelData . sedstreamout ,

ChannelData . sedstreamflowout , f l a g ) ;

}

else {

i f ( ChannelData . roads != NULL) {

chann e l s a v e s e d i n f l ow t e x t ( bu f f e r , ChannelData . roads ,

ChannelData . sedroadin f low , SedDiams , f l a g ) ;

}

chann e l s a v e s e d i n f l ow t e x t ( bu f f e r , ChannelData . streams ,

ChannelData . sedstreaminf low , SedDiams , f l a g ) ;

}

SaveChannelSedInflow (ChannelData . roads , &Total ) ;

SaveChannelSedInflow (ChannelData . streams , &Total ) ;

}

i f ( Options . Extent == BASIN)

RouteSurface(&Map, &Time , TopoMap , SoilMap , &Options ,

UnitHydrograph , &HydrographInfo , Hydrograph ,

&Dump, VegMap , VType , SType , &ChannelData , SedMap ,

PrecipMap , SedType , LocalMet . Tair , LocalMet .Rh, SedDiams ) ;

#endif

i f ( NGraphics > 0)

draw(&(Time . Current ) , IsEqualTime (&(Time . Current ) , &(Time . Star t ) ) ,

Time . DayStep , &Map, NGraphics , which graphics , VType ,

SType , SnowMap , SoilMap , SedMap , FineMap , VegMap , TopoMap , PrecipMap ,

PrismMap , SkyViewMap , ShadowMap , EvapMap , RadMap, MetMap , Network ,

&Options ) ;

Aggregate(&Map, &Options , TopoMap , &So i l , &Veg , VegMap , EvapMap , PrecipMap ,

RadMap, SnowMap , SoilMap , &Total , VType , Network , SedMap , FineMap ,

&ChannelData , &roadarea ) ;

MassBalance (&(Time . Current ) , &(Dump. Balance ) , &(Dump. SedBalance ) , &Total ,

&Mass , &Options ) ;

ExecDump(&Map, &(Time . Current ) , &(Time . Star t ) , &Options , &Dump, TopoMap ,

EvapMap , RadiationMap , PrecipMap , RadMap, SnowMap , MetMap , VegMap , &Veg ,

SoilMap , SedMap , Network , &ChannelData , FineMap , &So i l , &Total ,

&HydrographInfo , Hydrograph ) ;
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IncreaseTime(&Time) ;

t += 1 ;

}

ExecDump(&Map, &(Time . Current ) , &(Time . Star t ) , &Options , &Dump, TopoMap ,

EvapMap , RadiationMap , PrecipMap , RadMap, SnowMap , MetMap , VegMap , &Veg , SoilMap ,

SedMap , Network , &ChannelData , FineMap , &So i l , &Total , &HydrographInfo , Hydrograph ) ;

FinalMassBalance (&(Dump. FinalBalance ) , &Total , &Mass , &Options , roadarea ) ;

/∗ p r i n t f (”\nSTARTING CLEANUP\n\n”) ;

c l eanup (&Dump, &ChannelData , &Opt ions ) ; ∗/

p r i n t f ( ”\nEND OF MODEL RUN\n\n” ) ;

/∗ r ecord t h e run t ime a t t h e end o f each t ime l oop ∗/

f i n i s h 1 = c lock ( ) ;

runtime = ( f i n i s h1−s t a r t ) /CLOCKS PER SEC;

p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗” ) ;

p r i n t f ( ”\nRuntime Summary :\n” ) ;

p r i n t f ( ”%6.2 f hours e lapsed f o r the s imu la t ion per iod o f %d hours (%.1 f days ) \n” ,

runtime /3600 , t∗Time .Dt/3600 , ( f loat ) t∗Time .Dt/3600/24) ;

return EXIT SUCCESS ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Cleanup

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void cleanup (DUMPSTRUCT ∗Dump, CHANNEL ∗ChannelData , OPTIONSTRUCT ∗Options )

{

i f (Dump−>Aggregate . F i l ePt r != NULL)

f c l o s e (Dump−>Aggregate . F i l ePt r ) ;

i f (Dump−>Balance . F i l ePt r != NULL)

f c l o s e (Dump−>Balance . F i l ePt r ) ;

i f (Dump−>FinalBalance . F i l ePt r != NULL)

f c l o s e (Dump−>FinalBalance . F i l ePt r ) ;

i f ( ChannelData−>streamflowout != NULL)

f c l o s e (ChannelData−>streamflowout ) ;

i f ( ChannelData−>streamout != NULL)

f c l o s e (ChannelData−>streamout ) ;

i f ( ChannelData−>roadf lowout != NULL)

f c l o s e (ChannelData−>roadf lowout ) ;

i f ( ChannelData−>roadout != NULL)

f c l o s e (ChannelData−>roadout ) ;

i f ( Options−>StreamTemp) {

i f ( ChannelData−>s t reaminf low != NULL)

f c l o s e (ChannelData−>s t reaminf low ) ;

i f ( ChannelData−>streamoutf low != NULL)

f c l o s e (ChannelData−>streamoutf low ) ;

i f ( ChannelData−>streamISW != NULL)

f c l o s e (ChannelData−>streamISW) ;

i f ( ChannelData−>streamNSW != NULL)

f c l o s e (ChannelData−>streamNSW) ;

i f ( ChannelData−>streamILW != NULL)

f c l o s e (ChannelData−>streamILW) ;

63



i f ( ChannelData−>streamNLW!= NULL)

f c l o s e (ChannelData−>streamNLW) ;

i f ( ChannelData−>streamVP!= NULL)

f c l o s e (ChannelData−>streamVP) ;

i f ( ChannelData−>streamWND!= NULL)

f c l o s e (ChannelData−>streamWND) ;

i f ( ChannelData−>streamATP!= NULL)

f c l o s e (ChannelData−>streamATP) ;

i f ( ChannelData−>streamBeam != NULL)

f c l o s e (ChannelData−>streamBeam) ;

i f ( ChannelData−>s t r eamDi f fuse != NULL)

f c l o s e (ChannelData−>s t r eamDi f fuse ) ;

i f ( ChannelData−>streamSkyView != NULL)

f c l o s e (ChannelData−>streamSkyView ) ;

}

}
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Appendix B

NEW MAINDHSVM.C

Code Listing B.1: The new MainDHSVM.c

/∗

∗ SUMMARY: MainDHSVM. c − D i s t r i b u t e d Hydrology−So i l−Vege ta t i on Model

∗ USAGE: DHSVM

∗

∗ AUTHOR: Bart N i j s s en

∗ ORG: Un i v e r s i t y o f Washington , Department o f C i v i l Eng ineer ing

∗ E−MAIL: n i j s sen@u . wash ing ton . edu

∗ ORIG−DATE: Apr−96

∗ DESCRIPTION: Main r ou t i n e to d r i v e DHSVM, the D i s t r i b u t e d

∗ Hydrology−So i l−Vege ta t i on Model

∗ DESCRIP−END. cd

∗ FUNCTIONS: main ( )

∗ COMMENTS:

∗ $ Id : MainDHSVM. c , v 1 .42 2006/10/12 20 : 38 : 11 n a t h a l i e Exp $

∗/

//#d e f i n e USE MPI

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ INCLUDES ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include ”DHSVMChannel . h”

#include ”DHSVMerror . h”

#include ” channel . h”

#include ” constants . h”

#include ”data . h”

#include ” f i l e i o . h”

#include ” func t i on s . h”

#include ” g e t i n i t . h”

#include ” s e t t i n g s . h”

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include <time . h>

#include <omp . h>

#ifde f USE MPI

#include <mpi . h>

#endif

void cleanup (DUMPSTRUCT ∗Dump, CHANNEL ∗ChannelData , OPTIONSTRUCT ∗Options ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ GLOBAL VARIABLES ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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/∗ g l o b a l f u n c t i o n p o i n t e r s ∗/

void (∗CreateMapFile ) ( char ∗FileName , . . . ) ;

int (∗Read2DMatrix ) ( char ∗FileName , void ∗Matrix , int NumberType , int NY,

int NX, int NDataSet , . . . ) ;

int (∗Write2DMatrix ) ( char ∗FileName , void ∗Matrix , int NumberType , int NY,

int NX, . . . ) ;

/∗ g l o b a l s t r i n g s ∗/

char ∗ ve r s i on = ”Vers ion 3 . 1 . 1 ” ; /∗ s t o r e v e r s i o n s t r i n g ∗/

char commandline [BUFSIZE + 1 ] = ”” ; /∗ s t o r e command l i n e ∗/

char f i l e e x t [BUFSIZ + 1 ] = ”” ; /∗ f i l e e x t e n s i o n ∗/

char e r r o r s t r [ BUFSIZ + 1 ] = ”” ; /∗ e r r o r message ∗/

#define PRINT 0

#define T COUNT 4

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ MAIN ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#ifde f USE MPI

int mpiMain ( int argc , char ∗∗argv , int id ) ;

int main ( int argc , char ∗∗argv ){

/∗ MPI Set Up ∗/

int comm sz ;

int my rank ;

int numRuns ;

i f ( argc < 3) {

f p r i n t f ( s tder r , ”\nUsage : %s i n p u t f i l e numberOfRuns\n\n” , argv [ 0 ] ) ;

e x i t (EXIT FAILURE) ;

}

numRuns = s t r t o l ( argv [ 2 ] ,NULL, 0 ) ;

MPI Init (NULL, NULL) ;

MPI Comm size (MPI COMMWORLD, &comm sz ) ;

MPI Comm rank(MPI COMMWORLD, &my rank ) ;

// omp se t num threads (8 ) ;

//#pragma omp p a r a l l e l f o r

for ( int i = my rank ; i < numRuns ; i += comm sz ) {

p r i n t f ( ”Number o f threads in the cur rent p a r a l l e l r eg i on i s %i \n” , omp get num threads ( ) ) ;

mpiMain ( argc , argv , i ) ;

}

MPI Final ize ( ) ;

}

int mpiMain ( int argc , char ∗∗argv , int id ) {

#else

int main ( int argc , char ∗∗argv ) {

#endif

#i f n d e f USE MPI

int id = −1;

#end i f

f loat ∗Hydrograph = NULL;

f loat ∗∗∗MM5Input = NULL;

f loat ∗∗PrecipLapseMap = NULL;

f loat ∗∗PrismMap = NULL;

unsigned char ∗∗∗ShadowMap = NULL;
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f loat ∗∗SkyViewMap = NULL;

f loat ∗∗∗WindModel = NULL;

int MaxStreamID = 0 , MaxRoadID = 0 ;

f loat SedDiams [NSEDSIZES ] = {0} ; /∗ Sediment p a r t i c l e d i ame t e r s (mm) ∗/

c l o c k t s ta r t , f i n i s h 1 ;

double runtime = 0 . 0 ;

int t = 0 ;

f loat roadarea = 0 ;

t ime t t l o c ;

int f l a g = 0 ;

int j = 0 ;

int s h ad e o f f s e t = 0 ; /∗ a f a s t way o f hand l i n g arraay p o s i t i o n g i v en the number

o f mm5 inpu t o p t i on s ∗/

int NStats = 0 ; /∗ Number o f m e t e o r o l o g i c a l s t a t i o n s ∗/

uchar ∗∗∗MetWeights = NULL; /∗ 3D array w i th we i g h t s f o r i n t e r p o l a t i n g

me t e o r o l o g i c a l v a r i a b l e s between the s t a t i o n s

∗/

int NGraphics = 0 ; /∗ number o f g r a p h i c s f o r X11 ∗/

int ∗which graph ics = NULL; /∗ which g r a p h i c s f o r X11 ∗/

char bu f f e r [ 3 2 ] = {0} ;

srand48 ( time (NULL) ) ;

struct t imespec t s t a r t , t f i n i s h ;

double e lapsed ;

c l o ck ge t t ime (CLOCKMONOTONIC, &t s t a r t ) ;

AGGREGATED Total = {

/∗ Tota l or average va l u e o f a v a r i a b l e over t h e e n t i r e ba s i n ∗/

{0 .0 , NULL, NULL, NULL, NULL, 0 .0} , /∗ EVAPPIX ∗/

{0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , NULL, NULL, 0 . 0 , 0 , 0 . 0} , /∗ PRECIPPIX ∗/

{{0 .0 , 0 .0} , {0 .0 , 0 . 0} , {0 .0 , 0 . 0} , 0 . 0 , 0 . 0 , 0 . 0} , /∗ PIXRAD ∗/

{0 .0 , 0 . 0} , /∗ RADCLASSPIX ∗/

{0 .0 , 0 . 0 , 0 , NULL, NULL, 0 . 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , NULL, NULL, NULL,

NULL, NULL, NULL, 0 .0} , /∗ ROADSTRUCT∗/

{0 , 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0} , /∗ SNOWPIX ∗/

{0 , 0 . 0 , NULL, NULL, NULL, 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .0} , /∗SOILPIX ∗/

{0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .0} , /∗SEDPIX ∗/

{0 .0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0} , /∗FINEPIX ∗/

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 l ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,

0 . 0 ,
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0 . 0 ,

0 . 0 ,

0 . 0} ;

CHANNEL ChannelData = {NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, NULL, NULL, NULL} ;

DUMPSTRUCT Dump = {0} ;

EVAPPIX ∗∗EvapMap = NULL;

INPUTFILES InF i l e s = {0} ;

LAYER So i l = {0} ;

LAYER Veg = {0} ;

LISTPTR Input = NULL; /∗ Linked l i s t w i t h i npu t s t r i n g s ∗/

MAPSIZE Map = {0} ; /∗ S i z e and l o c a t i o n o f model area ∗/

MAPSIZE Radar = {0} ; /∗ S i z e and l o c a t i o n o f area covered by p r e c i p i t a t i o n radar ∗/

MAPSIZE MM5Map = {0} ; /∗ S i z e and l o c a t i o n o f area covered by MM5 inpu t f i l e s ∗/

METLOCATION ∗Stat = NULL;

OPTIONSTRUCT

Options = {0} ; /∗ S t r u c t u r e w i th in f o rma t i on which program op t i on s to f o l l o w ∗/

PIXMET LocalMet = {0} ; /∗ Me t e o r o l o g i c a l c o n d i t i o n s f o r cu r r en t p i x e l ∗/

FINEPIX ∗∗∗FineMap = NULL;

PRECIPPIX ∗∗PrecipMap = NULL;

RADARPIX ∗∗RadarMap = NULL;

RADCLASSPIX ∗∗RadMap = NULL;

PIXRAD ∗∗RadiationMap = NULL;

ROADSTRUCT ∗∗Network =

NULL; /∗ 2D Array wi th channe l i n f o rma t i on f o r each p i x e l ∗/

SNOWPIX ∗∗SnowMap = NULL;

MET MAP PIX ∗∗MetMap = NULL;

SNOWTABLE ∗SnowAlbedo = NULL;

SOILPIX ∗∗SoilMap = NULL;

SEDPIX ∗∗SedMap = NULL;

SOILTABLE ∗SType = NULL;

SEDTABLE ∗SedType = NULL;

SOLARGEOMETRY SolarGeo = {0} ; /∗ Geometry o f Sun−Earth system ( needed f o r INLINE

r a d i a t i o n c a l c u l a t i o n s ∗/

TIMESTRUCT Time = {0} ;

TOPOPIX ∗∗TopoMap = NULL;

UNITHYDR ∗∗UnitHydrograph = NULL;

UNITHYDRINFO HydrographInfo = {0} ; /∗ In fo rmat ion about un i t hydrograph ∗/

VEGPIX ∗∗VegMap = NULL;

VEGTABLE ∗VType = NULL;

WATERBALANCE Mass = /∗ parameter f o r mass ba l ance c a l c u l a t i o n s ∗/

{0 .0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0} ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

I n i t i a l i z a t i o n Procedures

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i f ( argc < 2) {

f p r i n t f ( s tder r , ”\nUsage : %s i n p u t f i l e \n\n” , argv [ 0 ] ) ;

f p r i n t f ( s tder r , ”DHSVM uses two output streams : \n” ) ;

f p r i n t f ( s tder r , ”Standard Out , f o r the major i ty o f output \n” ) ;

f p r i n t f ( s tder r , ”Standard Error , f o r the f i n a l mass balance \n” ) ;

f p r i n t f ( s tder r , ”\nTo pipe output c o r r e c t l y to f i l e s : \n” ) ;
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f p r i n t f ( s tder r , ” (cmd > f 1 ) >& f2 \n” ) ;

f p r i n t f ( s tder r , ”where f1 i s s t d o u t f i l e and f2 i s s t d e r r o r f i l e \n” ) ;

e x i t (EXIT FAILURE) ;

}

s p r i n t f ( commandline , ”%s %s” , argv [ 0 ] , argv [ 1 ] ) ;

p r i n t f ( ”%s \n” , commandline ) ;

f p r i n t f ( s tder r , ”%s \n” , commandline ) ;

s t r cpy ( I nF i l e s . Const , argv [ 1 ] ) ;

p r i n t f ( ”\nRunning DHSVM %s\n” , ve r s i on ) ;

p r i n t f ( ”\nSTARTING INITIALIZATION PROCEDURES\n\n” ) ;

/∗ S t a r t r e c o r d i n g t ime ∗/

s t a r t = c lock ( ) ;

ReadIn i tF i l e ( I nF i l e s . Const , &Input ) ;

In i tConstant s ( Input , &Options , &Map, &SolarGeo , &Time) ;

I n i tF i l e IO ( Options . FileFormat ) ;

In i tTab l e s (Time . NDaySteps , Input , &Options , &SType , &So i l , &VType , &Veg ,

&SnowAlbedo ) ;

InitTerrainMaps ( Input , &Options , &Map, &So i l , &TopoMap , &SoilMap , &VegMap) ;

CheckOut ( Options . CanopyRadAtt , Veg , So i l , VType , SType , &Map, TopoMap , VegMap ,

SoilMap ) ;

i f ( Options . HasNetwork )

In itChannel ( Input , &Map, Time .Dt , &ChannelData , SoilMap , &MaxStreamID ,

&MaxRoadID , &Options ) ;

else i f ( Options . Extent != POINT)

InitUnitHydrograph ( Input , &Map, TopoMap , &UnitHydrograph , &Hydrograph ,

&HydrographInfo ) ;

InitNetwork (Map.NY, Map.NX, Map.DX, Map.DY, TopoMap , SoilMap , VegMap , VType ,

&Network , &ChannelData , Veg , &Options ) ;

In i tMetSources ( Input , &Options , &Map, S o i l . MaxLayers , &Time , &InF i l e s ,

&NStats , &Stat , &Radar , &MM5Map) ;

/∗ t h e f o l l o w i n g p i e c e o f code i s f o r t h e UW PRISM p r o j e c t ∗/

/∗ f o r r ea l−t ime v e r i f i c a t i o n o f SWE at Sno t e l s i t e s ∗/

/∗ Other users , s e t OPTION.SNOTEL to FALSE, or use TRUE wi th cau t i on ∗/

i f ( Options . Snote l == TRUE && Options . Outside == FALSE) {

p r i n t f ( ”Warning : Al l met s t a t i o n s l o c a t i o n s are being s e t to the ”

” vege ta t i on c l a s s GLACIER\n” ) ;

p r i n t f ( ”Warning : This r e qu i r e s that you have such a vege ta t i on c l a s s in ”

”your vege ta t i on tab l e \n” ) ;

p r i n t f ( ”To d i s ab l e t h i s f e a tu r e s e t Snote l OPTION to FALSE\n” ) ;

for ( int i = 0 ; i < NStats ; i++) {

p r i n t f ( ”veg type f o r s t a t i on %d i s %d ” , i ,

VegMap [ Stat [ i ] . Loc .N ] [ Stat [ i ] . Loc .E ] . Veg) ;

for ( j = 0 ; j < Veg . NTypes ; j++) {
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i f (VType [ j ] . Index == GLACIER) {

VegMap [ Stat [ i ] . Loc .N ] [ Stat [ i ] . Loc .E ] . Veg = j ;

break ;

}

}

i f ( j == Veg . NTypes ) { /∗ g l a c i e r c l a s s not found ∗/

ReportError ( ”MainDHSVM” , 62) ;

}

p r i n t f ( ” s e t t i n g to g l a c i e r type ( assumed bare c l a s s ) : %d\n” , j ) ;

}

}

InitMetMaps (Time . NDaySteps , &Map, &Radar , &Options , I nF i l e s .WindMapPath ,

I nF i l e s . Prec ipLapseFi le , &PrecipLapseMap , &PrismMap , &ShadowMap ,

&SkyViewMap , &EvapMap , &PrecipMap , &RadarMap , &RadMap, SoilMap ,

&So i l , VegMap , &Veg , TopoMap , &MM5Input , &WindModel ) ;

I n i t I n t e rpo l a t i onWe igh t s (&Map, &Options , TopoMap , &MetWeights , Stat , NStats ) ;

InitDump ( Input , &Options , &Map, S o i l . MaxLayers , Veg . MaxLayers , Time .Dt ,

TopoMap , &Dump, &NGraphics , &which graphics , id ) ;

i f ( Options . HasNetwork == TRUE) {

InitChannelDump(&Options , &ChannelData , Dump. Path ) ;

ReadChannelState (Dump. In i tStatePath , &(Time . Star t ) , ChannelData . streams ) ;

}

InitSnowMap(&Map, &SnowMap) ;

In i tAggregated (Veg . MaxLayers , S o i l . MaxLayers , &Total ) ;

In i tMode lState (&(Time . Star t ) , &Map, &Options , PrecipMap , SnowMap , SoilMap ,

So i l , SType , VegMap , Veg , VType , Dump. In i tStatePath ,

SnowAlbedo , TopoMap , Network , &HydrographInfo , Hydrograph ) ;

InitNewMonth(&Time , &Options , &Map, TopoMap , PrismMap , ShadowMap , RadMap,

&InF i l e s , Veg . NTypes , VType , NStats , Stat , Dump. In i tStatePath ) ;

InitNewDay (Time . Current . JDay , &SolarGeo ) ;

i f ( NGraphics > 0) {

p r i n t f ( ” I n i t i a l z i n g X11 d i sp l ay and graph i c s \n” ) ;

InitXGraphics ( argc , argv , Map.NY, Map.NX, NGraphics , &MetMap) ;

}

s h ad e o f f s e t = FALSE;

i f ( Options . Shading == TRUE)

s h ad e o f f s e t = TRUE;

/∗ Done wi th i n i t i a l i z a t i o n , d e l e t e t h e l i s t w i t h i npu t s t r i n g s ∗/

De l e t eL i s t ( Input ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Sediment I n i t i a l i z a t i o n Procedures

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i f ( Options . Sediment ) {
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time(& t l o c ) ;

srand ( t l o c ) ;

/∗ Randomize Random Generator ∗/

/∗ Commenting t h e l i n e above and uncommenting t h e l i n e be low

a l l ow s f o r t h e comparison o f s c e n a r i o s . ∗/

/∗ srand48 (0) ; ∗/

p r i n t f ( ”\nSTARTING SEDIMENT INITIALIZATION PROCEDURES\n\n” ) ;

ReadIn i tF i l e ( Options . SedFi le , &Input ) ;

In i tParameters ( Input , &Options , &Map, &Network , &ChannelData , TopoMap ,

&Time , SedDiams ) ;

In i tSedimentTables (Time . NDaySteps , Input , &SedType , &SType , &VType , &So i l ,

&Veg) ;

InitFineMaps ( Input , &Options , &Map, &So i l , &TopoMap , &SoilMap , &FineMap) ;

i f ( Options . HasNetwork ) {

p r i n t f ( ” I n i t i a l i z i n g channel sediment\n\n” ) ;

InitChannelSedimentDump(&ChannelData , Dump. Path , Options . ChannelRouting ) ;

InitChannelSediment ( ChannelData . streams , &Total ) ;

InitChannelSediment ( ChannelData . roads , &Total ) ;

}

InitSedMap(&Map, &SedMap) ;

/∗ Done wi th i n i t i a l i z a t i o n , d e l e t e t h e l i s t w i t h i npu t s t r i n g s ∗/

De l e t eL i s t ( Input ) ;

}

/∗ s e t up f o r mass ba l ance c a l c u l a t i o n s ∗/

Aggregate(&Map, &Options , TopoMap , &So i l , &Veg , VegMap , EvapMap , PrecipMap ,

RadMap, SnowMap , SoilMap , &Total , VType , Network , SedMap , FineMap ,

&ChannelData , &roadarea ) ;

Mass . StartWaterStorage = Total . S o i l . IExcess + Total . CanopyWater +

Total . Soi lWater + Total . Snow . Swq +

Total . S o i l . SatFlow ;

Mass . OldWaterStorage = Mass . StartWaterStorage ;

i f ( Options . Sediment ) {

Mass . StartChannelSedimentStorage = Total . ChannelSedimentStorage ;

Mass . LastChannelSedimentStorage = Mass . StartChannelSedimentStorage ;

}

/∗ computes t h e number o f g r i d c e l l c o n t r i b u t i n g to one segment ∗/

i f ( Options . StreamTemp)

I n i t s e gmen t n c e l l (TopoMap , ChannelData . stream map , Map.NY, Map.NX,

ChannelData . streams ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Perform Ca l c u l a t i o n s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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while ( Before (&(Time . Current ) , &(Time .End) ) | |

IsEqualTime (&(Time . Current ) , &(Time .End) ) ) {

PIXRAD loca lRad i a t i on [T COUNT] = {0} ;

ResetAggregate(&So i l , &Veg , &Total , &Options ) ;

i f ( IsNewMonth(&(Time . Current ) , Time . Dt) )

InitNewMonth(&Time , &Options , &Map, TopoMap , PrismMap , ShadowMap , RadMap,

&InF i l e s , Veg . NTypes , VType , NStats , Stat ,

Dump. In i tStatePath ) ;

i f ( IsNewDay (Time . DayStep ) && PRINT) {

InitNewDay (Time . Current . JDay , &SolarGeo ) ;

PrintDate (&(Time . Current ) , stdout ) ;

p r i n t f ( ”\n” ) ;

}

// de termine s u r f a c e e r o s i on and r ou t i n g scheme

SedimentFlag(&Options , &Time) ;

InitNewStep(& InF i l e s , &Map, &Time , S o i l . MaxLayers , &Options , NStats , Stat ,

I nF i l e s . RadarFile , &Radar , RadarMap , &SolarGeo , TopoMap , RadMap,

SoilMap , MM5Input , WindModel , &MM5Map) ;

// i n i t i a l i z e channe l / road ne tworks f o r t ime s t e p

i f ( Options . HasNetwork ) {

c h a nn e l s t e p i n i t i a l i z e n e two r k (ChannelData . streams ) ;

c h a nn e l s t e p i n i t i a l i z e n e two r k (ChannelData . roads ) ;

}

omp set num threads (T COUNT) ;

#pragma omp p a r a l l e l for c o l l a p s e (2 )

for ( int y = 0 ; y < Map.NY; y++) {

for ( int x = 0 ; x < Map.NX; x++) {

int t i d = omp get thread num () ;

PIXRAD ∗myRad = &( lo ca lRad i a t i on [ t i d ] ) ;

i f (INBASIN(TopoMap [ y ] [ x ] . Mask) ) {

PIXMET LoopMet ;

i f ( Options . Shading )

LoopMet = MakeLocalMetData (

y , x , &Map, Time . DayStep , &Options , NStats , Stat ,

MetWeights [ y ] [ x ] , TopoMap [ y ] [ x ] . Dem, &(RadMap [ y ] [ x ] ) ,

&(PrecipMap [ y ] [ x ] ) , &Radar , RadarMap , PrismMap ,

&(SnowMap [ y ] [ x ] ) , SnowAlbedo , MM5Input , WindModel ,

PrecipLapseMap , &MetMap , NGraphics , Time . Current .Month ,

SkyViewMap [ y ] [ x ] , ShadowMap [ Time . DayStep ] [ y ] [ x ] ,

SolarGeo . SunMax , SolarGeo . S in eSo l a rA l t i tude ) ;

else

LoopMet = MakeLocalMetData (

y , x , &Map, Time . DayStep , &Options , NStats , Stat ,

MetWeights [ y ] [ x ] , TopoMap [ y ] [ x ] . Dem, &(RadMap [ y ] [ x ] ) ,

&(PrecipMap [ y ] [ x ] ) , &Radar , RadarMap , PrismMap ,

&(SnowMap [ y ] [ x ] ) , SnowAlbedo , MM5Input , WindModel ,

PrecipLapseMap , &MetMap , NGraphics , Time . Current .Month , 0 . 0 ,

0 . 0 , SolarGeo . SunMax , SolarGeo . S in eSo l a rA l t i tude ) ;
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for ( int i = 0 ; i < So i l . MaxLayers ; i++) {

i f ( Options . HeatFlux == TRUE) {

i f ( Options .MM5 == TRUE)

SoilMap [ y ] [ x ] . Temp[ i ] =

MM5Input [ s h ad e o f f s e t + i + N MM5 MAPS ] [ y ] [ x ] ;

else

SoilMap [ y ] [ x ] . Temp[ i ] = Stat [ 0 ] . Data . Tso i l [ i ] ;

} else

SoilMap [ y ] [ x ] . Temp[ i ] = LoopMet . Tair ;

}

MassEnergyBalance(&Options , y , x , SolarGeo . S ineSo la rA l t i tude , Map.DX,

Map.DY, Time .Dt , Options . HeatFlux ,

Options . CanopyRadAtt , Options . RoadRouting ,

Options . I n f i l t r a t i o n , Veg . MaxLayers , &LoopMet ,

&(Network [ y ] [ x ] ) , &(PrecipMap [ y ] [ x ] ) ,

&(VType [VegMap [ y ] [ x ] . Veg − 1 ] ) , &(VegMap [ y ] [ x ] ) ,

&(SType [ SoilMap [ y ] [ x ] . S o i l − 1 ] ) , &(SoilMap [ y ] [ x ] ) ,

&(SnowMap [ y ] [ x ] ) , &(EvapMap [ y ] [ x ] ) , myRad,

&ChannelData , SkyViewMap) ;

PrecipMap [ y ] [ x ] . SumPrecip += PrecipMap [ y ] [ x ] . Prec ip ;

}

}

}

for ( int y = Map.NY − 1 ; y <= 0; y−−) {

int x ;

for ( x = Map.NX − 1 ; x <= 0; x−−) {

i f (INBASIN(TopoMap [ y ] [ x ] . Mask) ) {

i f ( Options . Shading )

LocalMet = MakeLocalMetData (

y , x , &Map, Time . DayStep , &Options , NStats , Stat ,

MetWeights [ y ] [ x ] , TopoMap [ y ] [ x ] . Dem, &(RadMap [ y ] [ x ] ) ,

&(PrecipMap [ y ] [ x ] ) , &Radar , RadarMap , PrismMap ,

&(SnowMap [ y ] [ x ] ) , SnowAlbedo , MM5Input , WindModel ,

PrecipLapseMap , &MetMap , NGraphics , Time . Current .Month ,

SkyViewMap [ y ] [ x ] , ShadowMap [ Time . DayStep ] [ y ] [ x ] ,

SolarGeo . SunMax , SolarGeo . S in eSo l a rA l t i tude ) ;

else

LocalMet = MakeLocalMetData (

y , x , &Map, Time . DayStep , &Options , NStats , Stat ,

MetWeights [ y ] [ x ] , TopoMap [ y ] [ x ] . Dem, &(RadMap [ y ] [ x ] ) ,

&(PrecipMap [ y ] [ x ] ) , &Radar , RadarMap , PrismMap ,

&(SnowMap [ y ] [ x ] ) , SnowAlbedo , MM5Input , WindModel ,

PrecipLapseMap , &MetMap , NGraphics , Time . Current .Month , 0 . 0 ,

0 . 0 , SolarGeo . SunMax , SolarGeo . S in eSo l a rA l t i tude ) ;

break ;

}

}

i f (INBASIN(TopoMap [ y ] [ x ] . Mask) )

break ;

}
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for ( int i = 0 ; i < T COUNT; i ++) {

PIXRAD ∗Rad = &( l o ca lRad i a t i on [ i ] ) ;

for ( int j = 0 ; j < Veg . MaxLayers + 1 ; j++) {

Total . Rad . NetShort [ j ] += Rad−>NetShort [ j ] ;

Total . Rad . LongIn [ j ] += Rad−>LongIn [ j ] ;

Total . Rad . LongOut [ j ] += Rad−>LongOut [ j ] ;

}

Total . Rad . Pixe lNetShort += Rad−>Pixe lNetShort ;

Total . Rad . PixelLongIn += Rad−>PixelLongIn ;

Total . Rad . PixelLongOut += Rad−>PixelLongOut ;

}

// Average a l l RBM inpu t s over each segment

i f ( Options . StreamTemp) {

channe l g r id avg ( ChannelData . streams ) ;

i f ( Options . CanopyShading )

CalcCanopyShading ( ChannelData . streams , &SolarGeo ) ;

}

#ifndef SNOWONLY

// s e t sed iment i n f l o w s to z e ro − t h ey are incremented e l s ewhe r e

i f ( ( Options . HasNetwork ) && ( Options . Sediment ) ) {

In i tChanne lSedInf low (ChannelData . streams ) ;

In i tChanne lSedInf low (ChannelData . roads ) ;

}

RouteSubSurface (Time .Dt , &Map, TopoMap , VType , VegMap , Network , SType ,

SoilMap , &ChannelData , &Time , &Options , Dump. Path , SedMap ,

FineMap , SedType , MaxStreamID , SnowMap) ;

i f ( Options . HasNetwork )

RouteChannel(&ChannelData , &Time , &Map, TopoMap , SoilMap , &Total ,

&Options , Network , SType , PrecipMap , SedMap , LocalMet . Tair ,

LocalMet .Rh, SedDiams ) ;

// Sediment Rout ing in Channel and ou tpu t to sed iment f i l e s

i f ( ( Options . HasNetwork ) && ( Options . Sediment ) ) {

// SPrintDate (&(Time . Current ) , b u f f e r ) ;

f l a g = IsEqualTime (&(Time . Current ) , &(Time . Star t ) ) ;

i f ( Options . ChannelRouting ) {

i f ( ChannelData . roads != NULL) {

RouteChannelSediment ( ChannelData . roads , Time , &Dump, &Total ,

SedDiams ) ;

channe l s av e s ed ou t f l ow t ex t ( bu f f e r , ChannelData . roads ,

ChannelData . sedroadout ,

ChannelData . sedroadf lowout , f l a g ) ;

RouteCulvertSediment(&ChannelData , &Map, TopoMap , SedMap , &Total ,

SedDiams ) ;

}

RouteChannelSediment ( ChannelData . streams , Time , &Dump, &Total ,

SedDiams ) ;

channe l s av e s ed ou t f l ow t ex t ( bu f f e r , ChannelData . streams ,

ChannelData . sedstreamout ,
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ChannelData . sedstreamflowout , f l a g ) ;

} else {

i f ( ChannelData . roads != NULL) {

chann e l s a v e s e d i n f l ow t e x t ( bu f f e r , ChannelData . roads ,

ChannelData . sedroadin f low , SedDiams ,

f l a g ) ;

}

chann e l s a v e s e d i n f l ow t e x t ( bu f f e r , ChannelData . streams ,

ChannelData . sedstreaminf low , SedDiams ,

f l a g ) ;

}

SaveChannelSedInflow (ChannelData . roads , &Total ) ;

SaveChannelSedInflow (ChannelData . streams , &Total ) ;

}

i f ( Options . Extent == BASIN)

RouteSurface(&Map, &Time , TopoMap , SoilMap , &Options , UnitHydrograph ,

&HydrographInfo , Hydrograph , &Dump, VegMap , VType , SType ,

&ChannelData , SedMap , PrecipMap , SedType , LocalMet . Tair ,

LocalMet .Rh, SedDiams ) ;

#endif

i f ( NGraphics > 0)

draw(&(Time . Current ) , IsEqualTime (&(Time . Current ) , &(Time . Star t ) ) ,

Time . DayStep , &Map, NGraphics , which graphics , VType , SType , SnowMap ,

SoilMap , SedMap , FineMap , VegMap , TopoMap , PrecipMap , PrismMap ,

SkyViewMap , ShadowMap , EvapMap , RadMap, MetMap , Network , &Options ) ;

Aggregate(&Map, &Options , TopoMap , &So i l , &Veg , VegMap , EvapMap , PrecipMap ,

RadMap, SnowMap , SoilMap , &Total , VType , Network , SedMap , FineMap ,

&ChannelData , &roadarea ) ;

MassBalance (&(Time . Current ) , &(Dump. Balance ) , &(Dump. SedBalance ) , &Total ,

&Mass , &Options ) ;

ExecDump(&Map, &(Time . Current ) , &(Time . Star t ) , &Options , &Dump, TopoMap ,

EvapMap , RadiationMap , PrecipMap , RadMap, SnowMap , MetMap , VegMap ,

&Veg , SoilMap , SedMap , Network , &ChannelData , FineMap , &So i l ,

&Total , &HydrographInfo , Hydrograph ) ;

IncreaseTime(&Time) ;

t += 1 ;

}

ExecDump(&Map, &(Time . Current ) , &(Time . Star t ) , &Options , &Dump, TopoMap ,

EvapMap , RadiationMap , PrecipMap , RadMap, SnowMap , MetMap , VegMap ,

&Veg , SoilMap , SedMap , Network , &ChannelData , FineMap , &So i l , &Total ,

&HydrographInfo , Hydrograph ) ;

writeRandomVals (Dump. Path ) ;

FinalMassBalance (&(Dump. FinalBalance ) , &Total , &Mass , &Options , roadarea ) ;

/∗ p r i n t f (”\nSTARTING CLEANUP\n\n”) ; ∗/

cleanup(&Dump, &ChannelData , &Options ) ;

p r i n t f ( ”\nEND OF MODEL RUN\n\n” ) ;
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/∗ r ecord t h e run t ime a t t h e end o f each t ime l oop ∗/

f i n i s h 1 = c lock ( ) ;

runtime = ( f i n i s h 1 − s t a r t ) / CLOCKS PER SEC;

p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

”∗∗∗∗∗∗∗∗∗∗∗∗∗∗” ) ;

p r i n t f ( ”\nRuntime Summary :\n” ) ;

p r i n t f ( ”%6.2 f hours e lapsed f o r the s imu la t ion per iod o f %d hours (%.1 f ”

”days ) \n” ,

runtime / 3600 , t ∗ Time .Dt / 3600 , ( f loat ) t ∗ Time .Dt / 3600 / 24) ;

c l o ck ge t t ime (CLOCKMONOTONIC, &t f i n i s h ) ;

e lapsed = ( t f i n i s h . t v s e c − t s t a r t . t v s e c ) ;

e l apsed += ( t f i n i s h . tv nsec − t s t a r t . tv nsec ) / 1000000000 .0 ;

f p r i n t f ( s tder r , ”\n\n\n” ) ;

f p r i n t f ( s tder r , ”\n\nRan f o r %l f seconds\n” , e lapsed ) ;

return EXIT SUCCESS ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Cleanup

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void cleanup (DUMPSTRUCT ∗Dump, CHANNEL ∗ChannelData , OPTIONSTRUCT ∗Options ) {

i f (Dump−>Aggregate . F i l ePt r != NULL)

f c l o s e (Dump−>Aggregate . F i l ePt r ) ;

i f (Dump−>Balance . F i l ePt r != NULL)

f c l o s e (Dump−>Balance . F i l ePt r ) ;

i f (Dump−>FinalBalance . F i l ePt r != NULL)

f c l o s e (Dump−>FinalBalance . F i l ePt r ) ;

i f ( ChannelData−>streamflowout != NULL)

f c l o s e (ChannelData−>streamflowout ) ;

i f ( ChannelData−>streamout != NULL)

f c l o s e (ChannelData−>streamout ) ;

i f ( ChannelData−>roadf lowout != NULL)

f c l o s e (ChannelData−>roadf lowout ) ;

i f ( ChannelData−>roadout != NULL)

f c l o s e (ChannelData−>roadout ) ;

i f ( Options−>StreamTemp) {

i f ( ChannelData−>s t reaminf low != NULL)

f c l o s e (ChannelData−>s t reaminf low ) ;

i f ( ChannelData−>streamoutf low != NULL)

f c l o s e (ChannelData−>streamoutf low ) ;

i f ( ChannelData−>streamISW != NULL)

f c l o s e (ChannelData−>streamISW) ;

i f ( ChannelData−>streamNSW != NULL)

f c l o s e (ChannelData−>streamNSW) ;

i f ( ChannelData−>streamILW != NULL)

f c l o s e (ChannelData−>streamILW) ;

i f ( ChannelData−>streamNLW != NULL)

f c l o s e (ChannelData−>streamNLW) ;

i f ( ChannelData−>streamVP != NULL)

f c l o s e (ChannelData−>streamVP) ;

i f ( ChannelData−>streamWND != NULL)

f c l o s e (ChannelData−>streamWND) ;

i f ( ChannelData−>streamATP != NULL)
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f c l o s e ( ChannelData−>streamATP) ;

i f ( ChannelData−>streamBeam != NULL)

f c l o s e (ChannelData−>streamBeam) ;

i f ( ChannelData−>s t r eamDi f fuse != NULL)

f c l o s e (ChannelData−>s t r eamDi f fuse ) ;

i f ( ChannelData−>streamSkyView != NULL)

f c l o s e (ChannelData−>streamSkyView ) ;

}

}
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Appendix C

INPUT FOR DHSVM

Code Listing C.1: Input file for DHSVM
################################################################################

# DHSVM INPUT FILE FORMAT

################################################################################

# The f i l e i s organ ized in s e c t i o n s [ . . . ] , which conta in key = entry pa i r s .

# The f i l e i s f r e e format , in that c o r r e c t read ing o f the f i l e i s not dependent

# on spaces and/or the order o f the key−entry pa i r s with in a s e c t i on .

# The keys are not case−s e n s i t i v e , but the e n t r i e s are , because f i l enames on a

# UNIX plat form are case−s e n s i t i v e .

# Comments are preceded by a ’# ’ , and run from the occurrence o f ’# ’ t i l l the

# end o f the l i n e . You can comment out an en t i r e l i n e ( l i k e in t h i s

# header ) , or you can p lace a comment a f t e r an entry .

# I t i s important to p lace the key−entry pa i r in the c o r r e c t s ec t i on , s i n c e i t

# w i l l not be found i f i t i s in another s e c t i on .

# The e a s i e s t way to make the input f i l e i s to f i l l out t h i s d e f au l t template .

# Since DHSVM w i l l only use the keys that i t r e qu i r e s you do not have to worry

# about empty e n t r i e s f o r keys that are not needed . For example , i f you are

# running the model in po int mode , you do not have to f i l l out the rout ing

# s e c t i on . I f you have a l ready f i l l e d i t out you can l eave i t , s i n c e DHSVM w i l l

# not use the in format ion . This a l l ows easy swi tch ing between point and bas in

# mode .

# For more in format ion about the s p e c i f i c e n t r i e s see the DHSVM web page

################################################################################

# OPTIONS SECTION

################################################################################

[OPTIONS] # Model Options

Format = BIN # BIN or NETCDF

Extent = BASIN # POINT or BASIN

Gradient = WATERTABLE # TOPOGRAPHY or WATERTABLE

Flow Routing = NETWORK # UNIT HYDROGRAPH or NETWORK

Sens i b l e Heat Flux = FALSE # TRUE or FALSE

Sediment = FALSE # TRUE or FALSE

Sediment Input F i l e = # path f o r sediment c on f i gu r a t i on f i l e

Overland Routing = CONVENTIONAL # CONVENTIONAL or KINEMATIC

I n f i l t r a t i o n = STATIC # Sta t i c or Dynamic

I n t e r p o l a t i o n = VARCRESS # NEAREST or INVDIST or VARCRESS

MM5 = FALSE # TRUE or FALSE

QPF = FALSE # TRUE or FALSE

PRISM = FALSE # TRUE or FALSE

PRISM data path = # path f o r PRISM f i l e s

PRISM data extens ion = bin # f i l e extens ion f o r PRISM f i l e s

Canopy rad i a t i on at tenuat ion mode = FIXED # FIXED or VARIABLE

Shading = FALSE # TRUE or FALSE

Shading data path = . . / input /Shadow

Shading data extens ion = nc # f i l e extens ion f o r shading f i l e s

Skyview data path = . . / input /SkyView . bin
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Snote l = FALSE # TRUE or FALSE

Outside = TRUE # TRUE or FALSE

Rhoverr ide = FALSE # TRUE or FALSE

Pr e c i p i t a t i o n Source = STATION # STATION or RADAR

Wind Source = STATION # STATION or MODEL

Temperature l ap s e ra t e = CONSTANT # CONSTANT or VARIABLE

Pr e c i p i t a t i o n l ap s e ra t e = CONSTANT # CONSTANT, MAP, or VARIABLE

Cressman rad ius = 10 # in model p i x e l s

Cressman s t a t i o n s = 4 # number o f s t a t i o n s

Stream Temperature = TRUE # TRUE or FALSE

Canopy Shading = FALSE

################################################################################

# MODEL AREA SECTION

################################################################################

[AREA] # Model area

Coordinate System = UTM # UTM or USER DEFINED

Extreme North = 5279315.465411 # Coordinate f o r northern edge o f g r id

Extreme West = 560662.021456 # Coordinate f o r western edge o f g r id

Center Lat i tude = 47.60893338077 # Centra l p a r a l l e l o f bas in

Center Longitude = −122.1507756929 # Centra l meridian o f bas in

Time Zone Meridian = −120.0 # Time zone meridian f o r area

Number o f Rows = 423 # Number o f rows

Number o f Columns = 211 # Number o f columns

Grid spac ing = 30 # Grid r e s o l u t i o n in m

Point North = # North coord inate f o r po int model i f Extent = POINT

Point East = # East coord inate f o r po int mode l i f Extent = POINT

################################################################################

# TIME SECTION

################################################################################

[TIME] # Model per iod

Time Step = 3 # Model time step ( hours )

Model Star t = 01/01/2002−03 # Model s t a r t time (MM/DD/YYYY−HH)

Model End = 04/02/2004−06 # Model end time (MM/DD/YYYY−HH)

################################################################################

# CONSTANTS SECTION

################################################################################

[CONSTANTS] # Model constants

Ground Roughness = 0.02 # Roughness o f s o i l s u r f a c e (m)

Snow Roughness = 0.01 # Roughness o f snow su r f a c e (m)

Rain Threshold = −1.0 # Minimum temperature at which ra in occurs (C)

Snow Threshold = 0 .5 # Maximum temperature at which snow occurs (C)

Snow Water Capacity = 0.03 # Snow l i q u i d water ho ld ing capac i ty ( f r a c t i o n )

Reference Height = 45 .0 # Reference he ight (m)

Rain LAI Mu l t i p l i e r = 0.0001 # LAI Mu l t i p l i e r f o r ra in i n t e r c e p t i o n

Snow LAI Mu l t i p l i e r = 0.0005 # LAI Mu l i t p l i e r f o r snow in t e r c e p t i o n

Min In t e r c ept ed Snow = 0.005 # Inte r c ep t ed snow that can only be melted (m)

Outside Basin Value = 0 # Value in mask that i n d i c a t e s out s ide the bas in

Temperature Lapse Rate = −0.006 # Temperature l ap s e ra t e (C/m)

Pr e c i p i t a t i o n Lapse Rate = 0.0001 # Pr e c i p i t a t i o n l ap s e ra t e (m/m)

Pr e c i p i t a t i o n Mu l t i p l i e r = 0 .

####################Only i f CanopyShading i s TRUE###############################
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Tree Height =

Buf f e r Width =

Overhang Co e f f i c i e n t =

Monthly Ext inct ion Co e f f i c i e n t = 0 . 0 . 0 .08 0 .08 0 .08 0 .08 0 .08 0 .08 0 .08 0 .08 0 . 0 .

# ex t i n c t i on c o e f f i c i e n t (0 ˜ 1)

Canopy Bank Distance = # di s tance from bank to canopy (m)

################################################################################

# TERRAIN INFORMATION SECTION

################################################################################

[TERRAIN] # Terra in in format ion

DEM Fi l e = . . / input /dem . bin

Basin Mask F i l e = . . / input /mask . bin

################################################################################

# ROUTING SECTION

################################################################################

[ROUTING] # Routing in format ion . This s e c t i on i s

# only r e l evan t i f the Extent = BASIN

################ STREAM NETWORK ################################################

# The f o l l ow ing three f i e l d s are only used i f Flow Routing = NETWORK

Stream Map F i l e = . . / input / stream .map

Stream Network F i l e = . . / input / stream . network

Stream Class F i l e = . . / input / ad jus t . c l a s s f i l e

################################## ROAD NETWORK ################################

# The f o l l ow ing three f i e l d s are only used i f Flow Routing = NETWORK and there

# i s a road network

#Road Map F i l e = # path f o r road map f i l e

#Road Network F i l e = # path f o r road network f i l e

#Road Class F i l e = # path f o r road network f i l e

######################## UNIT HYDROGRAPH #######################################

# The f o l l ow ing two f i e l d s are only used i f Flow Routing = UNIT HYDROGRAPH

Travel Time F i l e = # path f o r t r a v e l time f i l e

Unit Hydrograph F i l e = # path f o r un i t hydrograph f i l e

################################################################################

# METEOROLOGY SECTION

################################################################################

[METEOROLOGY] # Meteo ro l og i ca l s t a t i on

Number o f S ta t i on s = 2 # Number o f me t eo ro l og i c a l s t a t i o n s

Stat ion Name 1 = VIC pseudo stat ion01

North Coordinate 1 = 5271296

East Coordinate 1 = 563526.75

Elevat ion 1 = 82.07555

Stat ion F i l e 1 = . . / met/met . met . met07 windpro f i l e

Stat ion Name 2 = VIC pseudo stat ion02

North Coordinate 2 = 5278295
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East Coordinate 2 = 568144.3125

Elevat ion 2 = 65.80444

Stat ion F i l e 2 = . . / met/met . met . met09 windpro f i l e

################################### MM5 ########################################

# The f o l l ow ing block only needs to be f i l l e d out i f MM5 = TRUE. In that case

# This i s the ONLY block that needs to be f i l l e d out

MM5 Star t = # Star t o f MM5 f i l e (MM/DD/YYYY−HH) ,

MM5 Rows =

MM5 Cols =

MM5 Extreme North =

MM5 Extreme West =

MM5 DY =

# MM5 met f i l e s

MM5 Temperature F i l e =

MM5 Humidity F i l e =

MM5 Wind Speed F i l e =

MM5 Shortwave F i l e =

MM5 Longwave F i l e =

MM5 Pressure F i l e =

MM5 Pr e c i p i t a t i o n F i l e =

MM5 Terra in F i l e =

MM5 Temp Lapse F i l e =

# For each s o i l l a y e r make a key−entry pa i r as below (n = 1 , . . ,

# Number o f S o i l Layers )

MM5 So i l Temperature F i l e 0 =

MM5 So i l Temperature F i l e 1 =

MM5 So i l Temperature F i l e 2 =

############################### RADAR ##########################################

# The f o l l ow ing block only needs to be f i l l e d out i f P r e c i p i t a t i o n Source =

# RADAR.

Radar Star t =

Radar F i l e =

Radar Extreme North =

Radar Extreme West =

Radar Number o f Rows =

Radar Number o f Columns =

Radar Grid Spacing =

################################# Wind #########################################

# The f o l l ow ing block only needs to be f i l l e d out i f Wind Source = MODEL

Number o f Wind Maps =

Wind F i l e Basename =

Wind Map Met Sta t i on s =

###################### Pre c i p i t a t i o n l ap s e ra t e ################################

# The f o l l ow ing block only needs to be f i l l e d out i f P r e c i p i t a t i o n l ap s e ra t e

# = MAP

Pr e c i p i t a t i o n l ap s e ra t e =
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################################################################################

# SOILS INFORMATION SECTION

################################################################################

[ SOILS ] # So i l in fo rmat ion

S o i l Map F i l e = . . / input / s o i l . bin

S o i l Depth F i l e = . . / input / s o i l d . bin

Number o f S o i l Types = 4

############################### SOIL 1 ##########################################

So i l Desc r ip t i on 1 = SAND

Late ra l Conduct iv ity 1 = 0 .1

Exponentia l Decrease 1 = 3 .0

Depth Threshold 1 = 0 .5

Maximum I n f i l t r a t i o n 1 = 1 .8 e−5

Cap i l l a ry Drive 1 =

Sur face Albedo 1 = 0.1

Number o f S o i l Layers 1 = 3

Poros i ty 1 = .43 .43 .43

Pore S i z e D i s t r i bu t i on 1 = .24 .24 .24

Bubbling Pressure 1 = .07 .07 .07

F ie ld Capacity 1 = .08 .08 .08

Wilt ing Point 1 = .03 .03 .03

Bulk Density 1 = 1492. 1492 . 1492 .

Ve r t i c a l Conduct iv ity 1 = 5 .0E−1 5 .0E−1 5 .0E−1

Thermal Conduct iv ity 1 = 7.114 6 .923 6 .923

Thermal Capacity 1 = 1 .4 e6 1 .4 e6 1 .4 e6

Mannings n 1 =

############################## SOIL 2 ###########################################

So i l Desc r ip t i on 2 = LOAMY SAND

Late ra l Conduct iv ity 2 = 0.03

Exponentia l Decrease 2 = 3 .5

Maximum I n f i l t r a t i o n 2 = 3 .0 e−6

Depth Threshold 2 = 0 .5

Cap i l l a ry Drive 2 =

Sur face Albedo 2 = 0.1

Number o f S o i l Layers 2 = 3

Poros i ty 2 = .46 .46 .46

Pore S i z e D i s t r i bu t i on 2 = .26 .26 .26

Bubbling Pressure 2 = .21 .21 .21

F ie ld Capacity 2 = .38 .38 .38

Wilt ing Point 2 = .047 .047 .047

Bulk Density 2 = 1419. 1419 . 1419 .

Ve r t i c a l Conduct iv ity 2 = 2 .2E−6 2 .2E−5 2 .2E−6

Thermal Conduct iv ity 2 = 7.114 6 .923 7 .0

Thermal Capacity 2 = 1 .4 e6 1 .4 e6 1 .4 e6

Mannings n 2 =

############################### SOIL 3 ##########################################

So i l Desc r ip t i on 3 = SANDY LOAM

Late ra l Conduct iv ity 3 = 7 .0 e−4

Exponentia l Decrease 3 = 3 .0
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Maximum I n f i l t r a t i o n 3 = 8 .0 e−6

Depth Threshold 3 = 0 .5

Cap i l l a ry Drive 3 =

Sur face Albedo 3 = 0.1

Number o f S o i l Layers 3 = 3

Poros i ty 3 = .46 .46 .46

Pore S i z e D i s t r i bu t i on 3 = .21 .21 .21

Bubbling Pressure 3 = .21 .21 .21

F ie ld Capacity 3 = .15 .15 .15

Wilt ing Point 3 = 1E−3 1E−3 1E−3

Bulk Density 3 = 1419. 1419 . 1419 .

Ve r t i c a l Conduct iv ity 3 = 0.07 0 .07 0 .07

Thermal Conduct iv ity 3 = 7.114 6 .923 7 .0

Thermal Capacity 3 = 1 .4 e6 1 .4 e6 1 .4 e6

Mannings n 3 =

############################### SOIL 4 ##########################################

So i l Desc r ip t i on 4 = SANDY LOAM

Late ra l Conduct iv ity 4 = 0.004

Exponentia l Decrease 4 = 1 .0

Maximum I n f i l t r a t i o n 4 = 1e−3

Depth Threshold 4 = 0 .5

Cap i l l a ry Drive 4 =

Sur face Albedo 4 = 0.1

Number o f S o i l Layers 4 = 3

Poros i ty 4 = .42 .42 .42

Pore S i z e D i s t r i bu t i on 4 = .21 .21 .21

Bubbling Pressure 4 = .15 .15 .15

F ie ld Capacity 4 = .25 .25 .25

Wilt ing Point 4 = .12 .12 .12

Bulk Density 4 = 1569. 1569 . 1569 .

Ve r t i c a l Conduct iv ity 4 = 3 .0E−3 3 .0E−3 3 .0E−3

Thermal Conduct iv ity 4 = 7.114 6 .923 7 .0

Thermal Capacity 4 = 1 .4 e6 1 .4 e6 1 .4 e6

Mannings n 4 =

################################################################################

# VEGETATION INFORMATION SECTION

################################################################################

[VEGETATION]

Vegetat ion Map F i l e = . . / input /veg . bin

Number o f Vegetat ion Types = 14 # Number o f d i f f e r e n t vege ta t i on types

####################### VEGETATION 1 ###########################################

Vegetat ion Desc r ip t i on 1 = Dense Urban (>75%)

Impervious Fract ion 1 = 0.85

Detention Fract ion 1 = 0

Detention Decay 1 = 0

Overstory Present 1 = FALSE

Understory Present 1 = TRUE

Frac t i ona l Coverage 1 =

Hemi Fract Coverage 1 =

Trunk Space 1 =

Aerodynamic Attenuation 1 =
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Radiat ion Attenuation 1 =

Clumping Factor 1 = /∗ Required i f CanopyRadiationAttenuation==VARIABLE ∗/

Leaf Angle A 1 = /∗ Required i f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗/

Leaf Angle B 1 = /∗ Required i f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗/

Sca t t e r i ng Parameter 1 = /∗ Required i f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗/

Max Snow Int Capacity 1 =

Snow In t e r c ep t i on Ef f 1 =

Mass Release Drip Ratio 1 =

IMPERVIOUS SURFACE ROUTING FILE = . . / input / su r f a c e . rout ing . txt

Height 1 = 0 .2

Overstory Monthly LAI 1 =

Understory Monthly LAI 1 = 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0

Maximum Res i s tance 1 = 3000.

Minimum Res i s tance 1 = 340 .

Moisture Threshold 1 = 0.33

Vapor Pressure D e f i c i t 1 = 4000

Rpc 1 = .108

Overstory Monthly Alb 1 =

Understory Monthly Alb 1 = 0.4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4 0 .4

Number o f Root Zones 1 = 3

Root Zone Depths 1 = 0.10 0 .25 0 .40

Overstory Root Fract ion 1 = 0.20 0 .40 0 .40

Understory Root Fract ion 1 = 0.40 0 .60 0 .00

########################## VEGETATION 2 ########################################

Vegetat ion Desc r ip t i on 2 = Light /medium Urban (<75%)

Impervious Fract ion 2 = 0.25

Detention Fract ion 2 = 0

Detention Decay 2 = 0

IMPERVIOUS SURFACE ROUTING FILE = . . / input / su r f a c e . rout ing . txt

Overstory Present 2 = FALSE

Understory Present 2 = TRUE

Frac t i ona l Coverage 2 =

Hemi Fract Coverage 2 =

Clumping Factor 2 =

Leaf Angle A 2 =

Leaf Angle B 2 =

Sca t t e r i ng Parameter 2 =

Trunk Space 2 =

Aerodynamic Attenuation 2 =

Radiat ion Attenuation 2 =

Max Snow Int Capacity 2 =

Snow In t e r c ep t i on Ef f 2 =

Mass Release Drip Ratio 2 =

Height 2 = 0 .2

Overstory Monthly LAI 2 =

Understory Monthly LAI 2 = 3 .0 3 .0 2 .0 3 .0 3 .0 2 .0 3 .0 3 .0 2 .0 3 .0 3 .0 2 .0

Maximum Res i s tance 2 = 3000.

Minimum Res i s tance 2 = 300

Moisture Threshold 2 = 0.33

Vapor Pressure D e f i c i t 2 = 4000

Rpc 2 = 0.108

Overstory Monthly Alb 2 =

Understory Monthly Alb 2 = 0.20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20 0 .20

Number o f Root Zones 2 = 3

84



Root Zone Depths 2 = 0.10 0 .25 0 .40

Overstory Root Fract ion 2 = 0.20 0 .40 0 .40

Understory Root Fract ion 2 = 0.40 0 .60 0 .00

########################## VEGETATION 3 ########################################

Vegetat ion Desc r ip t i on 3 = Bareground

Impervious Fract ion 3 = 0 .0

Detention Fract ion 3 = 0 .0

Detention Decay 3 = 0.0

Overstory Present 3 = FALSE

Understory Present 3 = FALSE

Frac t i ona l Coverage 3 =

Hemi Fract Coverage 3 =

Clumping Factor 3 =

Leaf Angle A 3 =

Leaf Angle B 3 =

Sca t t e r i ng Parameter 3 =

Trunk Space 3 =

Aerodynamic Attenuation 3 =

Radiat ion Attenuation 3 =

Max Snow Int Capacity 3 =

Snow In t e r c ep t i on Ef f 3 =

Mass Release Drip Ratio 3 =

Height 3 =

Overstory Monthly LAI 3 =

Understory Monthly LAI 3 =

Maximum Res i s tance 3 =

Minimum Res i s tance 3 =

Moisture Threshold 3 =

Vapor Pressure D e f i c i t 3 =

Rpc 3 =

Overstory Monthly Alb 3 =

Understory Monthly Alb 3 =

Number o f Root Zones 3 = 3

Root Zone Depths 3 = 0.10 0 .25 0 .40

Overstory Root Fract ion 3 = 0.20 0 .40 0 .40

Understory Root Fract ion 3 = 0.40 0 .60 0 .00

########################## VEGETATION 4 ########################################

Vegetat ion Desc r ip t i on 4 = Dry Ground

Impervious Fract ion 4 = 0 .0

Detention Fract ion 4 = 0 .0

Detention Decay 4 = 0.0

Overstory Present 4 = FALSE

Understory Present 4 = TRUE

Frac t i ona l Coverage 4 =

Hemi Fract Coverage 4 =

Clumping Factor 4 =

Leaf Angle A 4 =

Leaf Angle B 4 =

Sca t t e r i ng Parameter 4 =

Trunk Space 4 = 0.38

Aerodynamic Attenuation 4 =

Radiat ion Attenuation 4 =

Max Snow Int Capacity 4 =

85



Snow In t e r c ep t i on Ef f 4 =

Mass Release Drip Ratio 4 =

Height 4 = 0 .5

Overstory Monthly LAI 4 =

Understory Monthly LAI 4 = 5 .0 2 .0 2 .0 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

Maximum Res i s tance 4 = 600 .

Minimum Res i s tance 4 = 320

Moisture Threshold 4 = 0.33

Vapor Pressure D e f i c i t 4 = 4000

Rpc 4 = 0.108

Overstory Monthly Alb 4 =

Understory Monthly Alb 4 = 0.19 0 .19 0 .9 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19

Number o f Root Zones 4 = 3

Root Zone Depths 4 = 0.10 0 .25 0 .40

Overstory Root Fract ion 4 = 0.20 0 .40 0 .40

Understory Root Fract ion 4 = 0.40 0 .60 0 .00

########################## VEGETATION 5 ########################################

Vegetat ion Desc r ip t i on 5 = Native Grass

Impervious Fract ion 5 = 0 .0

Detention Fract ion 5 = 0 .0

Detention Decay 5 = 0.0

Overstory Present 5 = TRUE

Understory Present 5 = TRUE

Frac t i ona l Coverage 5 = 0 .5

Hemi Fract Coverage 5 = 0 .5

Clumping Factor 5 =

Leaf Angle A 5 =

Leaf Angle B 5 =

Sca t t e r i ng Parameter 5 =

Trunk Space 5 = 0 .4

Aerodynamic Attenuation 5 = 0.3

Radiat ion Attenuation 5 = 0.1

Max Snow Int Capacity 5 = 0.003

Snow In t e r c ep t i on Ef f 5 = 0 .6

Mass Release Drip Ratio 5 = 0 .4

Height 5 = 20 .0 0 .5

Overstory Monthly LAI 5 = 2.0 2 .0 2 .0 2 .0 2 .0 6 .0 6 .0 6 .0 6 .0 2 .0 2 .0 2 .0

Understory Monthly LAI 5 = 1 .0 1 .0 1 .0 1 .0 1 .0 3 .3 3 .3 3 .3 3 .3 1 .0 1 .0 1 .0

Maximum Res i s tance 5 = 1000 600 .

Minimum Res i s tance 5 = 280 200 .

Moisture Threshold 5 = 0.33 0 .33

Vapor Pressure D e f i c i t 5 = 4000 4000

Rpc 5 = 0.108 0 .108

Overstory Monthly Alb 5 = 0.15 0 .15 0 .15 0 .15 0 .15 0 .14 0 .14 0 .14 0 .14 0 .15 0 .15 0 .15

Understory Monthly Alb 5 = 0.18 0 .18 0 .18 0 .18 0 .18 0 .18 0 .18 0 .18 0 .18 0 .18 0 .18 0 .18

Number o f Root Zones 5 = 3

Root Zone Depths 5 = 0.10 0 .25 0 .40

Overstory Root Fract ion 5 = 0.20 0 .40 0 .40

Understory Root Fract ion 5 = 0.40 0 .60 0 .00

########################## VEGETATION 6 ########################################

Vegetat ion Desc r ip t i on 6 = Grass / crop / shrub

Impervious Fract ion 6 = 0 .0

Detention Fract ion 6 = 0 .0
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Detention Decay 6 = 0.0

Overstory Present 6 = FALSE

Understory Present 6 = TRUE

Frac t i ona l Coverage 6 =

Hemi Fract Coverage 6 =

Clumping Factor 6 =

Leaf Angle A 6 =

Leaf Angle B 6 =

Sca t t e r i ng Parameter 6 =

Trunk Space 6 =

Aerodynamic Attenuation 6 =

Radiat ion Attenuation 6 =

Max Snow Int Capacity 6 =

Snow In t e r c ep t i on Ef f 6 =

Mass Release Drip Ratio 6 =

Height 6 = 1 .0

Overstory Monthly LAI 6 =

Understory Monthly LAI 6 = 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0

Maximum Res i s tance 6 = 600 .

Minimum Res i s tance 6 = 280

Moisture Threshold 6 = 0.33

Vapor Pressure D e f i c i t 6 = 4000

Rpc 6 = .108

Overstory Monthly Alb 6 =

Understory Monthly Alb 6 = 0.24 0 .24 0 .23 0 .22 0 .21 0 .20 0 .20 0 .20 0 .22 0 .23 0 .24 0 .24

Number o f Root Zones 6 = 3

Root Zone Depths 6 = 0.10 0 .25 0 .40

Overstory Root Fract ion 6 = 0.20 0 .40 0 .40

Understory Root Fract ion 6 = 0.40 0 .60 0 .00

########################## VEGETATION 7 ########################################

Vegetat ion Desc r ip t i on 7 = Mixed/ deciduous Forest

Impervious Fract ion 7 = 0 .0

Detention Fract ion 7 = 0

Detention Decay 7 = 0

Overstory Present 7 = TRUE

Understory Present 7 = TRUE

Frac t i ona l Coverage 7 = 0.85

Hemi Fract Coverage 7 = 0.85

Clumping Factor 7 =

Leaf Angle A 7 =

Leaf Angle B 7 =

Sca t t e r i ng Parameter 7 =

Trunk Space 7 = 0.45

Aerodynamic Attenuation 7 = 2.0

Radiat ion Attenuation 7 = 0.1875

Max Snow Int Capacity 7 = 0.01225

Snow In t e r c ep t i on Ef f 7 = 0 .6

Mass Release Drip Ratio 7 = 0 .4

Height 7 = 25 .0 0 .5

Overstory Monthly LAI 7 = 8.0 8 .0 8 .0 8 .0 8 .0 8 .0 8 .0 8 .0 8 .0 8 .0 8 .0 8 .0

Understory Monthly LAI 7 = 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0

Maximum Res i s tance 7 = 1500. 1000 .

Minimum Res i s tance 7 = 666.6 823 .4

Moisture Threshold 7 = 0.33 0 .13
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Vapor Pressure D e f i c i t 7 = 4000 4000

Rpc 7 = .108 .108

Overstory Monthly Alb 7 = 0.27 0 .27 0 .25 0 .25 0 .22 0 .21 0 .21 0 .21 0 .21 0 .22 0 .24 0 .26

Understory Monthly Alb 7 = 0.175 0 .175 0 .175 0 .175 0 .175 0 .175 0 .175 0 .175 0 .175 0 .175 0 .175

0 .175

Number o f Root Zones 7 = 3

Root Zone Depths 7 = 0.10 0 .25 0 .40

Overstory Root Fract ion 7 = 0.20 0 .40 0 .40

Understory Root Fract ion 7 = 0.40 0 .60 0 .00

########################## VEGETATION 8 ########################################

Vegetat ion Desc r ip t i on 8 = Coni f e r Forest

Impervious Fract ion 8 = 0 .0

Detention Fract ion 8 = 0

Detention Decay 8 = 0

Overstory Present 8 = TRUE

Understory Present 8 = TRUE

Frac t i ona l Coverage 8 = 0 .9

Hemi Fract Coverage 8 = 0 .9

Clumping Factor 8 =

Leaf Angle A 8 =

Leaf Angle B 8 =

Sca t t e r i ng Parameter 8 =

Trunk Space 8 = 0 .5

Aerodynamic Attenuation 8 = 2.5

Radiat ion Attenuation 8 = 0.16

Max Snow Int Capacity 8 = 0.03

Snow In t e r c ep t i on Ef f 8 = 0 .6

Mass Release Drip Ratio 8 = 0 .4

Height 8 = 43 .3 0 .5

Overstory Monthly LAI 8 = 12 12 12 12 12 12 12 12 12 12 12 12

Understory Monthly LAI 8 = 6 6 6 6 6 6 6 7 7 6 6 6

Maximum Res i s tance 8 = 2000 2000

Minimum Res i s tance 8 = 1333.2 855.54

Moisture Threshold 8 = 0.33 0 .13

Vapor Pressure D e f i c i t 8 = 4000 4000

Rpc 8 = .108 .108

Overstory Monthly Alb 8 = 0.14 0 .14 0 .14 0 .13 0 .13 0 .12 0 .11 0 .11 0 .12 0 .13 0 .14 0 .14

Understory Monthly Alb 8 = 0.19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19

Number o f Root Zones 8 = 3

Root Zone Depths 8 = 0.10 0 .25 0 .40

Overstory Root Fract ion 8 = 0.20 0 .40 0 .40

Understory Root Fract ion 8 = 0.40 0 .60 0 .00

########################## VEGETATION 9 ########################################

Vegetat ion Desc r ip t i on 9 = Regrowth Vegetat ion

Impervious Fract ion 9 = 0 .0

Detention Fract ion 9 = 0

Detention Decay 9 = 0

Overstory Present 9 = FALSE

Understory Present 9 = TRUE

Frac t i ona l Coverage 9 =

Hemi Fract Coverage 9 =

Clumping Factor 9 =
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Leaf Angle A 9 =

Leaf Angle B 9 =

Sca t t e r i ng Parameter 9 =

Trunk Space 9 =

Aerodynamic Attenuation 9 =

Radiat ion Attenuation 9 =

Max Snow Int Capacity 9 =

Snow In t e r c ep t i on Ef f 9 =

Mass Release Drip Ratio 9 =

Height 9 = 1 .0

Overstory Monthly LAI 9 =

Understory Monthly LAI 9 = 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5 0 .5

Maximum Res i s tance 9 = 600

Minimum Res i s tance 9 = 220

Moisture Threshold 9 = 0.33

Vapor Pressure D e f i c i t 9 = 4000

Rpc 9 = .108

Overstory Monthly Alb 9 =

Understory Monthly Alb 9 = 0.2 0 .2 0 .2 0 .19 0 .18 0 .17 0 .16 0 .16 0 .17 0 .18 0 .19 0 .2

Number o f Root Zones 9 = 3

Root Zone Depths 9 = 0.10 0 .25 0 .40

Overstory Root Fract ion 9 = 0.20 0 .40 0 .40

Understory Root Fract ion 9 = 0.40 0 .60 0 .00

########################## VEGETATION 10 #######################################

Vegetat ion Desc r ip t i on 10 = Clear−cuts

Impervious Fract ion 10 = 0 .0

Detention Fract ion 10 = 0

Detention Decay 10 = 0

Overstory Present 10 = FALSE

Understory Present 10 = TRUE

Frac t i ona l Coverage 10 =

Hemi Fract Coverage 10 =

Clumping Factor 10 =

Leaf Angle A 10 =

Leaf Angle B 10 =

Sca t t e r i ng Parameter 10 =

Trunk Space 10 =

Aerodynamic Attenuation 10 =

Radiat ion Attenuation 10 =

Max Snow Int Capacity 10 =

Snow In t e r c ep t i on Ef f 10 =

Mass Release Drip Ratio 10 =

Height 10 = 0.5

Overstory Monthly LAI 10 =

Understory Monthly LAI 10 = 0.5 0 .5 0 .5 0 .5 0 .5 6 .0 6 .0 6 .0 6 .0 0 .5 0 .5 0 .5

Maximum Res i s tance 10 = 600

Minimum Res i s tance 10 = 280

Moisture Threshold 10 = 0.33

Vapor Pressure D e f i c i t 10 = 4000

Rpc 10 = .108

Overstory Monthly Alb 10 =

Understory Monthly Alb 10 = 0.19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19 0 .19

Number o f Root Zones 10 = 3

Root Zone Depths 10 = 0.10 0 .25 0 .40

89



Overstory Root Fract ion 10 = 0.20 0 .40 0 .40

Understory Root Fract ion 10 = 0.40 0 .60 0 .00

########################## VEGETATION 11 #######################################

Vegetat ion Desc r ip t i on 11 = Rock

Impervious Fract ion 11 = 0 .0

Detention Fract ion 11 = 0

Detention Decay 11 = 0

Overstory Present 11 = FALSE

Understory Present 11 = FALSE

Frac t i ona l Coverage 11 =

Hemi Fract Coverage 11 =

Clumping Factor 11 =

Leaf Angle A 11 =

Leaf Angle B 11 =

Sca t t e r i ng Parameter 11 =

Trunk Space 11 =

Aerodynamic Attenuation 11 =

Radiat ion Attenuation 11 =

Max Snow Int Capacity 11 =

Snow In t e r c ep t i on Ef f 11 =

Mass Release Drip Ratio 11 =

Height 11 =

Overstory Monthly LAI 11 =

Understory Monthly LAI 11 =

Maximum Res i s tance 11 =

Minimum Res i s tance 11 =

Moisture Threshold 11 =

Vapor Pressure D e f i c i t 11 =

Rpc 11 =

Overstory Monthly Alb 11 =

Understory Monthly Alb 11 =

Number o f Root Zones 11 = 3

Root Zone Depths 11 = 0.10 0 .25 0 .40

Overstory Root Fract ion 11 = 0.20 0 .40 0 .40

Understory Root Fract ion 11 = 0.40 0 .60 0 .00

########################## VEGETATION 12 #######################################

Vegetat ion Desc r ip t i on 12 = Wetlands

Impervious Fract ion 12 = 0 .0

Detention Fract ion 12 = 0

Detention Decay 12 = 0

Overstory Present 12 = FALSE

Understory Present 12 = TRUE

Frac t i ona l Coverage 12 =

Hemi Fract Coverage 12 =

Clumping Factor 12 =

Leaf Angle A 12 =

Leaf Angle B 12 =

Sca t t e r i ng Parameter 12 =

Trunk Space 12 =

Aerodynamic Attenuation 12 =

Radiat ion Attenuation 12 =

Max Snow Int Capacity 12 =

Snow In t e r c ep t i on Ef f 12 =

90



Mass Release Drip Ratio 12 =

Height 12 = 0 .5

Overstory Monthly LAI 12 =

Understory Monthly LAI 12 = 0.5 0 .5 0 .5 0 .5 0 .5 6 .0 6 .0 6 .0 6 .0 0 .5 0 .5 0 .5

Maximum Res i s tance 12 = 600

Minimum Res i s tance 12 = 200

Moisture Threshold 12 = 0.33

Vapor Pressure D e f i c i t 12 = 4000

Rpc 12 = 0.108

Overstory Monthly Alb 12 =

Understory Monthly Alb 12 = 0.19 0 .19 0 .19 0 .17 0 .17 0 .16 0 .16 0 .16 0 .16 0 .17 0 .19 0 .19

Number o f Root Zones 12 = 3

Root Zone Depths 12 = 0.10 0 .25 0 .40

Overstory Root Fract ion 12 = 0.20 0 .40 0 .40

Understory Root Fract ion 12 = 0 .4 0 .6 0 .0

########################## VEGETATION 13 #######################################

Vegetat ion Desc r ip t i on 13 = Shor e l i n e

Impervious Fract ion 13 = 0 .0

Detention Fract ion 13 = 0

Detention Decay 13 = 0

Overstory Present 13 = FALSE

Understory Present 13 = TRUE

Frac t i ona l Coverage 13 =

Hemi Fract Coverage 13 =

Clumping Factor 13 =

Leaf Angle A 13 =

Leaf Angle B 13 =

Sca t t e r i ng Parameter 13 =

Trunk Space 13 =

Aerodynamic Attenuation 13 =

Radiat ion Attenuation 13 =

Max Snow Int Capacity 13 =

Snow In t e r c ep t i on Ef f 13 =

Mass Release Drip Ratio 13 =

Height 13 = 0 .5

Overstory Monthly LAI 13 =

Understory Monthly LAI 13 = 0.5 0 .5 0 .5 0 .5 0 .5 6 .0 6 .0 6 .0 6 .0 0 .5 0 .5 0 .5

Maximum Res i s tance 13 = 600

Minimum Res i s tance 13 = 200

Moisture Threshold 13 = 0.33

Vapor Pressure D e f i c i t 13 = 4000

Rpc 13 = .108

Overstory Monthly Alb 13 =

Understory Monthly Alb 13 = 0.19 0 .19 0 .19 0 .17 0 .17 0 .16 0 .16 0 .16 0 .16 0 .17 0 .19 0 .19

Number o f Root Zones 13 = 3

Root Zone Depths 13 = 0.10 0 .25 0 .40

Overstory Root Fract ion 13 = 0.20 0 .40 0 .40

Understory Root Fract ion 13 = 0.40 0 .60 0 .00

########################## VEGETATION 14 #######################################

Vegetat ion Desc r ip t i on 14 = Water

Impervious Fract ion 14 = 0 .0

Detention Fract ion 14 = 0 .0

Detention Decay 14 = 0.0
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Overstory Present 14 = FALSE

Understory Present 14 = FALSE

Frac t i ona l Coverage 14 =

Hemi Fract Coverage 14 =

Clumping Factor 13 =

Leaf Angle A 13 =

Leaf Angle B 13 =

Sca t t e r i ng Parameter 13 =

Trunk Space 14 =

Aerodynamic Attenuation 14 =

Radiat ion Attenuation 14 =

Max Snow Int Capacity 14 =

Snow In t e r c ep t i on Ef f 14 =

Mass Release Drip Ratio 14 =

Height 14 =

Overstory Monthly LAI 14 = 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

Understory Monthly LAI 14 = 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

Maximum Res i s tance 14 =

Minimum Res i s tance 14 =

Moisture Threshold 14 =

Vapor Pressure D e f i c i t 14 =

Rpc 14 =

Overstory Monthly Alb 14 = 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00

Understory Monthly Alb 14 = 0.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00

Number o f Root Zones 14 = 3

Root Zone Depths 14 = 0.10 0 .25 0 .40

Overstory Root Fract ion 14 = 0.20 0 .40 0 .40

Understory Root Fract ion 14 = 0.00 0 .00 0 .00

################################################################################

# MODEL OUTPUT SECTION

################################################################################

[OUTPUT] # Informat ion what to output when

Output Direc tory = . . / output/

I n i t i a l State Di rec tory = . . / modelstate /

################ PIXEL DUMPS ###################################################

Number o f Output P ix e l s = 0

# For each p i x e l make a key−entry pa i r as i nd i ca t ed below , varying the

# number f o r the output p i x e l (1 , . . , Number o f Output P ixe l )

North Coordinate 1 =

East Coordinate 1 =

Name 1 =

################ MODEL STATE ###################################################

Number o f Model Sta te s = 0 # Number o f model s t a t e s to dump

# For each model s t a t e make a key−entry pa i r as i nd i ca t ed below , varying the

# number f o r the model s t a t e dump (1 , . . , Number o f Model Sta te s )

State Date 1 = 10/02/1997−03
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################ MODEL MAPS ####################################################

Number o f Map Var iab l e s = 0 # Number o f d i f f e r e n t v a r i a b l e s f o r

# which you want to output maps

# For each o f the v a r i a b l e s make a block l i k e the one that f o l l ows , varying

# the number o f the va r i ab l e (n = 1 , . . , Number o f Map Var iab l e s )

Map Var iab le 1 = 503 # water tab l e depth

Map Layer 1 = 1

Number o f Maps 1 = 9

Map Date 1 1 = 12/8/1997−03

Map Date 2 1 = 12/8/1997−06

Map Date 3 1 = 12/8/1997−09

Map Date 4 1 = 12/8/1997−12

Map Date 5 1 = 12/8/1997−18

Map Date 7 1 = 12/8/1997−15

Map Date 6 1 = 12/8/1997−21

Map Date 8 1 = 12/9/1997−03

Map Date 9 1 = 12/9/1997−06

################ MODEL IMAGES ##################################################

Number o f Image Var iab l e s = 0 # Number o f v a r i a b l e s f o r which you

# would l i k e to output images

# For each o f the v a r i a b l e s make a block l i k e the one that f o l l ows , varying

# the number o f the va r i ab l e (n = 1 , . . , Number o f Image Var iab l e s )

Image Var iab le 1 = # ID of the va r i ab l e to output

Image Layer 1 = 1 # I f the va r i ab l e e x i s t s f o r a number

# of l aye r s , s p e c i f y the l a y e r s here

# with the top l ay e r = 1

Image Star t 1 = # F i r s t t imestep f o r which to output

# an image

Image End 1 = # Last t imestep f o r which to output

# an image

Image I n t e r v a l 1 = # Time i n t e r v a l between images ( hours )

Image Upper Limit 1 = # Al l va lues in the output equal to or

# gr ea t e r than t h i s l im i t w i l l be s e t

# to 255

Image Lower Limit 1 = # Al l va lues in the output equal to or

# sma l l e r than t h i s l im i t w i l l be s e t

# to 0

################ GRAPHIC IMAGES ##################################################

Number o f Graphics = 0 # Number o f v a r i a b l e s f o r which you

# would l i k e to output images

Graphics ID 1 = 15 # ID of the va r i ab l e to output

Graphics ID 1 = 22

Graphics ID 2 = 23

Graphics ID 3 = 24

Graphics ID 4 = 25

Graphics ID 5 = 43

Graphics ID 6 = 44

Graphics ID 7 = 8
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Graphics ID 8 = 2

Graphics ID 9 = 50

Graphics ID 10 = 1

# 1 SWE (mm)

# 2 Water Table Depth (mm)

# 3 D i g i t a l E levat ion Model (m)

# 4 Vegetat ion Class ( index #)

# 5 So i l Class ( index #)

# 6 So i l Depth (mm)

# 7 Pr e c i p i t a t i o n at cur rent time step (mm/time step )

# 8 Incoming Shortwave (Beam and D i f f u s e ) (W/sqm)

# 9 Inte r c ep t ed Snow (mm)

# 10 Snow Sur face Temp (C)

# 11 Cold Content o f snow en t i r e snow pack ( kJ )

# 12 Snow Melt ( as Outflow minus Precip , can be negat ive ) (mm/time step )

# 13 Snow Pack Outflow (mm/time step )

# 14 Saturated Subsur face Flow (mm/time step )

# 15 Overland Flow (mm)

# 16 Total Evapotransp i rat ion ( s o i l + a l l veg l a y e r s )

# 17 Ground Snow pack vapor f l ux (mm)

# 18 Inte r c ep t ed snow pack vapor f l ux (mm)

# 19 So i l Moisture ( Sur face Layer ) % of s a tu ra t i on ( i . e . po ro s i t y )

# 20 So i l Moisture (2nd Layer ) % of s a tu ra t i on ( i . e . po ro s i t y )

# 21 So i l Moisture (3 rd Layer ) % of s a tu ra t i on ( i . e . po ro s i t y )

# 22 Accumulated Prec ip (mm)

# 23 a i r temperature (C)

# 24 wind speed (m/ s )

# 25 r e l a t i v e humidity

# 26 Prism Prec ip F ie ld (mm)

# 31 Overstory Transp i ra t ion (mm)

# 32 Understory Transp i r ta t i on (mm)

# 33 So i l Evaporation (mm)

# 34 Overstory Evaporation (mm)

# 35 Understory Evaportat ion (mm)

# 41 Sky View Factor (%)

# 42 Shade Map (%)

# 43 Direc t Beam Shortwave Rad (W/sqm)

# 44 D i f f u s e Beam Shortwave Rad (W/sqm)

# 45 Aspect ( degree s )

# 46 Slope ( percent )

# 50 Channel Subsur face I n t e r c ep t i on (mm)

# 51 Road Subsur face I n t e r c ep t i on (mm)

# WARNING Use s o i l mositure l a y e r s with caution , to minimize c a l c u l a t i o n s during redraw

# DHSVM does not check to make sure that the as s i gned s o i l l a y e r e x i s t s

################################################################################

# END OF INPUT FILE

################################################################################

[End ] # This i s probably not needed , but

# ju s t in case ( to c l o s e the prev ious

# s e c t i on )
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