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ABSTRACT

Rotordynamic Analysis of Theoretical Models and Experimental Systems

Cameron Naugle

This thesis is intended to provide fundamental information for the construction and

analysis of rotordynamic theoretical models, and their comparison the experimental

systems. Finite Element Method (FEM) is used to construct models using Timo-

shenko beam elements with viscous and hysteretic internal damping. Eigenvalues

and eigenvectors of state space equations are used to perform stability analysis, pro-

duce critical speed maps, and visualize mode shapes. Frequency domain analysis

of theoretical models is used to provide Bode diagrams and in experimental data

full spectrum cascade plots. Experimental and theoretical model analyses are used

to optimize the control algorithm for an Active Magnetic Bearing on an overhung

rotor.
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Chapter 1

VIBRATION SIGNAL ANALYSIS

1.1 Data Collection and Processing

The most important measurement to be made in order to perform significant rotor-

dynamic analysis is the Vibration Signal, V or W . Other important measurements

include Spin Speed, Ω, of the rotating shaft (especially important if during a start-up

or run-down), and a Reference Signal, R, that indicates a rotational position of the

shaft. Orthogonal vibration signals (meaning two independent directions), V & W ,

measuring the position of the shaft centerline can help in characterizing anisotropic

systems. Sampling Rates, fs of the signals mentioned thus far must be high enough

to measure the vibration of interest, typically this is at least several times the highest

expected spin speed of the shaft. It is important to note that these signals can come

from an experiment or a theoretical model. In the case of a theoretical model, the

sampling rate is inversely proportional to the time interval of the differential equation

solver. Or, if a closed form solution exists, the time interval of the time vector chosen

to express the solution within.

There are four variables deduced from the above signals that form the basis for the

majority of rotordynamic figures and analysis. These are: Amplitude of Vibration,

A[m,mils]; Amplitude Spectrum, Ã(ω)[m,mils]; Phase of Vibration, β[deg, Rad];

and Spin Speed, Ω[Hz,Rad/s,RPM ]. Amplitude Spectrum is actually a two dimen-

sional variable where the variable, ω[Hz,Rad/s,RPM ], represents the Frequency of

Vibration (often called Whirl Speed if its in units of rotation). Figures to be presented

in this work are varying combinations of these four variables. The Bode diagram plots

A against Ω alongside β against Ω. A Spectrum figure plots the absolute value of
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Figure 1.1: Position of the rotor shaft over a period in time.

Ã(ω). An extension of this is the Cascade which adds the third dimension of Ω. Orbit

plots represent one cycle of the time domain signals V & W . Lastly, 3D Orbits are

formed by plotting the orbit (V,W ) against Ω. Explanations of the importance and

methods in producing these plots are to follow.

A difficulty to rotordynamic analysis arises in the continuous change of Ω causing a

continuous change in time of its dependent variables A, Ã(ω), & β. A visualization of

these changes is given in Figure 1.1. This transient nature poses difficulty because the

techniques used to produce A, Ã(ω), & β from V, W& R rely on a span of subsequent

rotations. A solution to this dilemma utilized in this work is the discretization of

signals V, W, R & Ω into windows in time. Window width will be represented by

the variable nspw[samples] and total number of samples divided by nspw will give

the number of windows in the signals, NW . There is a trade off between resolution

in time, and resolution in frequency of variables as nspw is changed. This trade off

will be elaborated on in §1.2.5.

The windowing approach is visually depicted using Ω in figure 1.2 as it changes

over time. When the width of the window is small enough, such as in Figure 1.2b,

the change in the dependent variable becomes vanishingly small. Other continuous

2
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Figure 1.2: Rotor Spin Speed Windowing effect.

variables such as A, Ã(ω), & β are expected to behave similarily, in that their value

may be approximated by a single number, or in the case of Ã(ω) as a single spectrum,

inside the window despite the change in that variable throughout the entire length of

time. The variables V (t), W (t)& R(t) will now take the form V (n), W (n)& R(n)

inside the window (fig. 1.3), where n is sample number. Spin Speed is simply taken as

an average in the window, Ω(N) = avg(Ω(0 : nspw)), where N is the current window

index. Therefore, no further explanation is given for its determination. Amplitude,

Phase, Amplitude Spectrum, and Spin Speed must be calculated in each window, for

a series of windows that cover the entire length of signals. Then a vector of each

variable will exist where the length is equal to the number of windows, NW , and is

given by

NW =
length(signals)

nspw

The calculation of each of the variables inside the window, at some N , is given

in the following sections. A useful visual representation of the windowed signals

3
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Figure 1.3: A window in time of the transient vibration signals for a
window, N , with nspw of 2048[samples].

V (n) &W (n) are presented in Figure 1.3 to aid in understanding the sections to

follow.

1.1.1 Amplitude

Amplitude calculation is fairly straightforward within the window. One approach to

calculate the peak to peak amplitude is to take the average over the whole window,

Av(N) = max(V (0 : nspw)) −min(V (0 : nspw)). Another is to use a peak-finding

algorithm to determine the height of each peak and average them all over the sample

length. General computer code packages, such as MATLAB, will contain a peak

finding algorithm, the details of which are out of the scope of this work.

1.1.2 Spectrum

The frequency spectrum of the signal is calculated inside the window using a Fourier

Transform. Influence for this representation of complex amplitude spectrum comes

from [4]. In MATLAB the Fast Fourier Transform (fft) has been preprogrammed

4



allowing easy working between time and frequency domains.

ÃV (n) =
fft(V (n))

nspw
, & ÃW (n) =

fft(W (n))

nspw
(1.1)

A useful way to represent the data is using a complex variable to compact the two

orthogonal displacements V & W as

Z(n) = V (n) + iW (n) (1.2)

now the spectrum of this complex value represents both equation planes of vibration

in one equation:

Ã±(n) =
fft(Z(n))

nspw
(1.3)

Thus far, the frequency spectrum in the real coordinates and in the complex is in

terms of samples on the independent axis. The frequency vector to which the fft()

corresponds must be calculated–this is the whirl speed, ω. It is known that the slope

of ω is dω = fs/nspw. This value is also called the frequency resolution, fres. It is

also known that the frequency vector is the same length as the time domain signal

f = dω(0 : nspw − 1)

and to center the spectrum at a frequency of 0

Q = ceiling((nspw + 1)/2)

fQ = dω(Q− 1)

ωj = f − fQ

where ωj, here in Hz, is the variable that pairs with the real or complex Ampli-

tude spectrum and the subscript j is a reminder that ω is a discrete variable that

ranges 1 < j < nspw. Now the complex amplitude spectrums can be represented as

ÃV (ω), ÃW (ω), & Ã±(ω). The Amplitude spectrum in real coordinates(1.1) is sym-

metric for positive and negative ω, so typically when the spectrum of a single signal

5



is presented in a spectrum plot or in a cascade it is only on the positive frequency

side. On the other hand, the complex representation of the amplitude spectrum(1.3)

is not symmetric on the positive and negative sides of ω. Understanding why this is

the case stems from realizing the form of the Fourier transform as the summation of

circles in the complex plane, Z(n) =
∑j=nspw

j=1 Ã±(ωj)e
iωjt. When ωj is positive this

represents a positive rotation, and when negative represents a negative rotation. For

a given whirl speed, ωj, the positive of that value will be represented by +ω and the

negative as −ω. These two representations of ω correspond to two separate indexes j

as ωj is symmetric about j = nspw/2. This results in the sum of a positively rotating

circle of amplitude, Ã(+ω) and a negatively rotating circle of amplitude Ã(−ω). The

ellipse formed by this summation is the orbit of the shaft centerline at this specific

speed[13],[2]. With the understanding of contributions of Ã(ω) and Ã(−ω), we realize

that the resulting ellipse will rotate in the counterclockwise direction if Ã(ω) > Ã(−ω)

and in the clockwise direction otherwise. This rotation is in reference to the positive

rotation about the z axis defined by the right hand rule from the y-z plane. Since the

same coordinate system is used to represent the sign of Ω, the whirl can be interpreted

as in or opposed to the direction of spin. For a positive Ω, a negative ω corresponds

with an opposing whirl, and vice-versa for a positive ω.

1.1.3 Phase

1.1.3.1 Time Domain Approach

A rather direct way of calculating the phase angle comes from an inspection of the

time domain signal. If some once-per-turn reference is available, then a zero-crossing,

peak-finding, or threshold algorithm can be employed to locate a specific reference

angle of the shaft rotation. In the case that the vibration signal is mostly synchronous

(vibrating at the same frequency as the rotation of the shaft) then a peak-finding or

6



zero-crossing algorithm can be used to determine the number of samples from the shaft

reference angle to the peak of the vibration. Comparison of this sample distance to

the sample distance of an entire cycle of the reference signal will reveal the amount

a signal lags the reference angle as a portion of a full rotation. In terms of samples

this can be represented by the equation

βk = 2π
#refk −#peakk
#refk −#refk−1

(1.4)

where βk is the phase lag of the signal of interest from the reference signal at the kth

reference cycle, #refk is the sample number of the reference trigger, and #peaki is

the sample number of the peak of the signal of interest. One large advantage to this

brute force method is that it can run continuously and provide phase information

on just the last rotation of the shaft. In the application to the window of vibration

data, fig. 1.3, the measurements of each cycle would be averaged across the window

as β(ω) = avg(βk). This would be done for however many indexes k were found in

the window. In the case of windowed data in Figure 1.3 k = 7[rotations].

1.1.3.2 Frequency Domain Approach

Alternatively, the phase angle can be determined using the frequency domain rep-

resentation of the signals. If the speed of the rotor is known and the time domain

signals V & W are known to be synchronous, or filtered to synchronous, then the

spectrums of the signals of interest can be used to calculate the phase delay. For any

frequency, ω, the angle is calculated using the equation

β(ω) = angle(Ã(ω))− angle(K̃(ω))

where, K̃ = fft(K)
nspw

is the frequency domain representation of the reference signal.

Either ÃV , or ÃW is used to find the phase delay of the V or W time domain vibration

in reference to the once per turn reference of K. It is also possible to find the delay

7



of any time domain signals in reference to any other time domain signal at a specific

frequency using the above equation, though the common practice is to compute the

β angle of both signals and subtract one from another. In synchronous vibration,

ω = Ω.

1.2 Rotordynamic Figures

In the previous section Amplitude, Phase, and Amplitude Spectrum were calculated

for the interior of a window of index N . Each of these variables then need to be

indexed, as all of the windows are processed until the entire signal has been exhausted.

The total number of windows can be realized in the equation NW = length(X)
nspw

where X

is a placeholder for any time domain signal. After all windows have been exhausted,

vectors for A(N), β(N) & Ω(N) will all be of length NW , and Ã(N,ω) is a matrix

of size (NW,nspw).

For visualization of the plots, experimental data from a overhung rotor system,

with one disk supported by two bushings, will used to demonstrate the figures in

use. Data was taken during this experiment with two orthogonal position sensors,

and a reference sensor providing shaft angle and speed information. The experiment

consisted of a ramp-up from 1000[RPM] to 2000[RPM].

1.2.1 Bode

The Bode diagram for the example overhung rotor system is given in Figure 1.4. By

looking at the amplitude portion of the plot it is evident that the V signal undergoes

a natural frequency before the W signal, because the peak for AV occurs before AW .

This idea is also supported through the inspection of the phase lag portion of the plot,

as two seperate transitions are evident. Having two seperate peaks is an indication of

high stiffness anisotropy in the system. By observing the phase lag of each signal, it

8
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Figure 1.4: Bode diagram of the experimental example overhung system.
Signals are filtered to synchronous speed.

is evident that the orbit direction is opposite the spin speed between speeds 1280-

1350[RPM]. If normally W lags V with a positive counterclockwise rotation of the

shaft (as is suggested by the phase angles in sub-synchronous and super-synchronous

range), then during the critical speed, the orbit is reversed since V begins to lag W.

Bode diagrams are extremely useful in diagnosing system unbalance through in-

spection of phase lag information. If the shaft was perfectly straight before any

deformation due to rotating unbalance, then the phase lag just before the first natu-

ral frequency is the angle of the unbalance vector. This is due to the fact that before

the first natural frequency, the unbalance vector is aligned with the vibration radially

out from the center of rotation. Furthermore, natural frequencies can be detected

through the use of the phase lag information. Phase lag typically shifts 180[deg] after

completely passing through a natural frequency, and is at 90[deg] during a natural

frequency.
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Figure 1.5: Example Full Spectrum of experimental example system at
Ω = 1500[RPM].

1.2.2 Full Spectrum and Full Spectrum Cascade

A single Complex Amplitude Spectrum at a specific speed, Ã±(1500[RPM ], ω) is

shown as Figure 1.5. This complex representation of the spectrum is referred to as

the “Full Spectrum” of the time domain signal because it contains both positive and

negative frequencies. This figure tells us that the orbit at this speed is in the positive

whirl direction at the dominant frequency, since the positive amplitude, Ã±(+ω) =

9.13[mils] at its peak is greater than Ã±(−ω) = 3.47[mils]. Also, there is minimal

amplitude in the spectrum other than this single frequency of ±23.7[Hz] indicating

the vibration is highly synchronous.

A Cascade plot is demonstrated with the experimental system described in §1.2, as

Figure 1.6. Using this figure it is easy to detect the portion of the start-up in which the

orbit is whirling opposite the spin speed. A sharp dip in positive amplitude, Ã±(ω),

correlated with a sharp rise in negative amplitude, Ã±(−ω), at around 1320[RPM]

leads to this phenomena.

The Cascade plot is particularly useful in characterizing non-synchronous vibra-

tion. Slightly evident in the example cascade and spectrum of figures 1.6, & 1.5

respectively, is the super-synchronous vibration at twice the spin speed, this is often

10



Figure 1.6: Cascade of the experimental system described in §1.2.

called the 2X vibration. Similarly to the 2X vibration, other non-synchronous whirl

speeds can be referenced as nX where n is the multiple of synchronous. The cascade

plot is an indispensable tool for the analysis of fluid film bearing, for example, as

they are characterized by sub-synchronous whirl that is difficult to identify in other

diagnostic diagrams. The cascade provides an overview of all system whirling at all

spin speeds allowing identification of various multiples of synchronous speed. These

super- or sub-synchronous whirl speeds of the form nX can then be used to filter the

time domain signals, allowing isolation of specific dynamic phenomena.

1.2.3 Orbit

In the time domain, the actual orbit or trace of the centerline of the shaft is observed.

In this work, the orbit is visualized in two ways: as a path in 2D space at a specific

spin speed, or as a 3D orbit with a cascade of orbits as spin speed is increased. The

11



Figure 1.7: 3D Orbit of the experimental system described in §1.2. Lighter
colors indicate larger vibration.

3D Orbit allows for the visualization of complicated phenomena in a simple intuitive

way. Figure 1.7 3D Orbit is given for the experimental example described in §1.2.

Appearing, once again is evidence of the negative whirl in the critical speed range.

In the 3D orbit a collapsing of the shape can be seen between the speeds of 1200-

1400[RPM] indicating the orbit has reversed its direction. Looking at independent

orbits of specific speeds should explicitly demonstrate the orbit collapsing to a line,

and turning negative. In Figure 1.8 at speed 1194[RPM ] the orbit is clearly whirling

in the positive direction. As speed increases the orbit collapses into a line between

speeds 1203 & 1206[RPM ] and begins whirling in the negative direction until the

process is reversed by speed 1289[RPM ]. Therefore, it can be confirmed that the

orbit is whirling backward between the speeds 1205- 1280[RPM].
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Figure 1.8: Orbits of the experimental example. Spin speed is counter-
clockwise. Dots indicate the reference position of the shaft, and the be-
ginning of each orbit.

1.2.4 Filtering

Correlating phase angles between signals can be extremely difficult due to the noise

and harmonic frequencies that may disrupt the measurement of a phase lag at a

specific frequency. Furthermore, it can be useful to decompose a real signal into

specific harmonic components of the spin speed. One such instance is in the analysis

of a fluid film bearing. Often, the fluid film bearing will cause an unbalance at the

subsynchronous frequency of just under 0.5X. Using a filter, the response of the system

to this specific frequency can be extracted, allowing the analysis of phase angle and

amplitude directly due to the influence of interest.

MATLAB has an extensive library of digital filters that can be adjusted to filter

specific frequency ranges with no phase delay, and recall the states from the previous

window as to not loose dynamic information from one step to the next. Explanation

of filtering in MATLAB has been spared from this work as it is out of the scope.

A synchronous filter was applied the experimental example and the cascade plot

is shown in Figure 1.9. All amplitudes of frequencies other than the synchronous

frequencies have been eliminated. This system did not have strong super- or sub-

synchronous response, so this filtering does not make an appreciable effect to the

13



Figure 1.9: Cascade of the experimental system with a synchronous filter
applied.

Bode plot. But, with many real systems filtering will be necessary to analyze the

system.

1.2.5 Frequency and Time Resolution

Inherit in the application of the windowing method to the transient data set is some

trade off with resolution in time and resolution in frequency content. As mentioned

before, the frequency resolution, fres, is equal to the sampling rate, fs, divided by the

number of samples per window, nspw. So given a specific sampling rate, frequency

resolution is inversely proportional to the number of samples per window. But, nspw

is also inversely proportional to the number of windows in the signal, NW . The total

length of time of the signals is then divided up into NW windows where. It is often

14



more convenient in rotordynamics to talk about change in speed instead of time, as

it is more often the independent variable. Total speed range of Ω is divided up into

NW windows, making the speed resolution (the difference in speed from one window

to the next) proportional to NW . Therefore, as NW increases, fres increases, and

Ωres decreases. Where Speed resolution is being referenced here by the variable Ωres.

This relationship is easily explored through the use of the Cascade plot since it

contains both frequency and speed information. An example of a high nspw, low NW ,

low fres, & high Ωres is found in Figure 1.10. The result of low fres, at 0.2[Hz], is

sharp peaks in whirl speed, but since the amplitude spectrum is changing with speed

increase, the spectrum is spread over a large frequency range of Ωres = 54[RPM ].

The opposite condition leading to low Ωres and high fres is presented in Figure 1.11.

In this plot, the fres = 2[Hz] is so high that the whirl speeds are spread over a

large range. On the other hand, the resulting Ωres of 5.5[RPM] provides detailed

information on the effect of changing spin speed. Also, with such high fres a ripple

effect can be seen in the Amplitude spectrum as the actual dominate whirl speed is

between the resolution of 2[Hz] and bleeds into the nearest multiples of 2[Hz]. This

effect is not representative of the actual amplitude spectrum of the signal and is

avoided by choosing a lower fres. The choice of fres is dependent on many factors,

including: fs, spin speed ramp rate, and spin speed range.
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Figure 1.10: Cascade of the experimental system with an fres of 0.2[Hz]
and a resulting Ωres of 54[RPM].
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Figure 1.11: Cascade of the experimental system with an fres of 2[Hz] and
a resulting Ωres of 5.5[RPM].

17



Chapter 2

FINITE ELEMENT METHOD FOR ROTORDYNAMIC SYSTEMS

In this chapter the Finite Element Method(FEM) will be employed in the simulation

of rotordynamic systems. There are many advantages to using this discretized method

to solve problems of rotating machines. One of which is the generic form that the

global equation, and its parts take. The method makes it possible to define all

components of a system separately, only to combine them at the end. Also, FEM

makes it possible to move components around in space without a need to reevaluate

the physics. Finally, the analysis techniques for the resulting equations of motion

are wide-reaching, and will serve to richly enhance our understanding of a complex

system made of simple parts.

First, the beam element commonly refered to as the Timoshenko Beam Element

will be derived from the kinematic and constitutive constraints (derivation of an

alternative element, the Bernoulli-Euler beam element is provided in Appendix A).

The solution to the resulting equation of motion will be discretized and variables

separated in position and time to give the finite element equations of motion. An

extension to the Timoshenko beam element model will be presented that will consider

viscous damping effects in the beam element. Equations for disks, bearings, and

complex versions of all equations will be presented.

2.1 Timoshenko Beam Finite Element

The Timoshenko beam element allows for the beam cross section plane at any axis

location to differ from normal with the axis of the beam. In other words, the element

allows for shear stresses. This element often also includes the effects of rotary inertia
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Figure 2.1: Timoshenko beam section with degrees of freedom at some
point x along beam axis.

and gyroscopic moments, as it will in this derivation. Generalized displacements used

are assumed to be variable in both time and space. The element has six degrees of

freedom–three translation and three rotations all defined on the beam axis. Beam

displacement coordinates are defined in Figure 2.1. All displacements are functions

of time, t, and the axial spacial coordinate, x. Derivations herein are a synthesis from

references provided in the literature review, further interpretations are adapted from:

[1];[11];[16]. For internal damping interpretations and sources: [6];[15];[9];[7];[23].

2.1.1 Kinematic Relationships

In order to develop the relationship between internal stresses and strains in the beam,

and subsequently the equations of motion, the motion of some arbitrary point on the

beam must be defined in terms of the generalized coordinates. Motion of two points

is taken into consideration to assist in dividing the motion into a translation and a

rotation. These points are shown in Figure 2.2. The first point, C, falls on the beam

axis at location x, and in the undeformed configuration, the vector ~r′c =
−→
OC forms

a right angle with the surface of the cross section. The second point, P is at some

arbitrary (y, z) location on the cross section. The vecor ~t =
−→
CP points from the beam

19



y

z

x

C

P

C ′

~rc

P ′

~r

~r′c

~r′

u
p vp

w
p

~ t′

~t

S

S ′

O

Figure 2.2: Beam Element with nodal displacements.
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axis to the point along the cross section. If we follow this point P we will be able

to define the motion of the cross section as a whole, or more succinctly, to define the

displacements up, vp, wp in terms of the coordinates u, v, w, ψ, θ, & φ. The motion of

point P is split into translation and rotation, where ~t is rotated and ~rc is translated

to point to the deformed location P ′. The vector pointing to P in the undeformed

state is defined as

~r = ~rc + ~t (2.1)

Rotations are represented with a rotation transformation matrix,

~t′ = R~t (2.2)

The linearized first order rotational matrix for small angles is represented by

R =


1 −θ ψ

θ 1 −φ

−ψ φ 1

 (2.3)

and the translation with a displacement vector

~r′c = ~rc + ~u (2.4)

Combined motion from P to P ′ can be defined by

~up = ~r′ − ~r (2.5)

where ~up is the vector containing up, vp, &wp. The vector definitions for ~r′ and ~r are

substituted to the above equation to obtain

~up = ~r′c + ~t′ − ~rc + ~t (2.6)

and now using the definition for ~u and ~t′ leads to the simplified expression for the

motion of P

~up = ~u+ (R− I)~t (2.7)
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expanding matrices reveals the equation

~up =


up

vp

wp

 =


u

v

w

+


0 −θ ψ

θ 0 −φ

−ψ φ 0




0

y

z

 (2.8)

Therefore, the motion of any point on the beam may be approximated with

~up =


u− θy + ψz

v − φz

w + φy

 (2.9)

This equation will be used, in conjunction with material properties, to integrate

over the beam cross sectional area and obtain generalized internal beam forces and

moments.

2.1.2 Internal Constitutive Relationship

Stresses are assumed to exist in the beam in the axial direction, and in shear on

the face of the beam section. Stresses in the transverse, or the y and z, directions

are assumed negligible. Shear stresses out of the plane section are assumed to be

vanishing as the differential element shrinks. Internal damping is to be considered

independently from this material constitutive relationship. Written out, these stresses

are represented by the matrix

σij =


σxx σxy σxz

σxy 0 0

σxz 0 0

 (2.10)

Using the Hooke’s Law for a linear elastic isotropic material, expressed as

εij =
1

E
[(1 + ν)σij − νδijσkk] (2.11)
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allows the determination of the stress strain relationship in engineering notation as
σxx

σxy

σxz

 =


E 0 0

0 2G 0

0 0 2G




εxx

εxy

εxz

 (2.12)

where, G = E
2(1+ν)

. Strains are derived from displacements of equation (2.9) using

a linear strain-displacement relationship for infinitesimal strains: 2εij = ui,j + uj,i.

Non-trivial internal strains are
εxx = u′ − θ′y + ψ′z

εxy = 1
2
(v′ − φ′z − θ)

εxz = 1
2
(w′ + φ′y + ψ)

(2.13)

Note that in the case of the Euler-Bernoulli beam derivation the slope in a transverse

direction displacement is equal to the rotation angle about the orthogonal transverse

axis, i.e., v′ = θ and w′ = ψ. Application of those would reduce the system to the

Euler-Bernoulli beam.

It will be proven useful to introduce generalized strains that group strain contri-

butions above as axial, bending, torsion, and shear, represented by the symbols ε, ρ,

ϕ, γ,respectively, as 

ε= u′

ρy = −θ′

ρz = ψ′

ϕ= φ′

γy = v′ − θ

γz = w′ + ψ

(2.14)

Plugging in theses new generalized strains in (2.13) gives
εxx = ε+ ρyy + ρzz

εxy = 1
2
(γy − ϕz)

εxz = 1
2
(γz + ϕy)

(2.15)
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Now the stresses in equation (2.12) can be represented with the displacements or the

generalized strains as
σxx

σxy

σxz

 =


E(u′ − θ′y + ψ′z)

G(v′ − φ′z − θ)

G(w′ + φ′y + ψ)

 =


E(ε+ ρyy + ρzz)

G(γy − ϕz)

G(γz + ϕy)

 (2.16)

Total strain energy from internal stresses can be expressed by the integral expression

U =

∫
V–
σijεijdV– (2.17)

and expanded as

U =

∫
V–

[σxxεxx + 2σxyεxy + 2σxzεxz] dV– (2.18)

Expand strains using generalized strain expressions (2.15) and collect terms on gen-

eralized strains to get

U =

∫
V–

[σxxε+ σxxyρy + σxxzρz + σxyγy + σxzγz + (σxzy − σxyz)ϕ] dV– (2.19)

This internal mechanical energy expression allows us to recognize stresses conjugate

with each generalized strain as the corresponding stress for that phenomena. Integra-

tion allows the determination of the forces and moments related to each generalized

strain as 

N =
∫
A
σxxdA = E(Aε+ Syρy + Szρz)

My =
∫
A
σxxzdA = E(Szε+ Ixyρy + Iyρz)

Mz =
∫
A
σxxydA = E(Syε+ Izρy + Ixyρz)

Qy =
∫
A
σxydA = κG(Aγy − Szϕ)

Qz =
∫
A
σxzdA = κG(Aγz + Syϕ)

Mx =
∫
A

(σxzy − σxyz)dA= κG (Ayγz − Azγy + Jxϕ)

(2.20)

where,



κ = 6(1+ν)
7+6ν

, for circular cross sections.

A=
∫
A
dA Sy =

∫
A
ydA

Sz =
∫
A
zdA Iy =

∫
A
z2dA

Iz =
∫
A
y2dA Jx= Iy + Iz
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κ is the shear coefficient which attempts to correct for the fact that the shear strain

is not constant over the beam cross section. Assuming the central axis of the beam

is coincident with the shear center, then Ay = Az = Ixy = 0. Which simplifies the

conjugate forces to 

N = EAε = EAu′

My = EIyρz = EIyψ
′

Mz = EIzρy = −EIzθ′

Qy = κGAγy = κGA(v′ − θ)

Qz = κGAγz = κGA(w′ + ψ)

Mx = κGJxϕ= κGJxφ
′

(2.21)

These forces will be used to evaluate the motion of a beam element using a free body

diagram and resultant motion.

2.1.3 Differential Equations of Motion

The equations of motion will now be derived for the Timoshenko beam element.

External forces are not included in this derivation. Though they may easily be added

to the diagram of figure 2.3 and included in the analysis. It is also assumed that

the cross section remains planar during deformation and the material properties are

homogeneous through time and space. The derivation is the same as for a Euler-

Bernoulli beam with the exception of the constitutive relations used at the end and the

inclusion of torsion and axial degrees of freedom. Using conservation of momentum

and conservation of the moment of momentum a relationship between inertia and

internal forces is developed. Using Figure 2.3 and applying summation of forces in

the x-direction leads to

(N +
1

2

∂N

∂x
dx)− (N − 1

2

∂N

∂x
dx) = ρAdx

∂2u

∂x2
(2.22)
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Figure 2.3: Beam differential element with generalized forces.
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By Simplifying the above equation, and performing the same steps for the other

directions and moments we get

∂N
∂x

= ρA∂2u
∂x2

∂Qy
∂x

= ρA ∂2v
∂x2

∂Qz
∂x

= ρA∂2w
∂x2

∂My

∂x
−Qz = ρIy

∂2ψ
∂x2

+ ρJxΩ
∂θ
∂x

∂Mz

∂x
+Qy = ρIz

∂2θ
∂x2
− ρJxΩ∂ψ

∂x

∂Mx

∂x
= ρJx

∂2φ
∂x2

(2.23)

Gyroscopic moments have been explicitly added to the summations in the appropriate

equations. The generalized forces of equation (2.21) are substituted in the equilibrium

equations (2.23)



EAu′′ = ρAü

κGA(v′′ − θ′) = ρAv̈

κGA(w′′ + ψ′) = ρAẅ

EIyψ
′′ − κGA(w′ + ψ) = ρIyψ̈ + ρJxΩθ̇

EIzθ
′′ + κGA(v′ − θ) = ρIz θ̈ − ρJxΩψ̇

κGJxφ
′′ = ρJxφ̈

(2.24a)

(2.24b)

(2.24c)

(2.24d)

(2.24e)

(2.24f)

In matrix form, this system of equations can be represented by this equation

Me~̈u + ΩGe~̇u−
(
∂()

∂x
Se − PeSe

)
~u = 0 (2.25)
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where,

Me =



ρA 0 0 0 0 0

0 ρA 0 0 0 0

0 0 ρIy 0 0 0

0 0 0 ρIz 0 0

0 0 0 0 ρA 0

0 0 0 0 0 ρJx


Ge =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ρJx 0 0

0 0 −ρJx 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



Pe =



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Se =



κGA∂()
∂x

0 0 −κGA 0 0

0 κGA∂()
∂x
κGA 0 0 0

0 0 EIy
∂()
∂x

0 0 0

0 0 0 EIz
∂()
∂x

0 0

0 0 0 0 EA∂()
∂x

0

0 0 0 0 0 κGJx
∂()
∂x


(2.26)

and ~u = [v, w, ψ, θ, u, φ]T. The principle of virtual displacements is utilized on the

equations of motion to obtain the weak form of the equations of motion and integrated

over the length of the beam.∫ l

0

δ~uTMe~̈udx+

∫ l

0

δ~uTΩGe~̇u−
∫ l

0

δ~uT
∂()

∂x
Se~udx+

∫ l

0

δ~uTPSe~udx = 0 (2.27)

integration by parts on the third term and replacing S with DeB, and making use of

the Identity matrix, I where ∂()
∂x

I is interpreted here as if the partial was a scalar∫ l

0

δ~uTMe~̈udx+ Ω

∫ l

0

δ~uTGe~̇u +

∫ l

0

δ~uT

(
∂()

∂x
I + P

)
DeB~udx = 0 (2.28)

De =



κGA 0 0 0 0 0

0 κGA 0 0 0 0

0 0 EIy 0 0 0

0 0 0 EIz 0 0

0 0 0 0 EA 0

0 0 0 0 0 κGJx


& B =



∂()
∂x

0 0 -1 0 0

0 ∂()
∂x

1 0 0 0

0 0 ∂()
∂x

0 0 0

0 0 0 ∂()
∂x

0 0

0 0 0 0 ∂()
∂x

0

0 0 0 0 0 ∂()
∂x


(2.29)

Notice that ∂()
∂x
I + P = BT so the equation of motion becomes∫ l

0

δ~uTMe~̈udx+ Ω

∫ l

0

δ~uTGe~̇u +

∫ l

0

δ~uTBTDeB~udx = 0 (2.30)
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Me is the inertia of the element, Ge is the rotating inertia, De is the material stress-

strain relationship, and Be is the strain-displacement operator. The solution of this

differential system motivates a separation of variables that will be discussed in the

next section.

2.1.4 Shape Functions

The displacements thus far have been assumed to be functions of both position and

time. Now the total displacement is separated into functions that depend on time and

functions that depend on position. This is a fundamental part of the discretization

of the beam element, and the use the finite element method.



~u(x, t) = N(x)~q(t)

~̇u(x, t) = N(x)~̇q(t)

~̈u(x, t) = N(x)~̈q(t)

δ~u(x, t) = N(x)δ~q(t)

(2.31)

~u = [v, w,−ψ, θ, u, φ]T & ~q = [v1, w1,−ψ1, θ1, v2, w2,−ψ2, θ2, u1, φ1, u2, φ2]T. This

specfic order of ~q is chosen with u and φ at the end to ease the condensation of

the axial and torsional degrees of freedom out of the system if their use is not nec-

essary for the system of interest. ψ angles are defined as negative to allow for the

same stiffness matrix to define the motion in both planes, and more importantly, to

allow for the use of the complex plane to simplify the problem. The shape functions

N(x) interpolate the displacements between the beam ends. These functions must

must solve the static portion of the differential equations (2.24). These shape func-

tions are chosen as a polynomials that satisfy the boundary nodal displacements and

rotations at the ends of a beam element. These nodal degrees of freedom, depicted in

Figure 2.4 are considered to be interpolated through the beam element by the shape

functions. Interpolation functions chosen are listed in Equation (2.32). Axial dis-
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Figure 2.4: Beam Element with nodal displacements.

placement, u, and torsional rotation, φ are independent, so their shape functions are

chosen as polynomials that satisfy the differential equation. Conversely, transverse

displacements, v & w, and bending rotations, ψ & θ are coupled. Coupling of the

shape functions has been proven to reduce some negative effects of linearly interpo-

lated elements [17]. Polynomial functions are chosen for v & w and their rotational

counterparts are derived using the differential relations.



u = c1 + c2x

v = c3 + c4x+ c5x
2 + c6x

3

w = c7 + c8x+ c9x
2 + c10x

3

φ = c11 + c12x

(2.32a)

(2.32b)

(2.32c)

(2.32d)

c1,2,... are the unknown constants of the polynomial solutions. Using transverse dis-

placement of equations (2.32b) & (2.32c) in the differential equations (2.24b), (2.24c),
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(2.24d), (2.24e) the interpolation functions of bending rotations are derived as:

ψ = Kyc10 − c8 − 2c9x− 3c10x
2

θ = Kzc6 + c4 + 2c5x+ 3c6x
2

(2.33a)

(2.33b)

where, Ky = 6EIy
κGA

& Kz = 6EIz
κGA

.

Boundary conditions for the interpolation polynomials of equations (2.32) & (2.33)

are defined as the components of the vector ~quj = u(xj) and similarily for other

degrees of freedom. Where, j = 1, 2 and defines the two states. In this derivation,

x1 = 0 and x2 = l. Application of these boundary condition results in the below

relationship with the polynomial constants.

u1

u2

v1

v2

w1

w2

ψ1

ψ2

θ1

θ2

φ1

φ2



=



1 0 0 0 0 0 0 0 0 0 0 0

1 l 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 l l2 l3 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 l l2 l3 0 0

0 0 0 0 0 0 0 -1 0 -Ky 0 0

0 0 0 0 0 0 0 -1 -2l -Ky-3l
2 0 0

0 0 0 1 0 Kz 0 0 0 0 0 0

0 0 0 1 2l Kz+3l2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 l





c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12


(2.34)

Inversion of this matrix results in a system of equations defining the constant c1

through c12. These constants are then substituted in to the polynomial expressions
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(2.32) & (2.33) giving the interpolations as functions of the nodal displacements as

u = N1u1 +N2u2

v = Tt1yv1 + Tt2yv2 + Tr1yθ1 + Tr2yθ2

w = Tt1zw1 + Tt2ww2 + Tr1zψ1 + Tr2zψ2

ψ = Rt1zw1 +Rt2ww2 +Rr1zψ1 +Rr2zψ2

θ = Rt1yv1 +Rt2yv2 +Rr1yθ1 +Rr2yθ2

φ = N1φ1 +N2φ2

(2.35)

with,

N1 = 1− ζ N2 = ζ

Tt1y,z = 1
1+αy,z

(2ζ3 − 3ζ2 − αy,zζ + 1 + αy,z) Tt2y,z = 1
1+αy,z

(−2ζ3 + 3ζ2 + αy,zζ)

Tr1y,z = l
1+αy,z

[ζ3 − (2 + 1
2
αy,z)ζ

2 + (1 + 1
2
αy,z)ζ] Tr2y,z = l

1+αy,z
[ζ3 − (1− 1

2
αy,z)ζ

2 − 1
2
αy,zζ]

Rt1y,z = 6/l
1+αy,z

(ζ2 − ζ) Rt2y,z = 6/l
1+αy,z

(−ζ2 + ζ)

Rr1y,z = 1
1+αy,z

(3ζ2 − (4 + αy,z)ζ + 1 + αy,z) Rr2y,z = 1
1+αy,z

(3ζ2 − (2− αy,z)ζ)

(2.36)

where, αy = 2Ky/l
2 = 12EIy

κGAl2
, αz = 2Kz/l

2 = 12EIz
κGAl2

, & ζ = x/l. (2.35) is expressed in

matrix form as it appears in (2.31) where

N(x) =



Tt1y 0 0 Tr1y Tt2y 0 0 Tr2y 0 0 0 0

0 Tt1z Tr1z 0 0 Tt2z Tr2z 0 0 0 0 0

0 Rt1z Rr1z 0 0 Rt2z Rr2z 0 0 0 0 0

Rt1y 0 0 Rr1y Rt2y 0 0 Rr2y 0 0 0 0

0 0 0 0 0 0 0 0 N1 0 N2 0

0 0 0 0 0 0 0 0 0 N1 0 N2


(2.37)

still with the generalized displacement vector ~q = [v1, w1,−ψ1, θ1, v2, w2,−ψ2, θ2, u1, φ1, u2, φ2]T

Shape functions depend on the term α which is sometimes called the shear cor-

rection factor. This shear correction factor is proportional to the square of the ratio

of radius to length of the beam element. So, as the length increases relative to the

radius, α tends to zero. It will be evident in the following section that as α ap-

proaches zero, the equations of motion approach the equations of the Bernoulli-Euler
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beam. A spatial representation of the shape functions of equation (2.36) is given in

figure 2.5. Shape functions plotted with respect to the non-dimensional length lend

Tt1 Tr1

Tt2 Tr2

Rt1 Rr1

Rt2 Rr2

(a) length to radius ratio of 100.

Tt1 Tr1

Tt2 Tr2

Rt1 Rr1

Rt2 Rr2

(b) length to radius ratio of 1.

Figure 2.5: Shape Functions as they vary with ζ using two different ratios
of length to radius of beam element.

a visualization to the contribution of each shape function. Shape functions for axial

and torsion are omitted since they are just linear polynomials. Each individual plot

can be interpreted as a transformation from the corresponding input coordinate to

the output. For instance, the first shape function plot is the output of v(x) with an

input of v1 while all other coordinates are zero. The shape makes sense under this

interpretation, as the translation starts at some value, v1 and decreases to zero at the

end since v2 is zero. Also, notice how bending is nearly completely eliminated as the

radius approaches the length as in Figure 2.5b. All shapes the Timoshenko beam will

make in the model results is a linear combination of the shapes shown here.
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2.1.5 Finite Equations of Motion

To obtain the equations of motion in terms of the generalized coordinates, ~q, dis-

placement variables ~u are replaced with definitions in equation 2.31.∫ l

0

NTδ~qTMeN~̈qdx+ Ω

∫ l

0

NTδ~qTGeN~̇qdx+

∫ l

0

NTδ~qTBTDeBN~qdx = 0 (2.38)

Note that ~q is not dependent on x so it, and it’s derivatives, may be pulled out of the

integrals. Define B = BN and substitute in, noting that B interpolates strains from

discrete displacements ~q. The motion equations are then∫ l

0

NTMeNdx~̈q + Ω

∫ l

0

NTGeNdx~̇q +

∫ l

0

BTDeBdx~q = 0 (2.39)

Define 

Me =

∫ l

0

NTMeNdx

Ge =

∫ l

0

NTGeNdx

Ke =

∫ l

0

BTDeBdx

(2.40a)

(2.40b)

(2.40c)

so that, the general equations of motion for the timoshenko beam element are

Me~̈q + ΩGe~̇q + Ke~q = 0 (2.41)

notwithstanding the inclusion of viscous and hysteretic internal damping phenomena.

Derivations, and inclusion of these phenomena in the equations of motion are to be

included in the following section.

2.1.6 Rotating Internal Damping

Rotating damping is the main cause of instability in rotating machines. Non-rotating

damping, such as the damping contributions from bearing supports, introduce a sta-

bilizing effect. But, as rotating damping is dependent on rotation, its direction of
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force can contribute to destabilization. Typically, friction components such as bear-

ings with shrink fits or oil bearings are responsible for this destabilizing force. Due

to the inherent complexity of modeling loose bearing components, or shrink fit dy-

namics, the analysis of the internal damping in the shaft elements is considered alone

for this work. This will allow for the study of the destabilizing effect in general with-

out requiring too much specificity in design parameters. Inclusion of the rotating

damping effect in this way will allow for the design of components, and geometry of

rotor system, to maximize stability. This stability analysis is only possible with the

inclusion of some destabilizing force, [9],[10],[15],[24].

To motivate understanding of this force a simple derivation is provided with a

rotating damping whose force is proportional to the flex of rate of change of the flex

in the shaft. This is easier to define in the rotating reference frame, as the variables

in this coordinate system directly represent the shaft flex from its neutral position.

The rotating coordinates are located in the same plane as the fixed coordinates, but

they rotate with the shaft speed, Ω. They are angularly displaced from the fixed

coordinates at any point in time by the angle Ωt. The viscous damping in this

rotating coordinate system is defined as

~Fξη = −cr

 ξ̇c

η̇c

 (2.42)

translating this force back to the stationary reference frame requires the rotation

transformation matrix

R =

 cos Ωt sin Ωt

− sin Ωt cos Ωt

 (2.43)
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which transforms stationary into rotating coordinates as

 ξc

ηc

 = R

 yc

zc


 ξ̇c

η̇c

 = R

 ẏc

żc

+ Ṙ

 yc

zc


(2.44)

where,

Ṙ = Ω

 − sin Ωt cos Ωt

− cos Ωt − sin Ωt

 (2.45)

Substituting the second equation in 2.44 for the velocities in 2.42

~Fxy = −cr

 ẏc

żc

− crΩ
 0 1

−1 0


 yc

zc

 (2.46)

From equation (2.46) a dependence on both velocity and position is evident. The

portion dependent on the velocity is inherently stable as pulls opposite the motion.

Conversely, the portion dependent on position cross couples the two displacements.

This causes a destabilizing effect that grows as Ω increases. A net destabilizing force

is produced once the latter portion of the exceeds the former. Without the presence

of other non-rotating damping forces, the system will destabilize.

For the beam element, the constitutive relationship given in [24] is comprised of

both viscous and hysteretic forms of damping, ηv & ηh respectively.

σxx = E

{
εxx√
1 + η2

h

+

(
ηv +

ηh

ω
√

1 + η2
h

)
ε̇xx

}
(2.47)

Through the use of kinematics to obtain strain-displacement relations from the above

constraints,  εxx = −r cos (Ω− ω) t∂
2R
∂x2

ε̇xx = (Ω− ω)r sin (Ω− ω)t∂
2R
∂x2
− r cos (Ω− ω)t ∂

∂t
∂2R
∂x2

(2.48)
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and inspection to obtain moment equations, My =
∫ 2π

0

∫ a
0

[w + r sin Ωt]σxxdr(rd(Ωt))

Mz =
∫ 2π

0

∫ a
0
−[v + r cos Ωt]σxxdr(rd(Ωt))

(2.49)

we can complete a moment bending relationship to be used in the equations of motion{
My

Mz

}
= EI

[
ηa Ωηv + ηb

Ωηv + ηb −ηa

]{
v′′

w′′

}
+ EI

[
ηv 0

0 −ηv

]{
v̇′′

ẇ′′

}
(2.50)

where, ηa = 1+ηh√
1+η2h

& ηb = ηh√
1+η2h

Using the same strategy followed when solving for the weak form of the beam

differential equations following the Principle of Virtual Displacements starting at

equation (2.27) will reveal the new equations of motion. Then use of a seperation of

variables as defined by equation (2.31) to arrive at the total beam element equations

of motion including internal damping as

Me~̈q + (ηvK
e + ΩGe)~̇q + [ηaK

e + (Ωηv + ηb)C
e]~q = 0 (2.51)

where,

I =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


& Ce =

∫ l
0
BTIDBdx (2.52)

Ce is the “Circulation matrix”, or the skew symmetric stiffness matrix.

2.1.7 Beam Element in Complex Coordinates

Complex coordinates collapse the equations of each plane into one set of equations.

This lends properties to a axisymmetric rotor systems that will be exploited in the

analysis of the model. For the complex analysis in this body of work, the system

is assumed to be axisymmetric and the torsional and axial degrees of freedom are
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omitted. Since the contributions from axial and torsional degrees of freedom are

uncoupled from the system, there condensation has no effect on the remainder of

system matrices. Complex coordinates used here are defined as:

~s =

 ~r

~p

 =

 v + iw

θ − iψ

 (2.53)

Because the element is axisymmetric, and the special form of coordinates is used,

symmetric beam equations in one plane hold for the complex plane and skew sym-

metric matrices become complex versions of the same matrix. Elemental matrices

can be formed using the collapsed version of the shape functions matrix

Nc =

[
Tt1y Tr1y Tt2y Tr2y

Rt1 Rr1 Rt2 Rr2

]
(2.54)

in

~s = Nc~qc (2.55)

where ~qc = [~s1,~s2]T.

To convince this property of the system in the complex plane, a proof for the

elemental equations of motion will be made. Taking equation (2.24b), adding equa-

tion (2.24c) multiplied by the imaginary unit i and using the definition for complex

variables ~p and ~r leads to the transverse equation of motion in the complex plane

κGA(~r′′ − ~p′) = ρA~̈r (2.56)

and taking equation (2.24e) and subtracting equation (2.24d) multiplied by i gives

the rotation equation in the complex plane

EI~p′′ − κGA(~r′ − ~p) = ρI~̈p+ iρJΩ~̇p (2.57)

which by inspection of both of these equations it is evident that the form is the same

as equations (2.24b) and (2.24e) except for the imaginary unit on the cross coupled
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parts of the equation. Now that this idea is motivated, the finite element equations

of motion analogous to equation (2.51) are

Mec~̈qc + (ηvK
ec − iΩGec)~̇qc + [ηaK

ec − i(Ωηv + ηb)C
ec]~qc = 0 (2.58)

2.2 Disk Nodal Equations

Since the beam element has been discretized into nodal degrees of freedom, so long

as the locations of disks in the model are chosen to coincide with one of these nodal

locations, the expressions for stiffness and inertia can be directly combined with the

global matrices at that node. The mass element is considered as a body at a point

with inertia, gyroscopic moments, and unbalance considered as external forces.

Md~̈qk + ΩGd~̇qk = Ω2~Fd (2.59)

The superscript d in the above equation represents that the matrix or array is for

a disk, and the subscript k on the displacement array indicates the array is only

displacements for a single node, written out as: ~qk = [v, w, ψ, θ, u, φ]T. The matrices

and forcing array of (4.6) are as follows

Md =



ρAl 0 0 0 0 0

0 ρAl 0 0 0 0

0 0 ρIz 0 0 0

0 0 0 ρIy 0 0

0 0 0 0 ρAl 0

0 0 0 0 0 ρJx


G =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 ρJx 0 0

0 0 −ρJx 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



~Fd =



ρAlε cos(Ωt+ δε)

ρAlε sin(Ωt+ δε)

−ρ(Iy − Jx)χ sin(Ωt)

ρ(Iz − Jx)χ cos(Ωt)

0

0



(2.60)
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Disk unbalance is caused by an eccentricity, or a distance between the axis of

rotation and the center of mass of the disk. Eccentricity is represented here as ε and

is equivalent to that geometric distance. The unbalance moments, third and fourth

equations of ~Fd in (2.60), are caused by the skew angle, χ, which is the angle the

disk major axis forms with the axis of rotation. A more detailed explanation of the

moment function from skew angle can be found in [18]. The major axis is the axis

normal from the disk face from which the polar moment of inertia, Jx is defined.

2.2.1 Disk in complex coordinates

Disk equations of motion (4.6) are converted to the complex plane in the same manner

the beam element was derived in §2.1.7

Mdc~̈qck − iΩGdc~̇qck = Ω2~Fdc (2.61)

where,

Mdc =

 ρAl 0

0 ρI

 , Gdc =

 0 0

0 ρJx

 , ~Fdc =

 ρAlεeiδεeiΩt

ρ(I − Jx)χeiΩt


2.3 Bearing Nodal Equations

Bearings in this work are to be considered massless points of stiffness and damping

acting at a node. Represented by the local equations of motion

Db~̇qk + Kb~qk = 0 (2.62)

The superscript b indicates the matrix is for a bearing. A simple model for the

stiffness and damping is used. Structural damping of the bearing is considered to

be proportional to the stiffness, Raleigh Damping for the local bearing system. The
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stiffness matrix is comprised of only transverse stiffness terms, as

Kb =



kyy kyz 0 0 0 0

kzy kzz 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Db = aKb (2.63)

The stiffness is typically simplified further to represent an orthotropic bearing, where

kyz = kzy = 0 or further yet as a isotropic bearing, where kyz = kzy = 0 & kyy = kzz =

k. Generally, these unknown parameters of stiffness are determined by changing the

values to achieve the correct natural frequencies of the system.

2.3.1 Bearing in Complex Coordinates

Following the same methodology as sections §2.1.7 & §2.2.1, the equation of motion

in the complex plane is

Dbc~̇qck + Kbc~qck = 0 (2.64)

where,

Kbc =

 k 0

0 k

 , Dbc = aKbc

k is the isotropic bearing stiffness. It is possible to define the complex system with

anisotropic terms of stiffness, but the complexity added to the system outweighs the

benefit of using the complex plane in the first place.

2.4 Assembly of the Global System of Equations

The matrices in the global system of equations are determined using the direct ap-

proach of taking the summation of the inertia, damping, stiffness, or force at each

degree of freedom.
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2.4.1 Assembly In the Real Coordinate System

Combining all beam elements, disks, and bearings leads to the following global equa-

tions of motion in real coordinates.

M~̈q + G~̇q + K~q = Ω2~F (2.65)

where M = Me
G + Mb

G + Md
G D = ηvK

e
G + ΩGe

G + ΩGd
G + Db

G

K = ηaK
e
G + (Ωηv + ηb)C

e
G + Kb

G
~F = ~Fd

G

Subscript G indicates the matrix is in the global coordinate system that contains all

of the degrees of freedom. Care must be taken here to associate the correct degrees of

freedom, and recognize that some of the matrices are elemental and others are nodal.

2.4.2 In the Complex Coordinate System

Performing the same summation as in the real coordinate system, but using complex

coordinates results in the following global equations of motion. There are half as many

equations in this expression than in the equivalent expression in real coordinates 2.65.

M~̈qc + D~̇qc + K~qc = Ω2~F (2.66)

where, M = Mec
G + Mdc

G + Mbc
G D = ηvK

ec
G − iΩ(Gec

G + Gdc
G ) + Dbc

G

K = ηaK
ec
G − i(Ωηv + ηb)C

ec
G + Kbc

G
~F = ~Fdc

G

2.5 Analysis of the Resulting Model

A benefit of the finite element method is the resulting general linear Ordinary Dif-

ferential Equations (ODEs) that are left to solve in equations (2.65) & (2.66). Many
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techniques exist to provide frequency and time domain information on the solution

of this system of equations. In their current state, equations (2.65) & (2.66) may be

analyzed using frequency domain analysis techniques to be discussed in §3. On the

other hand, in order to provide time domain solutions, numerical integration of these

ODEs must be conducted. Details of the process of numerical integration is out of the

scope of this work. Resulting time domain solutions of the ODEs for a specific nodal

location can then be processed using the techniques outlined in §1. This time do-

main method of processing the FEM model is vital for analyzing non-linear differential

equations because frequency domain analysis of non-linear differential equations often

produces disjointed results that are difficult to extrapolate useful information from.

Non-linear effects may result from a more detailed model of bearings, anisotropic

beam elements, loose fittings, and many other sources.
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Chapter 3

FREQUENCY DOMAIN ANALYSIS

Eigenvalues and eigenvectors of equations of motion will be used to provide informa-

tion on the modal content of the system being analyzed. Eigenvalues can provide

information on the natural frequencies, damping, and stability of the modes of vi-

bration. Eigenvectors will be used to describe the shape of each of these modes of

vibration including relative phase information for each nodal location. Frequency

response functions will describe amplitude of response, phase lag of response from

forcing input, and further stability information on modes. Inspiration for the content

in this section came about as a synthesis of content provided on frequency domain

analysis in [4], & [10].

Rotordynamic analyses are often interested in the dependence of the system on

the spin speed Ω. The inclusion of this parameter as a time dependent variable would

make the solutions of the system much more difficult. In this work, the spin speed

is considered to be constant in each operation, taken in a series of operations as the

spin speed is changed. In this way, the effect of spin acceleration is not taken into

account, but the dependence on spin speed is approximated. For the vast majority

of rotordynamic systems this approximation is sufficiently accurate, especially when

considering that it is not a very common neccessity to ramp up quickly in speed.

For a simple critical speed computation, assuming the form of a homogeneous

solution ~q = eiΩt while neglecting all damping and forcing in the equations of motion

will provide the dynamic undamped forced whirling matrix. Exploring the eignevalues

of this equation will give the undamped critical speeds of the system. In the case that

the natural frequencies (whirl speeds) need to be calculated independent of spin speed,

like in the Campbell diagram, a solution of the form ~q = est is assumed so that the
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Figure 3.1: Diagram of Two disk model example problem.

spin speed and whirl speed can vary independently. Eigenvalues of this dynamic free

whirling matrix will provide complex numbers of which the real part is proportional to

damping, and the imaginary is damped natural frequencies of the system. Particular

integrals of the form ~q = eiωt & ~q = eiΩt will be assumed to find the frequency

response.

Details of the different analyses to follow will be accompanied by an example

problem to demonstrate the results. The problem of interest is a simple two disk

rotor system depicted in Figure 3.1. The geometry and material properties are listed

in Table 3.1. The rotor is discretized as in figure 3.1 into 6 elements with geometry

of L = 1.8[m], a = .3[m], & b = .6[m] and bearings located at the ends of the shaft.

3.1 State Space Representation and the Eigenvalue Problem

The system can be represented in state space where,

~̇z = A~z + B~w, ~z =

 ~̇q

~q

 (3.1)
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Table 3.1: Properties of disks, shaft elements, and bearings of the example
problem.

ρ[ kg
m3 ] ds[m] ν E[Pa] ηv[s] ηh

Shaft 7850 0.1 0.3 210× 109 0.0002 0

ρ[ kg
m3 ] dd[m] ld[m]

Disks; D1, D2 7850 0.6 0.1

kx[
N
m

] ky[
N
m

] cx[
Ns
m

] cy[
Ns
m

]

Bearings; B1, B2 1× 107 1× 107 100 100

B~w is an input into the system, which here will represent the forces due to unbalance.

Solving for A & B~w

A =

 −M−1D −M−1K

I 0

 & B~w = Ω2

 M−1~F

0

 (3.2)

This equation is valid in both the complex and real coordinate plane. With the use

of complex coordinates, the state vector is represented by ~z = [~̇qc, ~qc]T. I & 0 are

appropriately sized to match the matrices in the system of choice. A is the dynamic

matrix of the system, which represents the dynamics in a single expression. Now in

the form of a first order linear differential equation, numerical integration and many

other numerical analysis techniques may be applied.

Using equation (3.1) and assuming a solution of ~z = ~Θest while neglecting the

forcing term B~w leads to the eigenvalue problem

(A− s)~Θ = 0 (3.3)

~Θ is the vector containing the eigenvectors. Since the state in which these equations

are defined is the combination of displacement and velocity, the eigenvectors are

defined as a set corresponding to both displacement and velocity. This effectively
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duplicates the set as

~Θ =


~θ~̇q

~θ~q

 =

 s~θ~q

~θ~q


3.2 Dynamic Response

The dynamic response of the system to unbalance can be achieved by substituting

the particular integral ~q = ~q0e
iΩt into the equation of motion (2.65),(2.66). ~q0 = (−Ω2M + iΩD + K)−1Ω2~F

~q0 = H(Ω)
(3.4)

where H(ω) is called the complex frequency response of the system due to unbal-

ance. The frequency response acts as a transfer matrix that converts inputs, ~F, into

outputs ~q0. Use of this frequency response function with real coordinates requires

a multiplication of the complex unit i to one of the orthogonal directions to ensure

correct phase information. For the coordinate system set in §2.1 this results in i times

w and i times ψ. This multiplication reflects the fact that w lags v by 90 degrees

and ψ lags θ by 90 degrees in reference to a counterclockwise Ω. Values of H are

complex with the absolute part representing the magnitude of the response, and the

angle representing the phase delay of the response from the input. If the input phase

is known in terms of shaft angle, then the phase delay difference of the response angle

from the shaft angle of the input can be interpreted as a shaft angle output.

The response can also be calculated using the particular integral ~q = ~q0e
iωt where

ω is the independent whirl frequency. Then the response is found as the transfer

response of the arbitrary oscillation, while spin speed remains independent.

For the example problem defined in §3 the unbalance response to a disk b unbal-

ance of 2× 10−5[m] is shown in Figure 3.2. Note that the phase lag angle and the

amplitude of the response are plotted side by side forming the Bode diagram. For this
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Figure 3.2: Bode diagram of the second disk subject to an unbalance at
the second disk. Amplitudes of v & w are identical for this asymmetric
system, phase of w would be lagging v by 90[deg].

same set of data, real and imaginary parts of the complex frequency response may

be plotted on the complex plane to form the Nyquist diagram. Figure 3.3 contains

a seperate diagram for each mode. During a natural frequency, if one of the circles

traverses in the counterclockwise direction that mode is deemed unstable. Also, if the

path of one circle crosses the path of the other pertaining to the orthogonal direction,

the whirl is in the negative direction. Using the particular integral of ~q = ~q0e
iωt

instead of the synchronous solution, provides whirl frequencies independent of spin

speed. This allows for the investigation of all modes of vibration at a specific spin

speed. For instance, if the spin speed is set to 4000[RPM ] and the Nyquist plot

for the first mode is revisited (Figure 3.4) it is evident that the path traced is in

the counter-clockwise direction indicating instability of mode 1 at the spin speed of

4000[RPM ].
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Figure 3.3: Nyquist plots for the first two modes at node 6 for the example
two disk problem.
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Figure 3.4: Nyquist Diagram for the first mode at node 6 in the whirl speed
range 1100 < ω < 1300[RPM] at a spin speed, Ω = 4000[RPM]. Counter-
clockwise path indicates instability.
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3.3 Roots Locus and Stability Analysis

One valuable facet of a rotordynamic model is its ability to predict instability. Unsta-

ble operation of rotor systems can lead to failures and unsafe operating conditions.

Before the advent of modern predictive models for rotating machinery, it was not

common to operate a machine above the first critical speed. Internal damping and

other rotating damping can cause a subsynchronous whirl when operating above the

first critical speed, this would often lead to failure of machines. The rotating damp-

ing effect is worse for machines with stiff bending modes, and is often instigated by

loose fittings, shrink fits, and couplings. As mentioned in §2.1.6, the effect of external

rotating damping sources will not be investigated here. Rather, the stability will be

tested by modeling the internal damping of the rotor due to viscous heat production

during loading and unloading of the beam in bending. See §2.1.6 for a more detailed

explanation and derivation.

Roots Locus is the plot of eigenvalues on the <−= plane as some value they are

dependent on changes. In rotordynamic analysis the dependent variable is often the

spin speed Ω. Using the definition of the state space eigenvalue problem set out in

(3.3), the eigenvalues s represent a complex set of which the real part is proportional

to damping and the imaginary is the damped natural frequency. The roots locus is

useful in determining stability of the system, and which mode is responsible for the

instability. Using the eigenvalues s of the eigenvalue problem defined in equation

(3.3) on the example problem defined in §3 a plot of the roots locus can be found

as in figure 3.5. Internal damping coefficient, ηv, is added to the system at the

value of 0.0002[s]. The first three modes are presented with the negative complex

eigenvalue being represented in the positive imaginary axis alongside each positive

mode of vibration. In completely symmetric systems, positive and negative modes

have identical eigenvalues at a spin speed of zero. As the spin speed increases, positive
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Figure 3.5: Roots Locus of the example problem with an internal damping
coefficient of 0.0002[s].

modes move in the positive real direction–becoming more unstable. On the other

hand, the negative frequencies move in the negative real direction–becoming more

stable. This phenomena of the positive modes becoming more unstable and the

negative becoming more stable is a general trend, but not a rule, rotating damping

defined in §2.1.6 assists in this trend. It is evident by looking at figure 3.5 that the

system becomes unstable at some point, as many of the eigenvalues are in the positive

real region of the plane. According to the plot, the first and second modes both

become unstable as speed increases. Gyroscopic effects tend to increase the whirl

frequency (imaginary part of eigenvalue) of the positive mode, while the opposite

effect is seen in the negative mode. In general, the effect of non-rotating damping is

to rotate modes in the counter-clockwise direction, at first away from the imaginary

axis, and eventually on to the real axis when the mode becomes over-damped. The

goal of the application of the magnetic bearing in §4 will be to provide enough non-

rotating damping to render as many modes as possible over-damped.
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Figure 3.6: Roots Locus of the example problem in 3-D with an internal
damping coefficient of 0.0002[s].

The Roots Locus for the example problem is also presented in three dimensions

to lend in the understanding of the relationship with spin speed. This can be seen in

Figure 3.6. A direct method of measuring the stability of the system is to observe only

the real part of the eigenvalues of the dynamic matrix as they vary with spin speed.

Since the solution was assumed the be of the form ~z = ~Θest, then the eigenvalues

represent the values of the complex exponent s. Splitting s into its real and complex

components as s = σ+ iωd, and plugging into ~z gives: ~z = ~Θeσ+iωd . By inspection, it

is evident that when the real part is positive, the response will grow without bound–an

unstable system.

Damping is commonly represented as a the ratio of the real part of the eigenvalue

to the natural frequency as

ζ =
−σ
ωn

, ωn =
√
σ2 + ω2

d (3.5)
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Figure 3.7: Stability plot of the example problem.

where ζ is the damping ratio, and ωn is the natural frequency. The stability margin,

or the range of speeds through which the system remains stable can be determined

by plotting the maximum real part, <(s), of the set against spin speed. The point at

which <(s), or σ, crosses the real axis is the threshold of stability. The plot which

represents this is termed the Stability Margin plot, and is shown in 3.7 for the example

problem defined in §3.

Finally, the stability can be analyzed using the damping coefficients(ζ) plotted

against speed. This figure, shown in 3.8, indicates instability as when ζ drops below

zero.

3.4 Campbell

The Campbell diagram correlates the spin speed and the whirl speed. Whirl speed is

calculated as the imaginary part of the complex eigenvalue defined by the eigenvalue

problem in equation 3.3. Spin speed is varied while calculating all of the critical whirl
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Figure 3.8: Damping ratio of the first three modes of the example problem,
with indication of threshold of stability for each mode.

speeds at each step of spin speed. The campbell diagram for the example problem

is given in figure 3.9. This diagram can be used to discern the critical speeds of the

system by inspecting where the ω = Ω synchronous line passes through positive and

negative modes in this speed range. Here the synchronous line passes through three

separate modes, each with a positive and negative whirl speed. Note: with the large

influence of the gyroscopic effect in the example problem presented here, the positive

and negative whirl speeds for the second and third modes diverge from one another

rather quickly, but this is not the case for the first mode. A physical interpretation

of this phenomena will be presented in §3.5

3.5 Shapes

Deformed shape of each mode can be predicted using the eigenvectors of the eigenvalue

problem from equation 3.3. Eigenvectors contain displacement arrangement that

corresponds to a natural frequency; this includes phase and relative amplitude of

the generalized displacements from one another. A simple model will be utilized to

conceptualize this idea, consider a rigid rod that can only translate in one direction at

each end. The eigenvectors will contain all linearly independent combinations of the
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Figure 3.9: Campbell Diagram of the example problem.

movement of the left side relative to the right. This would be in general; opposite left

and right (i.e. one up, one down), and same left and right(i.e. both up, or both down).

The bending modes of the beam operate in a similar manner but scaled up, and just

like in the simple case, including the same number of modes as there are degrees of

freedom in the system. Since the state space representation used for eigenanalysis

contains ~̇q, & ~q the eigenvector will contain 2N modes. For a general ith mode

of vibration, the eigenvector ~Θi contains the displacement information. But, since

the portion of ~Θi pertaining to velocities, ~θ~̇qi, is a linear combination of ~θ~qi, all of

the information is contained in one of these arrays. Therefore, the interpolation of

displacements for the ith mode is given by

~ui = N~θ~qi (3.6)

where, the value of ~ui is now a function of x. So, through the choice of an array of

positions that span the length of the beam element the displacement, and phase angle

distribution of the ith mode of vibration is determined. Amplitude in eah direction is
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taken as the absolute value of the corresponding eigenvector value for that node and

that degree of freedom. Phase angle is obtained from the angle of that same complex

value. Phase angle and amplitude of an transverse pair may be used to create an

orbit of a beam axis location x. Then all orbits along the beam axis can be stacked

and a shape is formed as in figure 3.10.

Shape figures for the first 3 modes of the example problem are presented in Figures

3.10a,3.10b, and 3.10c. Note that the real and imaginary parts of the eigenvalues are

listed along with the shapes. Also, note that the speed is chosen to coincide with the

damped natural frequency so that this is the critical speed bending shape. Shapes of

beam modes may be determined for any spin speed Ω.

<(s): -1.7

=(s): 1166[RPM]

Ω: 1166[RPM]

(a) Mode Shape 1.

<(s): -9.2

=(s): 2961[RPM]

Ω: 2961[RPM]

(b) Mode Shape 2.

<(s): -70

=(s): 6233[RPM]

Ω: 6233[RPM]

Beam Shape
Orbit Path

(c) Mode Shape 3.

Figure 3.10: Modal shapes of the example problem.

A physical interpretation of the selective effect gyroscopic moments have on the

whirl speeds of different mode shapes can be presented by taking the mode shapes

into account. Recall that the disks in the example are mounted at nodal locations

2 & 3. In figure 3.10 it is evident that in the first mode, Figure 3.10a, both disks

are translating together. As a matter of fact, most of all the points of the system

are translating in phase. This type of mode is called a cylindrical mode for the
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fact that as the shaft’s path is traced, as it is in 3.10a, it forms a cylinder. The

consequence of this type of motion is small transverse rotation angles, ψ & θ, of

the mass elements. Since the gyroscopic moments are proportional to these angles,

their magnitude is very low compared to transverse effects and as a result the whirl

speeds are nearly unaffected by spin speed changes. On the contrary, modes 2 & 3

of figures 3.10b & 3.10c respectively, the angle of the disks and other mass elements

is changing significantly through rotation. Because of this, large gyroscopic moments

induce an out of phase force that stiffens positive whirl and softens negative whirl

tendencies. Gyroscopic moments are larger in these types of modes where there is a

point of inflection on the beam, commonly called an antinode of vibration. This mode

is called a conical mode because the shape of the path forms one or many cones.
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Chapter 4

SYNTHESIS IN EXAMPLE OF A MAGNETIC BEARING ON AN OVERHUNG

ROTOR

Analysis and modeling techniques of the previous chapters will now be put to use in a

practical example. The goal of which will be to reduce vibration on an overhung disk

rotor system with the use of an Active Magnetic Bearing(AMB). An experimental

test rig, not unlike the system used in the experimental example of §1.2, will be used

to calibrate a finite element theoretical model. Then, the theoretical model will be

extended to include an AMB near the overhung disk. The model will be evaluated

for stability, and parameters of the control algorithm for the AMB will be varied to

attempt to eliminate modes and stabilize the system.

4.1 Physical System Description

The rotor system of interest is depicted in Figure 4.1. Geometric parameters are

listed in Table 4.1. The springs at nodes 1 & 4 are intended to represent bushings,

portion at node 6 is the rotating disk, and nodal numbers are indications of how the

rotor will be discretized for the finite element model.

L

a
b

1 2 3 4 5 6 7 8

ld

ds dd

Figure 4.1: Overhung rotor system diagram.
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Table 4.1: Geometric parameters of the overhung rotor system.

L[m] a[m] b[m] ld[m] dd[m] ds[m]

0.5 0.23 0.13 0.025 0.075 0.01

Figure 4.2: 3D Orbit of the experimental overhung rotor system.

4.2 Experimental Results

The rotor system was tested in a start-up from slow roll to 3000[RPM ]. Data shown

here is taken from 1000[RPM ] to 2000[RPM ]. A set of orthogonal eddy current

position sensors placed near the disk on the outboard side were used to measure

the position of the shaft throughout the start-up. Position data was recorded at a

sampling rate of 128000[Hz] with no processing applied, this sampling rate is much

higher than the required rate to avoid aliasing. The resulting 3D orbit of the start-up

is shown in Figure 4.2. Of note is the necking in the 3D orbit during the natural fre-

quency that is indicative of high anisotropy inducing a negative whirl during the first

natural frequency. Also resulting from the experiment is the full spectrum cascade

plot of Figure 4.3, in which it is evident that synchronous vibration dominates the

spectra. Though, for the production of the bode diagram (Figure 4.4) there was a

benefit in clarity from filtering the data to synchronous speed.
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Figure 4.3: Cascade of the experimental overhung rotor system.
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Figure 4.4: Bode diagram of the experimental overhung rotor filtered to
1X.

4.3 Theoretical Model

To create a finite element model for this rotor system the shaft will be discretized

into 7 elements a disk at node 6 and bearings at nodes 1 and 4, as depicted in Figure

4.1. In the experiment, a small length of shaft continued after the overhung disk

and has been included in this model. The AMB will be included as a nodal point

element with with stiffness and damping to be derived in §4.3.1. Parameter values

for the finite element model are provided in Table 4.2. Discovered values such as ηv

and the stiffnesses of bearing are listed here, but the process for their determination

is discussed. First the model is formed to match the experimental results. Known

parameters, such as beam lengths, beam diameters, density of the material, and

geometry of the disk and rotor are used to begin construction of the model. Then,

guesses are made for the stiffnesses in the rotor bearings. The first natural frequency

is calculated with the resulting model and its value compared to the experimentally
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Table 4.2: Properties of disks, shaft elements, and bearings of the theo-
retical model.

ρ
[
kg
m3

]
r[m] ν E[Pa] ηv[s] ηh

Shaft 7850 0.005 0.3 210× 109 0.0002 0

ρ
[
kg
m3

]
r[m] l[m]

Disks 7850 0.0375 0.025

ky
[
N
m

]
kz
[
N
m

]
cy
[
Ns
m

]
cz
[
Ns
m

]
Bearing A 1.7× 105 2.2× 105 68 88

Bearing B 2.04× 105 2.64× 105 81.6 105.6

found natural frequency from the bode diagram (fig.4.4). Stiffness are then adjusted

to better match the natural frequency, and this is repeated until the natural frequency

of the model matches the experiment. After this process, the stiffness was determined

to be around 2× 105
[
N
m

]
.

It is evident by inspection of the Bode diagram for the experimental system

(fig.4.4), and the 3D orbit, that there is anisotropy in the system, leading to the

dip in amplitude of one plane of vibration. It is also known from inspection of the

frequency spectrum in the cascade of figure 4.3 that in this speed range the orbit is

in the opposite direction of the rotation–a phenomena only possible with anisotropy

of the stiffness. Figures 4.5a & 4.5b demonstrate this affect anisotropy has on both

the real coordinates, as well as positive and negative whirl amplitudes. In the real

coordinates, cross coupling of from gyroscopic moments causes an interaction of the

two peaks in amplitude. As the stiffness anisotropy approaches a value of 1, the vi-

bration of the more flexible plane will split into two peaks. One peak coinciding with

that planes natural frequency and one plane coinciding with the orthogonal natural

frequency. During this change in anisotropy of stiffness, the peaks of both positive

and negative amplitude spectrums split to coincide with either plane’s natural fre-

quency. When the two orthogonal planes have widely separated natural frequencies,
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(a) Comparison of v & w as stiffness

anisotropy is changed.

(b) Comparison of positive and negative orbit

amplitudes as stiffness anisotropy is changed.

the negative amplitude spectrum is greater than the positive amplitude spectrum for

the range of speed between the two natural frequencies.

Using the bode diagram, the stiffness anisotropy is adjusted until the shapes

of the amplitudes and phases match the experimental results of figure 1.4. Then

damping is added to the system to appropriately match the experimental results.

The resulting bode diagram is Figure 4.6. Stiffnesses were determined to be ky =

1.7 × 105[N/m] & kz = 2.2 × 105[N/m]. And now the resulting system is further

described with an expanded speed range of 20000[RPM ]. This resulting model is

described with the new Campbell diagram of Figure 4.7, the roots locus of Figure

4.8, and the first three mode shapes (Figures 4.9a, 4.9b, & 4.9c). Note that the first

mode is conical in shape, but the disk is far from an antinode at node 6 so it does not

experience significant gyroscopic moments. This idea is supported by the campbell

diagram, fig. 4.7, as the first mode natural frequency does not change significantly

over the speed range. On the other hand, the second mode has its antinode atode 6

so the disk experience maximum gyroscopic moments and the second mode critical

speed is much more dependent on speed.
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Figure 4.6: Bode Diagram of overhung system without AMB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·104

0

0.5

1

1.5

2
·104

Spin Speed, Ω[RPM ]

W
h
ir

l
S
p

ee
d
,ω

[R
P
M

]

Positive Whirl Speed
Negative Whirl Speed
Synchronous ω = Ω

Figure 4.7: Campbell Diagram of the overhung system without AMB.
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Figure 4.8: Roots Locus of overhung system without AMB.

4.3.1 Active Magnetic Bearing

Magnetic pole-rotor relationship will be derived based on the detailed derivation in

[5], with influence from [3]. Assumptions made in this model are as follows:

• Air gap between the magnet pole face and the rotor is vanishingly small com-

pared to the diameter of the shaft.

• Flux leakage from the magnetic pole is negligible.

• Curvature of rotor surface under the pole face is ignored.

• A linear relationship of flux density and magnetic field is assumed.

• Hysteresis of the magnetic field is negligible.

These assumptions lead to a magnetic force due to coil current in the relationship of

Fm =
−kmi2

l2g
(4.1)
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(c) Mode Shape 3.

where, km = µ0ApN2

4
, and µ0 = 4π× 10−7 is the absolute permeability in free air, N is

the number of coil turns, Ap is the pole face area, i is the supplied electrical current,

and lg is the air gap.

Consider a set of magnetic pole pairs in each the y & z directions (i.e. One on

the left and one on the right; one on top and one on bottom), where each pole pair

has its own electrical circuit. There are four total magnets in this model, two in each

direction, and eight total poles where two form a magnet. All poles in the neutral

position of the system will have a nominal air gap of g0 and will be supplied by a

bias current of i0. Deviations of the current from this bias will be considered as iy

and iz. Deviations of the position from this neutral position are the displacements

of the rotor at this beam axis location, v, & w. Therefore, total current will be

(i0± iy) & (i0± iz) for opposing poles in the y & z directions respectively. Similarly,

total gaps are given by (g0 ± v) & (g0 ± w). Using these new definitions for the gap

and current, and summing forces in the y & z directions leads to the total forces

Fy = Km

{(
i0 + iy
g0 + v

)2

−
(
i0 − iy
g0 − v

)2
}

& Fz = Km

{(
i0 + iz
g0 + w

)2

−
(
i0 − iz
g0 − w

)2
}

(4.2)
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where, Km = km cos(α), and α is half of the angle between the poles of a magnet.

Linearizing the magnetic force equations (4.2), while assuming the operating point

for the system is where all positions and control currents are zero, results in

Fy = kiiy + kyv, & Fz = kiiz + kzw (4.3)

where, ki = 4Km
i0
g20

is the current stiffness developed by the bias current, and ky =

kz = ks = −4Km
i20
g30

.

4.3.1.1 Proportional Derivative Control

A control algorithm is used to control the current sent to each pair of poles based on

the position (proportional) and velocity (derivative) of the rotor. It is assumed that

each set of pole pairs will receive opposite currents to act as a unit. Current control

is given by

iy = −kg(kpv + kvv̇), & iz = −kg(kpw + kvẇ) (4.4)

where, kg is the power amplifier gain, kp is the proportional gain, and kv is the

derivative gain. The total linearized force becomes

Fy = −(kgkikp − ks)v − kgkikvv̇, & Fz = −(kgkikp − ks)w − kgkikvẇ (4.5)

so then the stiffness of the AMB is kmag = (kgkikp − ks) and the damping is dmag =

kgkikv. As an equation of nodal stiffness and damping in the finite element system it

can be represented by

Dm~̇qk + Km~qk = 0 (4.6)
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where,

Km =



kmag 0 0 0 0 0

0 kmag 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Dm =



dmag 0 0 0 0 0

0 dmag 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



4.4 Addition of Magnetic Bearing to the Rotor Model

In order to measure the effectiveness of the AMB, the Stability of the theoretical

model before the addition is shown in Figure 4.10a. The magnetic bearing added is

modeled after a magnetic bearing that is currently in the lab at California Polytechnic

State University. This theoretical exercise is intended to be followed by experimental

verification not included in this work. The parameters used are listed in 4.3 as well

as the control values whose determinations will be evaluated.

First the axial position of the AMB must be determined. By inspection of the

mode shapes, it is evident that in the first mode (the mode we are most concerned

about suppressing) a shape exists with increasing amplitude toward the end of the

beam after the second bearing. It is also known that the source of vibration, the

rotating disk, is located at nodal index six. With both these pieces of information,

node seven is chosen as a starting point for the AMB for two reasons: having the

AMB closer to the source of vibration reduces the phase lag between the source and

the bearing, increasing the effectiveness of control; amplitude of vibration, according

to the mode shape, is higher on the outboard side of the disk and placing the AMB on

this side will minimize more vibration. Additionally, this location should significantly

suppress the second mode of vibration as node seven is near the maximum amplitude

of that mode as well.
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In order to choose a value for bias current, ib, and provide upper range estimates

of the controller outputs, kv, & kp, the maximum expected current output of the

control loop must be determined. ib will be set so that under peak power output,

in the expected speed range, the control current will push the total current output

beyond the system limits.

Knowing that the amplitude of vibration, A, in the experimental system peaks

at about 10 mils, or 2.54 × 10−4[m], the greatest possible velocity for synchronous

vibration is determined using the simple equation vel = (A/2)ω, where ω is the whirl

speed in rad/s. Under the assumption of synchronous vibration, ω during the natural

frequency is then 167.6[Rad/s]. Leading to a velocity, vel, of 0.02[m/s]. Also, another

possible peak velocity occurs in the upper speed range. Knowing that the amplitude of

vibration after the first natural frequency is equal to the eccentricity of the unbalance,

with an eccentricity of 1× 10−5, and an upper speed of 15000[RPM ], the velocity is

calulated to be 0.008[m/s]. Since the estimated velocity during the natural frequency

is higher, it will be used to limit the output of the AMB controller. Total voltage

supply of most digital to analog converters is limited to 10[V ]. So the control voltage

is calculated to be within this range for the given velocity and positions that will be

seen under synchronous vibration. This results in a limitation of the term kv, which

is proportional to the voltage control signal that is sent to the amplifier for conversion

to control current. A value of 480[V s/m] would max the converter, so the value to

be determined must be less than this. With a similar, but separate, evaluation of the

displacement leads to a maximum allowable value of 500000[V/m] for kp–a value not

anticipated to be necessary. The maximum force due to unbalance is εmdΩ
2, where ε

is the eccentricity, and md is the mass of the disk. At the maximum speed expected

of 15000[RPM ], the force will be 24[N ]. To counteract this force with a single coil

would require 1.25[A], or 0.625[A] per coil in a opposing pair. The amplifier gain

is assumed to be programmable to kg = 1[A/V ], this leads to a reasonable choice
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of bias current at 0.5[A] to maintain a good resolution on the voltage output of the

controller. Under the operating conditions described, the control voltage should not

exceed 1.25[V ], and will rest at an output of 0.5[V ]. Now in the next section, control

parameters kv & kp will be determined to maximize stability of the system while also

minimizing vibration.

To determine best derivative control constant (kv), the proportional control con-

stant (kp) was set to zero. kv is increased until the first mode on the Roots locus(fig.

4.8) moves away from the imaginary axis, becoming more damped. The resulting

movement of the Roots on the Roots Locus is given in Figure 4.11. Note that be-

cause of bias current flowing through the bearing, a baseline stiffness of kS is present

in the system even withou kp. None of the modes that appear on the roots locus

of the system with kp = 0, & kv = 10[V m
s

] control algorithm cross the real plane–

this demonstrates the stability of the new system. Stability of the system with the

AMB addition is confirmed in the stability plot of Figure 4.10b. In fact from the

roots locus with kv = 1 to the roots locus with kv = 10 the first mode of vibration

is completely relegated to the imaginary axis and not reaching break-away for this

entire speed range–this indicates that the first mode has been over-damped. With

additional damping through the increase of kv it would be possible to over-damp

the second mode as well, but in the speed range given, it would not improve the

performance.

Proportional control, kp, was added after the ideal derivative control was deter-

mined, but it did not improve the performance of the controller. It is the case that

the stiffness of the bearing inherent to the bias current is sufficient. In any case,

proportional control in this scenario is only adding stiffness to the system, and with

the objective being to minimize vibration, kp is not effective. So the optimal control

is determined to be with kp = 0, & kv = 10[V s/m]. The remaining parameters for

this resulting controller are listed in table 4.3. It is worthwhile to note that this
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Table 4.3: Active Magnetic Bearing Parameters.

α[rad] g0[m] i0[A] kp[
V
m

] kv[
V s
m

] kg[
A
V

] N [#] Ap[m
2]

π
8

2.5× 10−3 0.5 0 10 1 800 5
100∗100

optimal control is standing on the basis that the feedback is of synchronous vibration

only. In a scenario where there is significant sub or super-synchronous vibrations,

this controller may exceed its voltage limit. It is recommended that the feedback

signal be filtered to match rotor speed to ensure this scenario does not take place.

Furthermore, without at least low-pass filtering of the feedback signal the control

would certainly provide out of range signals due to the volatile nature of derivatives

of discrete signals.

The frequency spectrum is provided showing the result of the AMB application

in the bode diagram of Figure 4.12. Certainly it can be concluded that the AMB is

successfully performing the desired task of reducing the vibration while also inproving

the stability of the system.

The result from this synthesis exercise can be implemented on the actual exper-

imental test rig with the AMB set to the control parameters suggested. The power

of the finite element method in this application is the ability to move components

around with ease. For instance, with the changing of just two parmeters in the input

file for this model, a new simulation is created for complete levitation of the overhung

rotor. The AMB is put in place of bearing b and the resulting frequency spectrum is

plotted in Figure 4.13
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Figure 4.12: Bode diagram at node 6 comparing the rotor without
AMB(solid) and with AMB(dashed).
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AMB(solid) and with AMB(dashed) for complete levitation at node 4.
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Chapter 5

CONCLUSION

5.1 Summary

The aim of this work was to provide a basis for development of rotordynamic mod-

els, and their comparison to experimental results. A finite element method designed

specifically for creation of these models was presented. Techniques for analyzing mod-

els in the frequency domain were explained and the results demonstrated. Methods for

also analyzing experimental vibration signals provided a correlation between models

and experimental results. Correlations between experimental results and theoretical

models were explored in the optimization of an overhung rotor levitated by an active

magnetic bearing. Interpretations of both model and experimental signal analysis

were provided to lend in understanding results. Resulting analyses and interpreta-

tions can be used to identify problems with existing rotating machines as well as aid

in the design process of new rotating machines.

5.2 Future Work

This work is intended to be a building block on which future students at Cal Poly

may build more advanced models and signal processing techniques in the field of

rotordynamics. Possible future projects related to the extension of this work are:

• an experiment with the application of an active magnetic bearing on an over-

hung rotor system, using the parameters and methods determined in this work

• extension of this finite element model to include non-linear internal damping

constitutive relationships
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• extension of this finite element model to include a more detailed disk model for

the analysis of turbomachines

• extension of this finite element model to include damping effects from various

fittings and couplings
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APPENDICES

Appendix A

BERNOULLI-EULER BEAM EQUATION

Assumptions used to derive the Bernoulli-Euler beam equation are (Complete deriva-

tion in [4]):

1. Beam is bending in a plane, in this case in the y-direction, where the x-direction

is along the length of the beam.

2. The neutral axis undergoes no deformation in the longitudinal direction.

3. Cross sections remain plane and perpendicular to the nuetral axis.

4. The material is linear-elastic.

5. Stresses in the y and z direction are negligible compared to those in the x

direction.

6. Rotary inertial effects are not considered.

7. Mass density is constant at each cross section, so that each mass center is

coincident with the centroid of that section.

Using kinematics and assumptions 2 & 3, the strain in the x direction may be related

to the curvature of the beam, µ(x, t), and the distance from the neutral axis by

ε = −y
µ

(A.1)

then, with assumption 4 & 7 the relation from curvature to moment is

M(x, t) =
EI

µ
(A.2)
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Figure A.1: Free body diagram of a beam section in planar bending.

where E, Young’s modulus, and I, area moment of inertia are constant in cross

sections. By using Newton’s laws and the free body diagram of a single beam element,

see Figure A.1, the equations of motion are summarized as:

∑
Fy = ∆mv̈ &

∑
MG = 0 (A.3)

Moment equation is represented as moments summarized at the center of mass, G.

The right hand side of moment equation of EOM (A.3) is know to be null due to

assumption 6. Applying Newton’s equations (A.3) to the FBD of Figure A.1 results

in the force equation

F (x, t)− F (x+ ∆x, t) = ρA∆x
∂2v

∂t2
(A.4)

and moment equation

−M(x, t) +M(x+ ∆x, t) + F (x, t)

(
−∆x

2

)
+ [−F (x+ ∆x, t)]

(
∆x

2

)
= 0 (A.5)

Taking the limit of equations (A.4) & (A.5) as ∆x→ 0 results in equations (A.6) &

(A.7) respectively.

∂F

∂x
= −ρA∂

2v

∂t2
(A.6)

∂M

∂x
− F = 0 (A.7)
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Assuming the beam slope, ∂v
∂x

, remains relatively small, then linearized curvature of

the beam is inversely related to ∂2v
∂x2

. Substituting this linearized curvature in (A.2)

produces

M(x, t) = EI
∂2v

∂x2
(A.8)

Using linearized moment equation (A.8), combined with (A.6) & (A.7) lends the Euler

beam equation

∂2

∂x2

(
EI

∂2v

∂x2

)
= −ρA∂

2v

∂t2
(A.9)

This is the governing differential equation for transverse motion of a slender beam.

This equation is not suitable for an application involving lengths that are not much

greater than the width of the beam [10].
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Appendix B

ROTORFEM MATLAB CODE FOR CONSTRUCTING AND ANALYZING FEM

MODELS

B.1 Main Object File

1 c l a s s d e f RotorFEM< handle

2 %MODEL Summary o f t h i s c l a s s goes here

3 % Deta i l ed exp lanat ion goes here

4

5 p r op e r t i e s

6 M

7 C

8 K

9 F

10 i n p u t f i l e

11 npos

12

13 end

14 p r op e r t i e s ( Access = pr i va t e )

15

16 end

17 methods

18 func t i on obj = Model ( i nput f i l ename )

19 i f narg in == 1

20 obj . Assem( input f i l ename ) ;

21 obj . i n p u t f i l e = input f i l ename ;

22 end

23 end

24 end

25

26 end

B.2 Matrix Assembly File

1 func t i on Assem( obj , i n p u t f i l e )

2 run ( i n p u t f i l e )

3

4 nodes = s i z e ( elems , 1 ) +1;

5 npos = ze ro s ( nodes , 1 ) ;

6 f o r i i = 1 : nodes−1

7 npos ( i i +1) = npos ( i i ) + elems ( i i , 2 ) ;

8 end

9 obj . npos = npos ;

10

11 K = ze ro s ( nodes *DOF, nodes *DOF) ;
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12 C = ze ro s ( nodes *DOF, nodes *DOF) ;

13 M = zero s ( nodes *DOF, nodes *DOF) ;

14 F = ze ro s ( nodes *DOF, 1 ) ;

15 f o r i i = 1 : 1 : s i z e ( elems , 1 )

16 E = mate ( elems ( i i , 1 ) ,2 ) ;

17 l = elems ( i i , 2 ) ;

18 do = elems ( i i , 3 ) ;

19 i f s i z e ( elems ( i i , : ) )<4

20 di =0;

21 e l s e

22 do=elems ( i i , 4 ) ;

23 end

24 I = obj . AInert (do , d i ) ;

25 A = obj . Area (do , d i ) ;

26 rho = mate ( elems ( i i , 1 ) ,3 ) ;

27 nuv = mate ( elems ( i i , 1 ) ,4 ) ;

28 poi = mate ( elems ( i i , 1 ) ,5 ) ;

29 Id = obj . Dia Iner t (do , l , rho , d i ) ;

30 Ip = obj . Po l Ine r t (do , l , rho , d i ) ;

31 [ kbe , cbe , mbe ] = obj .TBeam(E, I , l ,A, rho , Id , Ip , nuv , poi ,DOF) ;

32 K = obj .Add(K, kbe , ( i i −1)*DOF+1:( i i +1) *DOF) ;

33 C = obj .Add(C, cbe , ( i i −1)*DOF+1:( i i +1) *DOF) ;

34 M = obj .Add(M,mbe , ( i i −1)*DOF+1:( i i +1) *DOF) ;

35 end

36

37 i f e x i s t ( ' d i sk s ' , 'var ' )

38 f o r i i = 1 : 1 : s i z e ( d i sks , 1 )

39 do = d i sk s ( i i , 3 ) ;

40 l = d i sk s ( i i , 2 ) ;

41 rho = mate ( d i s k s ( i i , 1 ) ,3 ) ;

42 a = d i sk s ( i i , 4 ) ;

43 Ki = d i sk s ( i i , 5 ) ;

44 i f s i z e ( d i s k s ( i i , : ) )<7

45 di =0;

46 e l s e

47 di=d i sk s ( i i , 7 ) ;

48 end

49 md = obj . Mass (do , l , rho , d i ) ;

50 Ip = obj . Po l Ine r t (do , l , rho , d i ) ;

51 Id = obj . Dia Iner t (do , l , rho , d i ) ;

52 [ mi , gi , f i ] = obj . Disk (md, Id , Ip , a , Ki ,DOF) ;

53 M = obj .Add(M,mi , ( d i s k s ( i i , 6 ) *DOF−DOF+1: d i s k s ( i i , 6 ) *DOF) ) ;

54 C = obj .Add(C, gi , ( d i s k s ( i i , 6 ) *DOF−DOF+1: d i s k s ( i i , 6 ) *DOF) ) ;

55 F = obj . AddVect (F , f i , ( d i s k s ( i i , 6 ) *DOF−DOF+1: d i s k s ( i i , 6 ) *DOF) ) ;

56 end

57 end

58

59 f o r i i = 1 : 1 : s i z e ( bears , 1 )

60 kx = beartypes ( bears ( i i , 1 ) ,2 ) ;

61 ky = beartypes ( bears ( i i , 1 ) ,3 ) ;

62 c = beartypes ( bears ( i i , 1 ) ,4 ) ;

63 [ ki , c i ] = obj . Bear (kx , ky , c ,DOF) ;

64 K = obj .Add(K, ki , ( bears ( i i , 2 ) *DOF−DOF+1: bears ( i i , 2 ) *DOF) ) ;

65 C = obj .Add(C, c i , ( bears ( i i , 2 ) *DOF−DOF+1: bears ( i i , 2 ) *DOF) ) ;

66
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67 end

68 i f e x i s t ( 'mags ' , 'var ' )

69 f o r i i = 1 : 1 : s i z e (mags , 1 )

70 o l dd i r = pwd ;

71 cd ( char ( mag f i l e (mags ( i i , 1 ) ,2 ) ) )

72 Magfn = s t r2 func ( char ( mag f i l e (mags ( i i , 1 ) ,3 ) ) ) ;

73 [ ki , c i ] = Magfn ( ) ;

74 cd ( o l dd i r )

75 K = obj .Add(K, ki , ( mags ( i i , 2 ) *DOF−DOF+1:mags ( i i , 2 ) *DOF) ) ;

76 C = obj .Add(C, c i , ( mags ( i i , 2 ) *DOF−DOF+1:mags ( i i , 2 ) *DOF) ) ;

77

78 end

79 end

80 obj .M = M;

81 obj .C = C;

82 obj .K = K;

83 obj .F = F;

B.3 Elemental Matrices

1 func t i on [ K,D,M ] = TBeam( obj , E, I , l ,A, rho , Id , Ip , nuv , poi ,DOF )

2 %TBeam Timoshenko beam element

3 % disp1y di sp1z ang1y ang1z disp2y d i sp2z ang2y ang2z disp1x ang1x disp2x ang2x

4 %

5 %| | disp1y

6 %| | disp1z

7 %| | ang1y

8 %| | ang1z

9 %| | disp2y

10 %| | disp2z

11 %| | ang2y

12 %| | ang2z

13 %| | ang2x

14 %% Prope r t i e s %%

15 k = 6*(1+ poi ) /(7+6* poi ) ;

16 G = E/2/(1+ poi ) ;

17 alph = 12*E* I /k/G/A/ l ˆ2 ;

18 %% Var iab l e s %%

19 syms x

20 z = x/ l ;

21 %% Shape Functions %%

22 N1 = 1−z ;

23 N2 = z ;

24 Tt1 = (1/(1+ alph ) ) * (2 * z ˆ3 − 3* z ˆ2 − alph * z + 1 + alph ) ;

25 Tt2 = (1/(1+ alph ) ) *(−2* zˆ3+3*zˆ2+alph * z ) ;

26 Tr1 = ( l /(1+alph ) ) * ( z ˆ3 − (2+1/2* alph ) * z ˆ2 + (1+1/2* alph ) * z ) ;

27 Tr2 = ( l /(1+alph ) ) * ( z ˆ3 − (1−1/2* alph ) * z ˆ2 − 1/2* alph * z ) ;

28 Rt1 = 6/ l *(1/(1+ alph ) ) * ( zˆ2−z ) ;

29 Rt2 = −Rt1 ;

30 Rr1 = (1/(1+ alph ) ) * (3 * z ˆ2 − (4+alph ) * z + 1 + alph ) ;

31 Rr2 = (1/(1+ alph ) ) * (3 * z ˆ2 − (2−alph ) * z ) ;

32 %% Transformation Mat r i c i e s %%
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33 P = [0 0 0 0 0 0 ;

34 0 0 0 0 0 0 ;

35 0 −1 0 0 0 0 ;

36 1 0 0 0 0 0 ;

37 0 0 0 0 0 0 ;

38 0 0 0 0 0 0 ] ;

39 Di = [12 *E* I / alph / l ˆ2 0 0 0 0 0 ;

40 0 12*E* I / alph / l ˆ2 0 0 0 0 ;

41 0 0 E* I 0 0 0 ;

42 0 0 0 E* I 0 0 ;

43 0 0 0 0 E*A 0 ;

44 0 0 0 0 0 12*E* I / alph / l ˆ2/A*2* I ] ;

45 Mi = diag ( [ rho *A* l , rho *A* l , Id , Id , rho *A* l , Ip ] ) . / l ;

46 Gi = kron ( diag ( [ 0 , 1 , 0 ] ) , [ 0 , Ip ;−Ip , 0 ] ) . / l ;

47 T = kron ( diag ( [ 1 , 1 , 0 ] ) , [ 0 , 1 ; −1 , 0 ] ) ;

48 N = [ Tt1 0 0 Tr1 Tt2 0 0 Tr2 0 0 0 0 ;

49 0 Tt1 Tr1 0 0 Tt2 Tr2 0 0 0 0 0 ;

50 0 Rt1 Rr1 0 0 Rt2 Rr2 0 0 0 0 0 ;

51 Rt1 0 0 Rr1 Rt2 0 0 Rr2 0 0 0 0 ;

52 0 0 0 0 0 0 0 0 N1 0 N2 0 ;

53 0 0 0 0 0 0 0 0 0 N1 0 N2 ] ;

54 %% DOF Mod i f i c a t i on s%%

55 switch DOF

56 case 6

57 I = diag ( [ 1 , 1 , −1 ,1 , 1 , 1 ] ) ;

58 N = I *N* [ I , z e r o s (6 ) ; z e ro s (6 ) , I ] ; % Adjust f o r use o f −angy ,−ang1 , 2 y d e f i n i t i o n s in shape

func t i on s

59 case 4

60 P = P( 1 : 4 , 1 : 4 ) ;

61 Di = Di ( 1 : 4 , 1 : 4 ) ;

62 Mi = Mi ( 1 : 4 , 1 : 4 ) ;

63 Gi = Gi ( 1 : 4 , 1 : 4 ) ;

64 T = T( 1 : 4 , 1 : 4 ) ;

65 I = diag ( [1 ,1 , −1 ,1 ] ) ; % Adjust f o r use o f −angy ,−ang1 , 2 y d e f i n i t i o n s in shape func t i on s

66 N = I *N(1 : 4 , 1 : 8 ) * [ I , z e r o s (4 ) ; z e ro s (4 ) , I ] ;

67 case 2

68 P = P( 2 : 3 , 2 : 3 ) ;

69 Di = Di ( 2 : 3 , 2 : 3 ) ;

70 Mi = Mi ( 2 : 3 , 2 : 3 ) ;

71 Gi = Gi ( 2 : 3 , 2 : 3 ) ;

72 T = T( 2 : 3 , 2 : 3 ) ;

73 N = N( 2 : 3 , [ 2 , 3 , 6 , 7 ] ) ;

74 end

75 %% Elemental I n t e g r a t i on %%

76 B = d i f f (N. ' , x ) − N. ' *P;

77 B = B. ' ;

78 K B = in t (B. ' *Di *B, x , 0 , l ) ;

79 K C = in t (B. ' *T*Di *B, x , 0 , l ) ;

80 G = in t (N. ' *Gi *N, x , 0 , l ) ;

81 M = in t (N. ' *Mi*N, x , 0 , l ) ;

82 %% Case o f symbol ic I n t e g r a t i on %%

83 i f i s a ( l , 'sym ' ) | | i s a (E, 'sym ' ) | | i s a ( I , 'sym ' ) | | i s a (nuv , 'sym ' )

84 e l s e

85 K B = double (K B) ;

86 K C = double (K C) ;
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87 G = double (G) ;

88 M = double (M) ;

89 end

90 K = K B + nuv . *1 i . *K C;

91 D = nuv . *K B + 1 i . *G;

92

93 end

1 func t i on [Md,Gd,Fd ] = Disk ( obj ,md, Id , Ip , a , Ki ,DOF)

2 %% Creates Disk nodal s t i f f n e s s matrix in the form :

3 % disp1x disp1y ang1x ang1y

4 %

5 %| | disp1x

6 %| | disp1y

7 %| | ang1x

8 %| | ang1y

9

10 %% Begin Function

11 Fx = md*a ;

12 Fy = md*a ;

13 Mx = ( Id−Ip ) *Ki ;

14 My = ( Id−Ip ) *Ki ;

15 Gi=[0 , Ip ;−Ip , 0 ] ;

16 switch DOF

17 case 6

18 Md = diag ( [md,md, Id , Id ,md, Ip ] ) ;

19 Gd = 1 i * kron ( diag ( [ 0 , 1 , 0 ] ) ,Gi ) ;

20 Fd = [Fx ; Fy ; Mx; My; 0 ; 0 ] ;

21 case 4

22 Md = diag ( [md,md, Id , Id ] ) ;

23 Gd = 1 i * kron ( diag ( [ 0 , 1 ] ) ,Gi ) ;

24 Fd = [Fx ; Fy ; Mx; My ] ;

25 case 2

26 Md = diag ( [md, Id ] ) ;

27 Gd = 1 i * [ 0 , 0 ; 0 , Ip ] ;

28 Fd = [Fx ; My ] ;

29 end

30 % Fx = md*a * (wˆ2* cos ( theta+phi1 )−alph * s i n ( theta+phi1 ) ) ; %N, Forcing funt ion at d i sk 1

31 % Fy = md*a * (wˆ2* s i n ( theta+phi1 )+alph * cos ( theta+phi1 ) ) ; %N, Forcing funt i on at d i sk 2

32 % Mx = −wˆ2*( Ip − Id ) *Ki * cos ( theta+phi2 ) ; %N, Forcing funt ion at d i sk 1

33 % My = wˆ2*( Ip − Id ) *Ki * s i n ( theta+phi2 ) ; %N, Forcing funt i on at d i sk 2 ;

34 end

1 func t i on [ Kb,Cb ] = Bear ( obj , kx , ky , c ,DOF)

2 %% Creates bear ing nodal s t i f f n e s s matrix in the form :

3 % disp1y di sp1z ang1y ang1z disp1x ang1x

4 %

5 %| | disp1y

6 %| | disp1z

7 %| | ang1y

8 %| | ang1z

9 %| | disp1x

10 %| | ang1x

11 %% Begin func t i on

12 switch DOF
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13 case 6

14 Kb = diag ( [ kx , ky , 0 , 0 , 0 , 0 ] ) ;

15 Cb = diag ( [ c *kx , c *ky , 0 , 0 , 0 , 0 ] ) ;

16 case 4

17 Kb = diag ( [ kx , ky , 0 , 0 ] ) ;

18 Cb = diag ( [ c *kx , c *ky , 0 , 0 ] ) ;

19 case 2

20 k = mean ( [ kx , ky ] ) ;

21 Kb = diag ( [ k , k ] ) ;

22 Cb = diag ( [ c *k , c *k ] ) ;

23 end

24 end

B.4 Plotting Functions

1 func t i on RootLocus (Model obj ,Omega , plotmodes , ax , l i n e tp , c o l o r )

2 %CAMPBELL Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 z c i = @(v ) f i nd (v ( : ) . * c i r c s h i f t ( v ( : ) , [−1 0 ] ) <= 0) ;

5 i f narg in < 6

6 co l o r = [ 0 , 0 , 0 ] ;

7 i f narg in <5

8 l i n e t p = ' . ' ;

9 end

10 i f narg in < 4

11 f i g u r e

12 ax = axes ;

13 end

14 i f narg in < 3

15 plotmodes = 1 : 2 ;

16 end

17 i f narg in < 2

18 return

19 end

20

21 end

22

23 f o r i i = 1 : 1 : l ength (Omega)

24 w = Omega( i i ) /60*2* pi ;

25 Mnew = Model obj .M;

26 Cnew = r e a l ( Model obj .C) + w. * imag ( Model obj .C) ;

27 Knew = r e a l ( Model obj .K) + w. * imag ( Model obj .K) ;

28 Zer = ze ro s ( s i z e (Mnew) ) ;

29 ey = eye ( s i z e (Mnew) ) ;

30 A = [−Mnewˆ−1*Cnew , −Mnewˆ−1*Knew ;

31 ey , Zer ] ;

32 v1=e i g (A) ;

33 % AA=[Cnew Mnew;Mnew Zer ] ;

34 % B=[Knew Zer ; Zer −Mnew ] ;

35 % v1=e i g (B,−1 i *AA) ;

36 [ ˜ , I ] = ( s o r t ( abs ( ( v1 ) ) ) ) ;

37 e i v ( : , i i ) = v1 ( ( I ) ) ;
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38 end

39 % whi le min ( abs ( imag ( e i v ( 1 , : ) ) ) ) == 0

40 % e iv ( 1 : 2 , : ) = [ ] ;

41 % end

42 % e iv = e iv ( ˜any ( i snan ( e i v ) | i s i n f ( e i v ) , 2 ) , : ) ;

43

44 hold on

45 f o r j j = 1 : 1 : l ength ( plotmodes )

46

47 % plo t ( ax , r e a l ( e i v ( plotmodes ( j j ) *4−1 , :) ) , ( imag ( e i v ( plotmodes ( j j ) *4−1 , :) ) ) , l i n e tp , ' Color

' , [ 0 . 8 5 0 0 , 0 . 3 2 5 0 , 0 . 0 9 8 0 ] )

48 % p lo t ( ax , r e a l ( e i v ( plotmodes ( j j ) *4−3 , :) ) , ( imag ( e i v ( plotmodes ( j j ) *4−3 , :) ) ) , l i n e tp , ' Color

' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 1 0 ] )

49 p lo t3 ( r e a l ( e i v ( plotmodes ( j j ) *4−1 , :) ) , abs ( imag ( e i v ( plotmodes ( j j ) * 4 , : ) ) ) ,Omega , l i n e tp , 'Color ' ,

co lo r , 'MarkerSize ' , 1 ) ;%, 'o ' , 'Color ' , [ 0 . 8 5 00 , 0 . 3 2 50 , 0 . 0 9 80 ] , ' MarkerSize ' , 3 )

50 p lo t3 ( r e a l ( e i v ( plotmodes ( j j ) *4−3 , :) ) , abs ( imag ( e i v ( plotmodes ( j j ) *4−2 , :) ) ) ,Omega , l i n e tp , 'Color ' ,

co lo r , 'MarkerSize ' , 1 ) ;% , ' . ' , ' Color ' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 10 ] , ' MarkerSize ' , 4 )

51 % plot3 ( r e a l ( e i v ( plotmodes ( j j ) *4−0 , :) ) , imag ( e i v ( plotmodes ( j j ) *4−0 , :) ) ,Omega , ' . ' , ' Color

' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 1 0 ] )

52 % plot3 ( r e a l ( e i v ( plotmodes ( j j ) *4−2 , :) ) , imag ( e i v ( plotmodes ( j j ) *4−2 , :) ) ,Omega , ' . ' , ' Color

' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 1 0 ] )

53 % r ( 1 , : ) = r e a l ( e i v ( plotmodes ( j j ) *4−1 , :) ) ;

54 % r ( 2 , : ) = r e a l ( e i v ( plotmodes ( j j ) *4−3 , :) ) ;

55 % ZeroCross1 = z c i ( r ( 1 , : ) ) ;

56 % ZeroCross2 = z c i ( r ( 2 , : ) ) ;

57 % i f isempty ( ZeroCross1 )

58 % e l s e

59 % s t r c r o s s 1 = [ num2str (Omega( ZeroCross1 (1) ) ,4 ) ' (RPM) ' newl ine ] ;

60 % text ( ax , 0 , abs ( imag ( e i v ( plotmodes ( j j ) *4−1 , ZeroCross1 (1) ) ) ) , s t r c r o s s 1 , ' HorizontalAlignment ' , '

r ight ' , ' Vert ica lAl ignment ' , ' bottom ' , 'FontWeight ' , ' bold ' ) ;

61 % p lo t ( ax , 0 , abs ( imag ( e i v ( plotmodes ( j j ) *4−1 , ZeroCross1 (1) ) ) ) , '*k ' ) ;

62 % end

63 % i f isempty ( ZeroCross2 )

64 % e l s e

65 % s t r c r o s s 2 = [ num2str (Omega( ZeroCross2 (1) ) ,4 ) ' (RPM) ' newl ine ] ;

66 % text ( ax , 0 , abs ( imag ( e i v ( plotmodes ( j j ) *4−3 , ZeroCross2 (1) ) ) ) , s t r c r o s s 2 , ' HorizontalAlignment ' , '

r ight ' , ' Vert ica lAl ignment ' , ' bottom ' , 'FontWeight ' , ' bold ' ) ;

67 % p lo t ( ax , 0 , abs ( imag ( e i v ( plotmodes ( j j ) *4−3 , ZeroCross2 (1) ) ) ) , '*k ' ) ;

68 % end

69 end

70 hold o f f

71 ax . YAxisLocation = ' o r i g i n ' ;

72 ax i s ([− i n f , in f , 0 , i n f ] )

73 x l ab e l ( 'Real ( s ) ' )

74 y l ab e l ( 'Imag ( s ) ' )

75 end

1 func t i on Campbell ( Model obj ,Omega , plotmodes , ax , l i n e t p )

2 %CAMPBELL Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 i f narg in < 5

5 i f narg in == 2

6 plotmodes = 1 : 2 ;

7 e l s e i f narg in < 2

8 return
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9 end

10 l i n e t p = ' . ' ;

11 i f narg in < 4

12 ax = [ ] ;

13 end

14 end

15 f o r i i = 1 : 1 : l ength (Omega)

16 w = Omega( i i ) /60*2* pi ;

17 Mnew = Model obj .M;

18 Cnew = r e a l ( Model obj .C) + w. * imag ( Model obj .C) ;

19 Knew = r e a l ( Model obj .K) + w. * imag ( Model obj .K) ;

20 Zer = ze ro s ( s i z e (Mnew) ) ;

21 ey = eye ( s i z e (Mnew) ) ;

22 A = [−Mnewˆ−1*Cnew , −Mnewˆ−1*Knew ;

23 ey , Zer ] ;

24 v1=e i g (A) ;

25 [ ˜ , I ] = so r t ( abs ( ( v1 ) ) ) ;

26 e i v ( : , i i ) = v1 ( I ) ;

27 % e iv ( : , i i )=v1 ;

28 end

29 i f isempty ( ax )

30 f i g u r e

31 ax = axes ;

32 end

33 % whi le min ( abs ( imag ( e i v ( 1 , : ) ) ) ) == 0

34 % e iv ( 1 : 2 , : ) = [ ] ;

35 % end

36 % e iv = e iv ( ˜any ( i snan ( e i v ) | i s i n f ( e i v ) , 2 ) , : ) ;

37

38 hold on

39 f o r j j = 1 : 1 : l ength ( plotmodes )

40 p lo t ( ax ,Omega , abs ( imag ( e i v ( plotmodes ( j j ) *4−2 , :) ) ) /2/ pi *60 , ' . k ' ) ;%, 'Color ' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 10 ] , '

LineWidth ' , 1 )

41 p lo t ( ax ,Omega , abs ( imag ( e i v ( plotmodes ( j j ) * 4 , : ) ) ) /2/ pi *60 , ' . k ' ) ;%, 'Color

' , [ 0 . 8 5 00 , 0 . 3 2 50 , 0 . 0 9 80 ] , ' LineWidth ' , 1 , ' MarkerSize ' , 4 )

42 % p lo t ( ax ,Omega , ( imag ( e i v ( plotmodes ( j j ) *4−3 , :) ) ) /2/ pi *60 , l i n e tp , ' Color

' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 10 ] , ' LineWidth ' , 1 )

43 % p lo t ( ax ,Omega , ( imag ( e iv ( plotmodes ( j j ) * 4 , : ) ) ) /2/ pi *60 , l i n e tp , 'Color

' , [ 0 . 8 5 00 , 0 . 3 2 50 , 0 . 0 9 80 ] , ' LineWidth ' , 1 )

44 %

45 % plo t ( ax ,Omega , imag ( e iv ( plotmodes ( j j ) , : ) ) /2/ pi *60 , l i n e tp , ' Color ' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 10 ] , ' LineWidth

' , 1 )

46

47 end

48 p lo t (Omega ,Omega , '−−k ' , 'LineWidth ' , 2 )

49 % plo t (Omega,−Omega,'−−k ' , 'LineWidth ' , 2 )

50 hold o f f

51 x l ab e l ( 'Spin speed [RPM] ' )

52 y l ab e l ( 'Whirl speed [RPM] ' )

53 t i t l e ( 'Campbell Diagram ' )

54

55

56 end

1 func t i on S t a b i l i t y ( Model obj , Omega , ax , l i n e t p )
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2 %STABILITY Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 z c i = @(v ) f i nd (v ( : ) . * c i r c s h i f t ( v ( : ) , [−1 0 ] ) <= 0) ;

5 i f narg in < 4

6 l i n e t p = '−' ;

7 i f narg in < 3

8 f i g u r e

9 ax = axes ;

10 e l s e i f narg in < 2

11 return

12 end

13

14 end

15

16 f o r i i = 1 : 1 : l ength (Omega)

17 w = Omega( i i ) /60*2* pi ;

18 Mnew = Model obj .M;

19 Cnew = r e a l ( Model obj .C) + w. * imag ( Model obj .C) ;

20 Knew = r e a l ( Model obj .K) + w. * imag ( Model obj .K) ;

21

22 Zer = ze ro s ( s i z e (Mnew) ) ;

23 ey = eye ( s i z e (Mnew) ) ;

24 A = [−Mnewˆ−1*Cnew , −Mnewˆ−1*Knew ;

25 ey , Zer ] ;

26 v1=e i g (A) ;

27 e iv ( : , i i ) = so r t ( v1 ) ;

28 end

29 whi le min ( abs ( imag ( e iv ( 1 , : ) ) ) ) == 0

30 e iv ( 1 : 2 , : ) = [ ] ;

31 end

32 e iv = e iv ( ˜any ( i snan ( e i v ) | i s i n f ( e i v ) , 2 ) , : ) ;

33 hold on

34 p lo t (Omega ,max( r e a l ( e i v ) ) , 'LineWidth ' , 1 , ' LineSty l e ' , l i n e t p ) ;

35 ZeroCross = Omega( z c i (max( r e a l ( e i v ) ) ) ) ;

36 i f ˜ isempty ( ZeroCross )

37 s t r c r o s s = [ ' Threshold : ' num2str ( ZeroCross (1 ) ,4 ) 'RPM' ] ;

38 text ( ZeroCross (1 ) ,0 , s t r c r o s s , 'HorizontalAl ignment ' , ' l e f t ' , 'Vert ica lAl ignment ' , 'middle ' , '

FontWeight ' , 'bold ' , 'Rotation ' , 90) ;

39 p lo t ( ZeroCross (1 ) ,0 , ' *k ' ) ; hold o f f

40 end

41 ax . XAxisLocation = ' o r i g i n ' ;

42 x l ab e l ( 'Speed (RPM) ' )

43 y l ab e l ( 'Maximum \Re( s ) ' )

44 t i t l e ( ' S t a b i l i t y r eg i on ' )

45 end

1 func t i on Damping(Model obj ,Omega , plotmodes , ax , l i n e tp , ch )

2 %CAMPBELL Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 z c i = @(v ) f i nd (v ( : ) . * c i r c s h i f t ( v ( : ) , [−1 0 ] ) <= 0) ;

5

6 i f narg in < 6

7 i f narg in == 2

8 plotmodes = 1 : 2 ;

9 e l s e i f narg in < 2
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10 return

11 end

12 ch = 'dec ' ;

13 i f narg in < 5

14 l i n e t p = '−' ;

15 end

16 i f narg in < 4

17 f i g u r e

18 ax = axes ;

19 end

20 end

21

22 f o r i i = 1 : 1 : l ength (Omega)

23 w = Omega( i i ) /60*2* pi ;

24 Mnew = Model obj .M;

25 Cnew = r e a l ( Model obj .C) + w. * imag ( Model obj .C) ;

26 Knew = r e a l ( Model obj .K) + w. * imag ( Model obj .K) ;

27

28 Zer = ze ro s ( s i z e (Mnew) ) ;

29 ey = eye ( s i z e (Mnew) ) ;

30 A = [−Mnewˆ−1*Cnew , −Mnewˆ−1*Knew ;

31 ey , Zer ] ;

32 v1=e i g (A) ;

33 [ ˜ , I ] = ( s o r t ( abs ( ( v1 ) ) ) ) ;

34 e i v ( : , i i ) = v1 ( ( I ) ) ;

35 end

36

37 whi le min ( abs ( imag ( e iv ( 1 , : ) ) ) ) == 0

38 e iv ( 1 : 2 , : ) = [ ] ;

39 end

40 e iv = e iv ( ˜any ( i snan ( e i v ) | i s i n f ( e i v ) , 2 ) , : ) ;

41

42 hold on

43 f o r j j = 1 : 1 : l ength ( plotmodes )

44 i d f = plotmodes ( j j ) *4−1; %forward mode index l o c a t i on

45 idb = i d f − 2 ; %backward mode index l o c a t i o n

46 zeta = −r e a l ( e i v ( [ idb , i d f ] , : ) ) . / abs ( e i v ( [ idb , i d f ] , : ) ) ;

47 % de l t a = 2* pi . * zeta . / sq r t (1− zeta . ˆ 2 ) ; %Logarithmic Decriment

48 % de l t a = −2*pi * r e a l ( e i v ( [ idb , i d f ] , : ) ) . / imag ( e i v ( [ idb , i d f ] , : ) ) ;

49 p lo t (Omega , zeta ( 1 , : ) , l i n e tp , 'Color ' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 1 0 ] , 'LineWidth ' , 1 ) ;

50 p lo t (Omega , zeta ( 2 , : ) , l i n e tp , 'Color ' , [ 0 . 8 5 0 0 , 0 . 3 2 5 0 , 0 . 0 9 8 0 ] , 'LineWidth ' , 1 ) ;

51 ZeroCross1 = Omega( z c i ( zeta ( 1 , : ) ) ) ;

52 ZeroCross2 = Omega( z c i ( zeta ( 2 , : ) ) ) ;

53 i f isempty ( ZeroCross1 )

54 e l s e

55 s t r c r o s s 1 = [ num2str ( ZeroCross1 (1) ,4 ) newl ine ] ;

56 text ( ZeroCross1 (1) ,0 , s t r c r o s s 1 , 'HorizontalAl ignment ' , ' l e f t ' , 'Vert ica lAl ignment ' , 'bottom ' , '

FontWeight ' , 'bold ' ) ;

57 p lo t ( ZeroCross1 (1) ,0 , ' *k ' ) ;

58 end

59 i f isempty ( ZeroCross2 )

60 e l s e

61 s t r c r o s s 2 = [ num2str ( ZeroCross2 (1) ,4 ) newl ine ] ;

62 text ( ZeroCross2 (1) ,0 , s t r c r o s s 2 , 'HorizontalAl ignment ' , ' l e f t ' , 'Vert ica lAl ignment ' , 'bottom ' , '

FontWeight ' , 'bold ' ) ;
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63 p lo t ( ZeroCross2 (1) ,0 , ' *k ' ) ;

64 end

65

66 end

67 hold o f f

68 ax . XAxisLocation = ' o r i g i n ' ;

69 x l ab e l ( 'Speed (RPM) ' )

70 y l ab e l ( '\ zeta ' )

71 t i t l e ( 'Damping Cha r a c t e r i s t i c s ' )

72

73 end

1 func t i on Shape (Model obj ,Omega , plotmodes , ax , l i n e t p )

2 %CAMPBELL Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 i f narg in < 5

5 i f narg in < 2

6 return

7 end

8 l i n e t p = '−' ;

9 i f narg in < 4

10 f i g u r e

11 ax = axes ;

12 end

13 end

14

15 syms x ;

16 l =1;

17 z=x/ l ;

18 alph =.25;

19 Tt1 = (1/(1+ alph ) ) * (2 * z ˆ3 − 3* z ˆ2 − alph * z + 1 + alph ) ;

20 Tt2 = (1/(1+ alph ) ) *(−2* zˆ3+3*zˆ2+alph * z ) ;

21 Tr1 = ( l /(1+alph ) ) * ( z ˆ3 − (2+1/2* alph ) * z ˆ2 + (1+1/2* alph ) * z ) ;

22 Tr2 = ( l /(1+alph ) ) * ( z ˆ3 − (1−1/2* alph ) * z ˆ2 − 1/2* alph * z ) ;

23 cp s i = [ Tt1 0 0 Tr1 Tt2 0 0 Tr2 ;

24 0 Tt1 −Tr1 0 0 Tt2 −Tr2 0 ] ;

25 % ps i = [1 − 3* ( x/ l ) ˆ2 + 2* ( x/ l ) ˆ3 , x − 2* l * ( x/ l ) ˆ2 + l * ( x/ l ) ˆ3 , 3* ( x/ l ) ˆ2 − 2* ( x/ l ) ˆ3 , − l * ( x/ l ) ˆ2

+ l * ( x/ l ) ˆ 3 ] ;

26 % cp s i = [ p s i (1 ) , 0 , 0 , p s i (2 ) , p s i (3 ) , 0 , 0 , p s i (4 ) ;

27 % 0 , p s i (1 ) , −ps i (2 ) , 0 , 0 , p s i (3 ) , −ps i (4 ) , 0 ] ;

28 i p t s = 4 ;

29 d = ( 0 : ip t s −1)/ i p t s ;

30 f o r i i = 1 : 1 : l ength (d)

31 Nx( i i , : ) = subs ( cp s i ( 1 , : ) , x , d( i i ) ) ;

32 Ny( i i , : ) = subs ( cp s i ( 2 , : ) , x , d( i i ) ) ;

33 end

34 Nx = double (Nx) ;

35 Ny = double (Ny) ;

36 w = Omega/60*2* pi ;

37 Mnew = Model obj .M;

38 Cnew = r e a l ( Model obj .C) + w. * imag ( Model obj .C) ;

39 Knew = r e a l ( Model obj .K) + w. * imag ( Model obj .K) ;

40 nM = length (Mnew) ;

41

42 % Zer = ze ro s (nM) ;
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43 % AA=[Cnew Mnew;Mnew Zer ] ;

44 % B=[Knew Zer ; Zer −Mnew ] ;

45 Zer = ze ro s ( s i z e (Mnew) ) ;

46 ey = eye ( s i z e (Mnew) ) ;

47 A = [−Mnewˆ−1*Cnew , −Mnewˆ−1*Knew ;

48 ey , Zer ] ;

49

50 [V,D] = e i g (A, ' vector ' ) ;

51 % ind=f ind ( ( imag (D) > 0) & ( abs (D)>1e−3) ) ; % take p o s i t i v e f r e qu en c i e s only

52 % l1=D( ind ) ;

53 % v1=V(nM+1:end , ind ) ;

54 l 1=D;

55 v1=V(nM+1:end , : ) ;

56 % v1=V(1 :nM, : ) ;

57 [ ˜ , I ] = so r t ( abs ( ( l 1 ) ) ) ;

58 l 2 = D( I ) ;

59 v2 = V( : , I ) ;

60 v = v2 ( : , plotmodes ) ;

61 v=v/norm(v ) ;

62 f o r i i = 1 : 1 : l ength ( Model obj .M)/4−1

63 Li = Model obj . npos ( i i +1)−Model obj . npos ( i i ) ;

64 Nxnew = Nx* diag ( [ 1 1 1 Li 1 1 1 Li ] ) ;

65 Nynew = Ny* diag ( [ 1 1 Li 1 1 1 Li 1 ] ) ;

66 pos ( i p t s * ( i i −1)+1: i p t s * ( i i −1)+i p t s +1) = l i n spa c e ( Model obj . npos ( i i ) , Model obj . npos ( i i +1) , i p t s

+1) ;

67 pos ( end ) = [ ] ;

68 shapex ( i p t s * ( i i −1)+1: i p t s * ( i i −1)+i p t s ) = Nxnew*v (4 * ( i i −1)+1:4*( i i −1)+8) ;

69 shapey ( i p t s * ( i i −1)+1: i p t s * ( i i −1)+i p t s ) = Nynew*v (4 * ( i i −1)+1:4*( i i −1)+8) ;

70 end

71 pos = [ pos , Model obj . npos ( end ) ] ;

72 shapex = [ shapex , v (nM−3) ] ;

73 shapey = [ shapey , v (nM−2) ] ;

74 p lo t ( ax , [ pos ; pos ] ' , r e a l ( [ shapex ; shapey ] ) ')

75 hold on

76 f o r i i = 1 : l ength ( Model obj . npos )

77 p lo t ( [ Model obj . npos ( i i ) ; Model obj . npos ( i i ) ] ' , r e a l ( [ shapex ( i p t s * ( i i −1)+1) ; shapey ( i p t s * ( i i −1)

+1) ] ) ' , ' . k ' , 'MarkerSize ' , 8 )

78 end

79 hold o f f

80 f i g u r e

81 cpts = 20 ;

82 theta = l i n spa c e (0 ,2 * pi , cpts ) ;

83 f o r i i =1: l ength ( shapex )

84 xx ( : , i i )=r e a l ( shapex ( i i ) ) * cos ( theta ) − imag ( shapex ( i i ) ) * s i n ( theta ) ;

85 y ( : , i i )=r e a l ( shapey ( i i ) ) * cos ( theta ) − imag ( shapey ( i i ) ) * s i n ( theta ) ;

86 end

87 N = repmat ( pos , cpts , 1 ) ;

88 hold on

89 p lo t3 ( r e a l ( shapex ) , pos , r e a l ( shapey ) , '−k ' )

90

91 p lo t3 (xx ,N, y , 'Color ' , [ 0 , 0 . 4 4 7 0 , 0 . 7 4 1 0 ] )

92

93 f o r i i = 1 : l ength ( Model obj . npos )

94 p lo t3 ( r e a l ( shapex ( i p t s * ( i i −1)+1) ) , Model obj . npos ( i i ) , r e a l ( shapey ( i p t s * ( i i −1)+1) ) , ' . k ' , '

MarkerSize ' , 8 )
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95 end

96

97 hold o f f

98 mx = max ( [ abs ( shapex ) , abs ( shapey ) ] ) ;

99 ax i s ([−mx, mx, −i n f , in f ,−mx, mx ] ) ;

100 d i sp ( [ 'Damping : ' num2str ( r e a l ( l 2 ( plotmodes ) ) ) ' . Frequency : ' num2str ( imag ( l 2 ( plotmodes ) ) /2/ pi

*60) ' (RPM) . ' ] )

101 ax=gca ;

102 ax . XDir=' r e v e r s e ' ;

103 ax . T i t l e . S t r ing ={([ '\Re( s ) : ' num2str ( r e a l ( l 2 ( plotmodes ) ) ,2 ) ' , \Im( s ) : ' num2str ( imag ( l 2 (

plotmodes ) ) /2/ pi *60 ,4) ' [RPM] ' ] ) ; ( [ '\Omega : ' num2str (Omega , 4 ) ' [RPM] ' ] ) } ;

104 %

105 % [V, D] = e i g (Knew, Mnew, ' vector ' ) ;

106 % D = sqr t (D) *60/2/ pi ;

107 % [D, ind ] = so r t ( abs (D) ) ;

108 % D( plotmodes )

109 % V = V( : , ind ) ;

110 % v2 = (V( : , plotmodes ) ) ;

111 % v3 = reshape ( v2 , 4 , [ ] ) ;

112 % v4 = bsxfun (@times , v3 , 1 ./ sq r t (sum( v3 . ˆ2 , 2) ) ) ;

113 % v2 = reshape ( v4 , 1 , [ ] ) ' ;

114 % f o r i i = 1 : 1 : l ength ( Model obj .M)/4−1

115 % shape (8 * ( i i −1)+1:8*( i i −1)+8) = N*v2 (4 * ( i i −1)+1:4*( i i −1)+8) ;

116 % end

117 % shape = [ shape , v2 ( end−3) ] ;

118 % plo t ( r e a l ( shape ) )

119

120

121 % i f isempty ( ax )

122 % f i g u r e

123 % ax = axes ;

124 % end

125 %

126 % hold on

127 % fo r j j = 1 : 1 : l ength ( plotmodes )

128 % pv ( 1 , : ) = r e a l ( e i v e c t ( speed , [ 4 . * ( 1 : 1 4 ) −3] , plotmodes ( j j ) ) ) ;

129 %

130 % plo t (pv )

131 % end

132 % hold o f f

133

134

135 end

1 func t i on FreqResponse (Model obj , Omega , node , p lottype , f i , l i n e t p )

2 i f narg in < 6

3 i f narg in == 2

4 node = 1 ;

5 e l s e i f narg in < 2

6 e r r o r ( 'Not enough input arguments .\n Provide : Omega( r equ i r ed ) , node #s ( opt i ona l ) , axes (

op t i ona l ) , l i n e t yp e ( op t i ona l ) ' , c l a s s ( Model obj ) )

7 end

8 l i n e t p = '−' ;

9 i f narg in < 5

10 f i = f i g u r e ;
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11 ax = axes ( f i ) ;

12 i f narg in < 4

13 p lot type = 'Bode ' ;

14 end

15 i f strcmp ( plottype , 'Bode ' ) == 1

16 ax (1)=subplot (2 , 1 , 1 , ax ) ;

17 ax (2)=subplot (2 , 1 , 2 ) ;

18 end

19 end

20

21 end

22

23 f o r i i = 1 : 1 : l ength (Omega)

24 w = Omega( i i ) /60*2* pi ;

25 Fnew = wˆ2 . * ( Model obj .F) ;

26 Mnew = Model obj .M;

27 Cnew = r e a l ( Model obj .C) + w. * imag ( Model obj .C) ;

28 Knew = r e a l ( Model obj .K) + w. * imag ( Model obj .K) ;

29 n=length (Mnew) ;

30 I=kron ( eye (n/2) , diag ( [ 1 , 1 i ] ) ) ;

31 Z = I * (Knew + 1 i *w. *Cnew − wˆ2 . *Mnew) ;

32 X( i i , : ) = Zˆ−1*Fnew ;

33 end

34 switch p lo t type

35 case 'FreqResponse '

36 hold on

37 f o r j j = 1 : 1 : l ength ( node )

38 ax=f i . Chi ldren ;

39 p lo t ( ax , Omega , ( abs (X( : , node ( j j ) *4−3) ) ) , l i n e t p )

40 p lo t ( ax , Omega , ( abs (X( : , node ( j j ) *4−2) ) ) , l i n e t p )

41 ax . YScale = ' l og ' ;

42 end

43 hold o f f

44 ax . XLabel . S t r ing='Spin Speed \Omega [RPM] ' ;

45 ax . YLabel . S t r ing='Amplitude [m] ' ;

46 case 'Bode '

47 hold on

48 f o r j j = 1 : 1 : l ength ( node )

49 subplot (211) ; hold on

50 ax (1)=f i . Chi ldren (1) ;

51 % plo t (Omega , abs (X( : , node ( j j ) *4−3) ) , l i n e t p )

52 % plo t (Omega , abs (X( : , node ( j j ) *4−2) ) , l i n e t p )

53 p lo t ( ax (1) ,Omega , abs (39370 .1 *X( : , node ( j j ) *4−3) ) , l i n e t p )

54 p lo t ( ax (1) ,Omega , abs (39370 .1 *X( : , node ( j j ) *4−2) ) , l i n e t p )

55 ax (1) . YScale = ' l og ' ;

56 ax (1) . XLabel . S t r ing='Spin Speed \Omega [RPM] ' ;

57 % ax (1) . YLabel . S t r ing='Amplitude [m] ' ;

58 ax (1) . YLabel . S t r ing='Amplitude [ mi l s ] ' ;

59 subplot (212) ; hold on

60 ax (2)=f i . Chi ldren (2) ;

61 % plo t (Omega , unwrap (mod( angle (X( : , node ( j j ) *4−3) ) ,2* pi ) ) , l i n e t p )

62 % plo t (Omega , unwrap (mod( angle (X( : , node ( j j ) *4−2) ) ,2* pi ) ) , l i n e t p )

63 p lo t ( ax (2) ,Omega,180/ pi *unwrap (mod( angle (X( : , node ( j j ) *4−3) ) ,2* pi ) ) , l i n e t p )

64 p lo t ( ax (2) ,Omega,180/ pi *unwrap (mod( angle (X( : , node ( j j ) *4−2) ) ,2* pi ) ) , l i n e t p )

65 ax (2) . XLabel . S t r ing='Spin Speed \Omega [RPM] ' ;
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66 % ax . YLabel . S t r ing='Phase Angle [ Rad ] ' ;

67 ax (2) . YLabel . S t r ing='Phase Angle [ deg . ] ' ;

68 % ax . YTick=[−3*pi /2 : p i / 2 : 0 ] ;

69 % ax . YTickLabel={'−3\pi /2 ' , '−\pi ' ,'−\ pi /2 ' , '0 '} ;

70 ax (2) . YTick=[ −360 :90 :0 ] ;

71 ax (2) . YTickLabel={'0 ' , '−270 ' , '−180 ' , '−90' , '0 ' } ;

72 end

73 hold o f f

74

75

76 end

77 % plo t (Omega ,max( abs (X) ') )

78 % ax = gca ;

79 % ax . YScale = ' log ' ;
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Appendix C

ROTORDAQ MATLAB CODE FOR ANALYZING VIBRATION SIGNALS

C.1 Main Object File

1 c l a s s d e f RotorData < handle

2 p r op e r t i e s

3 X %Hor i zonta l S igna l

4 Y %Ver t i c a l S igna l

5 r e f %Keyphasor S igna l

6 Fs %Sampling Rate (Samp/Sec )

7 Fres %Frequency Reso lut ion

8 n %f i l t e r synchronous mu l t i p l i e r : 1X, 2X, 3X, . . . nX the running speed

9 end

10 p r op e r t i e s ( SetAccess = pr iva t e )

11 Zf %Total Amplitude

12 Phase %Phase

13 Amp %Property that holds X and Y amplitudes

14 Speed %RPM

15 end

16 p r op e r t i e s ( Access = pr i va t e )

17 re fchop %%%%%%%%%%%%

18 xchop %% Organizes the data ar rays in to matr i ces based on windows

19 ychop %%%%%%%%%%%%

20 end

21 p r op e r t i e s (Dependent , Access = pr i va t e )

22 NW %Number o f windows

23 f r e q %Frequency

24 nspw %Number o f samples per window

25

26 end

27 methods

28 func t i on obj = RotorData (x , y , r , f , f r e s )%F i l l s p r op e r t i e s with data

29 i f narg in == 5

30 obj .X = x ;

31 obj .Y = y ;

32 obj . r e f = r ;

33 obj . Fs = f ;

34 obj . Fres = f r e s ;

35 end

36 end

37 func t i on s e t .X( obj , va l )

38 obj .X = val ;

39 end

40 func t i on s e t .Y( obj , va l )

41 obj .Y = val ;

42 end

43 func t i on s e t . r e f ( obj , va l )

44 obj . r e f = va l ;

45 end
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46 func t i on s e t . Fs ( obj , va l )

47 obj . Fs = val ;

48 i f isempty ( obj .X) | | isempty ( obj .Y) | | isempty ( obj . r e f ) | | isempty ( obj . Fs ) | | isempty (

obj . Fres )

49 e l s e

50 obj . update ;

51 end

52 end

53 func t i on s e t . Fres ( obj , va l )

54 obj . Fres = val ;

55 i f isempty ( obj .X) | | isempty ( obj .Y) | | isempty ( obj . r e f ) | | isempty ( obj . Fs ) | | isempty (

obj . Fres )

56 e l s e

57 obj . update ;

58 end

59 end

60 func t i on s e t . n( obj , va l )

61 obj . n = val ;

62 i f isempty ( obj .X) | | isempty ( obj .Y) | | isempty ( obj . r e f ) | | isempty ( obj . Fs ) | | isempty (

obj . Fres )

63 e l s e

64 obj . update ;

65 end

66 end

67 func t i on nspw = get . nspw( obj )

68 nspw = c e i l ( obj . Fs/ obj . Fres ) ;

69 end

70 func t i on f r e q = get . f r e q ( obj )

71 df = obj . Fs/ obj . nspw ;

72 f = df * ( 0 : obj . nspw−1) ;

73 Q = c e i l ( ( obj . nspw+1)/2) ; % M/2+1 f o r M even

74 fQ = df * (Q−1) ;

75 f r e q = f−fQ ;

76 end

77 func t i on NW = get .NW( obj )

78 NW = f l o o r ( l ength ( obj .X) / obj . nspw) ; %Rounds number o f windows down to c l o s e s t i n t e g e r

79 end

80 func t i on f i l t e r ( obj )

81 d i sp ( ' f i l t e r i n g ' )

82 f o r i = 1 : 1 : obj .NW

83 Fpass1 = obj . Speed ( i ) * obj . n/60−5; %Upper f requency o f bandpass f i l t e r

84 Fpass2 = obj . Speed ( i ) * obj . n/60+5; %Lower f requency o f bandpass f i l t e r

85 i f i == 1

86 h = fde s i gn . bandpass ( 'N, Fp1 , Fp2 , Ast1 ,Ap, Ast2 ' , 10 , Fpass1 , Fpass2 , 50 , . 1 ,

50 , obj . Fs ) ;

87 Hd( i ) = des ign (h , ' e l l i p ' ) ;

88 Hd( i ) . pers istentmemory = true ;

89 obj . xchop ( : , i ) = f i l t e r (Hd( i ) , obj . xchop ( : , i ) ) ; %Apply f i l t e r to data

90 xf = Hd( i ) . s t a t e s ;

91 r e s e t (Hd( i ) ) ;

92 obj . ychop ( : , i ) = f i l t e r (Hd( i ) , obj . ychop ( : , i ) ) ; %| |

93 yf = Hd( i ) . s t a t e s ;

94 e l s e

95 h = fde s i gn . bandpass ( 'N, Fp1 , Fp2 , Ast1 ,Ap, Ast2 ' , 10 , Fpass1 , Fpass2 , 50 , . 1 ,

50 , obj . Fs ) ;
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96 Hd( i ) = des ign (h , ' e l l i p ' ) ;

97 Hd( i ) . pers istentmemory = true ;

98 Hd( i ) . s t a t e s = xf ;

99 obj . xchop ( : , i ) = f i l t e r (Hd( i ) , obj . xchop ( : , i ) ) ; %Apply f i l t e r to data

100 xf = Hd( i ) . s t a t e s ;

101 Hd( i ) . s t a t e s = yf ;

102 obj . ychop ( : , i ) = f i l t e r (Hd( i ) , obj . ychop ( : , i ) ) ; %| |

103 yf = Hd( i ) . s t a t e s ;

104 end

105 end

106 end

107 func t i on update ( obj )

108 obj . xchop = ze ro s ( obj . nspw , obj .NW) ;

109 obj . ychop = ze ro s ( obj . nspw , obj .NW) ;

110 obj . r e f chop = ze ro s ( obj . nspw , obj .NW) ;

111 obj . Speed = ze ro s ( obj .NW, 1 ) ;

112 x = obj .X( 1 : obj . nspw * obj .NW) ;

113 y = obj .Y( 1 : obj . nspw * obj .NW) ;

114 r = obj . r e f ( 1 : obj . nspw * obj .NW) ;

115 obj . xchop = reshape (x , obj . nspw , obj .NW) ;

116 obj . ychop = reshape (y , obj . nspw , obj .NW) ;

117 obj . r e f chop = reshape ( r , obj . nspw , obj .NW) ;

118 f o r i = 1 : 1 : obj .NW

119 pp = pu l s epe r i od ( obj . r e f chop ( : , i ) , obj . Fs , 'Tolerance ' , 7 ) ;

120 obj . Speed ( i ) = 1 ./mean(pp) *60 ;

121 end

122 i f ˜ isempty ( obj . n) && ˜obj . n == 0

123 f i l t e r ( obj )

124 end

125

126 obj .Amp.XAmp = max( obj . xchop ) − min( obj . xchop ) ; %Ca l cu la t e s Amplitude by subt rac t ing

min and max from each column

127 obj .Amp.YAmp = max( obj . ychop ) − min( obj . ychop ) ; %Ca l cu la t e s Amplitude by subt rac t ing

min and max from each column

128 Zwin = hanning ( obj . nspw , 'Per i od i c ' ) ;

129 Z = obj . xchop + 1 i * obj . ychop ;

130 f o r i = 1 : 1 : obj .NW

131 Z ( : , i ) = Zwin . *Z ( : , i ) ;

132 end

133 obj . Zf = 2* abs ( f f t (Z) / obj . nspw) ;

134 obj . Zf = f f t s h i f t ( obj . Zf ' , 2 ) ; %Sh i f t s graph to cente r on the x ax i s

135

136 obj . Phase . PhaseX = ze ro s ( obj .NW, 1 ) ;

137 obj . Phase . PhaseY = ze ro s ( obj .NW, 1 ) ;

138 d i s t ance = . 5 * obj . Fs /100 ;

139 thre sho ld = . 5 * (max( obj . r e f chop ( : , c e i l ( end /2) ) ) − mean( obj . r e f chop ( : , c e i l ( end /2) ) ) ) ;

140 f o r i = 1 : 1 : obj .NW

141 [ ˜ , l o c s r e f ] = f indpeaks ( obj . r e f chop ( : , i ) , 'MinPeakHeight ' , thresho ld , '

MinPeakDistance ' , d i s t ance ) ;

142 [ ˜ , locsX ] = f indpeaks ( obj . xchop ( : , i ) , 'MinPeakProminence ' , 1 , 'MinPeakDistance ' ,

d i s t ance ) ;

143 [ ˜ , locsY ] = f indpeaks ( obj . ychop ( : , i ) , 'MinPeakProminence ' , 1 , 'MinPeakDistance ' ,

d i s t ance ) ;

144 i f l ength ( l o c s r e f ) < 2 | | l ength ( locsX ) < 2 | | l ength ( locsY ) < 2

145 obj . Phase . PhaseX( i ) = NaN;
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146 obj . Phase . PhaseY( i ) = NaN;

147 e l s e

148 i f l ength ( locsX ) ˜= length ( locsY )

149 i f l ength ( locsX ) < l ength ( locsY )

150 i f abs ( locsX (1) − locsY (1) ) < abs ( locsX ( end ) − locsY ( end ) )

151 locsY ( end ) = [ ] ;

152 e l s e

153 locsY (1) = [ ] ;

154 end

155 e l s e

156 i f abs ( locsX (1) − locsY (1) ) < abs ( locsX ( end ) − locsY ( end ) )

157 locsX ( end ) = [ ] ;

158 e l s e

159 locsX (1) = [ ] ;

160 end

161 end

162 end

163 i f l o c s r e f (1 ) > locsX (1) | | l o c s r e f (1 ) > locsY (1)

164 locsX (1) = [ ] ;

165 locsY (1) = [ ] ;

166 end

167 i f l ength ( l o c s r e f ) > l ength ( locsX )

168 l o c s r e f ( l ength ( locsX ) : end ) = [ ] ;

169 end

170 phx = ze ro s ( l ength ( l o c s r e f )−1 ,1) ;

171 phy = ze ro s ( l ength ( l o c s r e f )−1 ,1) ;

172 f o r j = 1 : 1 : l ength ( l o c s r e f )−1

173 phx ( j ) = mod( ( locsX ( j ) − l o c s r e f ( j ) ) /( l o c s r e f ( j +1) − l o c s r e f ( j ) ) *2* pi , 2 * pi

) ;

174 phy ( j ) = mod( ( locsY ( j ) − l o c s r e f ( j ) ) /( l o c s r e f ( j +1) − l o c s r e f ( j ) ) *2* pi , 2 * pi

) ;

175 end

176 obj . Phase . PhaseX( i ) = 180/ pi *mod(mean(phx ( : ) ) ,2* pi ) ;

177 obj . Phase . PhaseY( i ) = 180/ pi *mod(mean(phy ( : ) ) ,2* pi ) ;

178 c l e a r l o c s r e f locsX locsY j

179 end

180 end

181

182 end

183 func t i on acqL i s t ene r ( obj , src , event )

184 obj . newData = [ event . TimeStamps , event . Data ] ' ;

185 obj . r e f = [ obj . r e f , event . Data ( 1 , : ) ] ;

186 obj .X = [ obj .X, event . Data ( 2 , : ) ] ;

187 obj .Y = [ obj .Y, event . Data ( 3 , : ) ] ;

188 obj . update ;

189

190 end

191 %Plo t t ing func t i on s below

192 bode ( obj )

193 cascade ( obj )

194 obj = downsample ( obj , r )

195 o rb i t 3 ( obj )

196 orbitAnimation ( obj )

197 mainplot ( obj )

198 end
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199 end

C.2 Plotting Functions

1 func t i on bode ( obj )

2 f i g u r e ( 'Name' , 'Bode Plot ' )

3 subplot (211)

4 p lo t ( obj . Speed , obj .Amp.XAmp, obj . Speed , obj .Amp.YAmp)

5 x l abe l ( 'Running Speed (RPM) ' ) ;

6 y l ab e l ( 'Amplitude ( mi l s ) ' ) ;

7 legend ( 'Hor i zonta l Plane ' , 'Ver t i c a l Plane ' ) ;

8 subplot (212)

9 p lo t ( obj . Speed , obj . Phase . PhaseX , obj . Speed , obj . Phase . PhaseY)

10 x l ab e l ( 'Running Speed (RPM) ' ) ;

11 y l ab e l ( 'Phase lag ( deg . ) ' ) ;

12 s e t ( gca , ' yt i ck ' ,−720:45:720 , 'YTickLabel ' ,{ '0 ' , '45 ' , '90 ' , '135 ' , '180 ' , '225 ' , '270 ' , '315 '})

13 end

1 func t i on cascade ( obj )

2 f i g u r e ( 'name ' , 'Cascade Plot ' )

3 wa t e r f a l l ( obj . f req , obj . Speed , obj . Zf )

4 x l ab e l ( 'Frequency o f Vibrat ion (Hz) ' ) ;

5 y l ab e l ( 'Running Speed (RPM) ' ) ;

6 z l a b e l ( 'Amplitude o f Vibrat ion ( mi l s ) ' ) ;

7 ax i s ([−100 100 − i n f i n f 0 i n f ] )

8 end

1

2 func t i on o rb i t 3 ( obj )

3 N = length ( obj .X( : ) ) ;

4 F = ( obj . Speed ( end ) − obj . Speed (1) ) /N* ( 0 :N−1) + obj . Speed (1) ;

5 s = f i x ( sq r t (N) ) ;

6 Xlin = obj .X( 1 : s ˆ2) ;

7 Ylin = obj .Y( 1 : s ˆ2) ;

8 w = F( 1 : s ˆ2) ;

9 x = reshape ( Xlin , s , s ) ;

10 y = reshape ( Ylin , s , s ) ;

11 o = reshape (w, s , s ) ;

12 C = sqr t (x.ˆ2+y . ˆ2 ) ;

13 h = mesh (o , x , y ,C) ;

14 ax i s ( [ 1000 2000 − i n f i n f − i n f i n f ] ) ;

15 x l ab e l ( 'Running Speed (RPM) ' ) ;

16 y l ab e l ( 'Hor i zonta l Amplitude ( mi l s ) ' ) ;

17 z l a b e l ( 'Ver t i c a l Amplitude ( mi l s ) ' ) ;

18 h . FaceColor = 'none ' ;

19 h . MeshStyle = 'column ' ;

20 end

1 func t i on orbitAnimation ( obj )

2

3 d i s t ance = . 5 * obj . Fs /100 ;
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4 thre sho ld = . 5 * (max( obj . r e f chop ( : , c e i l ( end /2) ) ) − mean( obj . r e f chop ( : , c e i l ( end /2) ) ) ) ;

5 [ ˜ , l o c ] = f indpeaks ( obj . r e f , 'MinPeakHeight ' , thresho ld , 'MinPeakDistance ' , d i s t ance ) ;

6 pksx=obj .X( l o c ) ;

7 pksy=obj .Y( l o c ) ;

8 Fsh = obj . Fs ;

9 maxlm = max( obj .X) ;

10 speedarray = ( obj . Speed ( end )−obj . Speed (1) ) / l ength ( pksy ) * ( 0 : l ength ( pksy )−1)+obj . Speed (1) ;

11 f o r i = 1 : 1 : l ength ( pksx )−1;

12 p lo t ( obj .X( l o c ( i ) : l o c ( i +1)− f i x ( (1/10) * ( l o c ( i +1)−l o c ( i ) ) ) ) , obj .Y( l o c ( i ) : l o c ( i +1)− f i x ( (1/10) * (

l o c ( i +1)−l o c ( i ) ) ) ) , '−k ' , pksx ( i ) , pksy ( i ) , ' . ' , 'markers i ze ' , 15)

13 text = [ ' Running Speed : ' , num2str ( f i x ( speedarray ( i ) ) ,4 ) , ' (RPM) ' ] ;

14 u i c on t r o l ( ' Sty l e ' , ' t ext ' , . . .

15 ' St r ing ' , text , . . .

16 'Units ' , ' normal ized ' , . . .

17 'Pos i t i on ' , [ . 2 5 . 9 0 .5 . 0 5 ] ) ;

18 ax i s ([−maxlm maxlm −maxlm maxlm ] ) ;

19 ax i s square

20 x l ab e l ( 'Hor i zonta l Amplitude ( mi l s ) ' ) ;

21 y l ab e l ( 'Ver t i c a l Amplitude ( mi l s ) ' ) ;

22 % pause (1/Fsh )

23 pause

24

25 end

26 end
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