
N-SLOPE: A ONE-CLASS CLASSIFICATION ENSEMBLE FOR NUCLEAR

FORENSICS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Justin Kehl

June 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219380565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

LLNL-TH-753098

This document was prepared as an account of work sponsored by an agency of the

United States government. Neither the United States government nor Lawrence Liv-

ermore National Security, LLC, nor any of their employees makes any warranty, ex-

pressed or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process dis-

closed, or represents that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by trade name, trade-

mark, manufacturer, or otherwise does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the United States government or Lawrence Liv-

ermore National Security, LLC. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States government or Lawrence

Livermore National Security, LLC, and shall not be used for advertising or product

endorsement purposes.

c© 2018

Justin Kehl

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: N-SLOPE: A One-Class Classification En-

semble For Nuclear Forensics

AUTHOR: Justin Kehl

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: Lubomir Stanchev, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Dennis Sun, Ph.D.

Assistant Professor of Statistics

Assistant Professor of Computer Science by Courtesy

iii

ABSTRACT

N-SLOPE: A One-Class Classification Ensemble For Nuclear Forensics

Justin Kehl

One-class classification is a specialized form of classification from the field of machine

learning. Traditional classification attempts to assign unknowns to known classes,

but cannot handle novel unknowns that do not belong to any of the known classes.

One-class classification seeks to identify these outliers, while still correctly assign-

ing unknowns to classes appropriately. One-class classification is applied here to the

field of nuclear forensics, which is the study and analysis of nuclear material for the

purpose of nuclear incident investigations. Nuclear forensics data poses an interest-

ing challenge because false positive identification can prove costly and data is often

small, high-dimensional, and sparse, which is problematic for most machine learning

approaches.

A web application is built using the R programming language and the shiny

framework that incorporates N-SLOPE: a machine learning ensemble. N-SLOPE

combines five existing one-class classifiers with a novel one-class classifier introduced

here and uses ensemble learning techniques to combine output. N-SLOPE is validated

on three distinct data sets: Iris, Obsidian, and Galaxy Serpent 3, which is an enhanced

version of a recent international nuclear forensics exercise. N-SLOPE achieves high

classification accuracy on each data set of 100%, 83.33%, and 83.33%, respectively,

while minimizing false positive detection rate to 0% across the board and correctly

detecting every single novel unknown from each data set. N-SLOPE is shown to be

a useful and powerful tool to aid in nuclear forensic investigations.

iv

ACKNOWLEDGMENTS

Thanks to:

• Martin Robel of Lawrence Livermore National Laboratory, for mentoring and

supporting my research.

• Naomi Marks of Lawrence Livermore National Laboratory, for providing vali-

dation data.

• My family and friends, for their love and encouragement.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 One-class Classification . 1

1.2 Nuclear Forensics . 2

1.3 Approach . 3

1.4 Novel Algorithm . 3

1.5 Contribution Summary . 4

1.6 Overview . 4

2 Background . 5

2.1 Chemometrics . 5

2.2 Artificial Intelligence . 6

2.3 Machine Learning . 6

2.4 Supervised Learning . 6

2.5 Classification . 6

2.6 One-Class Classification . 7

2.7 Ensemble Learning . 7

2.8 k -Fold Cross-Validation . 7

2.9 Principal Component Analysis (PCA) 8

2.10 k -Nearest Neighbors (KNN) . 8

2.11 Nearest Centroid . 9

2.12 Support Vector Machine (SVM) . 9

2.13 Neural Network (NN) . 9

3 Related Research . 11

3.1 Partial Least Squares with Discriminant Analysis (PLS-DA) 11

3.2 Soft Independent Modeling of Class Analogies (SIMCA) 11

3.3 One-Class Support Vector Machine (OC-SVM) 12

vi

3.4 Local Outlier Factor (LOF) . 13

3.5 Extreme Learning Machine (ELM) 13

4 Web Application . 15

4.1 Overview . 15

4.2 Implementation . 16

4.2.1 R . 16

4.2.2 Shiny . 16

4.3 Data Features . 17

4.3.1 Imputation . 17

4.3.2 Import . 17

4.3.3 Filtering . 18

4.4 Visualization Features . 19

4.5 N-SLOPE Classification Features . 21

4.5.1 Layout . 21

4.5.2 Inputs . 21

4.5.3 Models . 24

4.5.4 Validation . 24

4.5.5 Outputs . 25

5 N-SLOPE . 26

5.1 Implementation Overview . 26

5.2 Ensemble Learning . 26

5.3 Running Example . 27

5.4 Existing Algorithms . 28

5.4.1 SIMCA . 28

5.4.2 LOF . 29

5.4.3 OC-SVM . 31

5.4.4 PLS-DA . 32

5.4.5 ELM . 34

5.5 Novel Algorithm . 35

5.5.1 Overview . 35

5.5.2 Design . 36

5.5.3 Limitations . 37

vii

5.5.4 Strengths . 37

5.5.5 Implementation . 37

5.5.6 Contribution to Ensemble . 39

5.6 Running Example Summary . 40

6 Validation . 41

6.1 Data Sets . 41

6.1.1 Iris . 41

6.1.2 Obsidian . 41

6.1.3 Galaxy Serpent 3 . 42

6.2 Runtime . 43

6.3 Results . 44

6.3.1 Iris . 45

6.3.2 Obsidian . 46

6.3.3 Galaxy Serpent 3 . 49

6.4 Summary . 54

6.5 Discussion . 56

7 Conclusion . 58

8 Future Work . 60

8.1 Cross-Validation . 60

8.2 Ensemble Learning . 60

8.3 Novel Algorithm . 61

BIBLIOGRAPHY . 63

viii

LIST OF TABLES

Table Page

5.1 Summary and characteristics of N-SLOPE algorithms 26

5.2 SIMCA results on running example 28

5.3 Ensemble contribution of SIMCA on running example 29

5.4 LOF statistical summary on running example 30

5.5 LOF results on running example 30

5.6 Ensemble contribution of LOF on running example 31

5.7 Ensemble contribution of OC-SVM on running example 32

5.8 PLS-DA results on running example 33

5.9 Ensemble contribution of PLS-DA on running example 34

5.10 Ensemble contribution of ELM on running example 35

5.11 Novel algorithm results on running example 39

5.12 Ensemble contribution of novel algorithm on running example . . . 39

5.13 Final N-SLOPE output on running example 40

6.1 N-SLOPE algorithm runtimes on each data set 43

6.2 N-SLOPE classification results on Iris test data 45

6.3 N-SLOPE predictions on Iris test data with possible classes SE (Se-
tosa), VE (Versicolor), VI (Virginica), KN (Known), and UN (UN-
KNOWN) . 46

6.4 N-SLOPE classification results on Obsidian test data 47

6.5 Raw N-SLOPE output on difficult Unknowns 1, 4, 7, 11, and 12 from
the Obsidian data set . 48

6.6 N-SLOPE predictions on Obsidian test data 49

6.7 N-SLOPE classification results on GS3 test data 50

6.8 N-SLOPE predictions on GS3 test data 1-25 52

6.9 N-SLOPE predictions on GS3 test data 26-50 53

6.10 N-SLOPE predictions on GS3 test data 51-60 54

6.11 Summary of N-SLOPE classification accuracies on each validation
data set . 55

ix

LIST OF FIGURES

Figure Page

1.1 Incorrect behavior of a traditional classifier when presented with a
novel unknown . 1

1.2 Correct behavior of a one-class classifier when presented with a novel
unknown . 2

2.1 One-Class Classification in the Artificial Intelligence hierarchy . . . 5

4.1 Import functionality with Obsidian data 18

4.2 Radar plot of Obsidian Unknown 2 vs. true class K 20

4.3 N-SLOPE overview tab using Obsidian data 22

6.1 Radar plot of Obsidian Unknown 11 vs. true class SH 47

6.2 Radar plot of Obsidian Unknown 12 vs. true class SH 47

6.3 Radar plot of Obsidian Unknown 10 vs. true class SH 48

x

Chapter 1

INTRODUCTION

Classification is a well-known problem in the field of machine learning that has been

studied extensively. Traditional classification algorithms learn from a training set of

knowns and attempt to place unknowns into one of the known classes. An interesting

problem arises when an unknown is encountered that has never been seen before and

thus does not belong to any of the known classes. This problem is addressed by

one-class classification.

Known Classes:

Traditional Classifier
Unknown

Prediction

Figure 1.1: Incorrect behavior of a traditional classifier when presented
with a novel unknown

1.1 One-class Classification

One-class classification was first described in 1996 by Moya and Hush [30]. Moya

and Hush defined generalization as the “ability to classify arbitrary patterns cor-

rectly after training is complete” and described three types of generalization: within-

class, between-class, and out-of-class generalization. Within-class generalization is

the ability to recognize patterns as belonging to a known class, whereas distinguish-

ing between known classes and recognizing when a pattern belongs to none of the

known classes describes between-class and out-of-class generalization, respectively.

1

According to Moya and Hush, “Only those classifiers that exhibit all three types

of generalization can function as one-class classifiers.” Traditional classifiers act as

discriminators exhibiting only within-class and between-class generalization, whereas

true one-class classifiers act as detectors and exhibit all three types of generaliza-

tion [30]. In simpler terms, a one-class classifier is able to determine whether an

unknown belongs to any of the known classes or the unknown belongs to a separate

class altogether.

Known Classes:

Unknown
One-Class Classifier

UNKNOWN

Prediction:

Figure 1.2: Correct behavior of a one-class classifier when presented with
a novel unknown

1.2 Nuclear Forensics

One-class classification has many applications and here is applied to the field of nu-

clear forensics, which is the “science, techniques, and analyses of nuclear materials

and their near environments for information pertinent to nuclear incident investi-

gations by law enforcement and intelligence agencies” [29]. Nuclear forensics is a

particularly challenging field for classification because data is often high-dimensional,

limited, sparse, and restricted. Furthermore, it is unlikely that any training set will

be complete, meaning novel unknowns are likely to occur, which presents a signifi-

cant problem for traditional classification. Misclassification, especially false-positive

identification, of nuclear material can have serious consequences, making accuracy a

prime concern.

2

1.3 Approach

A machine learning toolbox is developed in the R programming language [33] to aid

in nuclear forensics investigations. Several different classifiers are employed including

Partial Least Squares with Discriminant Analysis (PLS-DA), Soft Independent Mod-

eling of Class Analogies (SIMCA), One-Class Support Vector Machine (OC-SVM),

Local Outlier Factor (LOF), Extreme Learning Machine (ELM), and a novel approach

combining ideas from Principal Component Analysis (PCA), LOF, Nearest Centroid,

and SIMCA. PLS-DA and SIMCA are chosen both for performance and domain-

specific application [24]. OC-SVM, LOF, and ELM are chosen for their exceptional

performance [2, 22, 15] as one-class classifiers. The toolbox analyzes the output from

each of these classifiers and uses ensemble learning techniques to determine the final

class of a given unknown. Combining classifiers increases robustness, generalizability,

and accuracy at the potential cost of efficiency [17].

1.4 Novel Algorithm

The novel algorithm presented here and included in N-SLOPE assumes that data is

roughly spherical with no strong shape, as is often the case with high-dimensional

data. PCA is performed first to reduce dimensionality, then statistics are calculated

for each class. Drawing from concepts in LOF and Nearest Centroid, these statistics

include the mean and standard deviation of distances between each point and its

class centroid. Once summary statistics have been calculated, unknowns are plotted

in the same space and the distance to each class centroid is computed. The algorithm

acts as a soft classifier, like SIMCA, by assigning class membership to each unknown

that falls within an acceptance threshold based on distance to centroid. In this way,

unknowns may be assigned to zero, one, or more of the known classes.

3

1.5 Contribution Summary

The primary work product is a web application that utilizes machine learning for

classification. The major contributions are as follows:

• N-SLOPE toolbox for robust one-class classification;

• Research and implementation of five existing one-class classifiers;

• Design and implementation of one novel one-class classifier;

• Ensemble learning for automated prediction results;

• Model cross-validation for predicted classification accuracy.

1.6 Overview

Background information on the project domain is listed in Chapter 2. Research

associated with the machine learning algorithms described above is found in Chap-

ter 3. Chapter 4 describes the web application and overall system design. Algorithm

and ensemble learning implementation details are outlined in Chapter 5. Chapter 6

presents the methodology and results of validation on three data sets including a

nuclear forensics data set, while a summary of the thesis and suggestions for future

improvements are provided in Chapters 7 and 8, respectively.

4

Chapter 2

BACKGROUND

2.1 Chemometrics

Chemometrics combines mathematical and statistical techniques to analyze and in-

crease understanding of chemical data. Traditionally, this involves performing calcula-

tions and building models or simulations of various chemical phenomena based on em-

pirical measurements. Modern approaches incorporate machine learning techniques

such as SIMCA and PLS-DA that can accommodate the difficult high-dimensionality

and low sample size nature of the data that is so prevalent in chemical sciences [24].

Intelligence Learning

Artificial Supervised

Learning

Machine
Classification

One-Class

Classification

Figure 2.1: One-Class Classification in the Artificial Intelligence hierarchy

5

2.2 Artificial Intelligence

Artificial intelligence is a broad concept that involves machines thinking, learning, or

moving intelligently towards a goal. There are many different categories and subsets

of problems within the field that all involve machines solving problems that require

some degree of intelligence.

2.3 Machine Learning

Machine learning is a subset of artificial intelligence that involves machines gathering

knowledge and drawing conclusions about a problem without explicit programmatic

instructions. Machine learning typically involves building models to recognize latent

patterns present in large amounts of data and using these models to make predictions.

Machine learning is often able to identify trends in data that are not obvious to human

examination.

2.4 Supervised Learning

Supervised learning is a class of machine learning in which models are built and

trained on known, labeled data. Labeled training data provides a baseline of knowl-

edge for the models to work from and allows for more accurate predictions. Classifi-

cation and one-class classification are specific problems within supervised learning.

2.5 Classification

Classification involves learning to recognize distinct categories, known as classes, from

a set of labeled training data where the labels indicate class membership. When new

data is encountered, classification assigns the new data to whichever known class it

6

most resembles. In this way, classification aims to match and categorize data.

2.6 One-Class Classification

One-class classification has the same goal as classification, but with one important

difference: it aims to assign unknowns to the known class they most resemble, or to

none of the known classes if the unknown differs significantly from the known classes.

This is a more challenging problem than traditional classification, but it is also more

powerful in that novel unknowns, which do not belong to any of the known classes,

may be detected rather than incorrectly assigned to one of the known classes.

2.7 Ensemble Learning

Ensemble learning aims to better solve problems by combining multiple different

approaches to solving the same problem. For classification, this involves training

separate classifiers on the same problem and then analyzing and combining their

results to form one unified decision. Combining results improves overall accuracy

and can be done in a variety of ways [18]. Ensemble learning is a powerful tool for

improving classification performance [17] and is most effective when the classifiers

reveal unique and complementary information about the problem [1].

2.8 k-Fold Cross-Validation

Cross-validation is used to benchmark the performance of an algorithm or model by

measuring accuracy on training data alone. With k -fold cross-validation, the training

set is divided into k similarly-sized chunks known as folds. One of these folds is used

as artificial testing data (where the true class is known) and the remaining folds are

used as training data. A model is trained using the generated training set before

7

predicting the artifical testing set and then the predictions are compared against the

true classes to produce an accuracy measurement. This is repeated with each fold

being used once as the artifical testing set and the accuracy is averaged across folds.

This technique cannot be used to validate a model’s out-of-class generalization ability

as it operates soley on training data and therefore cannot contain novel unknowns to

predict.

2.9 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique for reducing the di-

mensionality of a dataset while preserving the characteristics and variability of the

data. PCA operates by transforming existing attributes into a different vector space

and extracting new attributes, known as principal components, that explain the vari-

ation in the data. PCA cannot produce more principal components than the original

dimensionality of the data or one less than the number of records in the dataset,

whichever is lower. In general, only the first several principal components are retained

for further calculation as these provide the most accurate representation of the data

with the lowest dimensionality possible [12]. Machine learning algorithms typically

struggle with high-dimensional data, which leads to over-fitting, poor computational

performance, and decreased accuracy. This makes PCA an effective solution for high-

dimensional machine learning [12].

2.10 k-Nearest Neighbors (KNN)

The k -Nearest Neighbors (KNN) algorithm is a very simple, yet surprisingly effective,

machine learning technique. KNN acts as a traditional classifier by plotting all knowns

and unknowns in the same space. For each unknown, the algorithm examines the k

known points closest to the unknown and uses a simple majority vote to assign a

8

class to the unknown. The optimal value of k depends on the data set with the goal

being to classify unknowns as the class they most resemble. KNN is a density-based

approach and as such struggles with small datasets, high dimensionality, outliers, and

noisy data.

2.11 Nearest Centroid

Nearest Centroid is a simple classifier that assigns a given unknown to the class of

the closest known centroid, which is the center or mean of a known class.

2.12 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a binary classifier that attempts to distinguish

between two known classes. This is done by mapping the training data to a sample

space and attempting to create a hyperplane boundary of maximal margin between

the two known classes. Unknowns are then mapped to this same space and classified

based on which side of the boundary they appear. Traditionally, SVM creates a linear

boundary which does not perform well on non-linearly separable data. To combat

this, SVM can utilize a kernel function that translates the original sample space into a

higher dimensional feature space [4]. SVM then attempts to create a linear boundary

in this new feature space which appears as a nonlinear boundary in the original sample

space.

2.13 Neural Network (NN)

A Neural Network (NN) is a complex system of interconnected nodes that is modeled

after synaptic communications between neurons in the human brain. The network is

organized into layers of nodes: one input layer, one output layer, and some number of

9

hidden layers between the input and output layers. Each layer is composed of some

number of nodes running activation functions and each node has weighted connections

to nodes in other layers. For classification purposes, the input layer usually consists

of one node for each attribute and the output layer usually consists of one node

for each possible classification. The network is trained by passing individual data

points to the input layer, allowing values to propogate through the network, observing

results in the output layer, and modifying connection weights and activation function

hyperparameters to improve overall classification accuracy. There are many varieties

of NN that incorporate different learning styles and network characteristics which

allow them to model arbitrarily complex relationships between attributes. NN are

often viewed as “black-boxes” due to the complex, dynamic, internal structure that

makes it difficult to trace and verify results.

10

Chapter 3

RELATED RESEARCH

3.1 Partial Least Squares with Discriminant Analysis (PLS-DA)

Partial Least Squares with Discriminant Analysis (PLS-DA) is a specific case of Par-

tial Least Squares (PLS) where the response variable is categorical. Madden and How-

ley described PLS as “a two-step multivariate regression method, which first reduces

the data using PCA (using concentration information to extract the PC [Principal

Component] scores) and then performs linear regression on the PC [Principal Compo-

nent] scores” [24]. PLS-DA differs by additionally creating class boundaries associated

with a confidence threshold after performing the linear regression. PLS-DA is com-

monly used for chemometric analysis [24, 44] because it excels with high-dimensional,

low record count data, particularly when there exist linear relationships between at-

tributes. SVM and NN have been shown to outperform PLS-DA, particularly on

data sets with many records and nonlinear relationships between attributes [44, 43].

Despite this, PLS-DA is a proven chemometric standard and requires minimal tuning

compared to its opponents, which justifies its inclusion in this application.

3.2 Soft Independent Modeling of Class Analogies (SIMCA)

Soft Independent Modeling of Class Analogies (SIMCA) is a statistical technique for

multivariate classification. SIMCA operates by first performing PCA on each class in

the training set independently, then constructing confidence threshold boundaries for

each class based on the residual of standard deviation and distance, and then finally

mapping unknowns into the component space for classification. SIMCA operates

as a “soft” classifier in that it can map unknowns to zero, one, or more distinct

11

classes [7]. Because of this, SIMCA is often outperformed by PLS-DA classification

[7] which itself can be outperformed by more traditional machine learning techniques

[44, 43]. However, SIMCA excels with small, high-dimensional data sets [37] and acts

as a particularly strong within-class classifier by allowing unknowns to be assigned to

multiple known classes [7, 37]. SIMCA is included in this application for its unique

within-class classification abilities, aptitude for dealing with the difficult data domain

present in chemometrics, and because it is one of the most common techniques used

for chemical spectral data analysis [37].

3.3 One-Class Support Vector Machine (OC-SVM)

One-Class Support Vector Machine (OC-SVM), also known as Support Vector Data

Description or Support Vector Domain Description, is a natural modification of the

traditional SVM. Instead of creating a decision boundary between known classes as

in traditional SVM, OC-SVM creates either a closed hypersphere of minimal volume

around the entire training set [39] or a hyperplane between the origin and training

set [35]. Unknowns are mapped to this space and considered novel if they fall out-

side the decision boundary. OC-SVM is flexible with many optimizations, such as

training with novel unknowns (if examples exist) that must fall outside of the deci-

sion boundary, kernel functions to alter the behavior, shape, and dimensionality of

the decision boundary to better describe different data characteristics, and ignoring

outliers in the training set when building the model [39]. Like most machine learning

techniques, OC-SVM struggles with outliers and smaller, high-dimensional data sets,

although optimizations can be made to improve results under these conditions [2, 39].

Overall, OC-SVM has been shown to have excellent performance [2, 15, 39, 38, 26]

and is often seen as the default one-class classifier in a category of its own [17]. These

qualifications make OC-SVM an exceptional candidate for this application.

12

3.4 Local Outlier Factor (LOF)

Local Outlier Factor (LOF) is an algorithmic technique for quantifying how strongly a

given unknown resembles an outlier. LOF resembles KNN initially, but differs in that

the distance between an unknown and each of its k -nearest neighbors is compared

to the average distance between each neighbor’s k -nearest neighbors and this ratio

is averaged to produce an outlier factor for each unknown [6]. Unlike other outlier

detection methods which attempt to determine whether or not an unknown is an

outlier in a binary fashion, LOF assigns a floating-point value, starting at one, to each

unknown with higher values indicating a greater degree of outlying characteristics [6].

This non-binary approach can be useful for determining the difference between a weak,

possible outlier and a strong, definite outlier, although a final classification is not

performed. Because LOF is density-based, it struggles with small, high-dimensional,

loosely-clustered data sets [15], but its local-density approach excels with between-

class generalization and is able to identify outliers often missed by other approaches

[6]. Interestingly, LOF has also been shown to perform well compared to OC-SVM

[2] and in some cases a relationship may exists where LOF performs well on data sets

where OC-SVM struggles and vice versa [15]. LOF is included in this application

for its between-class generalization and complementary potential with OC-SVM, but

challenges from the difficult data domain are expected.

3.5 Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) as applied to one-class classification is a very

simple feed-forward NN without back-propagation that contains one hidden layer

and a single node in the output layer [22]. ELM attempts to minimize both error

and the norm of output weights during training to optimize performance [22]. ELM

13

requires minimal tuning, outperforms the former NN-based one-class classifier known

as autoencoder [25] in both computational speed and classification accuracy, and has

been shown to outperform OC-SVM in some cases [22]. The ability of ELM to utilize

nonlinear kernels also gives it a distinct advantage over linear approaches like PLS-

DA and SIMCA when working with nonlinear data [43]. ELM is included in this

application as a complementary NN approach in the ensemble and because of its high

speed and performance potential. However, the minimal tuning, simplicity of the

network, and black-box nature of NN in general suggest caution and verification of

results.

14

Chapter 4

WEB APPLICATION

4.1 Overview

The primary work product of this thesis is a web application for comprehensive data

analysis of nuclear forensics data. The application is written in the R programming

language [33] and runs using the shiny framework [8]. The application is divided

into three feature groups with functionality centered around data manipulation, vi-

sualization, and classification, respecitvely. Features of interest are detailed below.

N-SLOPE is the core classification tool and is described here only as it relates to

the application. This application has been developed for, and remains the property

of, Lawrence Livermore National Laboratory and the United States Department of

Energy.

This application is designed to aid investigations by combining commonly used vi-

sualization and machine learning tools into a single, web-based, interactive product.

Additional data manipulation features and advanced classifiers provide automated

results, which reduce the amount of time spent manually examining and processing

data. Furthermore, this application allows users with minimal domain-specific knowl-

edge to aid in nuclear forensics investigations by presenting output and results in an

understandable form.

15

4.2 Implementation

4.2.1 R

R [33] is a programming language designed for statistical computing and graphical

output with a large number of packages centered around data analytics. It was

chosen for this project due to public package support and maintainability in the form

of conciseness and familiarity. Existing tools for nuclear forensics may be proprietary,

which makes modification and modernization difficult and expensive. Using public

packages in R provides flexibility and allows the application to be modified easily

and updated with new analytics as needed. Additionally, R is a high-level language

that is quick to learn and consists of short, powerful syntax which produces a smaller

codebase.

4.2.2 Shiny

Shiny [8] is an R package and framework that allows developers to write solely in R

with Shiny automatically generating the HTML, CSS, and JS necessary to make an

interactive web app. Shiny apps are divided into two main sections: the front-end

UI and the back-end server. The UI is where developers specify which input widgets

and output graphs, tables, and text appear and how the interface should be orga-

nized. Shiny provides a large number of standard input and output widgets, which

makes front-end development quick. The server is where the main computations oc-

cur and where developers specify what to display in the various UI output widgets.

Shiny connects UI widgets with server output using reactivity, which essentially links

items through dependencies such that changing a value will automatically signal any-

thing that depends on that value to react and recompute. By default, reactions are

lazy meaning that dependents are not recomputed immediately when a dependency

16

changes, but instead when the dependent becomes visible to the user. Lazy loading

makes the app feel a bit more responsive at the cost of delays when requesting more

computationally-intensive content.

4.3 Data Features

4.3.1 Imputation

It is common for chemometric data to contain missing values for certain attributes

due to the fact that most of these values are the result of various chemical tests or

experiments and it is not always possible to perform the same tests on every sample.

This makes chemometric data particularly difficult to work with because it is not

unusual to be missing 10-30 percent or more of the possible data values. Despite

the missing values, samples cannot be discarded due to the typically small size of

these data sets. Instead, this problem is addressed with imputation, which performs

statistical analysis on the row(s) and column(s) containing the missing value(s) and

attempts to calculate a plausible substitute value(s) that will not alter the character-

istics of the data set. This application uses the mice package [41] to automatically

impute missing values as needed for the machine learning tools.

4.3.2 Import

Data must be imported and must consist of a labeled training set and a testing

set with matching column headers. The first and second column must be a unique

positive integer identifying the sample and a positive integer or string labeling the

class, respectively. Data can be imported as Comma Separated Value (CSV) files or

directly from MySQL databases using the RMySQL package [32]. If the training data

contains any missing values, imputation is performed and statistically uninteresting

17

data is inserted. Once data has been imported, it can be viewed directly in the app.

Figure 4.1: Import functionality with Obsidian data

4.3.3 Filtering

Training data with many classes or highly overlapping classes can be difficult to

classify accurately, particularly for algorithms like PLS-DA. Pruning classes from

the training set allows the algorithm to re-identify latent variables, recompute class

boundaries, and in some cases separate previously overlapping classes which boosts

classification accuracy. The application contains a tool for selecting classes from the

training set to filter out for visualization and machine learning purposes. Filtering

is not performed automatically because algorithms like OC-SVM that require larger

data sets may perform poorly. Instead, filtering is a manual option available to the

user to aid in investigations.

18

4.4 Visualization Features

The application includes several visualization tools that display training and testing

data in interesting ways. Foremost among these tools is the radar plot, also known

as a spider plot. A radar plot is a two-dimensional graph that displays multiple

attributes at once. In this case, each class is averaged and displayed on the plot along

with a single unknown from the test set. Each class average can be toggled on or

off to facilitate viewing and a single unknown can be selected at a time to compare

against the class averages. This plot provides quick feedback on how similar a given

unknown appears compared to the known classes, with an emphasis being placed on

the overall shape or relative values of attributes rather than particular numbers. The

radar plot is good for initial estimates and continued investigation as it can be used

to predict class membership, identify obvious outliers, and verify or dispute machine

learning predictions. This application uses the fmsb package [31] to generate the

radar plot.

19

Figure 4.2: Radar plot of Obsidian Unknown 2 vs. true class K

20

4.5 N-SLOPE Classification Features

This section describes the external layout of N-SLOPE and the internal handling

of models, validation, and outputs without going into specific implementation or

algorithmic details. The internal workings of N-SLOPE are explained in greater

detail in Chapter 5.

4.5.1 Layout

The UI conforms to the rest of the application and is divided into seven separate

tabs including one overview tab and one tab for each algorithm in N-SLOPE. The

overview tab provides input controls (described in the following subsection) to modify

general algorithm behavior and displays the final results of running N-SLOPE. Each

algorithm tab runs the respective algorithm and displays meaningful characteristics

and classification results. Any action that involves non-trivial computation is tracked

with progress bars.

4.5.2 Inputs

N-SLOPE contains several input controls including principal component retention

methods, confidence interval classification range, 10-fold cross validation repititions,

and selectors for which algorithms to include in the final results. Each input can be

summarized as follows.

Principal Components

The number of principal components to retain for the novel, LOF, and PLS-DA al-

gorithms can be determined using eigenvalue analysis or explained variance. The

eigenvalue analysis method keeps components with eigenvalues greater than one and

21

Figure 4.3: N-SLOPE overview tab using Obsidian data

discards remaining components that explain only a small amount of variance in the

data set. The explained variance method keeps as many components as necessary to

22

reach a cumulative explained variance threshold set by the user with higher thresh-

olds usually retaining more components than the eigenvalue analysis method. Both

methods use the FactoMineR package [21] to determine how many components to

retain.

Confidence Interval

The novel algorithm and LOF use confidence intervals to produce final classification

results. Computed values are compared against statistics from the training set and

final classifications are made using a number of standard deviations from training set

means. The user is able to select how many standard deviations to include with lower

numbers being more sensitive to outlier detection.

Training Repetitions

Every algorithm in N-SLOPE is validated on the training set using 10-fold cross-

validation repeated a settable number of times with training accuracy listed on each

algorithm’s tab. Reported training accuracy reflects only the algorithm’s ability to

correctly classify the training set with classification error existing as misclassifications

within the known set or incorrect outlier detection. In this way, a training accuracy

of 100% may indicate some degree of overfitting, as no points in the training set were

considered outliers.

Algorithms

The user is able to manually select which N-SLOPE algorithms to include in the

final result calculations, but the selected algorithms must be run before they can be

included.

All of these controls allow the user to modify the behavior of N-SLOPE for im-

23

proved performance on specific data sets based on external factors or intrinsic knowl-

edge of the data. For example, the user may choose to retain fewer principal compo-

nents to get results more quickly or opt to repeat cross validation multiple times in

an attempt to improve results at the cost of training time. With some prior knowl-

edge of the data, the user may select more standard deviations to cope with noisy

data or if true outliers are unlikely to occur, or the user may choose to exclude linear

algorithms like PLS-DA if the data is expected to be nonlinear.

4.5.3 Models

Each N-SLOPE algorithm consists of one or more models which are used to pro-

duce output for display in the application. Internally, each model is stored as a

reactiveValue that updates when a user requests output that depends on the un-

derlying model (e.g. clicking one of the algorithm tabs). Each algorithm is tracked

by its own model except for LOF, which requires a KNN model, LOF model, and

summary model, and OC-SVM, which requires a parameter model in addition to its

base model. The overall design of N-SLOPE and its integration with shiny mimic

the classic Model-View-Controller (MVC) design pattern where interactions with the

controller (inputs on overview tab) alter the model (underlying algorithm models)

that the view (output on algorithm tabs) observes to update appropriately. This

modular design makes it easy to add additional views to display more information or

model characteristics without major changes to the algorithms or their models.

4.5.4 Validation

Every algorithm in N-SLOPE is validated on the training set using 10-fold cross-

validation. SIMCA, PLS-DA, ELM, and the novel algorithm undergo manual cross-

validation purely to calculate a training accuracy that represents the percentage of

24

correct classifications performed on the training set. Except for ELM, these algo-

rithms rely solely on hyperparameters and do not need to train additional parameters

as part of a learning process. ELM modifies weights between nodes in the network

as it trains, but this process is entirely automated with no external tuning necessary.

Manual cross-validation is run all at once and independently of the algorithms them-

selves, meaning that changing N-SLOPE inputs will automatically re-validate these

four algorithms, but each algorithm will still have to be run to update the underlying

model(s). Manual cross-validation is performed on all four algorithms at once rather

than idependently for simplicity and to reduce code reuse.

LOF and OC-SVM perform indepentent cross-validation because both algorithms

train parameters as part of the learning process. LOF trains a KNN model to deter-

mine an optimal k neighbors to consider when calculated local density and OC-SVM

trains gamma and nu, which represent the bias/variance tradeoff and minimal per-

centage of support vectors to include in the model, respectively. These two algorithms

are validated and run sequentially due to their specialized training procedures, unlike

the other four algorithms in N-SLOPE.

4.5.5 Outputs

N-SLOPE outputs are designed similarly to models with all outputs being tracked by

reactiveValues that update when an algorithm is validated or run. These values

separately track both the classification results (including probabilities if applicable)

and the training accuracy of each algorithm. Outputs are combined using the sum

rule [18] which involves summing each algorithm’s prediction output and choosing

the maximal combined sum to produce unified classification results for the entire

N-SLOPE ensemble.

25

Chapter 5

N-SLOPE

5.1 Implementation Overview

Each algorithm in N-SLOPE has specific strengths and weaknesses. Combining these

algorithms with ensemble learning attempts to minimize their weaknesses and gener-

ate more stable, accurate results across data sets. Some properties of each algorithm

are displayed in Table 5.1. Implementation details of each algorithm are given be-

low and a running example from the standard Iris data set [3, 9] is used to detail

functionality.

Table 5.1: Summary and characteristics of N-SLOPE algorithms

Algorithm Package Linearity Overfitting High Dimension Small Data Runtime

Novel Linear X Fast

SIMCA rrcovHD [40] Linear X X Fast

LOF Rlof [13] Linear X Slow

OC-SVM e1071 [28] Nonlinear X X Slow

PLS-DA caret [20] Linear X X Medium

ELM elmNN [11] Nonlinear X X Medium

5.2 Ensemble Learning

N-SLOPE consists of several different algorithms whose results must be combined to

generate a singular, cohesive output. This is done using the sum rule because it has

26

been shown to outperform other ensemble learning techniques [18]. The basic principle

is that each algorithm makes predictions which are summed, and the prediction with

the greatest value is selected as the ensemble’s decision. This requires that each

algorithm in the ensemble produce output that can be summed in a meaningful way.

N-SLOPEpred =
∑

Alg∈N-SLOPE
Algcont

Algcont = Algacc × Algpred

(5.1)

N-SLOPE implements the sum rule as follows. First, each algorithm in N-SLOPE

undergoes 10-fold cross-validation to calculate a training accuracy, which represents

the percentage of correct classifications made on the training set. Each algorithm is

then run on the testing set and predictions are made. Each algorithm produces slightly

different output that must be coerced to a common state before being combined. This

process is unique to each algorithm and described in detail in the following sections.

Once the predictions have been standardized, they are multiplied by each algorithm’s

respective training accuracy before being summed. Equation 5.1 shows the general

form of these calculations. The final results are tabulated and displayed on the N-

SLOPE overview tab and the greatest decision sum of each unknown is selected as

the final N-SLOPE prediction.

5.3 Running Example

The standard Iris data set [3, 9] is used as a simple example to illustrate how each

algorithm’s output is structured and how outputs are combined to produce a final

classification result. The Iris data set [3, 9] contains 150 rows and five columns.

One column tracks the species (class) of Iris flower and the other columns contain

floating point measurements of the flowers. There are three possible classes (Setosa,

Versicolor, and Virginica) and 50 records per class. Setosa is linearly separable from

27

the other two classes, so a highly overlapping Virginica sample (Sample 139) has been

chosen as an example. This sample will be treated as testing data with the remaining

samples treated as training data for the purpose of this example.

5.4 Existing Algorithms

5.4.1 SIMCA

SIMCA operates by independently performing PCA on each class in the training set

and then projecting the knowns and unknowns to the same space and comparing

against a threshold to determine class membership. SIMCA in N-SLOPE is pro-

vided by the rrcovHD package [40] which implements a robust SIMCA approach,

or RSIMCA, and returns Orthogonal Distance Scores (ODSC) and Score Distance

Scores (SDSC) for each unknown. ODSC represent the Euclidean distance between a

point and the center of each PCA subspace, whereas SDSC represent the Mahalanobis

distance, which is the distance along each principal component between a point and

the PCA subspace [5]. These scores are used to compute the classification rules R1

and R2 proposed by Branden and Hubert [5]. The minimum of the two values is kept

for each class with membership being associated with any value less than one. In this

way, RSIMCA can assign an unknown to zero, one, or more classes with lower values

indicating a stronger association. An unknown with computed R1 and R2 greater

than one is not assigned to any known class and thus labeled an outlier.

Table 5.2: SIMCA results on running example

Setosa Versicolor Virginica Predicted Class

2.77 0.33 0.13 Virginica

Using the running example, RSIMCA produces the output shown in Table 5.2.

28

This indicates the unknown belongs to both the Versicolor and Virginica classes, but

not the Setosa class. Since the computed classification value is lower for Virginica,

the unknown is assigned to that class. RSIMCA’s contribution to the ensemble is

computed as

SIMCAcont = SIMCAacc × (1− SIMCApred) (5.2)

where SIMCAacc is the training accuracy and SIMCApred is the computed classification

values less than one. Continuing with the running example where RSIMCA has a

training accuracy of 94.89%, the contribution is calculated as follows.

SIMCAcont = 0.9489×
(

1−
[
1 0.33 0.13 1

])
= 0.9489×

[
0 0.67 0.87 0

]
=

[
0 0.6358 0.8255 0

] (5.3)

The ensemble contains the results from SIMCA shown in Table 5.3 that correctly

predict the unknown belongs to Virginica, although there is some confusion with

possible Versicolor class membership.

Table 5.3: Ensemble contribution of SIMCA on running example

Setosa Versicolor Virginica UNKNOWN

0 0.6358 0.8255 0

5.4.2 LOF

LOF operates by comparing the local density of each unknown to the local density

of neighboring classes with values of approximately one indicating membership. The

LOF implementation in N-SLOPE is provided by the Rlof package [13] and requires

a number of neigbors to examine when computing densities. This number is deter-

mined by training a KNN classification model courtesy of the caret package [20]

29

and using the same optimal k (determined to be k = 11 for the running example).

Since LOF produces a score rather than a fixed classification, statistics including the

mean and standard deviation are calculated for each sample in the training set by

class. Table 5.4 shows these values for the running example.

Table 5.4: LOF statistical summary on running example

Class Mean Standard Deviation

Setosa 1.15 0.34

Versicolor 1.08 0.16

Virginica 1.23 0.5

Each unknown’s LOF is compared against the LOF statistics of its nearest neigh-

boring class and class membership is determined by whether or not the LOF falls

within a user-settable threshold of standard deviations from that class’s mean. Out-

put from LOF on the running example is shown in Table 5.5 and the unknown is

incorrectly classified as Versicolor.

Table 5.5: LOF results on running example

LOF Nearest Neighbors Predicted Class

0.98 Versicolor Versicolor

Since LOF does not produce any associated class membership probabilities, the

final contribution to the ensemble is simply the LOF training accuracy added to the

predicted class for each unknown. LOF contribution for the running example, where

30

the training accuracy is 92.73%, is calculated in Equation 5.4 and shown in Table 5.6.

LOFcont = LOFacc × LOFpred

= 0.9273×
[
0 1 0 0

]
=

[
0 0.9273 0 0

] (5.4)

Table 5.6: Ensemble contribution of LOF on running example

Setosa Versicolor Virginica UNKNOWN

0 0.9273 0 0

5.4.3 OC-SVM

OC-SVM operates by creating a hypersphere decision boundary around the training

data and assigning class membership to unknowns based on whether or not they fall

within this boundary. OC-SVM in N-SLOPE is provided by the e1071 package [28]

and has two tunable parameters: gamma and nu. Gamma controls the bias/variance

tradeoff with small gamma leading to high variance and overfitting and large gamma

leading to high bias and underfitting. Nu controls the minimal percentage of support

vectors used when building the model, as well as the maximal percentage of training

data allowed to be misclassified. Gamma and nu are tuned during training and

vary between data sets. This OC-SVM implementation supports linear, polynomial,

radial basis, and sigmoid kernel functions. Since OC-SVM is included in N-SLOPE

to add support for complex, nonlinear relationships, radial basis or sigmoid are both

attractive options. Since N-SLOPE includes two nonlinear solutions, OC-SVM uses

31

the radial basis kernel function and ELM, the other nonlinear solution, uses sigmoid.

OC-SVMcont = OC-SVMacc ×OC-SVMpred

= 0.9566×
[
0 0 1 0

]
=

[
0 0 0.9566 0

] (5.5)

Table 5.7: Ensemble contribution of OC-SVM on running example

Setosa Versicolor Virginica UNKNOWN

0 0 0.9566 0

OC-SVM only produces a true/false value for each unknown indicating whether

or not the unknown belongs to any of the known classes. A traditional SVM is

created using the same gamma and nu values to complete classification for unknowns

that belong to one of the known classes. The final output of OC-SVM is simply a

classification: one of the known classes if it is predicted to belong, otherwise it is

marked as an outlier. OC-SVM output is factored into the ensemble by adding the

OC-SVM training accuracy to the associated class for each unknown. OC-SVM has a

training accuracy of 95.66% on the running example and correctly predicted that the

unknown belongs to Virginica. The final contribution to the ensemble is calculated

in Equation 5.5 and shown in Table 5.7.

5.4.4 PLS-DA

PLS-DA operates by performing PCA on the entire training set to reduce dimension-

ality and then running linear regression and creating class decision boundaries based

on confidence intervals. PLS-DA in N-SLOPE is provided by the caret package

[20] and supports two different classification decision algorithms: Softmax and Bayes.

Since PLS-DA does not act as a true one-class classifier and always attempts to place

32

unknowns into one of the known classes, two models are trained with the same num-

ber of principal components using different decision algorithms. The final output for

each unknown is a probability of belonging to each of the possible known classes and

a classification as either one of the known classes (if both models agree) or the un-

known is marked as an outlier if they do not agree. In this way, this implementation

of PLS-DA marks unknowns as outliers more aggressively than other algorithms in

N-SLOPE because true outliers and confusion between known classes are treated the

same. This flaw is factored into the PLS-DA contribution to the ensemble by includ-

ing class probabilities whether or not the unknown is marked as an outlier. Table 5.8

shows output from the running example that highlights this behaviour.

Table 5.8: PLS-DA results on running example

Setosa Versicolor Virginica Predicted Class

0.26 0.34 0.4 UNKNOWN

The final contribution to the ensemble from PLS-DA is calculated by mulitplying

the training accuracy with each unknown’s assocaited class probability. If PLS-DA

predicts the unknown is an outlier, then the full training accuracy is applied, but the

remaining probabilities are still included. PLS-DA has a training accuracy of 76.64%

on the running example, which creates the final contribution calculated in Equation

5.6 and shown in Table 5.9.

PLS-DAcont = PLS-DAacc × PLS-DApred

= 0.7664×
[
0.26 0.34 0.4 1

]
=

[
0.1993 0.2606 0.3066 0.7664

] (5.6)

PLS-DA incorrectly predicts the unknown is an outlier, likely due to confusion

between Versicolor and Virginica since the two classes are non-linearly separable.

33

However, PLS-DA does contribute its second strongest prediction to the correct class:

Virginica.

Table 5.9: Ensemble contribution of PLS-DA on running example

Setosa Versicolor Virginica UNKNOWN

0.1993 0.2606 0.3066 0.7664

5.4.5 ELM

ELM operates by building a NN with one input node for each dimension, a single

hidden layer, and a single output node that predicts whether or not an unknown

belongs to any of the known classes. ELM in N-SLOPE is provided by the elmNN

package [11] and starts with randomly initialized weights between nodes that are

updated during a single training phase. This implementation of ELM allows for

several different kernel functions and setting the number of nodes in the hidden layer.

The sigmoid function is chosen to provide a nonlinear approach and to complement

the radial basis kernel function used by OC-SVM. Selecting an optimal number of

hidden layer nodes for generalized performance is a difficult problem, but there is

some suggestion that single-layer, feed-forward networks like ELM are more reliant

on updating connection weights than the number of nodes for general performance

[14]. Through trial and error, the hidden layer has been chosen to contain 5000 nodes.

ELMcont = ELMacc × ELMpred

= 1×
[

1

3

1

3

1

3
0

]
=

[
1

3

1

3

1

3
0

] (5.7)

Since ELM output only indicates whether or not an unknown is an outlier, its

contribution to the ensemble is fairly straightforward. If the unknown is determined

34

Table 5.10: Ensemble contribution of ELM on running example

Setosa Versicolor Virginica UNKNOWN

0.33 0.33 0.33 0

to belong to one of the known classes, the ELM training accuracy is evenly divided

among all known classes. If the unknown is determined to be an outlier, the entire

training accuracy supports this classification. ELM has a training accuracy of 100%

on the running example, predicting that every known belongs to one of the known

classes. ELM correctly determined that the unknown belongs to one of the known

classes and its contribution for the running example is calculated in Equation 5.7

and shown in Table 5.10. ELM operates as more of a “black box” than the other

algorithms in N-SLOPE and there is some concern around overfitting, but it does

identify certain outliers when working with larger, more complex data sets.

5.5 Novel Algorithm

5.5.1 Overview

The novel algorithm included in N-SLOPE is inspired by PCA, LOF, Nearest Cen-

troid, and SIMCA. PCA is performed for dimensionality reduction and summary

statistics are computed for each class, similar to the decision method used by the

LOF implementation in N-SLOPE. Ideas from Nearest Centroid and SIMCA are in-

corporated through scaling the final decision scores into a soft classifier based on

distances between unknowns and class centroids. A complete description of the novel

algorithm’s operation and contribution to the ensemble is provided in the following

subsections.

35

5.5.2 Design

Algorithm 1: N-SLOPE Novel Algorithm

Input : trainingData, testingData

Output: Calculated values for each testing sample and known class that

provide one-class classification with class assignment on values (0,1)

1 pcaData ← PCA(trainingData, testingData)

2 train ← pcaData[trainingData]

3 test ← pcaData[testingData]

4 foreach class in train do

5 classCenter[class] ← Mean(train[class])

6 end

7 foreach sample in train do

8 distToCenter[sample] ← Euclidean Distance(sample,

classCenter[sample.class])

9 end

10 foreach class in train do

11 avgDist[class] ← Mean(distToCenter[sample.class == class])

12 stdDevDist[class] ← Std Dev(distToCenter[sample.class == class])

13 threshold[class] ← avgDist[class] ± stdDevDist[class]

14 foreach unknown in test do

15 unknownDist[unknown, class] ← Euclidean Distance(unknown,

classCenter[class])

16 pred[unknown, class] ← (unknownDist[unknown,class]−threshold[class].lower)
(threshold[class].upper−threshold[class].lower)

17 end

18 end

19 return pred

36

5.5.3 Limitations

This novel algorithm is somewhat näıve and assumes data is roughly spherical, caus-

ing it to perform poorly on strongly shaped data. Shaped data is less likely to exist

in the high-dimensional data common to this domain, but even moderate shaping

will negatively impact this algorithm’s classification accuracy. Another limitation of

this algorithm is that it is distance-based and will thus struggle with sparse data.

Furthermore, since the algorithm uses summary statistics to make classification de-

cisions, small data sets may also pose a problem. These last two considerations are

common problems for most machine learning techniques and are one of the interesting

challenges posed by the chemometric domain.

5.5.4 Strengths

This novel algorithm runs significantly faster than the other N-SLOPE algorithms,

particularly on larger, high-dimensional data sets. It is also able to clearly detect

outliers in the case where data is roughly doughnut-shaped with knowns in a spherical

shape surrounding an empty or hollow core. This is a specialized and uncommon case,

but not unheard of for high-dimensional, sparse data sets.

5.5.5 Implementation

The novel algorithm implementation is described here with parenthetical references to

line numbers shown above in Algorithm 1. The novel algorithm begins by combining

the training and testing data into a single data frame, performing PCA on the data

courtesy of the FactoMineR package [21], and retaining the number of components

selected through eigenvalue analysis or explained variance as specified by the user

(Line 1). The data is then split back into the original training (Line 2) and testing

37

(Line 3) sets.

The center point of each known class is calculated (Line 5) by averaging every

column in each class. Next, the Euclidian distance between each known and its

respective class center is calculated (Line 8). These distances are used to calculate

an average distance-to-center (Line 11) as well as a standard deviation of distance-

to-center measurements (Line 12) for each class, similar to how LOF computes class

summary statistics. These values are used to generate loose class boundaries in the

form of confidence intervals by calculating upper and lower acceptance thresholds

(Line 13) as

Thresholdlower = Distavg − (CI×Distsd)

Thresholdupper = Distavg + (CI×Distsd)

(5.8)

for each class where CI is the user-settable number of standard deviations to include

for N-SLOPE decision boundaries. The algorithm then computes the distance be-

tween each unknown and the center of each known class (Line 15) and compares this

distance with the computed acceptance thresholds of each class. This comparison

is normalized into the range (0, 1) for each unknown and class by calculating the

following (Line 16).

(DisttoCenter − Thresholdlower)

(Thresholdupper − Thresholdlower)
(5.9)

Class membership is assigned to any computed values between zero and one.

Negative computed values indicate the unknown is uncharacteristically close to the

mathematical center of the class, while values greater than one indicate the unknown

lies uncharacteristically far from the mathematical center of the class. Since this

algorithm acts as a soft classifier like SIMCA, it is possible to assign a single unknown

to multiple classes. Unlike SIMCA, the computed value does not necessarily indicate

a strength of belonging, meaning that any value between zero and one is equally

indicative of class membership. The novel algorithm’s contribution to the ensemble

38

reflects this fact. If a single decision is required, the algorithm will draw on ideas

from Nearest Centroid and select the minimal computed value between zero and one

as the final class prediction because this indicates the unknown is statistically closest

to that class centroid.

5.5.6 Contribution to Ensemble

Once the novel algorithm has made class predictions for each unknown, contributing

its results to the ensemble is fairly straightforward. The novel algorithm’s training

accuracy is added to each class where membership is predicted, or to the outlier class

if the unknown is predicted to not belong to any of the known classes.

Table 5.11: Novel algorithm results on running example

Setosa Versicolor Virginica

1.03 0.26 0.27

Table 5.11 shows the novel algorithm’s output on the running example, where

the training accuracy is 84.82% and the unknown is classified as both Versicolor and

Virginica. The final contribution to the ensemble is calculated in Equation 5.10 and

shown in Table 5.12.

Novelcont = Novelacc × Novelpred

= 0.8482×
[
0 1 1 0

]
=

[
0 0.8482 0.8482 0

] (5.10)

Table 5.12: Ensemble contribution of novel algorithm on running example

Setosa Versicolor Virginica UNKNOWN

0 0.8482 0.8482 0

39

5.6 Running Example Summary

The output of each algorithm in N-SLOPE is combined using the sum rule [18] to

produce a single classification for each unknown. A running example has been used to

highlight the output and ensemble contributions of each unknown. Tables 5.3, 5.6, 5.7,

5.9, 5.10, and 5.12 display the contributions of each algorithm on the running example.

These values are summed as shown in Equation 5.11 to produce the final classification

results shown in Table 5.13 that correctly assign the unknown to Virginica.

N-SLOPEpred =
∑

Alg∈N-SLOPE
Algcont

=

[
0 0.8482 0.8482 0

]
+

[
0 0.6358 0.8255 0

]
+[

0 0.9273 0 0

]
+

[
0 0 0.9566 0

]
+[

0.1993 0.2606 0.3066 0.7664

]
+

[
0.33 0.33 0.33 0

]
=

[
0.5293 3.0019 3.2669 0.7664

]
(5.11)

N-SLOPE correctly classified the unknown despite SIMCA and the novel algo-

rithm assigning it to both Versicolor and Virginica, and LOF and PLS-DA misclassi-

fying it entirely as Versicolor and an outlier, respectively. This running example serves

to illustrate how N-SLOPE operates and highlight the potential power of ensemble

learning.

Table 5.13: Final N-SLOPE output on running example

Setosa Versicolor Virginica UNKNOWN Predicted Class

0.5293 3.0019 3.2669 0.7664 Virginica

40

Chapter 6

VALIDATION

6.1 Data Sets

6.1.1 Iris

The standard Iris data set [3, 9] contains 150 rows and four columns of floating point

measurements of Iris flowers. There are three possible classes (Setosa, Versicolor, and

Virginica) representing three different species of Iris and 50 records per class. Setosa

is linearly separable from the other two classes, which are overlapping.

For validation purposes, this data set was divided into a training and testing set.

The testing set contains 13 samples: four Setosa, four Versicolor, and five Virginica.

The training set contains the remaining 137 samples. This simple, standard data set

is included as a basic benchmark for N-SLOPE and to conclude the running example

from the previous section that dealt with this same data set.

6.1.2 Obsidian

This data set is a subset of data first collected and analyzed as archaeological ar-

tifacts [19, 36] then compiled and labeled by Eigenvector Research, Inc [42]. The

data describes 10 chemical concentrations of various elemental impurities present in

Obsidian, which is a dark-colored, volcanic glass. The training set contains 63 sam-

ples belonging to one of four classes (AN, BL, K, SH) that represent the location

where the Obsidian fragment was collected. Each class is linearly separable from the

others. The testing set contains 12 unknowns whose true identities are unfortunately

not known. However, analysis has been performed on these samples and predicted

41

classes recorded for each. These predicted classes will be treated as true classes for

the purpose of validating N-SLOPE.

This data set is a good analog for nuclear forensics because Obsidian naturally

absorbs impurities from the environment in which it forms and these impurities can be

used to trace Obsidian to its formation site. Furthermore, this small, high-dimensional

data set (63 rows by 10 columns with one class containing just nine total samples)

presents an interesting machine learning challenge appropriate for this difficult data

domain.

6.1.3 Galaxy Serpent 3

Galaxy Serpent 3 (GS3) is a tabletop exercise run by the Nuclear Forensics Interna-

tional Technical Working Group (ITWG) to support the development of a National

Nuclear Forensics Library (NNFL), which aims to facilitate nuclear forensic investiga-

tions. GS3 uses simulated data that attempts to mimic the properties or characteris-

tics of real uranium ore concentrate. Simulated data is used due to the sensitive and

proprietary nature of such information. This data set comes courtesy of Naomi Marks

from Lawrence Livermore National Laboratory and accurately simulates chemometric

data used in nuclear forensic investigations.

The GS3 data set contains both a training set of labeled knowns and testing set

of unknowns. The training set has 821 rows, 45 columns of numerical data, and 4

described classes: IAB, MORB, OIB, and ZCRFB. IAB is linearly separable from the

other classes, which are overlapping. The testing set contains 60 unknowns whose

true identities are excluded from the original exercise, but have been revealed here

for the purpose of validation. The testing set contains a number of samples from each

known class, as well as a number of samples from at least four distinct groups that

do not belong to any of the known classes.

42

The training set, by design, is missing about one third of all possible measure-

ments. This further increases the difficulty of the problem, but accurately reflects

the reality where certain samples undergo certain tests and other samples are subject

to different scientific measurements. Missing data in the training set is substituted

with imputation, while columns containing missing data are dropped from the testing

set, as imputation would prove inaccurate. Columns are then synchronized between

the training and testing set to ensure each set includes measurements of the same

metrics.

6.2 Runtime

Each algorithm was run and timed on each data set using N-SLOPE default settings

of eigenvalue analysis for PCA component retention, two standard deviations for

classification thresholds, and one run of 10-fold cross validation. Timing results vary

greatly between algorithms and are displayed in Table 6.1.

Table 6.1: N-SLOPE algorithm runtimes on each data set

Novel SIMCA LOF OC-SVM PLS-DA ELM

Iris 55.8ms 31.2ms 4.6s 6.5s 145.4ms 302.8ms

Obsidian 46.8ms 152.8ms 6.5s 4.7s 222.8ms 87.0ms

GS3 383.8ms 874.3ms 13.9s 178.1s 4.5s 9.6s

The novel algorithm and SIMCA run fastest overall, with the novel algorithm

beating SIMCA on higher dimensional data sets, while OC-SVM runs slowest overall.

The runtimes of the novel algorithm, OC-SVM, and ELM are more dependent on the

number of samples than dimensionality. Conversely, the runtimes of SIMCA, LOF,

and PLS-DA are more effected by dimensionality than the number of samples. As

both the number of samples and dimensionality increase, the novel algorithm performs

faster than the other N-SLOPE algorithms, taking just over a third of a second to

43

run on the GS3 data set, and OC-SVM performs significantly slower than the other

algorithms, taking almost three minutes to run on the GS3 data set.

6.3 Results

The classification results of running N-SLOPE on each data set described above are

provided here in the following format. Each algorithm’s predictions are listed in

separate columns followed by the final N-SLOPE ensemble predictions with the true

class of each unknown listed in the last column. Each of the six algorithms has an

associated training accuracy displayed below it in parenthesis. A prediction from any

algorithm in N-SLOPE will either assign an unknown to one or more of the known

classes or classify the unknown as an outlier and mark it as UNKNOWN. The one

exception is ELM, which marks unknowns as either known (assigned equally to all

classes) or UNKNOWN (novel unknown that does not belong to any known classes).

The overall classification accuracies for each algorithm in the ensemble are dis-

played separately. These tables include Classification Accuracy (CA - percentage of

unknowns correctly classified), False Positive Rate (FPR - percentage of novel un-

knowns incorrectly classified as belonging to one of the known classes), and False

Negative Rate (FNR - percentage of inlying unknowns incorrectly classified as out-

liers). FPR is omitted when the testing set lacks any novel unknowns.

Ideal classification performance should yield a high CA, low FPR, and low FNR.

FPR and FNR are typically inversely coorelated such that one must be prioritized

over the other. Since this application is designed to aid nuclear forensic investigations,

minimizing FPR is the priority as falsely assigning a novel unknown to a known class

is more costly than failing to identify an inlying unknown.

44

6.3.1 Iris

Analysis was performed using the default N-SLOPE settings: the number of principal

components to retain was determined using eigenvalue analysis, two standard devia-

tions were used as a confidence interval for classification, and 10-fold cross-validation

was performed a single time.

Table 6.2: N-SLOPE classification results on Iris test data

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE

CA 84.62% 100% 92.31% 100% 69.23% 100% 100%

FPR

FNR 0% 0% 0% 0% 30.77% 0% 0%

Tables 6.2 and 6.3 show the accuracies and predictions, respectively, of N-SLOPE

on this data set. FPR is omitted from Table 6.2 because the testing set does not

have any novel unknowns. The novel algorithm and PLS-DA in particular struggled

a bit on this data set because the Versicolor and Virginica classes are overlapping and

many of the unknowns in the training set fall in this overlap. Despite slight confusion

on Unknowns 8 and 9, N-SLOPE was able to correctly classify every unknown in the

training set and perform very well as a whole.

45

Table 6.3: N-SLOPE predictions on Iris test data with possible classes
SE (Setosa), VE (Versicolor), VI (Virginica), KN (Known), and UN (UN-
KNOWN)

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE True

(81.02%) (96.35%) (93.61%) (96.37%) (76.64%) (100%) Class

1 SE SE SE SE SE KN SE SE

2 SE SE SE SE SE KN SE SE

3 SE SE SE SE SE KN SE SE

4 SE SE SE SE SE KN SE SE

5 VE VE VE VE UN KN VE VE

6 VE VE VE VE VE KN VE VE

7 VE VE VE VE VE KN VE VE

8 VI VE VE VE UN KN VE VE

9 VE VI VE VI UN KN VI VI

10 VI VI VI VI VI KN VI VI

11 VI VI VI VI VI KN VI VI

12 VI VI VI VI UN KN VI VI

13 VI VI VI VI VI KN VI VI

6.3.2 Obsidian

N-SLOPE settings were modified for this extremely small data set. The number of

principal components to retain was selected using eigenvalue analysis as normal, but

three standard deviations were used to construct classification confidence intervals

(rather than the default two) and 10-fold cross-validation was performed a total of

three times (rather than once by default). These changes allow for a greater variability

within known classes and allow algorithms additional training time.

The accuracies in Table 6.4 and predictions in Table 6.6 highlight the unique chal-

46

Table 6.4: N-SLOPE classification results on Obsidian test data

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE

CA 91.67% 91.67% 75.0% 75.0% 75.0% 91.67% 83.33%

FPR 0% 0% 0% 8.33% 8.33% 8.33% 0%

FNR 8.33% 8.33% 25.0% 16.67% 16.67% 0% 16.67%

Figure 6.1: Radar plot of Obsidian
Unknown 11 vs. true class SH

Figure 6.2: Radar plot of Obsidian
Unknown 12 vs. true class SH

lenges this data set presents. In particular, algorithms struggled with Unknowns 1,

4, 7, 11, and 12. The N-SLOPE ensemble was able to correctly classify Unknowns 1,

4, and 7 by sizeable margins as shown in Table 6.5, but failed to identify Unknowns

11 and 12 by a narrow and wide margin, respectively. Further examination of these

two unknowns using the radar plot tool included in the web application reveals the

source of misclassification. Figures 6.1 and 6.2 show the relation between the true

class SH and Unknowns 11 and 12, respectively. Unknown 11 does resemble SH; not

quite as closely as other unknowns like Unknown 10 shown in Figure 6.3, which ex-

plains the narrow margin of misclassification, but close enough for additional manual

investigation to conclude Unknown 11 likely comes from SH. Unknown 12 resembles

SH very closely except for its concentration of Y, which is about 17.5% higher than

47

Figure 6.3: Radar plot of Obsidian Unknown 10 vs. true class SH

any other sample in the data set and 23.5% higher than any other sample from SH in

the data set. This is enough for N-SLOPE to flag the unknown as an outlier, which

encourages further manual examination.

Table 6.5: Raw N-SLOPE output on difficult Unknowns 1, 4, 7, 11, and
12 from the Obsidian data set

AN BL K SH UNKNOWN Predicted Class

1 0.49 0.47 0.48 1.56 2.93 UNKNOWN

4 0.44 0.45 3.53 0.53 1.95 K

7 0.39 3.23 0.41 0.59 1.98 BL

11 0.46 0.45 0.39 1.94 2 UNKNOWN

12 0.45 0.45 0.38 0.87 2.96 UNKNOWN

The novel algorithm and SIMCA performed best overall, misclassifying just one

48

distinct unknown in the testing set each. ELM also misclassified only a single un-

known, but it failed to detect the novel unknown. The remaining algorithms each

misclassified three unknowns, with OC-SVM and PLS-DA failing to identify the novel

unknown and producing a false positive identificiation. N-SLOPE performed fairly

well on this difficult data set as a whole, misclassifying just two unknowns, both

incorrectly as outliers, while correctly identifying the one supposed novel unknown

in the set. This behavior is desirable as false positives are more costly than false

negatives.

Table 6.6: N-SLOPE predictions on Obsidian test data

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE True

(96.83%) (94.44%) (100%) (100%) (97.62%) (100%) Class

1 UN UN UN SH SH KN UN UN

2 K K K K K KN K K

3 K K K K K KN K K

4 K UN K K UN KN K K

5 BL BL BL BL BL KN BL BL

6 BL BL BL BL BL KN BL BL

7 BL BL UN BL UN KN BL BL

8 SH SH SH SH SH KN SH SH

9 SH SH SH SH SH KN SH SH

10 SH SH SH SH SH KN SH SH

11 SH SH UN UN SH KN UN SH

12 UN SH UN UN SH KN UN SH

6.3.3 Galaxy Serpent 3

Analysis was performed using the default N-SLOPE settings: the number of principal

components to retain was determined using eigenvalue analysis, two standard devia-

49

tions were used as a confidence interval for classification, and 10-fold cross-validation

was performed a single time. Overall accuracy is displayed in Table 6.7, which in-

cludes the additional metric True Negative Rate (TNR) recording the percentage of

novel unknowns N-SLOPE correctly identified as novel unknowns. This metric is

included here to highlight the fact that N-SLOPE correctly identified every novel

unknown in the testing set, which is the primary motivator behind using one-class

classification techniques over traditional classification.

Table 6.7: N-SLOPE classification results on GS3 test data

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE

CA 80.0% 85.0% 78.33% 73.33% 58.33% 88.33% 83.33%

TNR 100% 100% 68.75% 100% 37.5% 62.5% 100%

FPR 0% 0% 8.33% 0% 16.67% 10.0% 0%

FNR 10.0% 6.67% 1.67% 23.33% 25.0% 3.33% 6.67%

N-SLOPE predictions on the GS3 test data are shown in Tables 6.8, 6.9, and 6.10

and highlight the difficulty of this data set. N-SLOPE performed perfectly when it

came to classifying MORB, ZCRFB, and recognizing novel unknowns, but struggled

with classifying IAB and OIB. Internally, certain algorithms appear better suited

for identifying specific classes in this data set. SIMCA was the only algorithm that

correctly identified every unknown belonging to IAB, but SIMCA struggled with

MORB (unlike the other algorithms) and OIB (like the other algorithms). LOF was

the only algorithm that correctly identified every unknown belonging to OIB, but

LOF struggled with IAB (like the other algorithms) and detecting novel unknowns

(unlike the other algorithms).

Each algorithm in N-SLOPE has strengths and weaknesses that are somewhat

mitigated by combining them in an ensemble. SIMCA performed best overall, mis-

classifying just nine samples from the testing set, correctly identifying every novel

50

unknown in the testing set, and producing no false positive classifications. The novel

algorithm came in second misclassifying 12 samples, but correctly identifying every

novel unknown and producing no false positives. PLS-DA performed worst overall,

misclassifying 25 samples and failing to identify almost two-thirds of the novel un-

knowns. This can be somewhat explained by the fact that PLS-DA is not a true

one-class classifier and has been modified here to identify ambiguous classifications

as outliers, not necessarily to detect outliers in and of themselves.

N-SLOPE misclassified 10 samples in the testing set, while successfully identifying

every novel unknown in the testing set and producing no false positive classifications.

SIMCA was able to correctly classify one more sample than the ensemble as a whole,

but N-SLOPE outperformed every other algorithm in the ensemble.

51

Table 6.8: N-SLOPE predictions on GS3 test data 1-25

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE True

(87.39%) (90.26%) (96.80%) (98.30%) (92.98%) (96.43%) Class

1 IAB IAB IAB IAB IAB KN IAB IAB

2 UN IAB UN UN IAB KN UN IAB

3 UN UN UN UN UN KN UN UN

4 IAB IAB IAB IAB IAB KN IAB IAB

5 IAB IAB IAB IAB IAB KN IAB IAB

6 IAB IAB IAB IAB IAB KN IAB IAB

7 IAB IAB IAB IAB IAB KN IAB IAB

8 IAB IAB IAB IAB IAB KN IAB IAB

9 IAB IAB IAB IAB IAB KN IAB IAB

10 IAB IAB IAB IAB IAB KN IAB IAB

11 IAB IAB IAB IAB IAB KN IAB IAB

12 UN IAB IAB UN IAB KN IAB IAB

13 UN IAB IAB UN IAB KN IAB IAB

14 UN IAB IAB UN IAB KN IAB IAB

15 MORB IAB MORB UN UN KN MORB IAB

16 MORB IAB MORB UN UN KN MORB IAB

17 MORB IAB MORB UN UN KN MORB IAB

18 ZCRFB IAB MORB UN UN KN MORB IAB

19 IAB IAB MORB UN UN KN IAB IAB

20 IAB IAB ZCRFB ZCRFB UN KN ZCRFB IAB

21 IAB IAB ZCRFB ZCRFB UN KN ZCRFB IAB

22 MORB MORB MORB MORB MORB KN MORB MORB

23 MORB MORB MORB MORB MORB KN MORB MORB

24 OIB OIB MORB MORB MORB KN MORB MORB

25 MORB OIB MORB MORB MORB KN MORB MORB

52

Table 6.9: N-SLOPE predictions on GS3 test data 26-50

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE True

(87.39%) (90.26%) (96.80%) (98.30%) (92.98%) (96.43%) Class

26 MORB OIB MORB MORB MORB KN MORB MORB

27 MORB OIB MORB MORB MORB KN MORB MORB

28 MORB OIB MORB MORB UN KN MORB MORB

29 MORB MORB MORB MORB MORB KN MORB MORB

30 MORB MORB MORB MORB MORB KN MORB MORB

31 OIB OIB OIB OIB OIB KN OIB OIB

32 UN UN OIB UN OIB UN UN OIB

33 OIB UN OIB UN UN UN UN OIB

34 OIB UN OIB UN OIB KN OIB OIB

35 OIB OIB OIB UN OIB KN OIB OIB

36 UN UN OIB UN UN KN UN OIB

37 MORB ZCRFB ZCRFB ZCRFB UN KN ZCRFB ZCRFB

38 ZCRFB ZCRFB ZCRFB ZCRFB UN KN ZCRFB ZCRFB

39 ZCRFB ZCRFB ZCRFB ZCRFB UN KN ZCRFB ZCRFB

40 ZCRFB ZCRFB ZCRFB ZCRFB UN KN ZCRFB ZCRFB

41 ZCRFB ZCRFB ZCRFB ZCRFB UN KN ZCRFB ZCRFB

42 ZCRFB ZCRFB ZCRFB ZCRFB ZCRFB KN ZCRFB ZCRFB

43 ZCRFB ZCRFB ZCRFB ZCRFB ZCRFB KN ZCRFB ZCRFB

44 ZCRFB ZCRFB ZCRFB ZCRFB ZCRFB KN ZCRFB ZCRFB

45 ZCRFB ZCRFB ZCRFB ZCRFB ZCRFB KN ZCRFB ZCRFB

46 UN UN UN UN OIB UN UN UN

47 UN UN UN UN OIB KN UN UN

48 UN UN UN UN MORB UN UN UN

49 UN UN UN UN UN UN UN UN

50 UN UN UN UN UN UN UN UN

53

Table 6.10: N-SLOPE predictions on GS3 test data 51-60

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE True

(87.39%) (90.26%) (96.80%) (98.30%) (92.98%) (96.43%) Class

51 UN UN UN UN OIB KN UN UN

52 UN UN UN UN UN KN UN UN

53 UN UN UN UN UN KN UN UN

54 UN UN UN UN UN UN UN UN

55 UN UN IAB UN MORB UN UN UN

56 UN UN IAB UN MORB UN UN UN

57 UN UN IAB UN MORB UN UN UN

58 UN UN IAB UN MORB UN UN UN

59 UN UN IAB UN MORB UN UN UN

60 UN UN UN UN ZCRFB KN UN UN

6.4 Summary

N-SLOPE has been validated on three distinct data sets with unique properties.

The 150x4 three-class Iris data serves as a baseline metric on a common small data

set with a mix of linearly and non-linearly separable classes. The 63x10 four-class

Obsidian data set is used to measure N-SLOPE’s performance on extremely small,

comparatively high-dimensional data relevant to the chemometric domain. Lastly, the

821x45 four-class GS3 data acts as a realistic simulation of nuclear forensics data as

a small, high-dimensional data set missing a large portion of available measurements.

N-SLOPE performed perfectly on the Iris data, correctly classifying every un-

known in the testing set. SIMCA, OC-SVM, and ELM performed best overall fol-

lowed by LOF, the novel algorithm, and PLS-DA, respectively. N-SLOPE’s strong

performance on this data is somewhat expected due to the simplistic nature of the

54

Iris data set.

N-SLOPE performed fairly well on the Obsidian data with training accuracies

in the mid 90’s and above, but failed to correctly classify two of the unknowns in

the testing set. Both unknowns were incorrectly marked as outliers with one very

close decision and one more certain. Upon further examination of the data, it seems

reasonable to consider the second incorrectly classified unknown an outlier, due to an

uncharacteristically high elemental concentration as described in the previous section.

The novel algorithm and SIMCA performed best on this data followed by ELM then

LOF, OC-SVM, and PLS-DA. N-SLOPE correctly identified the novel unknown in

the testing set and performed well overall given the difficult nature of the Obsidian

data.

N-SLOPE performed very well on the GS3 data given the unique challenges posed

by this data set. N-SLOPE correctly classified 83.33% of testing samples and correctly

identified each of the 16 novel unknowns as not belonging to any of the known classes.

This second metric is particularly important, and impressive, as correctly identifying

novel unknowns is the main focus of one-class classification and the novel unknowns

included in this set were specifically chosen from a variety of excluded classes with

the expectation that certain novel unknowns would be difficult to distinguish from

the known classes.

Table 6.11: Summary of N-SLOPE classification accuracies on each vali-
dation data set

Novel SIMCA LOF OC-SVM PLS-DA ELM N-SLOPE

Iris 84.62% 100% 92.31% 100% 69.23% 100% 100%

Obsidian 91.67% 91.67% 75.0% 75.0% 75.0% 91.67% 83.33%

GS3 80.0% 85.0% 78.33% 73.33% 58.33% 88.33% 83.33%

As predicted, each individual algorithm within N-SLOPE has strengths and weak-

55

nesses that effect its performance on different data sets. SIMCA performed best over-

all on all three data sets with classification accuracies of 100%, 91.67%, and 85.0%,

respectively. The novel algorithm performed near the bottom on Iris, tied for best on

Obsidian, and second best on GS3 with classification accuracies of 84.62%, 91.67%,

and 80.0%, respectively. PLS-DA performed worst overall on all three data sets with

classification accuracies of 69.23%, 75.0%, and 58.33%, respectively. A full summary

of classification accuracies can be found in Table 6.11.

6.5 Discussion

N-SLOPE achieved higher classification accuracy and lower false positive rate than

each individual algorithm, except for SIMCA, on at least one of the validation data

sets. Surprisingly, SIMCA performed best overall on each data set, even slightly

outperforming the N-SLOPE ensemble on the Obsidian and GS3 data sets by one

additional correctly-classified unknown each. While this result is interesting, it is

very unlikely that SIMCA is inherently superior to all the other algorithms. Instead,

these results emphasize the fact that SIMCA excels at modeling classes with high

within-class variance, as is particularly apparent on the IAB class in the GS3 data

set. IAB samples are highly variable with “typical” and “atypical” samples repre-

sented and an overall percent deviation of 41.6% higher than any of the other known

classes. Furthermore, IAB is linearly separable from the other known classes. These

data characteristics produce an optimal environment for SIMCA to perform well on

IAB, which is exactly what is shown with SIMCA correctly classifying every single

IAB unknown, where other algorithms struggle. Since IAB unknowns are dispropor-

tionally represented over unknowns from other classes, making up one third of the

total unknowns, SIMCA classification accuracy is artificially inflated. SIMCA strug-

gles with overlapping classes, as seen in the confusion between MORB and OIB in

56

Tables 6.8 and 6.9, and would likely perform poorly compared to other N-SLOPE

algorithms on a data set with highly overlapping classes, minimal within-class varia-

tion, or nonlinear data relationships. In these cases, algorithms like LOF, the novel

algorithm, and OC-SVM, respectively, would likely perform well. Since prediction

results from each algorithm are incorporated into N-SLOPE through ensemble learn-

ing, N-SLOPE has the potential to achieve high classification accuracy regardless of

specific data set characteristics.

57

Chapter 7

CONCLUSION

One-class classification is a difficult combination of traditional classification and out-

lier detection that is here applied to the field of nuclear forensics. Small, high-

dimensional, chemometric data from this field exacerbates the problem by creating a

challenging domain for traditional machine learning algorithms. A web application

has been developed that incorporates N-SLOPE to aid in nuclear forensic investi-

gations with one-class classification support. N-SLOPE introduces a novel one-class

classifier and combines five distinct algorithms into a single package that uses ensem-

ble learning to generate classification predictions.

N-SLOPE has been validated on three very different data sets including one realis-

tic set previously used in an official international nuclear forensics exercise. N-SLOPE

performed well on each data set with classification accuracies of 100%, 83.33%, and

83.33% on Iris, Obsidian, and GS3, respectively, which is impressive given the difficult

characteristics of each set. Furthermore, N-SLOPE correctly identified every novel

unknown in each data set proving its worth as a robust one-class classifier. In cases

where N-SLOPE produces ambiguous results, such as Unknown 11 from the Obsidian

data set, additional investigatative tools included in the web application can be used

to refine predictions. N-SLOPE is automated, efficient, and accurate, but uncertain

classifications benefit from additional analysis.

N-SLOPE demonstrates strong performance as a generalized one-class classifica-

tion ensemble. Combining algorithms using ensemble learning bolsters classification

accuracy and outlier detection and affords N-SLOPE a high degree of accuracy re-

gardless of data set characteristics. Of the algorithms within N-SLOPE, SIMCA

performed best overall, the novel algorithm fell near the top of the pack, and PLS-

58

DA performed worst overall. The web application with N-SLOPE presented here is

a powerful tool to aid in nuclear forensic investigations.

59

Chapter 8

FUTURE WORK

8.1 Cross-Validation

Each algorithm in N-SLOPE currently undergoes 10-fold cross-validation to deter-

mine a training accuracy that represents each algorithm’s ability to correctly classify

samples in the training set. This is a useful metric and an important part of deter-

mining each algorithm’s contribution to the N-SLOPE ensemble.

Instead of simply calculating the training accuracy as the percentage of correct

classifications, it would be beneficial to expand this metric and separate incorrect clas-

sifications as either between-class or out-of-class failures. Between-class error would

indicate the algorithm incorrectly assigned the sample to one of the known classes,

whereas out-of-class error would indicate the algorithm incorrectly identified the sam-

ple as a novel unknown. This distinction would help identify when algorithms are

struggling with the data itself or possibly when models are overfitting or underfitting

the data.

Breaking these metrics down further by class could highlight particularly difficult

inseparable classes and inform better ensemble contribution calculations. Further-

more, adding these cross-validation metrics to the N-SLOPE ensemble as a whole

would yield an interesting and informative review of N-SLOPE’s overall performance.

8.2 Ensemble Learning

N-SLOPE currently uses an implementation of the sum rule to combine algorithm

output and create a final classification decision for each unknown. The sum rule was

60

chosen due to its supposed strong performance and generalizability [18], but the rule

itself does not have specific implementation details. N-SLOPE currently combines

algorithm output as described in Chapter 5.

While this combination scheme seems to perform well on the validation data as

described in Chapter 6, it may be useful to implement additional versions of the sum

rule that emphasize algorithms differently. Currently OC-SVM, LOF, and the novel

algorithm are somewhat emphasized over the other algorithms due to the nature

of the contribution calculations. Implementing a sum rule that slightly emphasized

SIMCA and PLS-DA, for example, would be useful when working with linear data.

Automating this process may prove difficult because individual algorithm accuracy

on one data set does not necessarily predict accuracy on other data sets, as has been

shown in Chapter 6.

It would also be interesting to explore other ensemble learning techniques like the

median rule because while the sum rule performs best in theory [18], it is possible

that N-SLOPE may be more compatible with other rules in implementation.

The addition of new ensemble learning techniques would pair well with updated

cross-validation as described above and could allow N-SLOPE to automatically select

different combination rules based on advanced training metrics for optimal, data-

independent classification.

8.3 Novel Algorithm

The novel algorithm presented here and incorporated into N-SLOPE acts as a one-

class classifier with certain strengths, such as computational speed and internal outlier

detection (ability to detect outliers uncharacteristically close to the centroid of a

known class). Conversely, the novel algorithm performs poorly on small, sparse data

and is unable to model complex, nonlinear relationships. Depending on the data set,

61

the novel algorithm falls near the upper middle of the ensemble when it comes to

classification accuracy.

Since the novel algorithm already provides some internal outlier detection, it may

be useful to extend this functionality and enhance the algorithm’s between-class out-

lier detection capabilities to produce an algorithm more tailored to detecting outliers

within a set of known data. This could be done by incorporating the notion of local

density from LOF into the set of metrics that are caluclated for each class. Rather

than determining class membership simply from distance-to-center, density could be

employed to detect unknowns that are close to the class center, but far enough from

other points to be labelled outliers. Adding a concept of local density would also help

the novel algorithm handle strongly shaped data, although strongly shaped data is

unlikely to occur in the high-dimensional spaces in which this algorithm is designed

to operate.

One additionally useful modification would be to refactor the algorithm to make it

compatible with the caret package [20]. This would allow the algorithm to take ad-

vantage of the common preProcess, train, and predict functions provided in caret

[20] and make it significantly easier to develop new features and maintain the algo-

rithm. Furthermore, new developers would be able to work with the algorithm more

easily, as its behaviour would be standardized, and the novel algorithm presented here

could potentially be published and incorporated into the public caret package [20].

62

BIBLIOGRAPHY

[1] K. Ali. On the link between error correlation and error reduction in decision

tree ensembles. Technical Report from the Department of Information and

Computer Science of the University of California, Irvine, 1995.

[2] M. Amer, M. Goldstein, and S. Abdennadher. Enhancing one-class support

vector machines for unsupervised anomaly detection. In ODD ’13 Proceedings

of the ACM SIGKDD Workshop on Outlier Detection and Description, pages

8–15, 2013.

[3] E. Anderson. The species problem in iris. Annals of the Missouri Botanical

Garden, 23:457–509, 1936.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152. ACM, 1992.

[5] K. V. Branden and M. Hubert. Robust classification in high dimensions based

on the SIMCA method. Chemometrics and Intelligent Laboratory Systems,

79(1-2):10–21, 2005.

[6] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. LOF: identifying

density-based local outliers. In ACM sigmod record, volume 29, pages 93–104.

ACM, 2000.

[7] M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and

J. Trygg. OPLS discriminant analysis: combining the strengths of PLS-DA and

SIMCA classification. Journal of Chemometrics, 20(8-10):341–351, 2006.

63

[8] W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web

Application Framework for R, 2017. R package version 1.0.5.

[9] R. A. Fisher. The use of multiple measurements in taxonomic problems.

Annals of Human Genetics, 7(2):179–188, 1936.

[10] L. Friedland, A. Gentzel, and D. Jensen. Classier-adjusted density estimation

for anomaly detection and one-class classication. SIAM, 2014.

[11] A. Gosso. elmNN: Implementation of ELM (Extreme Learning Machine)

algorithm for SLFN (Single Hidden Layer Feedforward Neural Networks),

2012. R package version 1.0.

[12] T. Howley, M. G. Madden, M. O’Connell, and A. G. Ryder. The effect of

principal component analysis on machine learning accuracy with

high-dimensional spectral data. Knowledge-Based Systems, 19(5):363–370, 2006.

[13] Y. Hu, W. Murray, Y. Shan, and Australia. Rlof: R Parallel Implementation of

Local Outlier Factor(LOF), 2015. R package version 1.1.1.

[14] G. Huang, L. Chen, and C. K. Siew. Universal approximation using

incremental constructive feedforward networks with random hidden nodes.

IEEE Trans. Neural Networks, 17(4):879–892, 2006.

[15] J. H. Janssens, I. Flesch, and E. O. Postma. Outlier detection with one-class

classifiers from ML and KDD. International Conference on Machine Learning

and Applications, 2009.

[16] A. Karatzoglou, D. Meyer, and K. Hornik. Support vector machines in R.

Journal of Statistical Software, 15(9), 2006.

[17] S. S. Khan and M. G. Madden. One-class classification: Taxonomy of study

and review of techniques. CoRR, abs/1312.0049, 2013.

64

[18] J. Kittler, M. Hatef, R. P. Duin, and J. Matas. On combining classifiers. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239,

1998.

[19] B. Kowalski, T. Schatzki, and F. Stross. Classification of archaeological

artifacts by applying pattern recognition to trace element data. Analytical

Chemistry, 44(13):2176–2180, 1972.

[20] M. Kuhn, J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt,

T. Cooper, Z. Mayer, B. Kenkel, the R Core Team, M. Benesty, R. Lescarbeau,

A. Ziem, L. Scrucca, Y. Tang, C. Candan, and T. Hunt. caret: Classification

and Regression Training, 2018. R package version 6.0-79.

[21] S. Lê, J. Josse, and F. Husson. FactoMineR: A package for multivariate

analysis. Journal of Statistical Software, 25(1):1–18, 2008.

[22] Q. Leng, H. Qi, J. Miao, W. Zhu, and G. Su. One-class classification with

extreme learning machine. Mathematical Problems in Engineering, 2015, 2015.

[23] W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class learning for

automatic outlier removal. 2014 IEEE Conference on Computer Vision and

Pattern Recognition, 2014.

[24] M. G. Madden and T. Howley. A machine learning application for classification

of chemical spectra. Applications and Innovations in Intelligent Systems XVI,

pages 77–90, 2009.

[25] L. M. Manevitz and M. Yousef. Document classification on neural networks

using only positive examples (poster session). In Proceedings of the 23rd

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 304–306. ACM, 2000.

65

[26] L. M. Manevitz and M. Yousef. One-class SVMs for document classification.

Journal of Machine Learning Research, 2001.

[27] B. Mertens, M. Thompson, and T. Fearn. Principal component outlier

detection and SIMCA: A synthesis. Analyst, page 27772784, 1994.

[28] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071:

Misc Functions of the Department of Statistics, Probability Theory Group

(Formerly: E1071), TU Wien, 2017. R package version 1.6-8.

[29] K. J. Moody, P. M. Grant, and I. D. Hutcheon. Nuclear Forensic Analysis.

CRC Press, 2005.

[30] M. M. Moya and D. R. Hush. Network constraints and multi-objective

optimization for one-class classification. Neural Networks, 9(3):463–474, 1996.

[31] M. Nakazawa. fmsb: Functions for Medical Statistics Book with some

Demographic Data, 2018. R package version 0.6.3.

[32] J. Ooms, D. James, S. DebRoy, H. Wickham, and J. Horner. RMySQL:

Database Interface and ’MySQL’ Driver for R, 2018. R package version 0.10.14.

[33] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2018.

[34] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.

Estimating the support of a high-dimensional distribution. Neural

Computation, 13(7):14431471, 2001.

[35] B. Schölkopf, R. C. Williamson, A. Smola, and J. Shawe-Taylor. SV estimation

of a distribution’s support. In Advances in Neural Information Processing

Systems, 1999.

66

[36] D. Stevenson, F. Stross, and R. Heizer. An evaluation of X-ray fluorescence

analysis as a method for correlating obsidian artifacts with source location.

Archaeometry, 13(1):17–25, 1971.

[37] B. Stumpe, T. Engel, B. Steinweg, and B. Marschner. Application of PCA and

SIMCA statistical analysis of FT-IR spectra for the classification and

identification of different slag types with environmental origin. Environmental

Science & Technology, 46(7):3964–3972, 2012.

[38] D. M. Tax and R. P. Duin. Support vector domain description. Pattern

Recognition Letters, 20:1191–1199, 1999.

[39] D. M. Tax and R. P. Duin. Support vector data description. Machine Learning,

54(1):4566, 2004.

[40] V. Todorov. rrcovHD: Robust Multivariate Methods for High Dimensional

Data, 2016. R package version 0.2-5.

[41] S. Van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate Imputation

by Chained Equations in R. Journal of Statistical Software, 45(3):1–67, 2011.

[42] B. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, W. Windig, and R. S.

Koch. PLS Toolbox 4.0. Eigenvector Research, Inc, 3905 West Eaglerock Drive,

Wenatchee, WA 98801 USA, 2006.

[43] H. Yang, P. R. Griffiths, and J. Tate. Comparison of partial least squares

regression and multi-layer neural networks for quantification of nonlinear

systems and application to gas phase Fourier transform infrared spectra.

Analytica Chimica Acta, 489(2):125 – 136, 2003.

[44] T. Zou, Y. Dou, H. Mi, J. Zou, and Y. Ren. Support vector regression for

67

determination of component of compound oxytetracycline powder on

near-infrared spectroscopy. Analytical Biochemistry, 355(1):1 – 7, 2006.

68

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	One-class Classification
	Nuclear Forensics
	Approach
	Novel Algorithm
	Contribution Summary
	Overview

	Background
	Chemometrics
	Artificial Intelligence
	Machine Learning
	Supervised Learning
	Classification
	One-Class Classification
	Ensemble Learning
	k-Fold Cross-Validation
	Principal Component Analysis (PCA)
	k-Nearest Neighbors (KNN)
	Nearest Centroid
	Support Vector Machine (SVM)
	Neural Network (NN)

	Related Research
	Partial Least Squares with Discriminant Analysis (PLS-DA)
	Soft Independent Modeling of Class Analogies (SIMCA)
	One-Class Support Vector Machine (OC-SVM)
	Local Outlier Factor (LOF)
	Extreme Learning Machine (ELM)

	Web Application
	Overview
	Implementation
	R
	Shiny

	Data Features
	Imputation
	Import
	Filtering

	Visualization Features
	N-SLOPE Classification Features
	Layout
	Inputs
	Models
	Validation
	Outputs

	N-SLOPE
	Implementation Overview
	Ensemble Learning
	Running Example
	Existing Algorithms
	SIMCA
	LOF
	OC-SVM
	PLS-DA
	ELM

	Novel Algorithm
	Overview
	Design
	Limitations
	Strengths
	Implementation
	Contribution to Ensemble

	Running Example Summary

	Validation
	Data Sets
	Iris
	Obsidian
	Galaxy Serpent 3

	Runtime
	Results
	Iris
	Obsidian
	Galaxy Serpent 3

	Summary
	Discussion

	Conclusion
	Future Work
	Cross-Validation
	Ensemble Learning
	Novel Algorithm

	BIBLIOGRAPHY

