
TOWARDS AUTONOMOUS LOCALIZATION OF AN UNDERWATER DRONE

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Nathan Sfard

June 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219380556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c© 2018

Nathan Sfard

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: Towards Autonomous Localization of an

Underwater Drone

AUTHOR: Nathan Sfard

DATE SUBMITTED: June 2018

COMMITTEE CHAIR: Lynne Slivovsky, Ph.D.

Professor of Computer Engineering

COMMITTEE MEMBER: John Seng, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Xiao-Hua Yu, Ph.D.

Professor of Electrical Engineering

iii



ABSTRACT

Towards Autonomous Localization of an Underwater Drone

Nathan Sfard

Autonomous vehicle navigation is a complex and challenging task. Land and aerial

vehicles often use highly accurate GPS sensors to localize themselves in their envi-

ronments. These sensors are ineffective in underwater environments due to signal

attenuation. Autonomous underwater vehicles utilize one or more of the following

approaches for successful localization and navigation: inertial/dead-reckoning, acous-

tic signals, and geophysical data. This thesis examines autonomous localization in

a simulated environment for an OpenROV Underwater Drone using a Kalman Fil-

ter. This filter performs state estimation for a dead reckoning system exhibiting an

additive error in location measurements. We evaluate the accuracy of this Kalman

Filter by analyzing the effect each parameter has on accuracy, then choosing the best

combination of parameter values to assess the overall accuracy of the Kalman Filter.

We find that the two parameters with the greatest effects on the system are the con-

stant acceleration and the measurement uncertainty of the system. We find the filter

employing the best combination of parameters can greatly reduce measurement error

and improve accuracy under typical operating conditions.
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Chapter 1

INTRODUCTION

Autonomous vehicles have gained considerable popularity over the years and their

capabilities are continuously expanding as computers become capable of processing

complex tasks at faster speeds and lower power. Some modern day examples of these

autonomous vehicle advancements include the realization of self-driving cars and self-

stabilizing quadcopters. Although incredible work has been accomplished for surface

and air vehicles, not as much work has been performed for underwater vehicles and

even less for underwater vehicles in unbounded and poor visibility environments, like

the ocean. The reason autonomous vehicles are less popular in the ocean is because

the ocean poses different challenges to the core problem of autonomous vehicles:

autonomous navigation. Many industries and institutions have successfully avoided

these core problems and deployed AUVs into the ocean by using state-of-the-art,

high precision sensors and computers on-board. AUVs are used for many different

practical and scientific applications in the areas of marine geoscience [21], marine

biology, underwater mining [15], and the military. Some specific applications include

mapping the seafloor [21], surveying changes to an ecosystem, following tagged marine

animals [6], or, in the case of military applications, collecting intelligence or removing

sea mines. Although autonomous navigation can be achieved with state-of-the-art

equipment, the challenges associated with using typical sensors and computers can

greatly affect the navigation accuracy of an AUV and, in response, compensations

must be implemented.

Navigation accuracy is defined to be how accurate a vehicle can arrive from one

point to another [13]. In order to be accurate and useful, an AUV must be able

to navigate from one point to another while also staying as close as possible to a
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preset trajectory and dynamically avoiding obstacles along the way. To successfully

accomplish accuracy and utility while autonomously navigating, an AUV must first

determine its location, then identify all the objects around it, and finally plan a path

accordingly toward its destination. These underlying and necessary tasks are com-

monly referred to as autonomous localization, feature extraction, and path planning,

respectively.

[13] defines autonomous localization as how accurate a vehicle can locate itself

with respect to a map or its initial position. On land, this problem is easily solved

with a global positioning system (GPS); however, radio frequencies quickly attenuate

underwater and therefore GPS cannot be used. The only signals that do not attenuate

underwater are acoustic signals but these signals exhibit extremely high latency.

Navigation systems often rely on a feature detection system to perform localization

as well. Feature detection augment localization by dynamically generating maps and

using these maps to verify the AUV’s location. Feature detection is also necessary to

detect objects for avoidance protocols. The challenges present in underwater feature

detection include overcoming poor visibility and fusing camera and sonar data.

Once autonomous localization and feature detection have been accomplished, a

path planning algorithm can be developed. A path planning algorithm must send

control inputs to the AUV so that the AUV follows a preset trajectory, updating the

trajectory as necessary to avoid obstacles. The challenges associated with a path plan-

ning algorithm include correctly processing output from the autonomous localization

and feature detection systems, accurately controlling the AUV, and experimenting

with potentially many different path planning strategies. Once an AUV can plan a

path, the goal of autonomous navigation can be realized. A general trajectory will

be provided, like the one seen in Figure 1.1, and the AUV will be able to follow the

trajectory accurately.
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Figure 1.1: AUV Input Trajectory (location shown is the Cal Poly Pier)

This paper focuses specifically on the task of underwater autonomous localiza-

tion. Our contributions include creating a framework to validate the accuracy of a

localization scheme, implementing a constant acceleration Kalman Filter to estimate

the pose of an AUV, suggesting methods of testing autonomous localization in a non-

simulation environment, and identifying the tasks necessary to augment the Kalman

Filter in order to produce more accurate results. The rest of this paper is structured

as follows: Chapter 2 discusses background and related works in autonomous under-

water localization, Chapter 3 goes over the kalman filter design, Chapter 4 covers the

experimental setup, Chapter 5 presents the obtained results, and Chapter 6 includes

potential future work and our concluding remarks.
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Chapter 2

BACKGROUND AND RELATED WORK

AUVs are broadly used to either survey a general area or interact with a specific

object. In both cases, the area in question may be deep underwater (e.g. surveying a

hydrothermal vent on the seafloor) or just beneath the surface (e.g. surveying groves

of seagrass or polar ice) [21]. When performing a specific task, an AUV only needs to

navigate to the destination in question, perform the task, and optionally return to the

initial location. In the case of surveying a general area, researchers will often deploy

an AUV on a path closely resembling a lawn mower [12] or sawtooth [21] pattern. All

these use cases greatly depend on the accuracy of an autonomous localization scheme

and can also be a deciding factor in which scheme will be the most accurate.

The problem of autonomous underwater localization has undergone immense re-

search and can be divided into three broad categories [13, 16]. The first approach is

dead reckoning, which involves using an inertial measurement unit (IMU) – consist-

ing of a number of accelerometers and gyroscopes, a compass, and a depth sensor –

to calculate a change in position and orientation. The problem with dead reckoning

is that measurement errors are additive, so the difference between the actual and

measured position and orientation increases – or drifts – with time; even extremely

accurate IMUs are susceptible to drift when the mission spans a great enough length

of time. Work from Woodman states the standard deviation in position drift due to

accelerometer white noise is proportional to the time the system is running raised to

the power of 3
2
; Woodman proves this statement by deriving the following equation

[20]:
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σp(t) = σa ∗ t
3
2 ∗
√
δt

3
(2.1)

In Equation 2.1, σp(t) is the standard deviation in position drift at time t, σa

is the standard deviation in accelerometer noise, and δt is the amount of time be-

tween accelerometer measurements. Because of this inherent positional drift, the dead

reckoning approach is often paired with a state estimation algorithm to alleviate the

issue of drift. The state estimation algorithm first predicts the current state and

then updates that prediction. The algorithm predicts the current state based on the

last state and known control inputs, and process noise. The algorithm then updates

that state prediction based on the observed position and orientation, taking into ac-

count measurement error and noise, in order to determine the true state of the AUV

[13]. The Kalman Filter is the fastest known state estimator assuming the system

is Markovian, linear, and the uncertainties are Gaussian [16]. Although the ocean is

essentially nonlinear, the Kalman Filter can be extended (EKF) to account for the

nonlinearity.

The second type employs acoustic transponders and modems placed at known

locations to assist an AUV with the task of localization. In this solution, a beacon

has a fixed location on the seafloor or is on the surface utilizing GPS and relays this

information via acoustic signals to an AUV in order to calculate a relative position.

The long baseline (LBL) approach places beacons along the seafloor to triangulate a

position [19] and other approaches place beacons on buoys and vessels [13, 16]. The

main drawback with the acoustic transponder and modem solution is that the mission

area is limited to within the beacon network. An extension of this approach is to place

beacons on multiple AUVs so they can cooperatively locate themselves [10], although

this requires multiple vehicles. The idea is that a team of AUVs will be deployed and

each dead reckon until an AUV periodically surfaces, gets an accurate GPS location,
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and shares the information with the rest of the AUVs. This idea is further developed

in [11] in which one AUV served as the leader, equipped with extremely high precision

sensors, and this leader AUV relayed its trusted position via acoustic signals to the

other, less precise worker AUVs.

The third approach involves using geophysical data from the AUVs surroundings

to determine the position of the AUV. This solution aims to solve the localization

problem the same way animals do, by using sensory information to identify land-

marks. This sensory information is often in the form of optical and sonar data but

other data can be used, such as magnetic forces, temperature, water quality, etc.

The sensory information is input into some feature detection algorithm and a map

is constructed and updated with every sensor reading. The constructed map can

additionally be compared to a given map to increase accuracy. On every iteration

of this map generating algorithm, the AUV’s location is also calculated within the

map using the distances of all the landmarks. This technique is commonly referred

to as simultaneous localization and mapping (SLAM) [13, 16]. The problem with this

solution is that sonar and optical data are often noisy underwater, especially in the

ocean, and, in order for this solution to be accurate, there must be lots of landmarks

nearby.

A combination of the solutions discussed is the best solution [13, 16]. An example

would be using dead reckoning with state estimation until a landmark or a beacon

is found, and then restarting the state estimation algorithm. A common approach

is to use a state estimation algorithm to estimate additive errors in dead reckoning

as well as errors in SLAM due to time delays. An implementation of this approach,

an EKF-SLAM algorithm, can be found in [3, 4, 12, 2, 5]. In [10] a team of AUVs

use an EKF-SLAM algorithm to estimate a position and a map and then each AUV

sends this information acoustically to the rest of the team so that every AUV can

create the same detailed map. In this paper we attempt to solve the localization
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problem using the Kalman Filter to estimate state while dead reckoning. Although

other state estimators yield far better results, including particle filters [16] and neural

networks [8], these approaches require orders of magnitude more computing resources

and are therefore unable to perform in real time using the typically limited on-board

computer.

7



Chapter 3

KALMAN FILTER DESIGN

Before any solution can be carefully designed, it is necessary to provide a proper model

of an AUV [13, 16]. The model in [17] describes two reference frames: the inertial

frame, in which the earth is fixed, and the local frame, in which the AUV is fixed.

Considering a local frame, an AUV is modelled as a free body having six degrees

of freedom (DOF) called surge, sway, heave, roll, pitch, and yaw corresponding to

movement along the x-axis (forward and backward), movement along the y-axis (side

to side), movement along the z-axis (up and down), rotation about the x-axis, rotation

about the y-axis, and rotation about the z-axis, respectively [17, 18]. The six degrees

of freedom, representing a vehicle’s position and orientation with respect to a local

frame, are grouped into the single state variable that a localization algorithm aims

to estimate and is commonly referred to as the vehicle’s pose. A diagram visualizing

an AUV’s pose within two reference frames can be seen in Figure 3.1.

The Kalman Filter is a learning algorithm that considers process and measure-

ment uncertainties to model a Markovian, linear system in which measurements ex-

hibit gaussian noise. The algorithm operates in a cycle of two distinct stages: predict

and update, shown in Figure 3.2. The algorithm first attempts to predict the current

state and uncertainty from the last state and uncertainty. The algorithm then uses

the measurements obtained at the current timestep to update the current state and

uncertainty estimations. These two stages of the algorithm are then repeated over

and over again for every discrete timestep in the running system. Note, however, that

the update stage does not necessarily need to occur at every timestep, allowing this

algorithm to continue to predict state in the presence of low frequency measurements

or slow processors. The rest of this chapter further details the Kalman Filter imple-
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Figure 3.1: Six degrees of freedom in inertial and local frame [17]
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Figure 3.2: Kalman Filter Flow [9]

mented for this project, first stating the assumptions of our system, then presenting

the system, predict, and update equations, and finally deriving datasheet variables.

3.1 Assumptions

In order to define and implement the Kalman Filter equations, we need to first cor-

rectly model our system and state our assumptions. To correctly model our system,

we use the six degree-of-freedom (6-DOF) model mentioned at the beginning of this

chapter, specifically using the body-fixed frame for measurements and the Earth-

fixed frame for pose estimation. Using the body-fixed frame enables us to measure an

AUV’s current pose as a difference from the AUV’s last pose. Using the Earth-fixed

frame enables us to estimate an AUV’s pose in relation to its initial pose, which leads

us to our first assumption: the initial pose of the AUV is known and correct. We need

the initial pose to be known and correct so our system has some reference point from

which to begin estimating and it is also quite common to assume the initial pose is
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known and correct since AUVs are commonly deployed at the surface where GPS can

be used.

The second assumption involves the characteristics of some of the IMU sensors.

Specifically, the depth sensor and compass exhibit some noise but the error associated

with this noise is not additive, therefore we assume the depth sensor and compass are

adequately accurate and don’t need to be corrected. This assumption means that the

Kalman Filter does not need to include a change in z position or yaw angle (using the

6-DOF body-fixed frame) as a part of its overall state. To further simplify our system,

we also assume that the roll and pitch angles of the AUV are fixed. This assumption

simplifies the system to a 2-DOF model instead of a 6-DOF model. Using the 2-DOF

model enables us to take raw x and y measurements from the accelerometer without

having to include the gyroscope measurements, eliminating the need to convert body-

fixed x and y measurements to Earth-fixed x and y measurements. Not considering

the gyroscope also eliminates the inherent drift in orientation that occurs from noisy

gyroscope measurements. Note that, although we chose to assume orientation is

fixed, the filter implemented in this paper can easily be augmented to correct x and

y measurements for an Earth-fixed frame (by multiplying the measurement with the

cosine and sine of the yaw angle, respectively) and estimate orientation (by adding

orientation to the filter’s state and using gyroscope measurements to update the

state).

This work focuses on a theoretical approach. Therefore, the last two assumptions

are that there are no control inputs for the filter to account for and the AUV exhibits

constant acceleration. When designing a system for a physical AUV, evaluating the

effect of control inputs on the system is necessary in order to accomplish autonomous

localization and involves measuring the actual effect that control inputs have on an

AUV. Furthermore, assuming the AUV moves with constant acceleration is neces-

sary since the basic Kalman Filter works best when the system it estimates is linear
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and Markovian. Accounting for the non-linearity of the ocean is possible, though,

by extending the kalman filter (EKF) and would enable the filter to work without

assuming constant acceleration. Implementing an EKF, however, is left as another

future project.

To summarize, we assume that the initial pose of the AUV is known and correct,

the system only needs to estimate raw x and y measurements from the accelerometer,

control inputs are not used, and the AUV operates at constant acceleration. Next, we

present our System and Kalman Filter equations taking into account the mentioned

assumptions.

3.2 System Equations

Every control system must be described by two equations. The first equation, Equa-

tion 3.1, is the state equation. This equation calculates the system’s next state based

on the current state, xk, and the inputs to the system, uk. The second equation is

the system’s output equation (Equation 3.2). This equation calculates the system’s

current output in terms of the system’s current state and inputs. In our system the

output, yk, is a vector including only position in the x and y direction.

xk+1 =



xk+1

yk+1

x′k+1

y′k+1

x′′xk+1

y′′k+1


= Axk +Buk (3.1)

yk =

 xk

yk

 = Cxk +Duk (3.2)
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In both equations xk is the state vector, which contains all the variables necessary

to represent the system’s state at timestep k. In our system, there are six variables

that represent our state: x and y position, x and y velocity, and x and y acceleration,

denoted by x, y, x′, y′, x′′, and y′′, respectively. Equation 3.1 shows the system’s

state vector.

Although every control system uses the exact same general equations to describe

the system, the A, B, C, and D matrices differ from system to system. In our system

we assume no control inputs so B and D will be 0. The A matrix, called the state

transition matrix, is a 6X6 matrix representing how each variable in the state vector

relates to every other variable in the state vector including itself. Since we assume

our system exhibits constant acceleration and fixed orientation, we can use the basic

kinematic equations relating position, velocity, and acceleration to fill in the A matrix,

seen in Equation 3.3.

A =



1 0 ∆t 0 1
2
∆t2 0

0 1 0 ∆t 0 1
2
∆t2

0 0 1 0 ∆t 0

0 0 0 1 0 ∆t

0 0 0 0 1 0

0 0 0 0 0 1


(3.3)

The C matrix relates the state vector, xk to the output vector, yk. Since the

output vector only contains the current position of the system (Equation 3.2), the C

matrix need only extract those variables from the state vector. Thus, Equation 3.4

shows the C matrix.
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C =

 1 0 0 0 0 0

0 1 0 0 0 0

 (3.4)

An important part of control systems is calculating the observability of the sys-

tem. One can determine the observability of a system by calculating the rank of the

system’s observability matrix. The observability matrix is calculated using Equation

3.5, in which n is the number of state variables. Using Matlab, we found the system

has a full rank (i.e. rank is equal to the number of state variables) so the system is

completely observable.

O =



A

C ∗ A

C ∗ A2

...

C ∗ An−1


(3.5)

3.3 Predict Equations

As mentioned earlier, the Kalman Filter operates as a constant cycle of predict and

update stages. The following equations represent the predict stage of the Kalman

Filter:

x̂k = F ∗ xk−1 +B ∗ uk−1 (3.6)

P̂k = Q+ F ∗ Pk−1 ∗ F T (3.7)

In Equations 3.6 and 3.7, the hat above a variable denotes the variable is an

estimate, therefore the predict equations are yielding an estimate for xk and Pk,
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respectively. xk is the same state vector from Equation 3.1. The state variable is

initialized to a known value, i.e. x0 should be initialized so the x and y accelerations

are the constant acceleration of the system and the x and y velocities and positions

are the known initial velocities and positions.

Pk is a 6X6 matrix representing the system’s process uncertainty or, in other

words, how confident the filter is with its state estimate. Pk includes the subscript k

to indicate that it is updated with every filter cycle, thus the uncertainty is dynamic.

P0 is typically initialized as a diagonal matrix where each term in the diagonal is the

square of the standard deviation in error for each state variable [9]. Thus, P0 takes

the form seen in Equation 3.8.

P0 =



σ2
px 0 0 0 0 0

0 σ2
py 0 0 0 0

0 0 σ2
vx 0 0 0

0 0 0 σ2
vy 0 0

0 0 0 0 σ2
ax 0

0 0 0 0 0 σ2
ay


(3.8)

The F term is the state transition matrix and is identical to the A term in Equation

3.1.Note that assuming a fixed orientation also means that the position drift in the

x direction is independent of a position drift in the y direction and visa-versa. The

matrix in Equation 3.9 shows the F matrix used in our predict equations.
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F =



1 0 ∆t 0 1
2
∆t2 0

0 1 0 ∆t 0 1
2
∆t2

0 0 1 0 ∆t 0

0 0 0 1 0 ∆t

0 0 0 0 1 0

0 0 0 0 0 1


(3.9)

The next part of the equation, denoted by B∗uk−1, is the part of the estimate that

takes the control inputs into account. Since we assume there are no control inputs,

this term will always be 0. Finally, Q is the covariance of the process noise, i.e. how

noise in the process from unknown sources affects each variable in the state vector

over one timestep. This 6X6 matrix is similar to the Pk matrix except the Q matrix

is constant. To calculate Q, we again use the basic kinematic relationships to see how

noise in the system’s acceleration will affect the x and y acceleration, velocity, and

position and then multiply those relationships by the square of the standard deviation

of the noise in acceleration measurements (σ2
α). The matrices described in Equation

3.10 and Equation 3.11 are used to calculate the Q matrix (Equation 3.12), where ∆t

is the length of the timestep.

G =

[
1
2
∆t2 1

2
∆t2 ∆t ∆t 1 1

]T
(3.10)

Q = G ∗GT ∗ σ2
α (3.11)
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Q =



1
4
∆t4 1

4
∆t4 1

2
∆t3 1

2
∆t3 1

2
∆t2 1

2
∆t2

1
4
∆t4 1

4
∆t4 1

2
∆t3 1

2
∆t3 1

2
∆t2 1

2
∆t2

1
2
∆t3 1

2
∆t3 ∆t2 ∆t2 ∆t ∆t

1
2
∆t3 1

2
∆t3 ∆t2 ∆t2 ∆t ∆t

1
2
∆t2 1

2
∆t2 ∆t ∆t 1 1

1
2
∆t2 1

2
∆t2 ∆t ∆t 1 1


∗ σ2

α (3.12)

In summary, the predict equations calculate an estimate for the current state, x̂k

and current process uncertainty, P̂k. The current state is estimated by multiplying

the state transition matrix, F , by the (corrected) last state, xk. The current process

uncertainty is estimated by multiplying the (corrected) last process uncertainty, Pk

by the transition matrix, F , squared and adding the covariance of the process noise,

Q.

3.4 Update Equations

The second stage of the Kalman Filter is the update or correction stage, modeled by

Equations 3.13, 3.14, 3.15, and 3.16.

xk = x̂k +Kk ∗ (zk −H ∗ x̂k) (3.13)

Pk = P̂k −Kk ∗ Sk ∗KT
k (3.14)

Kk = P̂k ∗HT ∗ S−1k (3.15)

Sk = H ∗ P̂k ∗HT +R (3.16)
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Similar to the predict equations, the main objective of the update equations is

calculating the current state, xk, and the process uncertainty, Pk. These equations

use measurements at the current timestep and the corresponding measurement noise

to correct the estimates from the predict stage. zk is a vector containing all the

measurements taken at timestep k. In our system, we are only measuring x and

y accelerations from an accelerometer so this vector contains two elements. H is a

2X6 matrix that translates how each measurement affects each variable in the state

vector. Since our system only measures x and y acceleration, the H matrix will only

map these measurements to the x and y acceleration variables in the state vector,

respectively. Equation 3.17 represents the H matrix.

H =

 0 0 0 0 1 0

0 0 0 0 0 1

 (3.17)

The R term is a 2X2 matrix representing the measurement uncertainty, or noise,

from the x-axis and y-axis accelerometers. This matrix is just a diagonal matrix

consisting of the square of the standard deviation for each sensor. The R matrix used

in our system is represented in Equation 3.18.

R =

 σ2
α 0

0 σ2
α

 (3.18)

Finally, the Kk and Sk matrices are intermediate terms. The whole set of update

equations are employed to correct the estimates calculated in the predict stage. The

state vector, xk, is updated for the current timestep by taking into account the state

estimate for the current timestep, x̂k, the measurements at the current timestep,

zk, and the constant measurement noise, R. Similarly, the process uncertainty for

the current timestep, Pk is updated by taking into account the process uncertainty

estimate for the current timestep, P̂k, and the constant measurement noise, R. In
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the next chapter we describe how to obtain the σα used in the predict and update

equations.
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Chapter 4

EXPERIMENTAL DESIGN

Our goal is to implement an autonomous localization algorithm using accelerometer

readings from an actual OpenROV and we use simulations to evaluate the algorithm.

In order to test the accuracy of a localization algorithm, including the Kalman Fil-

ter implemented in this paper, we develop an experimental testbench that simulates

noisy measurements from the AUV’s accelerometers and processes those measure-

ments through a given filter. In addition to simulating measurement noise and the

Kalman Filter’s response, we also test the effect of tuning certain parameters in our

system, specifically acceleration, initial velocity, normal vs. uniform noise, initial

process uncertainty (P ), measurement uncertainty (R), and process uncertainty co-

variance (Q).

4.1 Experimental Testbench

The experimental testbench, implemented in Python 2.7, consists of two components:

a simulator and a filter. The simulator is the main test script, responsible for initial-

izing the filter, simulating noisy measurements, passing these measurements to the

filter, and reporting position errors from both the measurements and the filter. The

filter is a Python class that implements the interface defined by another abstract class;

this interface includes one method to initialize the filter and another method that ac-

cepts noisy measurements and produces corrections. It is designed to be modular so

that it can be adapted to test additional localiztion algorithms in the future.

The simulator conducts an experiment by running 100 simulations, using the sim-

ulation number as the seed to the random number generator so every simulation
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is repeatable. Each simulation produces 10 minutes of uniformly distributed noisy

measurements for both x and y accelerations (recall that the modeled accelerometer

produces measurements at a rate of 100Hz). At each timestep the current set of mea-

surements is passed to the filter and the current position is calculated by integrating

the measured acceleration. Every 60 seconds, the simulator will additionally report

the error in the calculated position as well as the error in the filtered position, which is

calculated as the difference from the true position. The simulator is also configurable,

so one can change the number of simulations, the duration of each simulation, the x

and y acceleration, the initial x and y velocities, the data rate, whether the noise is

normally or uniformly distributed, and the standard deviation of the measurement

noise.

Python’s random number generator is used to simulate noisy measurements since

simulating actual ocean physics is a difficult task. Most current underwater simula-

tors, like UWSim [14], are great for systems that are concerned only with visualizing

water beneath the surface or simulating physics between two underwater objects but

lack the ability to simulate hydrodynamic forces on an object. A Matlab tool called

Marine Systems Simulator (MSS) [7] could potentially be used, however, collecting

and simulating actual hydrodynamic forces is left as a future project.

The σ used for the random number generator and in the filter equations is the

standard deviation in accelerometer noise, which can be calculated using the IMU’s

datasheet. The IMU we model, and sold by OpenROV, is the Bosch BNO055 Intelli-

gent 9-axis absolute orientation sensor [1]. The variables from the sensor’s datasheet

we are concerned with, noise density and data rate, are listed in Table 4.1. To calcu-

late σα for the accelerometer, we substituted known values for the units of the noise

density. Specifically, we multiplied the noise density by the gravitational constant,

g, multiplied by µ (10−6), and divided by the square root of the data rate, which is

100Hz. Using the typical noise density, σα is calculated to be 1.4715e-4 ms−2. Using
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Parameter Value Units

Output Noise Density (typical) 150 µg/
√
Hz

Output Noise Density (worst) 190 µg/
√
Hz

Data Output Rate 100 Hz

Table 4.1: Datasheet Variables [1]

equation 2.1, we find that the standard deviation in acceleration for this accelerome-

ter yields a standard deviation in position of slightly more than 1.8 meters over one

hour (recall that the standard deviation in position grows proportionally to t
3
2 ).

Another important aspect of the filter is that it must maintain its own state

in order to produce correct estimates and to be decoupled from the simulator. The

Kalman Filter implemented in this paper maintains state by saving the estimates and

corrections of the state vector and process uncertainty matrix. This Kalman Filter is

initialized with the constant x and y accelerations and the initial x and y velocities

used in the simulator. The rest of the parameters are initialized independent of the

simulator and how these parameters are tuned are analyzed in the next section.

4.2 Parameter Tuning

We tune the following parameters to see the effect on the filter’s ability to correct

position error: acceleration, initial velocity, sensor noise, initial process uncertainty

(P ), measurement uncertainty (R), and process uncertainty covariance (Q). Accel-

eration, initial velocity, and sensor noise, are all tuned within the simulator and the

rest are tuned within the filter. Each parameter is varied individually while keeping

the other parameters constant at their default value. Each of these variations is then

tested across 100 simulations. We describe our rationale for varying parameter values

and summarize them in Table 4.2.
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The Kalman Filter we implemented assumes a constant acceleration, however, we

would like to test the effect that a zero and non-zero constant acceleration has on the

filter. We decided to test values between 0 and 0.1ms−2 for both x and y directions

to start with. The top speed of the OpenROV Underwater Drone is just above 1m/s

so an acceleration of .1ms−2 is well above its capabilities. We also decided to keep

both x and y acceleration at 0ms−2 when testing the effect of other parameters since

the acceleration value theoretically affects the system greatly and we would like to

isolate each parameter’s effect.

We wanted to test the effect that velocity may have on the zero acceleration system

so we tested the system with x and y velocities between 0 and 1m/s. Note that our

Kalman Filter equations guarantee that x and y measurements are independent, so

we therefore do not need to test the effect of varying acceleration or velocity in one

direction on the other direction.

Sensor noise describes how the simulated measurements are randomly generated;

either uniformly or normally with 0 mean and the standard deviation of the mea-

surement noise. The reason the type of distribution is tested is because the Kalman

Filter works best for Gaussian (normal) noise, however the noise exhibited by the

accelerometer in question is uniformly distributed. Because the sensor is uniformly

distributed, we choose the uniform distribution to be the default distribution when

testing other parameters.

The initial process uncertainty describes how fast the filter can converge on the

true position from the noisy measurements. Recall that the process uncertainty is

often initialized as a diagonal matrix with each diagonal element initialized to the

corresponding state variable’s variance in process noise. These values can only be

achieved through experimentation, so we tested with values ranging from σ2 up to

1000. We also tested the effect of having a low uncertainty in acceleration but a high
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Parameter Default Value Variations Units

x Acceleration 0 0, 1e−6, 1e−3, 1e−1 ms−2

y Acceleration 0 1e−1, 1e−3, 1e− 6, 0

x Velocity 0 0, 1e−3, 1e−1, 1 m/s

y Velocity 0 1, 1e−1, 1e−3, 0

Sensor Noise Uniform Uniform,Normal N/A

Pa (see Figure 4.1) σ σ2, σ, 0.01, 1, 1000, σ, 1000 m

Pv σ σ2, σ, 0.01, 1, 1000, 1, 1 m

Pp σ σ2, σ, 0.01, 1, 1000, 1000, σ m

σ2
α in R σ2 σ4, σ2, σ, 0.01, 1, 1000 m

scalar on Q 1 σ2, σ, 0.01, 1, 1000 N/A

Table 4.2: Parameter Tuning Variations and Default Values

uncertainty in position and visa-versa. The default initial process uncertainty for all

the variables was set to σ since this value closely resembles the true variance for each

variable.

The measurement uncertainty is supposed to be set to σ2, however, varying this

value will vary how much the system trusts the measurements it receives. We tested

this variable using values ranging from σ4 to 1000 and kept the default at the theo-

retical value, σ2.

The process uncertainty covariance describes how noise in one state variable re-

lates to noise in the other state variables. This variable is initialized using the basic

kinematic equations and, when testing, we maintain this relationship and only test

the effect that a scalar on all the values has on the overall system. We test scalars

ranging from σ2 to 1000, using a scalar of 1 as the default.
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P =



Pa 0 0 0 0 0

0 Pa 0 0 0 0

0 0 Pv 0 0 0

0 0 0 Pv 0 0

0 0 0 0 Pp 0

0 0 0 0 0 Pp


Figure 4.1: Model used to tune the initial process uncertainty matrix
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Chapter 5

RESULTS

The main goal of the simulation experiments is to evaluate the effect each parameter

has on the overall accuracy of the filter. The overall accuracy of the filter is highly

influenced by the accuracy of the measurements, which means the filter’s performance

varies between improving and worsening the measured position depending on the

generated random numbers. Because of this variability, each experiment consists of

100 simulations and compares how the mean measurement and filter error across all

100 simulations changes over time. We additionally use the simulation number as

the seed to our random number generator to ensure each simulation is unique and

repeatable. We first evaluate the effect of each of the previously stated parameters

and then we evaluate what we consider the best permutation of these parameters.

5.1 Results of Parameter Tuning

To determine the effect one parameter has on the overall system, we run a single

experiment for each value we would like to test while keeping the other parameters

constant at an optimal value. We then compare the mean filter error of each ex-

periment with the measurement mean error. Recall that, in our system, the white

noise from the y-axis accelerometer does not affect the uncertainty in acceleration

readings from the x-axis accelerometer and visa-versa. This means that we only need

to evaluate the filter error along one axis to perform an overall evaluation of this

Kalman Filter. The sections below describe our findings when tuning acceleration,

velocity, type of sensor noise, initial process uncertainty, measurement uncertainty,

and process uncertainty covariance.
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5.1.1 Acceleration

The initial experiment tested values of 0.000001ms−2, 0.001ms−2, and 0.1ms−2 for

acceleration (Figure 5.1). Figure 5.1 plots error, in meters from true position, against

time in seconds. That figure shows that when using filtering accelerations up to and

including 0.001ms−2, the filter’s error closely matches the measurement error. An

acceleration of 0.1ms−2 resulted in a significant increase in filter error. In order to

better evaluate the behavior of the smaller acceleration values, as well as to find the

acceleration that causes the filter to perform worse than measurements, we ran this

experiment again, using values closer to 0.001ms−2.

Figure 5.2 is the result of this second experiment. We can see that the filter’s error

is slightly less than the measurement error for values up to and including 0.001ms−2

but the filter begins to perform worse at 0.005ms−2. One can also see that, although

all the filter errors increase with respect to time, the filter error associated with an

acceleration of 0.005ms−2 seems to increase at a higher rate than the measurement

error or other filter errors. This idea that a higher acceleration causes a higher rate

of change in filter error is further proved by the 0.1ms−2 acceleration series in Figure

5.1 and can best be explained by the fact that position also changes at a higher rate

as acceleration increases. This higher rate of change in position therefore degrades

the accuracy of the filter being evaluated.

5.1.2 Initial Velocity

When tuning the system’s initial velocity, acceleration is kept constant at 0ms−2.

Therefore, we expect that the results of the initial velocity experiment would all be

the same as the results of the 0ms−2 acceleration results. Figure 5.3, which shows

the results of the initial velocity experiment, confirms are expectations since all the

different velocity series in the graph are coincidental.
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Figure 5.1: Results of Initial Acceleration Experiment

(All series coincide except A = 0.1ms−2)

Figure 5.2: Results of Fine Tuned Acceleration Experiment

(All series except A = 0.005ms−2 are mostly coincidental)
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Figure 5.3: Results of Velocity Experiment

(All series coincide except for the Measurement series)

5.1.3 Type of Sensor Noise

The sensor we are modeling exhibits uniformly distributed white noise, however the

Kalman Filter assumes Gaussian noise. Figure 5.4 shows how the type of sensor noise

affects the cumulative position error. A normally distributed sensor noise results in a

higher measurement error in position than a uniformly distributed sensor noise. This

seems counter-intuitive since a normally distributed sensor noise should, in theory,

imply that measurements are generally closer to the true value than a uniformly

distributed sensor noise. However, a normally distributed sensor noise will still have

some outliers that lie far away from the true value, whereas a uniformly distributed

sensor noise is guaranteed to have an upper bound on the distance from the noisy

measurement and the true value. At the 600 second mark in Figure 5.4, it can be

seen that the difference between filter error and measurement error is greater when

the sensor noise is normal than when the sensor noise is uniform.
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Figure 5.4: Results of Sensor Noise Type Experiment

5.1.4 Initial Process Uncertainty

Similar to the velocity experiment, the initial process uncertainty has no effect on the

filter’s accuracy as seen in Figure 5.5. All the experimental series are coincidental

and are the same as the zero acceleration series in Figure 5.2. An explanation for

why the initial process uncertainty has no effect on the system is that this variable

is updated at every single timestep. This variable will quickly converge no matter

how it is initialized and Kohanbash [9] states the initial value of this variable is not

important.

5.1.5 Measurement Uncertainty

Varying measurement uncertainty yielded the most interesting results from these ex-

periments. Figure 5.6 shows the results of our initial experiment, in which it can be
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Figure 5.5: Results of Initial Process Uncertainty Experiment

(All series coincide except the Measurement series)
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seen that a low measurement uncertainty causes the filter error to closely match the

measurement error. However, as measurement uncertainty increases, filter error de-

creases. A measurement uncertainty value of 1000 causes the filter to exhibit almost

no error at all compared to the measurement error and, although the filter error still

increases, the filter error increases at a much slower rate. These results make sense

since a low measurement uncertainty means the filter, after every update, is certain

that measurements are mostly correct and, therefore, don’t need much correction.

Conversely, a high measurement uncertainty means the filter is uncertain about the

sensor measurements, so the filter assumes the system is running at constant ac-

celeration and determines position using kinematic equations. Since we assume the

acceleration in our system is constant, a high measurement uncertainty improves the

filter’s accuracy.

These results are expected so we want to further see the effect that measurement

uncertainty has on the system in the presence of a higher rate of change. We decide

to test the effect that measurement uncertainty has on the filter’s accuracy when the

constant acceleration is higher. Figure 5.7, Figure 5.8, and Figure 5.9 repeat the initial

measurement uncertainty experiment for accelerations of 0.001ms−2, 0.005ms−2, and

0.01ms−2, respectively.

Figure 5.7 shows that, at an acceleration of 0.001ms−2, a measurement uncer-

tainty of 1000 performs slightly worse than the same uncertainty at zero acceleration

and all the other measurement uncertainty values perform about the same as the

zero acceleration case. At 0.005ms−2 we notice, from Figure 5.8, that all the mea-

surement uncertainty experiments start losing accuracy; a measurement uncertainty

of 1 has roughly the same accuracy as using measurements alone, anything lower than

1 has worse accuracy, and anything higher than 1 still has better accuracy. Further

increasing acceleration to 0.01ms−2 reveals that all measurement uncertainty values

have higher filter errors than the measurement error. Although the filter errors are

32



Figure 5.6: Results of Initial Measurement Uncertainty Experiment

(The series R = error4, R = error2, R = error, and R = 0.01 all coincide)

worse, it can be seen in Figure 5.9 that the measurement error grows at higher rate

than the filter error for all measurement uncertainties. This difference in growth

rate suggests that running the simulation for more than 10 minutes may result in

lower filter errors than measurement errors. We therefore decided to evaluate our

best parameter permutation with an hour long simulation instead of a 10 minute long

simulation. The results of these experiments are detailed in Section 5.2 and can be

seen in Figure 5.12, Figure 5.13, Figure 5.14, and Figure 5.15.

5.1.6 Process Uncertainty Covariance

Figure 5.10 illustrates the results from our initial process uncertainty covariance ex-

periments. We can see from the graph that a lower process uncertainty covariance

results in the filter exhibiting less error than higher process uncertainty covariance,
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Figure 5.7: Results of Measurement Uncertainty Experiment at 0.001ms−2

Figure 5.8: Results of Measurement Uncertainty Experiment at 0.005ms−2
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Figure 5.9: Results of Measurement Uncertainty Experiment at 0.01ms−2
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although the highest covariance tested was still slightly more accurate than direct

sensor measurements. A smaller covariance should result in less filter error because

this covariance is added to the process uncertainty estimate at every timestep. Thus,

a smaller covariance means the filter is more certain that the process will follow its

state transition equations (the F matrix), whereas a larger covariance means the fil-

ter is unsure whether the process will follow the state transition equations or deviate

from them.

Naturally, we then want to test the limit of how small the process uncertainty

covariance can be while still decreasing the filter error. The smallest scale value we

tested in the initial experiment was σ2, so, for the secondary experiment, we tested

with the following values: σ2, σ4, σ16, and 0. Figure 5.11 illustrates the results

of this secondary experiment, in which all the series are coincidental; thus, making

the covariance smaller than σ2 did not improve or worsen accuracy. The reason a

covariance scale smaller than σ2 didn’t improve accuracy is most likely due to the fact

that the standard deviation of the sensor’s white noise we are modeling is relatively

small and a covariance value less than the square of this standard deviation is much

closer to 0 than the actual measurement error.

5.2 Results of Best Parameter Permutation

When choosing which values to select for the best parameter permutation, we first

address velocity and initial process uncertainty. From experimentation, we find that

both velocity and initial process uncertainty have no effect on the system, so we leave

these parameters at their default value. The process uncertainty covariance is found,

through experimentation, to yield the same filter accuracy at scales between 0 and σ2

and worse filter accuracy at higher scales, so we use σ2 to scale the process uncertainty

covariance. Finally, since the sensor we are modeling exhibits uniformly distributed
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Figure 5.10: Results of Initial Process Uncertainty Covariance Experiment

(The series Q = error, Q = 0.01, Q = 1, and Q = 1000 are all coincidental)

Figure 5.11: Results of Second Process Uncertainty Covariance Experi-
ment

(All series are coincidental except the Measurement series)
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white noise, we use the uniformly distributed sensor noise as well.

The last two parameters – acceleration and measurement uncertainty – exhibited

the most variability so picking which value is best was difficult. Therefore, we opt

to continue experimentation with varying acceleration and measurement uncertainty

values. We extend the same experiments to an hour instead of 10 minutes, we use a

process uncertainty covariance scale of σ2, and we run an additional experiment at

an acceleration of 0.1ms−2 to see how a large measurement uncertainty responds to

a much larger rate of change in position. Figure 5.12, Figure 5.13, Figure 5.14, and

Figure 5.15 show the results of these final experiments for accelerations of 0.001ms−2,

0.005ms−2, 0.01ms−2, and 0.1ms−2, respectively.

From these experiments, we confirm our suspicion that the filter error, when using

a high measurement uncertainty, will increase at a slower rate than the measurement

error, which means that although the filter error was higher than the measurement

error after 10 minutes, the filter error was actually lower than the measurement

error after an hour. We can see from the graphs that, as acceleration increases, the

filter’s accuracy will still decrease regardless of the measurement uncertainty used. At

0.01ms−2 (Figure 5.14), which is a typical acceleration of the OpenROV Underwater

Drone, a measurement uncertainty of 0.01 could not correct sensor measurements.

However, a measurement uncertainty of 10 was able to reduce measurement error by

about 0.1m and a measurement uncertainty of 1000 reduced measurement error by

roughly 0.4m. An interesting observation from these experiments is that the filter’s

error seems to grow linearly regardless of the measurement uncertainty or acceleration.

This linear trend is the most clear in Figure 5.15, at an acceleration of 0.1ms−2.
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Figure 5.12: Results of Best Parameter Permutation at 0.001ms−2

Figure 5.13: Results of Best Parameter Permutation at 0.005ms−2
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Figure 5.14: Results of Best Parameter Permutation at 0.01ms−2

Figure 5.15: Results of Best Parameter Permutation at 0.1ms−2

(All series are coincidental except the Measurement series)
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Chapter 6

CONCLUSION AND FUTURE WORK

We started by researching various solutions to the problem of autonomous underwater

localization and found three general approaches: dead reckoning combined with state

estimation, multi-AUV cooperative localization, and geophysical feature extraction

combined with a SLAM algorithm. Our research also found that a combination of

approaches is, in fact, the best approach. In this paper, we chose to start solving the

problem of autonomous underwater localization by implementing a kalman filter to

estimate the true state of a dead reckoning system by correcting for linear errors in

accelerometer readings. We then tested the accuracy of this filter by comparing the

filter error with the error associated with unfiltered dead reckoning.

We first tested the effect that various parameters in the filter have on the filter’s

overall accuracy and make a few findings. First, the velocity and initial process un-

certainty of the system have no effect on accuracy. Second, measurement error when

using a sensor with uniformly distributed noise was less than the measurement error

when using a sensor with normally distributed noise, although the filter corrected nor-

mally distributed sensor noise better than uniformly distributed sensor noise. Third,

a small process uncertainty covariance improved the accuracy of the filter, although

anything smaller than σ2 did not improve or worsen the accuracy.

Acceleration and measurement uncertainty had the largest effects on the filter’s

accuracy. A higher rate of change in position caused the accuracy to quickly de-

grade, even with a high measurement uncertainty. A high measurement uncertainty

proved to greatly improve the accuracy of the filter since the system is linear but,

as previously mentioned, too high of an acceleration would still cause even a very

large measurement uncertainty to exhibit more filter error than dead reckoning alone.
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Fortunately, the AUV we model will not typically accelerate faster than 0.01ms−2 so

a high measurement uncertainty can enable the filter to sufficiently correct measure-

ments.

The problem of autonomous underwater localization, specifically for the Open-

ROV Underwater Drone, is still far from solved. The following tasks represent the

future work for this project and are necessary in order to achieve a complete, accurate,

and deployable localization solution:

Extend the kalman filter - To deal with a nonlinear system (like the ocean)

the kalman filter implemented in this paper must be extended. This extended

kalman filter (EKF) replaces the linear F matrix with a Jacobian matrix that

linearizes the nonlinear system.

Test the OpenROV vehicle dynamics - Test the dynamics associated with how

control inputs translate into forces on the vehicle and how the vehicle dynamics

respond to actual ocean conditions, specifically for the OpenROV Underwater

Drone. This task will involve installing an IMU onto an OpenROV, running

different testing scenarios while collecting and analyzing the data from the IMU,

and finally augmenting the kalman filter to include these findings.

Combine the state estimation approach with a SLAM approach - Add

features detected from sonar/camera data to the system state vector of the im-

plemented filter and use these features to develop a SLAM algorithm, which

utilizes the filter’s estimation techniques. This task will require a working fea-

ture detection system but will additionally generate maps of the environment

in addition to localizing position.

Implement an on-board filter - In order for the OpenROV to truly be au-

tonomous, it must be able to run a state estimating filter on-board. This task
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involves reducing the complexity of the filter so that it may run to completion

between each measurement reading and do so on a limited processor. This task

will also involve implementing the simplified filter on an FPGA, Raspberry Pi,

etc. and installing the hardware onto the OpenROV.

Perform real-world experiments - A major challenge of a real world experi-

ment is that the true trajectory of an AUV is impossible to obtain, yet the

true trajectory of an AUV is necessary to evaluate the accuracy of position sen-

sors and an autonomous localization algorithm. We discuss two types of real

world experiments: bounded and unbounded. A bounded experiment would be

one conducted in a pool, where walls serve as physical boundaries and water

conditions are predictable. In a bounded experiment, an exact trajectory is

obtainable, although not perfect. One can devise methods, such as using fixed

markers on the pool floor or surface, to provide an estimate of trajectory. An

unbounded experiment in this application would take place in the ocean, where

physical boundaries are limited and water conditions are highly unpredictable.

In this situation, setting up markers to track trajectory requires an enormous

amount of prior effort and is unreliable since markers are affected by underwa-

ter currents and an operator will have more difficulty navigating through these

markers in the ocean than in a pool. To overcome the inability to track true

trajectory in an unbounded experiment, another evaluation method is consid-

ered: tracking how much drift occurs. The problem we are trying to solve is

the inherent drift in position found in dead reckoning alone. We can set up

an experiment where an AUV follows a loosely defined trajectory in the ocean,

starting at one point and ending at another. Since we know the true start and

end locations, we can compare the true end location to the measured and fil-

tered end location in order to validate an autonomous localization algorithm.

The method of comparing only end locations can also be used in the bounded
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experiment, however this method will only yield meaningful results when the

trajectory is fairly long, which can be achieved by moving in a circle or lawn

mower shape within a bounded environment.
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