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Executive Summary 
Digital tools and technology-based activities offer new and promising opportunities for students to 

actively explore mathematical concepts and ideas in ways supported by current reforms and visions of 

mathematics instruction. This report provides an in-depth look at the implementation of SunBay Digital 

Mathematics (SunBay Math) during the second year of an i3 validation project, in two large Florida 

districts. SunBay Math is a set of middle-school curriculum replacement units centered on the use of 

technology-based, dynamically linked representations to learn core mathematical concepts. We focus 

specifically on patterns and relationships between instructional practices and instructional quality in 26 

videotaped lesson enactments that were purposefully collected to represent variation in 

implementation. 

Chapter 1 describes the conceptual framework and context for the study. As part of the scale-up and 

evaluation of SunBay Math, two units were implemented in sixth-, seventh- and eighth-grade 

classrooms in 30 middle schools randomly selected from two large Florida school districts serving 

diverse, high-need student populations.  

To study the implementation of SunBay Math lessons in this context, we draw on the constructs of 

textbook integrity (Chval, Chávez, Reys, & Tarr, 2009) and fidelity to the author’s intended lesson (Brown, 

Pitvorec, Ditto, & Kelso, 2009) to consider two dimensions in the enactment of SunBay Math lessons in 

relation to the curricular design: structural integrity and pedagogical integrity. We define structural 

integrity as adherence to the curriculum in terms of the observable parts of a lesson and activity 

structures, while pedagogical integrity refers to the interactions and conditions put in place for students 

to engage with the content of the lesson. SunBay Math’s dynamic technology-based tools feature 

multiple, linked mathematical representations designed to support student understanding of both 

underlying concepts and procedures. The design of the lessons in the modular two-week units revolves 

around teachers facilitating student reasoning through small group exploration with dynamically linked 

representations and whole group discussions to elicit, highlight and consolidate the important 

mathematical ideas.  

In Chapter 2, we present the research methods and findings related to the structural and pedagogical 

integrity of the 26 videotaped lesson enactments. We developed a set of four rubrics to focus on specific 

features of SunBay Math and also used four rubrics from the validated Instructional Quality Assessment 

(IQA) toolkit (Boston, 2012) to focus on overall instructional quality. Applying these eight rubrics to 

every lesson allowed us to capture variation in different dimensions of both structural and pedagogical 

fidelity, along with students’ overall opportunity to engage in high-level reasoning around the 

mathematics. The analysis shows that while SunBay Math lessons in the written curriculum materials 

reflect a high level of cognitive demand, many of the observed lessons were enacted at a low level, 

focusing primarily on procedures rather than reasoning and conceptual understanding. Patterns across 

both high- and low-level implementations highlight how pedagogical integrity to the lesson influences 

the opportunity for students to engage in reasoning and make conceptual connections to the 

mathematics. Through both quantitative and qualitative analysis, we demonstrate that pedagogical 

integrity is more consequential than structural integrity for students’ overall opportunity to learn. 

To further explore and contextualize pedagogical integrity and the role of teacher instructional 

practices, four case studies of lesson enactments from the same unit are presented in Chapter 3. While 

these lesson enactments focus on the same mathematical content, they reflect differences in activity 
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structures (e.g., whole group vs. small group) and both high and low pedagogical integrity to the 

curriculum design. We look across the cases to highlight the role of the teacher’s approach to 

technology use, implementation of Predict-Check-Explain (PCE) inquiry cycles, and discourse practices. 

In addition, the cases illustrate important differences in teacher orientations towards their own role and 

towards the use of the curriculum.  

Chapter 4 discusses implications of the findings. We conclude that giving students access to new 

technological tools and having them work in groups to complete tasks as sequenced in the curriculum, is 

not sufficient to ensure opportunity to learn in the ways intended by the curriculum designers. The way 

that the teacher presented, facilitated and orchestrated discussion around the tasks, resulted in the 

technology being used procedurally, for exploration without any guidance, or for exploration along with 

reasoning, explanation and connections to important mathematical ideas. Whether or not teachers 

made structural or pedagogical adaptations was less important than the capacity for teachers to be able 

to do so with integrity to the curricular design. Teachers play a central role in enactment of technology-

based curricula. We therefore underscore the need for sustained efforts to build teacher capacity, 

including opportunities for teachers to develop and refine new instructional practices, as well as develop 

new orientations to teaching and learning.  
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Chapter 1 Context for the Study 
 

Recent visions of mathematics instruction focus on engagement in productive struggle as students make 

sense of and reason about mathematical ideas to develop conceptual and procedural understanding 

(Common Core State Standards Initiative, 2010; Hiebert et al., 1996). These new views of mathematics 

instruction are often regarded as ambitious, highlighting the challenges involved in taking on new roles, 

responsibilities, and practices for both teachers and students (Franke, Kazemi, & Battey, 2007; Lampert, 

Beasley, Ghousseini, Kazemi, & Franke, 2010). Innovative curricula are viewed as an essential lever for 

reform in these directions, providing support for new standards and instructional methods (Remillard, 

2005). 

The growth of new digital tools and technology-based activities provides new opportunities for students 

to explore mathematical concepts and ideas through dynamic visual representations and simulations 

not possible with traditional paper and pencil exercises or chalkboard demonstrations. Technology 

enables transformation in learning experiences by supporting students in reasoning about mathematical 

concepts through experiences in intrinsically engaging environments (Roschelle, Noss, Blikstein, & 

Jackiw, 2017). Dynamically linked mathematical representations afford opportunities for the 

development of deep conceptual understanding of mathematical ideas promoted by current reforms. In 

this report, we explore the implementation of SunBay Digital Mathematics (SunBay Math), a set of 

middle-school curriculum replacement units centered on teacher facilitation of the use of technology-

based, dynamically linked representations, to help students learn core mathematical concepts. 

These replacement units reflect a shift in the teacher’s role to engage students in inquiry and facilitate 

discussions to develop a shared understanding of important mathematical ideas. We explored what 

happens during implementation when teachers use curriculum units that reflect new pedagogical 

approaches and incorporate technology. Questions guiding our exploration included: Does providing 

teachers and students access to technology-based activities lead to increased opportunities for deep 

engagement and opportunities to learn? If so, under what conditions? Do teachers’ instructional 

practices reflect the intent of the curriculum and technology?  

This study is part of a larger external evaluation of the impact of SunBay Math in two large districts in 

Florida, which included a mixed methods implementation study and a randomized control trial.1 Findings 

are described in a companion report, The i3 Validation of SunBay Digital Mathematics (Sirinides et al., 

forthcoming). The in-depth analysis from the evaluation showed a positive impact on the teachers’ 

understanding and tolerance of student struggle as a part of the math learning process, as well as an 

increase in the teachers’ comfort with using technology for math instruction. However, many teachers 

did not fully implement the SunBay Math units and/or lessons, making it difficult to assess the true 

impact of the innovative technology-based curriculum on student learning.  

                                                           
1 In 2014, SunBay Math’s developer, SRI International, was awarded an i3 validation grant as part of the Investing in Innovation 
(i3) program of the Office of Innovation and Improvement (OII), U.S. Department of Education. The Helios Education 
Foundation also supported the project with a matching grant. As part of this award, the Consortium for Policy Research in 
Education (CPRE) at the University of Pennsylvania, served as an independent evaluator, assessing the impacts and 
implementation of SunBay Math under the i3 project in two districts.  
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The present study draws on prior work that has shown that teacher practices can mediate the effects of 

curriculum on student learning (Tarr et al., 2008; Taylor, 2016). It examines dimensions of variation in 

SunBay Math lesson enactments and teacher instructional practices that are associated with that 

variation. It also looks at pedagogical and structural factors associated with students’ opportunities to 

engage in reasoning and making conceptual connections to the mathematics. This report aims to 

contextualize and further explain the effects of teacher adaptations on the implementation of 

technology-based middle-school mathematics curriculum.  

Conceptual Framework 
SunBay Math is comprised of professional development and instructional resources that enable  

teachers to engage students in sense-making and reasoning—important priorities in current efforts 

towards reform in mathematics education. Because “instruction consists of interactions among teacher 

and students around content, in environments” (Cohen, Raudenbush, & Ball, 2003, p. 122), the effects 

of instructional resources are always mediated by teacher and student knowledge, beliefs and action. 

Teachers and students adapt curriculum materials during implementation and these adaptations may 

enhance or detract from curriculum developers’ intent (Henningsen & Stein, 1997; Otten & Soria, 2014; 

Remillard, 2005; Stein, Grover, and Henningsen, 1996; Stigler & Hiebert, 2004). Furthermore, a high 

level of cognitive demand is difficult to maintain and often declines during enactment, particularly with 

curricula focused on reasoning and problem-solving, where enactment is more dependent upon the 

interactions between teachers and students (Stein, Remillard, & Smith, 2007). 

Implementation of curricular interventions is often studied in terms of fidelity and measured by 

observable features such as the extent of use, coverage, or faithfulness to the text (Brown, Pitvorec, 

Ditto, & Kelso, 2009). Yet research demonstrates that curricula may be used in ways that incorporate 

superficial features but do not reflect the underlying pedagogical principles of the curriculum design 

(Coburn, 2003). Brown (2009) conceptualizes teachers not as adopters or users, but as designers, 

emphasizing the “dynamic interplay” between the teacher, technology and written curriculum 

materials. Teachers interact with the curriculum to select, interpret, and reconcile the intended goals 

with their own goals and the perceived constraints, as well as to accommodate instruction to their 

students. In addition, teachers use curriculum in different ways: they may follow it as a script; they may 

work from the materials but adapt; or they may improvise by relying more on their own ideas and 

resources than what is in the written curriculum (Remillard & Bryans, 2004). Important to this process is 

the teacher’s pedagogical design capacity, or "skill in perceiving the affordances of the materials and 

making decisions about how to use them to craft instructional episodes that achieve her goals" (Brown, 

2009, p. 29). This view of the teacher’s relationship with the curriculum places the teacher in an active 

role of participation with the curriculum, where there is a bi-directional or dynamic interchange 

between the teacher and the text (Remillard, 2005).   

In conceptualizing the implementation of SunBay Math in classrooms, we view teachers as participating 

with the curriculum (Remillard, 2005) and draw upon recent work that problematizes the practice of 

evaluating implementation of curricular interventions only in terms of fidelity. Chval, Chávez, Reys, and 

Tarr (2009) propose an alternative construct called textbook integrity that includes not only regular use 

of the curricular materials and how much of it is used but also the consistency of the instructional 

strategies with the pedagogical orientation of the materials as written. Similarly, at the lesson level, 

Brown et al. (2009) propose that there are two different forms of fidelity to consider: fidelity to the 
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literal lesson or the degree to which the lesson is implemented as written and fidelity to the authors’ 

intended lesson, defined as “the degree of alignment between the author’s intended opportunities to 

learn and the opportunities to learn in the enacted lesson” (p. 373). In defining the authors’ intended 

opportunity to learn, they draw upon Hiebert’s (2003) notion of considering not just exposure to the 

content, but also the nature of students’ engagement with content in particular ways (e.g., reasoning, 

communicating, exploring).  

In our study, we focus specifically on lesson enactment and draw upon Chval et al.’s (2009) notion of 

integrity along with Brown et al.’s (2009) conceptualization of fidelity to the author’s intended lesson, to 

consider two dimensions in the enactment of SunBay Math lessons: structural integrity and pedagogical 

integrity. Structural integrity is adherence to the curriculum in terms of the observable parts of a lesson 

and activity structures (e.g., the Warm-Up vs. the Main part of the lesson, whole class vs. small group 

learning). Pedagogical integrity refers to the interactions and conditions put in place for students to 

engage with the content of the lesson in ways envisioned by the curriculum designers (e.g., reasoning 

about mathematical ideas through exploration with dynamically linked representations). One way to 

think about these distinctions is that the structural integrity of a lesson could be determined by 

watching a lesson but without hearing any teacher or student voices; whereas pedagogical integrity 

requires listening to what teachers and students are saying and how they are interacting and 

responding, both to each other and to the content of the lesson. By focusing on these constructs of 

structural and pedagogical integrity in this empirical study, we aim to identify the conditions and 

features of lesson enactment that help students make conceptual connections to the mathematics. This 

analysis may help improve the implementation of SunBay Math and similar technology-based curricular 

interventions. 

Curriculum Design 
SunBay Math was designed as a curricular activity system in which technology-based dynamic 

mathematical representations, standards-based instruction, and teacher professional development are 

integrated to meet the needs of local educational contexts (Vahey, Knudsen, Rafanan, & Lara-Meloy, 

2013). The program consists of two- to three-week long curriculum replacement units designed to 

improve students’ understanding of key math concepts (functions, ratio and proportion, algebraic 

expressions and geometric transformations) and incorporate effective instructional practices and 

mathematical practices from the Common Core State Standards for Math (CCSSM). By introducing 

teachers and students to new ways of learning and interacting with complex mathematical concepts and 

practices through a modular design, the units were designed as replacement units so that they could be 

easily implemented and also help facilitate instructional reform (Davis & Krajcik, 2005; Ball & Cohen, 

1996). The theory behind the use of replacement units is that once teachers begin to see the resulting 

depth of student learning and engagement, they will be motivated to make broader changes in their 

math instruction, and perhaps even use their regular curriculum materials differently (e.g., focus on 

conceptual understanding, provide opportunities for collaborative learning, support productive struggle, 

and so forth).   

SunBay Math’s dynamic technology-based tools feature multiple, linked mathematical representations 

that are designed to support student understanding of both underlying concepts and procedures. Each 

unit is designed around the use of one of four dynamic web-based tools for generating and manipulating 

mathematical relationships through simulations. For example, Ratio Visualizer—explored in more detail 
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in the case studies in Chapter 4—includes dynamic visual and graphical representations of ratio and 

proportions through a simulation of paint mixing with pips or units of color to make various shades of 

paint. There are also tools for dynamic, linked representations of algebraic expressions, geometric 

transformations and linear functions.  

Shown below in Figure 1 are four dynamically linked representations in the Ratio Visualizer tool used in 

the sixth-grade unit on ratio and proportion. The mixer (shown in the top images) allows the user to 

enter any number of paint pips (dots) in each color. The resulting color blend is shown by a triangular 

marker on the spectrum at the bottom of the screen. Directly below the spectrum, the blend bar shows 

the number of pips of each color in a ratio bar that corresponds to the spectrum. In the first image, the 

ratios 10:14 and 5:7 are represented on both the blend bars and the spectrum. If the ratios were not 

equivalent, the blend bars would not line up. Users can also link to and manipulate the container 

representation to organize the pips into rows and columns. In the image on the top right, the container 

has been resized to show 10:14 as two equal rows of 5:7, which is also shown on the spectrum and 

blend bars. The container therefore allows the user to see the unit ratio, or the ratio in its simplest form, 

within any ratio. Multiple ratios and equivalences can also be represented in a graph and table format as 

shown in the image at the bottom left. Finally, at any time the user can select Show Artwork to pull up a 

picture of the artwork along with images of the color blends that have been entered (bottom right).  

Figure 1. Ratio Visualizer Dynamic Representations: Linked Mixer, Spectrum, Container, Graph and 

Artwork 
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Users can manipulate specific inputs (e.g., adding units of paint to create a new color, or in geometry, 

stretching a shape to alter its angles) to produce linked changes across the multiple visual 

representations. This linked structure allows students to explore underlying mathematical relationships 

by observing how different inputs produce different responses across the various representations. These 

tools therefore allow for representational fluency, or the ability to make meaning of and move between 

different representations of a mathematical concept (Zbiek, Heid, Blume, & Dick, 2007). 

The SunBay Math units consist of 7 to 10 investigations, most of which are designed to be completed in 

one 45-minute class period. Each investigation contains four parts: (1) a short Warm-Up section 

(problems designed to preview the math needed for the lesson), (2) the Main section (a set of tasks 

designed to be completed through inquiry, using the technology), (3) the Wrap-Up (teacher facilitated 

discussion to make the math explicit and consolidate learning) and (4) Problem-Solving (problems that 

can be started in class and then assigned for homework). Each unit has a student workbook in which 

students can read the tasks and record their responses while working with the technology. The SunBay 

Math Teacher Guides include sections on the mathematical goals, standards, key ideas, implementation, 

as well as suggested timings, tips, teacher questions and student answers for each investigation.  

SunBay Math is designed to support students in an inquiry cycle of predicting, evaluating and 

understanding mathematical change through exploration with dynamic, linked representations. The 

Predict-Check-Explain (PCE) cycle is designed to allow students to develop and justify conjectures or 

hypotheses about the impacts of various inputs across different representations, to test the hypotheses 

using the technology, and then to reflect on and discuss the accuracy of their hypotheses and the 

insights they developed through the cycle. As one member of the development team explained: 

Predict requires you to bring your prior knowledge—you have to start with whatever 

understanding you have and then you check with the software. It's not the teacher 

who's telling you that you're correct or not correct, it's the software that actually 

represents it. Then you have to explain why things are happening in the way that they 

are, from the software.  

The designers of SunBay Math present this approach as a contrast to purely symbolic approaches to 

traditional mathematics instruction, where mathematical rules are learned in isolation and then applied 

to various situations. Classroom teachers facilitate this process by guiding students’ progression through 

multiple PCE cycles during each lesson. 

In addition to the structural components of a SunBay Math lesson (i.e., using the technology and 

workbooks and completing the lesson sequence), SunBay Math expects teachers to engage learners in a 

manner that positions them to think through problems themselves, as opposed to doing most of the 

intellectual work for students. The teacher is positioned in the role of a facilitator, leveraging the 

perspectives and ideas of individual students while guiding the entire class toward deep conceptual 

understanding of mathematical concepts. As one of the curriculum developers stated, the teacher’s job 

is to “get the students to learn it in a way that makes sense, not to memorize it.” 

This intentional framing of teachers as facilitators pushes against common practices found in many math 

classrooms where teachers tell or show students procedures and then have students complete practice 

problems, often without students acquiring any deep conceptual understanding of what they are 

learning (Stigler & Hiebert, 1997). The teacher’s role in SunBay Math involves actively leading whole 
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class introductions to build on students’ prior knowledge and prepare them to complete the tasks 

successfully through the PCE cycle. Students then engage in PCE cycles with the technology in small 

groups, as teachers circulate through the classroom. They listen in on students’ dialogues about their 

experimentations with the technology, and interject with strategic questions, probing students’ thinking 

to lead them toward mathematical reasoning, while simultaneously ensuring that they move through 

the investigations in a timely manner. At the end of the lesson, teachers again orchestrate whole class 

discussions to elicit student strategies and reasoning around the important ideas, steering student 

contributions toward a shared understanding of the central mathematical concepts. Thus, the teacher’s 

role involves some restraint in not directly telling students what they need to see and learn, but also 

careful listening to build on and support students’ mathematical reasoning through questioning and 

probing to ensure that they learn important mathematics. A curriculum developer explained that in a 

SunBay Math lesson you should see “students talking more than teachers,” while teachers are asking 

lots of open-ended questions with a “repeated emphasis on ‘why’.” Consequently, implementing the 

curriculum in line with the developer’s intent is a matter of orchestrating specific structural components 

and activity structures as well as relatively sophisticated pedagogical moves.  

Implementation 
As part of the scale-up and evaluation of SunBay Math, two units each for Grades 6, 7 and 8 were 

implemented in 30 middle schools randomly selected from two large school districts (District 1 and 

District 2) with diverse, high-need student populations in Florida. During 2016–2017, the second year of 

implementation when the evaluation took place, the District 1 student population comprised 39% 

African-American and 32% Hispanic students, with 61% eligible for free or reduced-price lunch. The 

District 2 student population comprised 32% Hispanic and 28% African-American students, with 59% of 

students eligible for free or reduced-price lunch.   

The developers of SunBay Math created the online tools and supporting materials as well as “train the 

trainer” modules for district-level facilitators who had considerable experience as math teachers and/or 

school-based math coaches. This training focused on the content of each unit, while also being designed 

to give the facilitators a sense of the experience students should have when engaging with the 

technology and the tasks. The facilitators then provided 2.5 days of professional development sessions 

for teachers of Grades 6–8 math (1.5 days prior to using their first SunBay Math unit, and an additional 

half-day prior to implementing any new unit for the first time), which reflected not only the content and 

experiential aspects, but also some additional focus on pedagogical strategies. Teachers were expected 

to implement two 2-week SunBay Math modules during the school year in place of the regular curricular 

materials, over the two-week periods when the corresponding concepts or standards were covered in 

the district pacing guidelines.   

 

During the school year, teachers also received on-site support from the facilitators who were available 

to provide coaching to teachers via conferencing, observation, reflection, modeling, or any other type of 

support that teachers requested. All but two schools also had access to support from one or more 

school-based teacher leaders who regularly met with implementing teachers to reflect on and discuss 

SunBay Math implementation. This model of implementation therefore included several layers of 

support and potential points of translation from the curriculum developer’s vision to the actual 

enactment in classrooms.  
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Chapter 2: Methods 
 

Data Collection and Participants 
Videorecorded lesson enactments were collected from a purposive sample of 26 Grade 6–8 classrooms 

in schools from both Florida districts implementing SunBay Math during Year 2 of the evaluation. 

Drawing on the expertise of the district facilitators, the sample was designed intentionally to elicit a 

range of lesson enactments in relation to district, grade level, unit, teacher experience and the 

facilitator’s view of the overall strength of the implementing teacher. Participation in video recording 

was voluntary and as Tables 1 and 2 show, the resulting sample reflects variation in all but one 

dimension: there were only 4 teachers from District 2. Only one lesson from each teacher was recorded; 

the sample was not selected to be representative of the larger implementation nor representative of the 

particular teacher’s approach to instruction, but rather to capture and explore variation in the 

enactment of SunBay Math lessons in classrooms.  

Table 1. Characteristics of Teachers who were Videorecorded (n = 25/26*) 

Role  District  Teaching 
Experience 

 SunBay Math 
Experience 

 Highest Degree 
Received 

Teacher 22  District 1 22  1–5 years 6  1 year 10  Bachelors  16 
Teacher 
Leader 

3  District 2 4  6–11 years 
12+ years 

5 
14 

 2 years 15  Masters  9 

*We did not have information on one teacher’s background.  

 

Table 2. Videorecorded Lesson Enactments 

SunBay Math Topics and Units Grade Videorecorded 
Lessons 

Number of 
Investigations  

Ratio & Proportion  

True Colors Murals 6 10 6 

Managing the Soccer Team 7 2 1 

Algebraic Expressions  

Little X Games 6 2 2 

3D Design Studio 7 7 3 

Transformational Geometry  

Transformation Nation 8 5 3 

 

The 26 videorecorded lessons reflect 15 different SunBay Math investigations from five of the six SunBay 

Math units. Table 2 shows the variation in the sample of 26 video recordings collected across grade 

levels and units. While the sixth- and seventh-grade units were in the second year of implementation, 

the eighth-grade units were being implemented for the first time.  
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Data Analysis 
Analysis of the lesson enactment data proceeded in three stages. In the first stage, our goal was to 

characterize the dimensions on which lesson enactments varied in relation to both components unique 

to SunBay Math and to overall instructional quality. Four rubrics were selected from the Instructional 

Quality Assessment (IQA) (Boston, 2012; Matsumura, Slater, Junker, & Peterson, 2006), a validated 

toolkit that is designed to measure the quality of instruction in relation to cognitive demand (see 

Appendix A). The IQA Potential of the Task rubric is designed to measure the level of cognitive demand 

in the lessons as per the teachers’ guide. Implementation of the Task holistically assesses the level of 

thinking students actually engaged in throughout the lesson, while Rigor of Discussion and Rigor of 

Teacher Questions relate specifically to the whole class discussion that occurs after students have had 

the opportunity to engage in mathematical work. While only a portion of any given SunBay Math lesson 

is designed to be whole group, it is during these discussions that students have opportunities to engage 

in reasoning and explanation, consolidate learning, and draw connections between different strategies. 

As the developer of the IQA (2012) asserts, “The whole-group discussion provides an opportunity for 

teachers to advance the mathematical understandings of all students” (Boston, 2012, p. 83).   

We also viewed a subset of videos to determine dimensions that varied in lesson enactment in relation 

to central characteristics of SunBay Math as it is designed (i.e., elements that might not be as important 

in the enactment of other curricular materials). Four categories emerged from this analysis: 1) the 

presence of the three core components of a SunBay Math investigation (Warm-Up, Main, and Wrap-Up), 

2) the enactment of the PCE cycle, 3) the approach to technology use and 4) the activity structure of the 

lesson in terms of balance between teacher facilitation and opportunities for student collaboration. 

Through an iterative process, we constructed four SunBay Math Enactment rubrics to capture levels of 

variation along these dimensions as shown in Appendix B, piloted them with a subsample of videos, and 

then further refined them.  

In the second stage of analysis, a team of three researchers applied the four SunBay Math Enactment 

rubrics and four IQA rubrics to the entire sample of 26 videorecorded lessons. The team first watched, 

coded and discussed 12 videos as a group to establish consistency in coding. Each video was then coded 

by at least two members of the research team. On a weekly basis, all three video coders met to discuss 

and resolve any discrepancies in the coding.  

In the third stage of analysis, we aligned the rubric levels with the key indicators of the curriculum 

design, or the curriculum designer’s intent (Brown et al., 2009), in order to operationalize our constructs 

of opportunity to learn, structural integrity and pedagogical integrity.  

Opportunity to learn was captured by the IQA rubric for Implementation of the Task, which assesses the 

overall opportunity students have to engage in high-level thinking and reasoning. Structural integrity 

was revealed in the extent to which the lesson began with a Warm-Up and a whole group discussion of 

the task, followed by students working in small groups on additional tasks with the technology while the 

teacher circulated, concluding with a whole class discussion or Wrap-Up. Pedagogical integrity to the 

curriculum designers’ intent was indicated in the use of technology for exploration and the 

incorporation of the PCE cycle throughout the lesson, along with the scores on the IQA for teacher 

questions and student discussion. These last two IQA rubrics hone in on teacher and student actions in 

shaping mathematical discourse during whole group discussions.  
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These seven rubrics were then used to define high, moderate and low levels of opportunity to learn, 

structural integrity and pedagogical integrity, in relation to the curriculum design, as shown in Table 3, 

and described in more detail below.   

Table 3. Dimensions of Opportunity to Learn, Structural Integrity and Pedagogical Integrity to the 

Curriculum Designer’s Intent  

 Opportunity to Learn Structural Integrity Pedagogical Integrity 

Level of 
Integrity 

IQA Rubric Levels for 
Implementation  

Balance 
of Activity 
Structures 

Three-part 
Investigation 
Structure 

Approach 
to 
Technology 
Use 

PCE IQA Rubric Levels for 
Questioning and 
Student Discussion 
 

High  

 

Doing mathematics or 
procedures with 
connections 

Mostly 
small 
group 

All three 
connected 
components 

Exploration 
with 
connections 

Consistent 
cycles 

Doing mathematics 
or procedures with 
connections  

Moderate 

 

Procedures without 
connections  

Mostly 
whole 
group 

At least two 
connected 
components 

Exploration 
without 
guidance 

At least one 
cycle present 

Procedures without 
connections  

Low  

 

Memorization  Entirely 
small or 
whole 
group 

Only one 
component 

Procedural 
use 

Partial cycle Memorization  

None Absence  NA  No 
components 

Not used None Absence  

 

 

Determining Levels of Opportunity to Learn 
The IQA Implementation of the Task rubric (see Appendix A) focuses on the overall level of cognitive 

demand that students are engaging in during the lesson. At the highest score level of 4 (doing 

mathematics), students are “exploring and understanding the nature of mathematical concepts, 

procedures, and/or relationships” and there is explicit evidence of student reasoning and justification. 

At level 3 (procedures with connections), students are “creating meaning for mathematical concepts, 

procedures, and/or relationships” but there is no explicit evidence of student reasoning or justification. 

Levels 3 and 4 were considered to be high in relation to the curriculum designers’ intent, as both of 

these levels reflect an overall focus on students’ reasoning and making conceptual connections. Level 2, 

procedures without connections, was considered a moderate opportunity to learn, where students are 

using procedures that are “explicitly called for” and focusing on producing correct answers rather than 

connections. Finally, level 1, where students are recalling or reproducing memorized facts, rules, 

formulae, or definitions, was considered to be a low opportunity to learn.  

Determining Levels of Structural Integrity 
The two dimensions of structural integrity were assessed by applying the rubrics for: 1) balance of 

activity structures and 2) investigation components. The SunBay Math lessons are written to reflect a 



 14 

combination of whole class discussion, group work and individual work. Enactments that had some 

teacher-facilitated whole group portions with extended opportunities for students to work in groups, 

most closely reflected the balance of activity structures as written in the curriculum, and were 

considered high integrity. If the enacted lesson was mostly whole group but had at least some 

opportunities for student collaboration, it was considered to be at a moderate level of integrity, while 

those that were entirely whole group or entirely small group were considered to be of low integrity to 

the curriculum designer’s intent. Additionally, lesson enactments that had the three main components 

from the same investigation (i.e., Warm-Up, Main, and Wrap-Up) were considered high integrity, while 

those that had two or one were considered medium and low respectively. 

Determining Levels of Pedagogical Integrity 
The four dimensions of pedagogical integrity were assessed by application of four of the rubrics: 1) 

approach to technology use, 2) PCE cycles, 3) teacher questions and 4) rigor of discussion.  

For approach to technology use, our category of Exploration with Connections was considered the 

highest level of integrity to the authors’ intent. This category includes teachers who intentionally guided 

and focused students on using the dynamic representations to reason, explain and construct arguments 

about the mathematics without following a specific procedure or solution path. Moderate integrity was 

characterized by the category Exploration without Guidance where teachers provided opportunities for 

students to use the technology to solve tasks and potentially to make connections with the dynamic 

representations, but there was no explicit evidence of teacher guidance or evidence that students were 

engaging at that level. Procedural Use of Technology was considered low integrity, where the dynamic 

representations in the technology were used by teachers and students primarily to confirm a solution 

already determined by a procedure or where students were directed by the teacher to a specific 

solution path or method.   

For PCE, completion of all or most PCE cycles in the lesson enactment represented the highest level of 

integrity to the curriculum designer’s intent, since this was a central feature of the design of the 

investigations and tasks. Moderate integrity was characterized by the presence of at least one PCE cycle 

during the lesson, while incomplete cycles (e.g., Predict and Check without Explanation) were 

considered low integrity.  

The third and fourth dimensions of pedagogical integrity were determined by converting the IQA scores 

on the rubrics for Teacher Questions and Rigor of Discussion (see Appendix A) into levels of low, 

moderate and high pedagogical integrity.  

The two IQA rubrics consist of a scale from 0 to 4, representing a continuum of increasing cognitive 

demand through opportunities for students to engage in reasoning, connections and explanations. Table 

4 illustrates how we used the descriptors of these rubric scores to convert them into low, moderate and 

high levels of integrity to the curriculum design. As the authors of the IQA state, “a demarcation line 

exists between score levels 2 and 3 that separates high- and low-level cognitive demands, talk moves, or 

expectations in each dimension” (Boston 2012, pp. 85–86). Therefore, ratings on these rubrics had to be 

at least at level 3 to be considered high pedagogical integrity. 

The Rigor of Discussion rubric measures the level of reasoning, explanation and justification that 

students engage in during whole group portions of the lesson. This is influenced by the questions that 

teachers pose to elicit student thinking. However, even when teachers pose high-level questions, 
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students do not always respond with complete or substantive explanations. Together, these two rubrics 

provide a snapshot of the discourse in terms of the level of discussion occurring in a lesson. For these 

dimensions of discourse, we considered the highest level of Doing Mathematics to be going above and 

beyond the intent of the curriculum as designed, and designated that score as High+ in terms of 

pedagogical integrity.  

Table 4. IQA Score Levels in Relation to Integrity to the Curriculum Design 

Integrity Score  Level of Cognitive 
Demand  

Characteristics of Discourse 

High+ 4 Doing mathematics Explicit explanations, connections or reasoning; high quality 
talk moves and student responses 

High 3 Procedure with 
connections to meaning 

Substantive attempts to engage students in explanations, 
connections or reasoning, but these may be incomplete  

Medium 2 Procedures without 
connections to meaning 

Focus on rote or procedural skills; weak or minimal attempts 
at talk moves 

Low 1 Memorization Focus on facts, rules, or formulas; absence of talk moves or 
more than one-word responses from students 

NA 0 Absence Absence of whole group discourse 

 

To determine if there were relationships between students’ engagement and opportunity to learn in the 

enacted lesson and the dimensions of pedagogical and/or structural integrity, we analyzed the levels of 

integrity of each dimension (shown in Table 3) across the individual lesson enactments. We then 

purposefully selected four lesson enactments from the same or similar investigations in one unit to 

serve as case studies of lesson enactment (Patton, 1990). The rationale for the selection of the four 

lesson enactments and additional methods of case study analysis are described in Chapter 4, the case 

study section of the report. 
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Chapter 3: Structural and Pedagogical Integrity of Enacted Lessons 
In this study, we examined the enactment of SunBay Math lessons in terms of: (1) opportunities for 

student engagement with mathematical concepts and; (2) teacher practices associated with enacting 

these lessons according to the curriculum designers’ intent. When we compared the IQA scores for 

Potential of the Task with Implementation of the Task (see Appendix C), we found that in line with many 

other studies of lesson enactment, most of the lessons (20 out of 26) were enacted at a lower level of 

cognitive demand than the level at which they were written in the curriculum materials (Cohen, 1990; 

Henningsen & Stein, 1997; Lloyd, 1999; Stigler & Hiebert, 2004). The preponderance of video-recorded 

lessons were enactments at a level 2 on the Implementation of the Task IQA rubric, or Procedures 

without Connections (n = 16), indicating that proceduralizing high-level tasks was common.  

Based on our sample of classroom observation data, we also found that teacher adaptations were 

common, both in the ways the lesson was structured for students and in the instructional moves that 

shaped students’ interaction with the content of the lesson. Table 5 presents the frequency of levels of 

pedagogical and structural integrity along with the overall level of implementation across the 26 

observations.  

Table 5. Levels of Pedagogical Integrity, Structural Integrity, and Opportunities to Learn 

 
       
NA* 

Absent 
0 

Low 
(1) 

Med 
(2) 

High 
(3/4) 

Pedagogical Integrity      

     Approach to technology use 2 2 12 5 5 

     Predict, check, explain 3 1 10 7 5 

     Teacher questions (IQA)  0 8 12 6 

     Student discussion (IQA)  4 9 9 4 

Structural Integrity      

     Balance of activity structures  0 6 14 6 

     Investigation components  0 3 13 10 

Opportunity to Learn      

     Implementation of the Task (IQA)  0 0 16 10 

Notes: The eighth-grade transformational geometry unit had some introductory 

investigations that did not explicitly require the use of technology or PCE; therefore 

these lessons were given NA for those rubric scores. 

 

As Table 5 illustrates, the lesson enactments varied across all dimensions of pedagogical and structural 

integrity as well as opportunity to learn. Most of the lessons were implemented at a procedural level 

(16), while 10 were implemented at a high level of cognitive demand (procedures with connections or 

doing mathematics). We further explored the associations of these dimensions of structural and 

pedagogical integrity with the opportunities for students to engage in reasoning and make conceptual 

connections to the mathematics. When the levels of implementation are placed side-by-side with the 

levels of pedagogical and structural integrity, shown in Figure 2 as a heat map, some illuminating 

patterns emerge. In Figure 2 the lessons are ordered first by opportunity to learn (level of 

implementation) and then by pedagogical integrity.  
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Figure 2. Opportunity to Learn, Pedagogical Integrity and Structural Integrity Across Lesson Enactments  
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Only two lesson observations had evidence of both high pedagogical integrity and high structural 

integrity. The 10 lesson enactments that were rated at a high level of opportunity to learn (in the the top 
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Implementation 

and High 

Pedagogical 
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Procedural 

Implementation 

and Low 

Pedagogical 
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High 

Implementation 

and 

Moderate/High 

Pedagogical 

integrity 

Procedural 

Implementation 

and 

Moderate/Low 

Pedagogical 

integrity 
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half of Figure 2) had either moderate or high levels of pedagogical integrity: 9 of the 10 were from either 

the sixth-grade proportions unit or the eighth-grade transformational geometry unit. In contrast, all of 

the enactments of lessons from the seventh-grade algebra and proportions units were rated at a low 

level of opportunity to learn and also had moderate to low levels across the dimensions of pedagogical 

integrity.  

This suggests that the unit itself (the mathematical content and/or the nature of the technology) may be 
an important factor in the nature of the transformations that are made during enactment, though the 
sample size is too small to be conclusive. Transformational geometry is a topic that lends itself to 
conceptual exploration while algebraic expressions is a topic that has traditionally been taught 
procedurally in middle school. In interviews conducted for the larger evaluation study, many teachers 
commented that students had a harder time understanding and making sense of the visual 
representations in the technology for the algebraic units. Alternatively, the dynamic mathematical 
representations in the proportions and geometry units may have been more conducive to conceptual 
exploration than those in the algebraic units. While it is beyond the scope of this study to make that 
determination, our findings suggest that the affordances for conceptual connections in the curriculum 
unit and/or related technological tools is an important consideration. 
 
To mitigate the influence of the curricular unit on implementation with integrity, we looked more closely 

at the variation within units. In the sixth-grade proportions unit, we had the most videorecorded lessons 

(10) as well as the most variation in the enacted levels of opportunity to learn, pedagogical integrity and 

structural integrity. The sixth-grade True Colors Murals unit focuses on understanding the multiplicative 

relationships within and between ratios and using these relationships to recognize equivalence, find 

missing values and compare ratios. Figure 3 shows the relationships between the investigation and the 

opportunity to learn, pedagogical integrity and structural integrity across the 10 lesson enactments from 

that unit.  

As Figure 3 shows, pedagogical integrity appears highly associated with the maintenance of high levels 

of implementation or opportunity to learn. Adaptations teachers made to the lesson structure 

(Investigation Components) and the grouping of students (Balance of Activity Structures) in that same 

unit were less influential in maintaining high levels of cognitive demand for student engagement than 

the adaptations they made to pedagogical practices. 
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Figure 3. Opportunity to Learn, Pedagogical Integrity and Structural Integrity Across Lesson Enactments 

from Grade 6 True Colors Murals Unit  

  Opport
unity 

to 
Learn 

 Pedagogical Integrity  Structural 
Integrity 

 

  Le
ve

l o
f 

Im
p

le
m

en
ta

ti
o

n
 

 A
p

p
ro

ac
h

 t
o

 

Te
ch

n
o

lo
gy

 u
se

 

P
C

E 

Q
u

es
ti

o
n

s 

D
is

cu
ss

io
n

 

 B
al

an
ce

 o
f 

A
ct

iv
it

y 

St
ru

ct
u

re
s 

In
ve

st
ig

at
io

n
 

C
o

m
p

o
n

en
ts

 

Ye
ar

 o
f 

im
p

le
m

en
ta

ti
o

n
 

2  H+   H H H+ H  M M 2 
1  H   H H H H  H H 2 
2  H   H H H H  H H 2 
2  H   H H H H  M M 2 
5  H   L M H M  M M 2 
7  M   L M M M  M H 2 
2  M   L L M —  H M 2 
5  M   L L M L  L M 2 
6  M   L L M —  H M 2 
4  M   L L L —  L L 1 

 

Pedagogical practices which support the development of students’ sense-making and reasoning are 

essential to maintaining or raising the cognitive demand of the lesson, regardless of whether the lesson 

was enacted in a whole group or small group activity structure. Figure 3 shows that the enactment of 

the lessons in the first five rows was implemented at a high level and reflected the SunBay Math 

curriculum designers’ intended pedagogical emphasis on student exploration, reasoning and explanation 

around the dynamic mathematical representations in the technology. However, structural integrity to 

the lessons as written—that is, having students work in groups and following the lesson structure—did 

not, on its own, appear to provide these same opportunities to learn for students. Four of the five 

lessons rated as having a low level of implementation also have high levels of structural integrity in 

either balance of activity structures or investigation components.  

A closer examination of the five lessons enacted at lower levels of implementation (Procedures without 

Connections on the IQA) reflects an overall focus on learning procedures, getting correct answers and 

completing tasks, rather than on sense-making or reasoning. These lessons manifested lower levels of 

teacher questioning and discussion, and most were also low on PCE and the approach to technology use, 

reflecting a transformation of the SunBay Math activities and practices to align with a more traditional 

and procedural approach to mathematics instruction. In most cases, the PCE cycle was transformed into 

PC (Predict and Check) or sometimes only Check. Students had opportunities to use the technology, but 

they were using it primarily to check the veracity of their solutions rather than to explore the 

mathematics.  
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To further explore the associations between pedagogical integrity and structural integrity to the overall 

level of implementation2, Table 6 presents statistical associations between each of the rubric scores 

calculated at Kendall’s tau (Kendall & Gibbons, 1990; Kendall, 1938).3 The correlation matrix presents 

coefficients for the full sample (n = 26) in the shaded triangle above the diagonal, and the same 

coefficients for the reduced sample of lesson enactments from the True Colors Mural unit (n = 10).  

Table 6 Statistical Associations among Class Observation Rubric Scores  

Rubrics LOI ATU PCE QUE DSC BAS INC 

Level of implementation 1.000 0.676 0.644 0.709 0.555 0.307 0.338 

Approach to technology use 0.796 1.000 0.721 0.676 0.630 0.412 0.338 

Predict Check Explain 0.821 0.866 1.000 0.695 0.673 0.319 0.385 

Questions 0.937 0.746 0.800 1.000 0.615 0.480 0.229 

Discussion 0.785 0.828 0.956 0.795 1.000 0.370 0.324 

Balance of activity structures 0.131 0.289 0.250 0.215 0.179 1.000 0.204 

Investigation components 0.214 0.393 0.510 0.335 0.521 0.510 1.000 

Shaded triangle above the diagonal is Kendall’s  for the full sample (n = 26). Unshaded lower triangle is for the 
True Colors Mural videos only (n = 10).  

 

We find that for both full and reduced samples, the level of implementation or opportunity to learn was 

significantly and positively associated with all four dimensions of pedagogical integrity: technology use, 

PCE, questioning and discussion. The coefficients ranged from 0.56 to 0.71 for the full sample, and were 

larger for the True Colors Mural unit lessons, suggesting that instances of reduced pedagogical integrity 

corresponded with decreased opportunities for students to engage in high-level thinking and reasoning. 

The dimension of pedagogical integrity with the highest estimated relationship to opportunities to learn, 

was questioning. In contrast, the correlations between the two dimensions of structural integrity and 

opportunitites to learn were not statistically significant. Thus reductions in structural integrity did not 

correspond with decreased opportunities for students to engage in high-level thinking and reasoning.  

We also looked for evidence of the relationships of these dimensions to each other. Table 6 shows a 

relatively large correlation between Approach to Technology Use and PCE. This suggests that when 

teachers use PCE as intended in the curriculum design, technology is often used in a way that supports 

student exploration of mathematical concepts. The two dimensions of structural integrity show no 

statistically significant association either with each other or with pedagogical integrity.  

Looking across these dimensions of enactment together suggests that the Approach to Technology Use, 

PCE, and discourse practices (teacher questioning and student discussion) are high-leverage pedagogical 

practices that can maintain or lower the overall level of implementation of SunBay Math in terms of 

cognitive demand, or opportunity to learn, for students. They are also highly associated and 

                                                           
2 Level of implementation was measured by the score on the IQA Implementation of the Task rubric (see Appendix 
A).  
3 Because of the small sample size and ordinality of the variables, a non-parametric estimator was used to test for 
independence based on ranks. Exploratory analysis was also conducted using Spearman’s rho correlation as well as 
multiple correspondence analysis. The results did not differ from those presented in magnitude or statistical 
significance. Kendall’s estimator is based on concordant and discordant pairs and usually smaller than values of 
Spearman’s rho correlation. Significance tests for tau are also more accurate with smaller sample sizes. 



 21 

complementary practices. Dimensions of structural integrity are less influential in determining the 

nature of students’ engagement with mathematical ideas.  
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Chapter 4: Case Studies of Lesson Transformations 
We now turn to examples of four of these video enactments from the True Colors Murals unit to explore 

how the same content can be implemented to reflect different levels of both pedagogical and structural 

integrity, and to illustrate in context the particular teacher practices and orientations which are 

associated with different opportunities to learn for students. The case studies were purposefully chosen 

for contrast in both structural and pedagogical integrity to the written curriculum as shown in Table 7 

below.  

Table 7. Case Studies of Lesson Enactments from True Colors Murals 

Structural Integrity Pedagogical Integrity  

 Low High 

Low Ms. Elmore  

(Inv. 4) 

 

Moderate Ms. Deegan 

(Inv. 2)  

Ms. Aguila  

(Inv. 2) 

High  Ms. Chancellor  

(Inv. 2) 

 

Three of the lessons were enactments of the same investigation (Investigation 2 on using doubling and 

halving to find equivalent ratios) while the fourth was an enactment of a similar investigation 

(Investigation 4 on generating equivalent ratios with discrete and continuous quantities). These four 

teachers had between six and 15 years of experience.4 Ms. Aguila and Ms. Chancellor both had 

leadership roles in their schools (Math Lead and Department Chair, respectively). It was Ms. Elmore’s 

first year of teaching SunBay Math units. From the video records, a narrative of each lesson enactment 

was constructed, telling the story of the lesson from start to finish, highlighting each of the elements of 

structural and pedagogical integrity within the context of the specific lesson, and constructing rich 

descriptions with excerpts of teacher and student dialogue.  

As highlighted in the last chapter, teacher questioning was a high-leverage pedagogical practice closely 

associated with maintaining or lowering the cognitive demand of students’ opportunity to learn. We 

therefore further analyzed transcripts of the video recordings of these four lesson enactments to 

provide a more nuanced picture of the nature and role of teacher questions. All questions posed by the 

teacher were marked and further analyzed to better understand teacher questioning and students’ 

opportunities for mathematical engagement in these contrasting implementations of SunBay Math 

lessons. We adapted the methodology and typology of teacher questions in mathematics from Boaler 

and Brodie (2004) to code instances of teachers posing questions, either in whole class discussions or 

while students were working in groups or independently (see Table 8). Following Boaler and Brodie’s 

(2004) methods, we considered “utterances that had both the form and function of questions, and 

which were mathematical” (p. 777). Repeated questions during one teacher turn, even if altered slightly, 

were counted as one question. Each transcript was coded by two researchers and any discrepancies 

                                                           
4 All teacher and student names are pseudonyms. 
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were resolved through discussion. The preponderance of these question types are reported as a 

percentage of the total questions asked in each case study and later summarized in the cross-case 

analysis.  

Table 8. Question Types from Boaler & Brodie (2004) 

Question Type Characteristics 

Gathering information Requires immediate answer, rehearses known facts/procedures, or enables 
students to state facts/procedures 
 

Inserting terminology Once ideas are under discussion, enables correct mathematical language to 
be used to talk about them 
 

Exploring mathematical meanings 
and relationships 

Points to underlying mathematical relationships and meanings;. Makes links 
between mathematical ideas and representations 
 

Probing Asks students to articulate, elaborate, or clarify ideas 
 

Generating discussion Solicits contributions from other members of class 
 

Linking and applying Points to relationships among mathematical ideas and mathematics and 
other areas of study/life 
 

Extending thinking Extends the situation under discussion to other situations where similar 
ideas may be used 
 

Orienting and focusing Helps students to focus on key elements or aspects of the situation in order 
to enable problem-solving 
 

Establishing context Talks about issues outside of math in order to enable links to be made with 
mathematics 

 

The True Colors Mural unit is comprised of 10 investigations, each designed to be completed in 45 to 50 

minutes, revolving around the real-world context of mixing paint for a company that makes murals. The 

unit begins with an introduction to ratio through the context of mixing red and yellow pips to make and 

compare different shades of orange. In Investigation 2, students use the technology to make equivalent 

blends (ratios) from black and white paint, explore the different representations (see Figure 1), and 

learn the symbolic notation for writing ratios. The tasks in Investigation 2 are constructed to allow 

students to discover that the numbers in the ratio can be doubled or halved to create an equivalent 

ratio, and that they can also build up ratios additively with the container to create equivalent ratios. At 

the end of the lesson, students are asked to generalize from the problems they have completed to 

explain how to create blends that are the same shade of grey. The investigation therefore offers 

students opportunities to identify patterns, make explicit connections between representations, 

strategies, and mathematical concepts, and form and justify generalizations based on this work without 

necessarily using a known procedure. Later, in Investigation 4, students have the opportunity to use 

what they have learned about equivalence and unit ratios to solve problems that involve both 

continuous and discrete quantities. 
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Ms. Chancellor:  Students Working in Groups with High Pedagogical Integrity  
The enactment of True Colors Investigation 2 in Ms. Chancellor’s sixth-grade classroom provides an 

example of students working collaboratively in small groups while using dynamic mathematical 

representations in the software to make conceptual connections to the mathematics.  

The lesson was enacted with high structural integrity, closely matching what was described in the 

written curriculum, with all the suggested investigation parts as well as the appropriate balance of 

activity structures: whole class discussions facilitated by the teacher at the beginning and end; as well as 

an extended period of time for group work, where students worked collaboratively using the technology 

to solve problems at their own pace while the teacher circulated.  

The lesson was also enacted with high levels of pedagogical integrity. Ms. Chancellor’s interactions with 

students during small group work with the technology emphasized and reinforced the use of technology 

with an inquiry approach. While students were working on the tasks, she continually prompted them to 

use the different representations in the software to check their predictions, “see what happens,” and 

make connections. Rather than telling them if a solution was correct, she reminded them, “See if you 

can get it to line up in the software,” or “Test it and find out. See if it matches up.” 

 Through her interactions with students, Ms. Chancellor reinforced the PCE cycle, encouraged 

exploration and the use of different representations in the technology, and reinforced norms for 

working collaboratively. She emphasized and defined the predict and check parts of the PCE cycles 

throughout the lesson. For example, before having students work in groups on the tasks, she gave the 

following directions to orient them around the PCE cycle: 

When it says predict, you make a guess. Don’t check it until you get to the check piece. 

You’re not going to get in trouble if your prediction was wrong. [It’s] just to make you 

think about it before you start.  

Ms. Chancellor also oriented students towards collaboration around the mathematics. While they were 

working, she often reminded them to talk to their groupmates, at one point saying to the whole class, 

“Remember to use your groupmates as a resource,” and in another instance saying to a student, “Did 

you share that logic with your group members?” During the group work portion of the class, she also 

encouraged students to continue exploring mathematical relationships they were discovering. When 

students noticed the doubling or halving pattern, she responded either by saying, “Hmm, interesting…” 

or by redirecting them to share this observation with their group members. She answered procedural 

questions or questions about the software that students raised, but also posed questions back to them 

that required reasoning, for instance, “Why do you think it’s seven?” and “What do you notice about the 

original numbers and the new numbers?” Through these responses to students, she communicated the 

expectation that they should be reasoning about the tasks and the mathematical relationships with their 

groupmates.  

Ms. Chancellor posed high-level questions throughout the lesson. In the whole group portions of the 

lesson, the majority of the questions Ms. Chancellor posed (63%) were focused on gathering information 

but she also asked some questions that required students to explore meaning (15%) or probed their 

thinking (12%). However, once a student responded to these higher-level questions, she tended to 

either restate or expand on the explanation, or follow up with more directive questions. (In other words, 
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there was still room for improvement in terms of engaging students in high-level reasoning and 

explanation.)   

In sum, this enactment of Investigation 2 reflected collaborative small group work with teacher 

facilitation of opportunities for students to develop understanding of mathematical procedures 

(doubling and halving a ratio to create an equivalent ratio) that was connected to visual and dynamic 

mathematical representations in the technology.  

Ms. Deegan: Students Working in Groups with Low Pedagogical Integrity 
Like the case of Ms. Chancellor, the enactment of Investigation 2 in Ms. Deegan’s classroom reflected 

substantial time for students to work in groups buttressed by whole class discussions. However, the 

teacher practices in facilitating and supporting student work on the tasks led to a focus on completion 

rather than on exploration or connections. This case offers an example of how a teacher may transfer 

responsibility for learning to the students without providing adequate support to ensure that they 

engage with mathematical ideas at a high level of reasoning or sense-making. 

While the lesson was enacted with a high level of structural integrity to the balance of activity 

structures, it did not incorporate all investigation components: there was no Wrap-Up discussion. After 

having students finish the Problem Solving section from the previous lesson and completing the Warm-

Up, Ms. Deegan began the Main portion of the investigation by reading the first task to the students. 

During the whole class introduction, she posed questions that elicited factual responses from students 

and then followed up on their responses only to confirm when the answer was correct. For the next half 

hour, students worked in their groups to answer the tasks using their iPads and workbooks.  

In terms of pedagocial integrity, Ms. Deegan’s facilitation of student work did not maintain a focus on 

using technology for exploration, engaging in PCE, or discussion of mathematical ideas. While students 

worked in groups, Ms. Deegan circulated and checked in with various groups to gauge and encourage 

their progress through the tasks, as well as to answer questions. She monitored student work by 

directing them to work through the tasks in the workbook, which meant that students worked on 

different parts of the PCE cycle that were embedded in the tasks. Unlike Ms. Chancellor, she did not 

remind the whole class what it meant to predict, check or explain. When a girl was asking for help with a 

predict question, Ms. Chancellor responded:  “It’s what you think is going to happen. What do you think 

is going to happen? I don’t know. You got to tell—they want you to do it.” Similarly, when a student 

asked for help on an explain question by asking, “Can I just say I know because I compared them to the 

other grays?”, Ms. Deegan confirmed that her response was fine as long as it was her explanation rather 

than push her to focus on the mathematical relationships. In this way, she was encouraging student 

autonomy but not providing support or direction to help them focus on inquiry or on the important 

mathematical ideas. 

Ms. Deegan circulated while students were working in groups, but her interactions focused almost 

entirely on logistics and completion rather than on using technology to explore and reason about 

mathematical relationships. When students asked questions, she responded by reading the problems 

aloud or by directing them to the next step, which often involved using the dynamic representations: 

“So now, what does it say now? Keep reading the next part. You guys make the container yet?” As she 

circulated, her comments focused on checking for progress on the workbook page rather than looking at 
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the quality or reasonableness of their answers. She continually urged them to keep moving through the 

problems: “You have two more pages to go actually. If you get this done, you’ll be ahead of the game.” 

While students were working in groups, Ms. Deegan occasionally asked for confirmation that they 

understood the task, but then did not press further: “How are you guys doing over here? 

Understanding? Ok good.” A few minutes before the end of the period, she told students to finish up the 

question they were working on and turn in their iPads. There was no time spent working on or 

discussing the Wrap-Up to Investigation 2.  

In sum, this implementation represented a case of a teacher providing a lot of time for students to work 

together and with a great deal of autonomy. Students may or may not have engaged in mathematical 

reasoning, making connections, or exploring meaning while they were working in their groups with the 

technology, but their interactions with the teacher were almost exclusively focused on procedural 

logistics and completion. The fact that there were no instances of whole class discussion around the 

important mathematical ideas of the investigation makes it difficult to ascertain whether all students did 

indeed have opportunities to engage in meaning-making or develop an understanding of the 

mathematical ideas embedded in the tasks.   

Ms. Aguila:  Whole Group Teacher Facilitation with High Pedagogical Integrity 
The same lesson was enacted in Ms. Aguila’s sixth-grade classroom with more whole group teacher 

facilitation than what was recommended by the SunBay Math curriculum, reflecting a lower level of 

structural integrity. However, this enactment received the highest overall rating for level of 

implementation and teacher questioning. The case study highlights several important teacher practices 

that maintained and complimented the pedagogical integrity of the lesson as intended.  

During both the Problem-Solving (homework) review and Warm-Up, she consistently called on several 

students for each problem and followed up with probing questions, such as “What did you do?” and 

“Why does that work?” Often when a student would give a response she would ask the rest of the class 

if they agreed and would then call on another student to explain why. She ended the Warm-Up by 

asking the class to look for patterns across the problems and eliciting several responses. This was not a 

suggestion in the teacher guide, but it emphasized the importance of doubling and halving, a main focus 

of this investigation.  

During the Main portion of the investigation, Ms. Aguila led the class through each task: typically, by 

having a student read the question aloud, then clarifying the task, giving students a few minutes to work 

together on the iPad, asking a student to share or come up and demonstrate the solution to the class, 

and finally engaging the class in further demonstration or discussion. In this way, the class moved 

through all four of the tasks in the Main section at the same pace, and the solution to each question was 

discussed as a class before moving on to a new question. Despite the teacher exerting control over the 

pace and direction of the work, there were several elements that supported a high level of cognitive 

demand throughout the lesson. 

First, Ms. Aguila engaged students in complete cycles of PCE, emphasizing the meaning of prediction 

(“There’s no right or wrong answer—you’re predicting”) and eliciting multiple answers, correct and 

incorrect.  She then had students check their responses with the technology-based tools (e.g., “Check 

the spectrum—were both triangles on the same spot?”). Once the solution had been verified with the 

software and demonstrated, she then asked multiple students to verbalize an explanation before having 
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them write one down in their workbooks. She also provided support for how students should explain by 

drawing on the technology without telling them exactly what to write: “What strategy did you use? How 

are those numbers related? Did you use the container? Did you use the spectrum? Write down how you 

know.” 

Throughout the lesson, Ms. Aguila prompted students to use different representations when checking 

their predictions with the technology. She encouraged them to click on the artwork, spectrum, 

container, and mixer to check if the blends they created were equivalent. During whole class 

discussions, she posed questions about dynamic demonstrations of different mathematical 

representations. She also constructed an organized list of equivalent ratios on the board, which she 

continually added to and referenced throughout the lesson to highlight the multiplicative relationships 

between the quantities. In addition, Ms. Aguila introduced some of her own questions and a comparison 

to another familiar context—mixing chocolate milk—to enhance student understanding. While Ms. 

Aguila’s use of written representations on the board and the introduction of familiar contexts were 

adaptations of the SunBay Math materials, these adaptations maintained or enhanced the cognitive 

demand of the tasks and reflected the overall mathematical goals of the lesson as written.   

Ms. Aguila asked a variety of question types throughout the lesson, including questions that focused on 

mathematical meanings and relationships (Boaler & Brodie, 2004). She frequently asked questions that 

generated student thinking and reasoning, such as: “How come that works? What do the numbers tell 

you? What was your strategy? Is there a pattern? Why do you think? How do you know they are the 

same color?” Finally, Ms. Aguila elicited multiple responses for each question, even after the correct 

answer had been provided. This is something we rarely saw in other video-recorded lessons. In this 

class, incorrect answers were both elicited and probed.   

In sum, the lesson enactment by Ms. Aguila represents an implementation that maintained a high level 

of cognitive demand not only by following the intended curriculum but, in particular, through the 

questioning and pedagogical strategies that she brought to the lesson. It reflected her deliberate use of 

the resources in the curriculum along with her own pedagogical moves and orientation, to construct a 

dialogic learning experience where students engaged in reasoning around the important mathematical 

ideas.  

 

Ms. Elmore:  Whole Group Teacher Facilitation with Low Pedagogical Integrity 
While the last case is an enactment of Investigation 4 rather than Investigation 2, it offers an important 

contrast in that the teacher practices focused more directly on procedural knowledge and solutions, 

something that was common in the larger sample of lesson enactments. The enactment of this lesson 

had low structural integrity in terms of both lesson components (having neither a connected Warm-Up 

nor a Wrap-Up) as well as the balance of activity structures (entirely whole group), along with low 

pedagogical integrity across all dimensions. This enactment reflected significant adaptations to the 

lesson, but in a way that detracted from the mathematical goals and the integrity of the lesson as 

designed.  

In Investigation 4, students are expected to use what they have learned about ratio (including unit 

ratios) to generate equivalent ratios, find missing values and use table and graph representations. The 

tasks are designed to be open to multiple strategies. However, Ms. Elmore spent the first 15 minutes of 
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class having students complete and then review an exit ticket5, while highlighting how to find the unit 

rate through division. In this way, the lesson began with a procedural focus on the steps of a specific 

strategy before students had any opportunity to explore relationships between proportional quantities 

with the technology. 

The first task in the investigation involves using the dynamic mathematical representations in the 
technology to complete a table of equivalent ratios for making different amounts of clay with a given 
ratio of 3 cups of flour to 1 cup of salt. After reading the introduction and task aloud, Ms. Elmore 
underlined parts of the task and demonstrated how to write the given ratio. She then told them to enter 
the given ratio into the mixer tool while she did the same on the projection screen, and asked students 
to figure out how many white pips they needed to create the same ratio with 12 black pips. Very quickly 
a student offered that it would be 3 white pips, explaining, “I divided 12 by 3 and I got 4.” Ms. Elmore 
restated and expanded on this solution strategy by highlighting the calculations and recording them on  
the projected version of the workbook.  
 
She then put the solution (12 black pips and 4 white pips) into the mixer tool in the technology and 

asked students if it was correct, emphasizing how to make sure the spectrum marker was lined up. In 

this way, the technology was used to check the answer found through division. She then asked the 

students how else they could check to make sure the blends were equivalent. When two students 

responded by restating the multiplicative relationship between the numbers, Ms. Elmore suggested: 

“Could we check the container?” However, rather than have students explore or demonstrate what the 

container could show, she answered her own question by stating: “Yes. Ok, that was another way.” 

The next entry in the table required determining how many cups of salt would be used for 1 cup of flour. 

Students struggled to provide the correct answer to this question, first answering 12, then 1, then 3, and 

finally 6. Rather than allow students to explore any of these predictions on the software, Ms. Elmore 

asked them to look for a pattern in the numbers and again led them to the procedure of dividing by 3 

through more direct questioning while she recorded it on the projected screen: 

Ms. Elmore: You guys could check those responses with the iPad and see if those blends are 

equal, but I want you to think about if there is a relationship between the flour 

and salt? Just the first row. How do you think they got from 12 to 4? How do 

you think they got from 3 to 1? 

Student:   Divided by 3. 

Ms. Elmore: Divided by 3. That could work! 12 divided by 3 is 4. And 3 divided 3 is 1, so if you 

continue that pattern it should be 1 divided by 3, am I right or wrong?  

Instead of having students finish the table (“We’ll fill it in later”), Ms. Elmore moved on to the next task 

which involved using the graphing tool. Ms. Elmore first reviewed parts of the linked graph using the 

projected display and then explained how each point represented the ratios of 3 to 1 and 12 to 4 that 

had been entered. As the class returned to the question in the workbook, she said, “Explain what each 

point means.” Ms. Elmore told students to note what she was writing on the screen, “We are going to 

                                                           
5 Exit tickets were created by one of the districts to complement the units with formative assessment 
opportunities. 
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put ‘each point shows one of the’—please write this down—'clay blends ratios from the table above.’” 

For students, answering the explanation question consisted of copying down the teacher’s response.  

At the end of the lesson Ms. Elmore directed students to hit the button marked “lines” and then posed 

and answered her own question: 

What happened? Do you see the difference now? That’s another way to check that 

your ratios are equal. Ok? The fact that both of these points are on the same line, 

they’re showing they have the same blend of 3 blacks to 1 white ratio. 3 blacks to 1 

white ratio.  So they share the same unit ratio and they create the same color blend.  

As these examples show, there was mention and some demonstration of the different 

representations—the spectrum, the container, and the graph. However, the focus was on 

demonstration of the visual representations as confirmation of the procedure or for verification of the 

answer, rather than to test out predictions, explore, or look for relationships.  

While Ms. Elmore posed some of the questions that were designated as “predict” or “explain” from the 

guide, the overall focus was on using the numbers and mathematical procedures to solve the tasks and 

writing down the correct explanation. The majority of questions (63%) focused on gathering 

information. While she did ask some questions that focused on exploring meaning, in every case she 

followed up with more directive questions that funneled directly to a numerical answer or one she 

provided herself. Overall, this lesson enactment represented a teacher-directed lesson centered on 

correctness and procedural knowledge. Ms Elmore provided direct instruction around a specific method 

(using division to find a unit rate) before having students work on the tasks, and answered some of the 

higher-level questions herself, only asking students to provide numerical answers. In turning the focus 

away from mathematical exploration towards the application of a procedure, she significantly lowered 

the cognitive demand of the task for students. 

Cross Case Analysis:  Unpacking Pedagogical Integrity 
These four lesson enactments illustrate differences in the ways that the written curriculum is 

transformed through the pedagogical integrity of specific teaching practices and interactions between 

teacher and students in the classroom. First, we study these cases for the variation in the specific 

elements that are unique to SunBay Math lessons—PCE cycles and the use of the interactive technology-

based tools to develop representational fluency (Zbiek et al., 2007). We then explore teacher 

questioning and student discussion in terms of more nuanced discourse practices. Finally we examine 

different teacher orientations that can be seen in these cases, specifically in terms of the role they 

adopted as a teacher and their stance towards the use of the curriculum units.  

SunBay Math Practices 
All four lessons incorporated opportunities for students to engage in the parts of the PCE cycle 

embedded within the tasks in the curriculum. Ms. Aguila continually reinforced norms for what it meant 

to predict, check and explain as she taught the lesson. Ms. Chancellor also defined what it meant to 

predict, and in her interactions with small groups indirectly emphasized the inquiry stance embodied in 

PCE by posing questions to students (“What do you notice?”; “Hmmm, interesting…”). In both cases, 

high levels of integrity to PCE provided important guidance for students in how they should interact with 

the tasks and representations in the technology. Ms. Deegan, on the other hand, referenced the 

explanation aspect of PCE as what “they” wanted you to do and stated that as long as it was the 
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students’ own explanation, it was acceptable (“This is your thoughts”). Her overall focus on PCE was 

more on completing each of the questions than on engaging in inquiry. Ms. Elmore did not directly 

address the meaning of PCE. Since she was teaching Investigation 4 it may be that students were already 

familiar with this routine. However, by walking her students through procedures for solving the 

problems before using the software, she in effect circumvented the PCE inquiry cycle. In both of these 

cases, the low levels of integrity to PCE meant that while students were using the technology, there was 

no guidance as to how they should be engaging with the dynamic mathematical representations to 

answer the questions.  

In all four lesson implementations, students had some opportunities to use the software to make 

connections and develop understanding. However, Ms. Aguila and Ms. Chancellor directly supported the 

students’ use of technology for exploration and developing representational fluency by prompting them 

to use different representations to check their predictions and look for relationships. Both teachers 

posed questions to focus students on using the technology to reason about the mathematics. Ms. Aguila 

also demonstrated these relationships to the whole class by using the representations dynamically (i.e., 

clicking between two blends and switching back and forth between the spectrum and the container to 

highlight mathematical relationships visually). It was unclear in Ms. Deegan’s and Ms. Elmore’s lessons 

whether students were making these connections through their use of the technology. In Ms. Elmore’s 

class those opportunities were limited by focus on the use of representations to check the veracity of 

answers found through procedures. Table 9 summarizes the variation in both PCE and the approach to 

technology use across all four cases.  

Table 9. SunBay Math Practices Across Cases 

SunBay Math Practice Ms. Aguila Ms. Chancellor Ms. Deegan Ms. Elmore 

PCE Reinforcement of 
meaning 

Reinforcement of 
meaning and 
redirection 
 

Completion Circumvention 

Approach to 
Technology Use 

Demonstration, 
exploration and 
supporting 
representational 
fluency 

Exploration and 
supporting 
representational 
fluency 

Use without 
guidance 

Demonstration and 
procedural use 

 

Discourse Practices 
The more in-depth analysis of teacher questioning in these cases yields dramatic differences in the 

prevalence of different types of questions across the four enactments. Table 10 illustrates the six most 

common types of questions in order of prevalence across the four cases. As Table 10 shows, Ms. Aguila 

and Ms. Chancellor asked a lot more questions and posed more probing questions and more questions 

that focused on exploring meaning. Gathering information comprised the vast majority of questions in 

Ms. Deegan’s lesson and most of the questions in Ms. Chancellor and Ms. Elmore’s lessons. Ms. Aguila’s 

lesson had nearly an equal balance between gathering information and probing and was the only case 

where there were any questions in the categories extending thinking or linking and applying.  
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Table 10. Types of Questions Posed in Lesson Enactment Case Studies (Boaler & Brodie, 2004) 

Teacher Total no. 
of 

Questions 

Gathering Probing Exploring 
meaning 

Generating 
Discussion 

Inserting 
terminology 

Other6 

Aguila 93 37(40%) 32(34%)  11 (12%)  8 (9%) 3 (3%) 2 (2%) 

Chancellor 124 79 (63%)  15 (12%) 19 (15%)  2(2%) 4 (3%) 5 (4%) 

Deegan 37 33 (89%)  1 (3%) 1 (3%) 0 2 (5%) 0 

Elmore 41 26 (63%)  3 (7%)  8 (20%) 3 (7%) 1 (2%) 0 

 
The way in which teachers responded to incorrect student responses also varied in these lesson 

enactments, reflecting different opportunities for students to engage in productive struggle. Ms. Aguila 

and Ms. Elmore both elicited incorrect responses during whole class discussions, but Ms. Aguila elicited 

additional responses even after a student offered the correct response, thereby ensuring incorrect 

responses would get out into the discussion. Ms. Elmore elicited them only when the first student she 

called upon gave an incorrect response. More importantly, once elicited, Ms. Aguila probed the 

student’s thinking, thereby communicating confidence in students’ ability to reason about mathematics. 

In contrast, Ms. Elmore either did not acknowledge an incorrect response or redirected the student to 

the correct procedure and response. Both moves fail to signal confidence in students’ capacity to reason 

through the problem. While Ms. Chancellor did not elicit any incorrect responses during whole group 

discussion, the way she responded to questions while students were working in groups encouraged 

them to figure it out together. This emphasis not only helped to maintain the opportunity for productive 

struggle but also encouraged collaboration among the group. Table 11 summarizes these four discourse 

practices across the cases.  

 

 

 

 

 

 

 

 

 

                                                           
6 Orienting and focusing, extending thinking, and linking and applying.  
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Table 11. Summary of Discourse Practices Across Cases 

Discourse Practice Ms. Aguila Ms. Chancellor Ms. Deegan Ms. Elmore 

Questioning High level, varied, 
and focused on 
mathematical 
meaning and 
relationships 

High level, focused 
on mathematical 
meaning and 
relationships 
 

Low level—
encouragement and 
direction 

Low level- 
procedural 

 
Student 
explanations 

 
Multiple strategies  

 
Single strategy 

 
None 

 
Single strategy 

 
Response to student 
explanations 

 
Restated, expanded 
on, prompted for 
more  

 
Expanded on, follow 
up with more 
directive questions 

 
N/A 

 
Redirected toward 
desired response 

Incorrect responses Elicited and probed Orients to group Leads to correct 
response 

Ignores or leads to 
correct response 

 

Teacher Orientation 
The questions teachers asked and the way in which they responded to student contributions also 

illustrate differences in the role of the teacher in facilitating student learning. Ms. Aguila’s orientation as 

a facilitator was to elicit student’s ideas and then build on those ideas (by probing, inserting examples, 

or focusing them on patterns) to help them make connections to the mathematics. Ms. Chancellor 

continually prompted students to make sense of the mathematics while they were working 

collaboratively on the tasks. She took a less active role, however, in pressing on or connecting their ideas 

during whole class discussions. Ms. Deegan took on the role of a manager during whole class 

discussions. While students worked through the tasks, she made sure they were moving through each 

question and demonstrated correct responses, but she did not address the quality of their explanations. 

Ms. Elmore took the most directive approach, modeling strategies for solving problems, highlighting 

vocabulary and written formats, and modeling explanations.  

These four cases also illustrate significant differences in the orientation of the teachers towards the use 

of the curriculum. Ms. Chancellor followed the curriculum with the most integrity, both in terms of 

structure and pedagogy. Her lesson followed the recommended timing for the parts of the 

investigations and the balance of activity structures. She emphasized PCE cycles and oriented students 

towards collaboration and productive struggle.  

The enactment in Ms. Aguila’s class, which had low structural integrity with high pedagogical integrity, 

however, suggests that structural integrity is less important for overall implementation. This is further 

supported by the fact that the enactment of Ms. Deegan’s lesson reflected structural integrity without 

pedagogical integrity; while students completed the tasks as written in the curriculum, her role as a 

teacher—encouraging autonomy with the goal of completion—only partially reflected the goals of 

SunBay Math. As a result, the opportunity for students to engage in productive struggle around 

important mathematical ideas was diminished.  

Ms. Aguila adapted the lesson in terms of both structure and pedagogy, but these adaptations were in 

line with the goals of SunBay Math and in many cases enhanced the lesson as written (e.g., eliciting and 

probing correct and incorrect responses, introducing her own representations and examples, and posing 
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a variety of question types). Ms. Aguila demonstrated a high degree of what Brown (2009) defines as 

pedagogical design capacity, or "skill in perceiving the affordances of the materials and making decisions 

about how to use them to craft instructional episodes that achieve her goals" (p. 29).  

Ms. Elmore also adapted the lesson in ways that reflected her goals, but her goals were to ensure that 

students learned correct procedures and obtained correct answers, instead of encouraging them to 

engage in productive struggle around important mathematics. Her practices reflected a procedural 

orientation towards mathematics learning and teaching. This may have been a result of having less 

opportunity for professional support as it was her first year of implementing SunBay Math. Importantly, 

the practices of Ms. Deegan and Ms. Elmore when teaching these SunBay Math lessons did not produce 

evidence of students’ capabilities to engage in high-level reasoning and sense-making. For some 

teachers implementing SunBay Math, completion of all the tasks in the order they are presented may 

take precedence over ensuring that each lesson had a coherent beginning, middle and end around the 

instructional goal. Table 12 summarizes the orientations to teacher role and curriculum use across the 

cases.  

Table 12. Summary of Teacher Orientations Across Cases 

Discourse Practice Ms. Aguila Ms. Chancellor Ms. Deegan Ms. Elmore 

Teacher role Eliciting, building on, 
and connecting  
student ideas and 
mathematics 

Prompting student 
meaning making  

Management 
without connections 

Modeling correct 
strategy and 
knowledge 

Use of Curriculum Adapting Offloading Offloading and 
adapting 

Improvising and 
adapting 

 

Finally, Table 13 combines the teacher practices and orientations discussed in these case studies. 

Looking at the practices within each case, one can see a thread that links them into an overall 

instructional approach: Ms. Aguila’s practices focus on engaging students in high-level reasoning, while 

Ms. Chancellor’s focus on facilitating collaborative reasoning. Ms. Deegan’s practices focus on 

completion, while Ms. Elmore’s focus on procedural knowledge and correctness.  
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Table 13. SunBay Math Practices, Discourse Practices, and Teacher Orientations Across Cases 

  Ms. Aguila Ms. Chancellor Ms. Deegan Ms. Elmore 

Su
n

B
ay

 M
at

h
  

P
ra

ct
ic

e
s 

PCE Reinforcement of 
meaning 

Reinforcement of 
meaning and 
redirection 

Completion Circumvention 

Approach to 
Technology 
Use 

Demonstration, 
exploration and 
supporting 
representational 
fluency 

Exploration and 
supporting 
representational 
fluency 

Use without 
guidance 

Demonstration 
and procedural 
use 

D
is

co
u

rs
e 

P
ra

ct
ic

e
s 

Questioning High level, varied, 
and focused on 
mathematical 
meaning and 
relationships 

High level, 
focused on 
mathematical 
meaning and 
relationships 
 

Low level—
encouragement 
and direction 

Low level— 
procedural 

Student 
explanations 

Multiple 
strategies 

Single strategy None Single strategy 

Response to 
student 
explanations 

Restated, 
expanded on, 
prompted for 
more 

Expanded on, 
follow up with 
more directive 
questions 

N/A Redirected 
toward desired 
response 

Incorrect 
responses 

Elicited and 
probed 

Orients to group Leads to correct 
response 

Ignores or leads 
to correct 
response 

Te
ac

h
e

rO
ri

en
ta

ti
o

n
 

Teacher role Eliciting, building 
on, and 
connecting  
student ideas and 
mathematics 

Prompting 
student meaning 
making  

Management 
without 
connections 

Modeling correct 
strategy and 
knowledge 

Use of 
curriculum 

Adapting Offloading Offloading and 
adapting 

Improvising and 
adapting 
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Chapter 5: Discussion and Implications 
 

The results of this study suggest that elements of structural integrity—giving students access to 

technological tools and having students work in groups to complete the tasks as sequenced in the 

curriculum—is not sufficient to ensure opportunity to learn in the ways intended by the curriculum 

designers.  

Developing curricular materials that can support and enhance students’ opportunity to learn is a 

laudable and important goal. But while it may seem that activities embedded in technology remove, at 

least to some degree, the effect of the teacher, our study found significant variation in teacher 

instructional practices that had important consequences. Because of the way the teacher presented and 

orchestrated discussion around the tasks, the technology was either used procedurally (e.g., to find 

answers or check previously determined answers), used for exploration but without any guidance, or 

used for exploration along with reasoning, explanation and connections to important mathematical 

ideas. Just like more traditional text-based curricula, technology is adapted in practice and can be 

transformed by teachers and students. These findings highlight the importance of the technological 

pedagogical integrity of an enacted lesson, or how teachers frame, make use of, and support the 

purpose of the technological tools and/or what students should be doing with them.  

The presence and nature of whole group introductions and conclusions to bookend the work around the 

task is equally important for students’ opportunity to learn. A limitation of the study is that we are not 

able to ascertain how individual students or groups of students were discussing or making sense of the 

activities. Yet this limitation also points to a larger issue: what students learn in group work is likely 

incomplete and relatively unsophisticated, but it is through whole class discussion that the teacher can 

elicit, guide and consolidate student thinking in relation to the important mathematical ideas (Sleep, 

2012; Stein, Engle, Smith, & Hughes, 2008). In the absence of high quality discussion focused on the 

important mathematical ideas, the learning that results is more or less dependent on the strengths and 

weaknesses of individual students and interactions that may or may not occur with the teacher.  

Finally, the findings suggest that teachers’ repertoires of instructional practices influence their ability to 

use and adapt the curriculum in ways that reflect the principles of teaching and learning of SunBay 

Math. All teachers adapted the curriculum in some way, albeit to different degrees and in relation to 

different dimensions (timing, activity structure, PCE cycles, use of technology, or explanation and 

discussion). In some cases, these adaptations did not disrupt the overall emphasis on engaging students 

in high-level reasoning around mathematical concepts and ideas. In other cases, they enhanced it. 

However, in many cases teacher adaptations subverted the design and intent of the materials. Teachers 

will always adapt curriculum to some degree. The question for reform efforts based on curriculum as a 

vehicle for change then becomes how to build teacher capacity for decision-making around technology-

based curriculum that is responsive to the particular context, but still aligns with the curriculum 

developers’ intent and/or district priorities.  

Being able to use and adapt curricular materials to construct a lesson that coheres around the learning 

goals requires what Brown (2009) calls pedagogical design capacity. For example, although Ms. Aguila 

did not get to the discussion of the Wrap-Up question in the written curriculum, she had students share 

strategies for the last task in a way that accomplished the same goals. In this way, Ms. Aguila 
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demonstrated her pedagogical design capacity by presenting a coherent lesson with clear learning goals. 

Similarly, while she directed students through the technology-based tasks in a more teacher-directed 

way than was suggested by curriculum design, she orchestrated high quality discussion linked to the 

learning goals throughout the lesson. Whether or not teachers make adaptations to the curriculum 

seems less important, then, than whether or not they have the capacity to make changes in response to 

local context that keep the overall intent of the curriculum design intact. As Taylor (2013) argues, rather 

than looking for “teacher-proof curriculum,” we might be better off developing “curriculum-proof 

teachers” who can use and adapt curriculum in ways that expand learning opportunities for students.  

Implications 
New learning technologies are being promoted as a vehicle for instructional reform in mathematics, and 

evidence suggests that technology can be used to make learning more student-centered, increase the 

authenticity of mathematical activity, provide feedback that promotes reflection, and shift the authority 

for determining mathematical truth from the teacher or text to the students (Heid, 1997). The idea that 

technology can be a catalyst for these shifts, however, rests on the assumption that teachers have the 

capacity—beliefs, knowledge, and practices—to support and orchestrate the use of technological tools 

for meaningful mathematics instruction.  

As a set of replacement units, SunBay Math is designed to position students as active learners and users 

of technology. The curriculum itself helps to orchestrate this positioning both in the way the technology 

operates and in the way the tasks and investigations are structured. However, this study emphasizes the 

central role teachers play in enacting the curriculum and key areas of leverage for SunBay Math 

professional development and ongoing support for high-level implementation: teacher capacity and 

instructional practices.   

The appropriation of new pedagogical practices (Grossman, Valencia, Evans, Thompson, Martin, & Place, 

2000) often involves undoing old practices—not just taking on new ones—and these old practices may 

be deeply entrenched (Munter & Correnti, 2017). In order to shift the work of problem-solving and 

“figuring it out” to students, teachers must organize the classroom and lesson structure differently, 

establish new norms and expectations, use different discourse moves to elicit student thinking, support 

student thinking and reasoning around challenging tasks, and expertly weave together multiple 

strategies and levels of understanding towards the learning goal. Supporting students to make 

connections to mathematical ideas through dynamic mathematical representations in the technology, 

adds another layer of complexity.  

These practices were evident to some degree in the higher-level lesson enactments, but in lower-level 

enactments we saw students work in groups with the technology without guidance or direction, 

teachers asking questions that focused on gathering information and then following up with more 

directive questions to steer students towards the correct answer or procedure, or teachers 

demonstrating a procedure or method before having students use the technology to complete practice 

problems. These practices are common in more traditional and didactic models of math instruction, and 

in fact, had been promoted by both districts in recent years. It is not surprising then that we saw these 

patterns persist in the second year of SunBay Math implementation. Learning and adopting new 

practices takes time, and occurs at different rates for different teachers (Grossman et al., 2000; 

Desimone, Porter, Garet, Yoon,& Birman, 2002). While expectations change, and new curricula is 

provided, teachers are rarely given adequate time or opportunities to develop, practice and refine new 
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instructional practices in their own classroom settings. This study highlights that these instructional 

practices are essential for providing high quality learning experiences for students with technology.  
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Appendix A. IQA Rubrics (Boston, 2012) 
 

Potential of the Task Rubric 
 

Score Description of Score Level 

4 The task has the potential to engage students in exploring and understanding the nature of mathematical 
concepts, procedures, and/or relationships, such as: 

• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-
rehearsed approach or pathway explicitly suggested by the task, task instructions, or a worked-out example); 
OR  

• Procedures with connections: applying a broad general procedure that remains closely connected to 
mathematical concepts. 

The task must explicitly prompt for evidence of students’ reasoning and understanding.  

For example, the task MAY require students to:   

• solve a genuine, challenging problem for which students’ reasoning is evident in their work on the task; 

• develop an explanation for why formulas or procedures work;  

• identify patterns and form and justify generalizations based on these patterns; 

• make conjectures and support conclusions with mathematical evidence; 

• make explicit connections between representations, strategies, or mathematical concepts and procedures; 

• follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, or relationship. 

3 The task has the potential to engage students in complex thinking or in creating meaning for mathematical 
concepts, procedures, and/or relationships. However, the task does not warrant a “4” because:  

• the task does not explicitly prompt for evidence of students’ reasoning and understanding; 

• students may be asked to engage in doing mathematics or procedures with connections, but the underlying 
mathematics in the task is not appropriate for the specific group of students (i.e., too easy or too hard to 
promote engagement with high-level cognitive demands);  

• students may need to identify patterns but are not pressed for generalizations or justification; 

• students may be asked to use multiple strategies or representations but the task does not explicitly prompt 
students to develop connections between them; 

• students may be asked to make conjectures but are not asked to provide mathematical evidence or 
explanations to support conclusions. 

2 The potential of the task is limited to engaging students in using a procedure that is either specifically called for or 
its use is evident based on prior instruction, experience, or placement of the task. There is little ambiguity about 
what needs to be done and how to do it. The task does not require students to make connections to the concepts 
or meaning underlying the procedure being used. Focus of the task appears to be on producing correct answers 
rather than developing mathematical understanding (e.g., applying a specific problem-solving strategy, 
practicing a computational algorithm). 
 
OR The task does not require student to engage in cognitively challenging work; the task is easy to solve. 

1 The potential of the task is limited to engaging students in memorizing or reproducing facts, rules, formulae, or 
definitions. The task does not require students to make connections to the concepts or meaning that underlie the 
facts, rules, formulae, or definitions being memorized or reproduced. 

0 Students did not engage in a mathematical activity. 
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Implementation of the Task Rubric 
 

Score Description of Score Level 

4 Students engaged in exploring and understanding the nature of mathematical concepts, procedures, and/or  
relationships, such as: 

• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-
rehearsed approach or pathway explicitly suggested by the task, task instructions, or a worked-out 
example); OR  

• Procedures with connections: applying a broad general procedure that remains closely connected to 
mathematical concepts. 

 
There is explicit evidence of students’ reasoning and understanding. For example, students may have:   

• solved a genuine, challenging problem for which students’ reasoning is evident in their work on the 
task; 

• developed an explanation for why formulas or procedures work;  

• identified patterns and formed generalizations based on these patterns; 

• made conjectures and supported conclusions with mathematical evidence; 

• made explicit connections between representations, strategies, or mathematical concepts and 
procedures; 

• followed a prescribed procedure in order to explain/illustrate a mathematical concept, process, or 
relationship. 

3 Students engaged in complex thinking or in creating meaning for mathematical concepts, procedures, 
and/or relationships. However, the implementation does not warrant a “4” because:  

• there is no explicit evidence of students’ reasoning and understanding; 

• students engaged in doing mathematics or procedures with connections, but the underlying 
mathematics in the task was not appropriate for the specific group of students (i.e., too easy or too 
hard to sustain engagement with high-level cognitive demands);  

• students identified patterns but did not make generalizations; 

• students used multiple strategies or representations but connections between different 
strategies/representations were not explicitly evident; 

• students made conjectures but did not provide mathematical evidence or explanations to support 
conclusions. 

2 Students engaged in using a procedure that was either specifically called for or its use was evident based 
on prior instruction, experience, or placement of the task. There was little ambiguity about what 
needed to be done and how to do it. Students did not make connections to the concepts or meaning 
underlying the procedure being used. Focus of the implementation appears to be on producing correct 
answers rather than developing mathematical understanding (e.g., applying a specific problem solving 
strategy, practicing a computational algorithm). 

 
OR There is evidence that the mathematical content of the task is at least 2 grade-levels below the grade 
of the students in the class. 

1 Students engage in memorizing or reproducing facts, rules, formulae, or definitions. Students do not 
make connections to the concepts or meaning that underlie the facts, rules, formulae, or definitions 
being memorized or reproduced. 

0 The students did not engage in mathematical activity. 
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Rigor of Teacher Questions Rubric 
 

4 The teacher consistently asks academically relevant questions that provide opportunities for students 
to elaborate and explain their mathematical work and thinking (probing, generating discussion), 
identify and describe the important mathematical ideas in the lesson, or make connections between 
ideas, representations, or strategies (exploring mathematical meanings and relationships). 

3 At least two times during the lesson, the teacher asks academically relevant questions (probing, 
generating discussion, exploring mathematical meanings and relationships). 

2 There are one or more superficial, trivial, or formulaic efforts to ask academically relevant questions, 
probing, generating discussion, exploring mathematical meanings and relationships)  (i.e., every 
student is asked the same question or set of questions) or to ask students to explain their reasoning. 
OR only one strong effort is made to ask academically relevant questions. 

1 
The teacher asks procedural or factual questions that elicit mathematical facts or procedure or require 
brief, single-word responses.  

0 
 

The teacher did not ask questions during the lesson, or the teacher’s questions were not relevant to 
the mathematics in the lesson. 

 

Student Discussion Following Task Rubric 
 

4 Students show/describe written work for solving a task and/or engage in a discussion of the important 
mathematical ideas in the task. During the discussion, students provide complete and thorough 
explanations of why their strategy, idea, or procedure is valid; students explain why their strategy works 
and/or is appropriate for the problem; students make connections to the underlying mathematical ideas 
(e.g., “I divided because we needed equal groups”). 
OR 
Students show/discuss more than one strategy or representation for solving the task, and provide 
explanations of why the different strategies/representations were used to solve the task. 

3 Students show/describe written work for solving a task and/or engage in a discussion of the important 
mathematical ideas in the task. During the discussion, students provide explanations of why their 
strategy, idea, or procedure is valid and/or students begin to make connections BUT the explanations 
and connections are not complete and thorough (e.g., student responses often require extended press 
from the teacher, are incomplete, lack precision, or fall short on making explicit connections).   
OR 
Students show/discuss more than one strategy or representation for solving the task, and provide 
explanations of how the different strategies/representations were used to solve the task but do not 
explain why they were used. 

2 Students show/describe written work for solving the task (e.g., the steps for a multiplication problem, 
finding an average, or solving an equation; what they did first, second, etc.) but do not engage in a 
discussion of why their strategies, procedures, or mathematical ideas work.  [There are presentations of 
students’ work but no discussion.] 
OR 
Students show/discuss only one strategy or representation for solving the task. 

1 Students provide brief or one-word answers (e.g., fill in blanks); 
OR  
Student’s responses are non-mathematical. 

0 There was no discussion of the task. 
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Appendix B. SunBay Math Enactment Rubrics 
 

Lesson Structure Rubric 
 

3 components Warm-Up, Main, Wrap-Up from one investigation occur in one class period 

2 components At  least 2 of the 3 components from the same investigation are present 

1 component Only 1 of 3 components from the investigation are present 

None Lesson does not incorporate any of the three SunBay Math components 

 

Balance of Activity Structures Rubric 
 

Mostly Whole 
Group 

Lesson is mostly whole group and teacher-facilitated with some opportunities 
for students to work in groups  

Mostly Small 
Group 

Lesson has some teacher-facilitated whole group portions with extended 
opportunities for students to work in groups 

Whole Group Lesson is almost entirely whole group teacher-led with no opportunities for 
students to work in groups 

Small Group Lesson is almost entirely students working in groups while the teacher circulates 

 

Technology Use Rubric 
 

Exploration with 
connections 

Student exploration and use with the teacher helping to make connections to 
the mathematics 

Use without 
guidance 

Opportunity for exploration without guidance, connections, or explanation from 
the teacher; purpose or evidence of student use is more or less unclear 

Procedural use Technology is used in a procedural way (e.g., to check answers); technology is 
not used in a way that fosters student exploration or engagement in reasoning 
about the mathematical content 

No use Lesson does not incorporate any technology; or it is unclear the extent to which 
it was used 

 

Predict-Check-Explain (PCE) Rubric 
 

Consistent PCE Lesson incorporates all three aspects of the cycle: there are opportunities for 
students to predict, check, and explain and students engage in multiple PCE 
cycles while using the technology. 
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One PCE There is at least one complete PCE cycle enacted in the lesson, either in whole 
group or paired work, but PCE cycle is not consistent across the lesson.  

Partial PCE Two connected aspects of the PCE cycle are incorporated (e.g., students predict 
and check, but never explain)  

No PCE Lesson does not reflect any aspects of the PCE cycle 

 
 

  



 46 

Appendix C. Task Implementation Scores in Relation to Potential of the 

Task on the IQA 
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