

VIDEO MAGNIFICATION FOR STRUCTURAL ANALYSIS TESTING

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Jean Whitmore

June 2018

 ii

© 2018

Jean Whitmore

ALL RIGHTS RESERVED

 iii

COMMITTEE MEMBERSHIP

TITLE:

AUTHOR:

DATE SUBMITTED:

COMMITTEE CHAIR:

COMMITTEE MEMBER:

COMMITTEE MEMBER:

Video Magnification for Structural

Analysis Testing

Jean Whitmore

June 2018

Wayne Pilkington, Ph.D.

Associate Professor of Electrical Engineering

Jane Zhang, Ph.D.

Associate Department Chair, EE

Xiao-Hua Yu, Ph.D.

Professor of Electrical Engineering

 iv

ABSTRACT

Video Magnification for Structural Analysis Testing

Jean Whitmore

The goal of this thesis is to allow a user to see minute motion of an object at different

frequencies, using a computer program, to aid in vibration testing analysis without the

use of complex setups of accelerometers or expensive laser vibrometers. MIT’s phase-

based video motion processing was modified to enable modal determination of structures

in the field using a cell phone camera. The algorithm was modified by implementing a

stabilization algorithm and permitting the magnification filter to operate on multiple

frequency ranges to enable visualization of the natural frequencies of structures in the

field. To implement multiple frequency ranges a new function was developed to

implement the magnification filter at each relevant frequency range within the original

video. The stabilization algorithm would allow for a camera to be hand-held instead of

requiring a tripod mount. The following methods for stabilization were tested: fixed point

video stabilization and image registration. Neither method removed the global motion

from the hand-held video, even after masking was implemented, which resulted in poor

results. Specifically, fixed point did not remove much motion or created sharp motions

and image registration introduced a pulsing effect. The best results occurred when the

object being observed had contrast from the background, was the largest feature in the

video frame, and the video was captured from a tripod at an appropriate angle. The final

program can amplify the motion in user selected frequency bands and can be used as an

aid in structural analysis testing.

 v

ACKNOWLEDGMENTS

I would like to thank my family and friends for all their support throughout this process. I

would like to especially thank my father for helping me come up with the idea for the

thesis and providing a mechanical engineering perspective to computer vision. Finally, I

would like to thank Dr. Pilkington for helping me navigate the scope and reporting of this

project.

 vi

TABLE OF CONTENTS

Page

LIST OF FIGURES ……………………………………………………………………. vii

CHAPTER

1. INTRODUCTION & BACKGROUND INFORMATION ...………………………... 1

 1.1: Non-Destructive Testing…………………………………………………… 1

 1.2: Vibration Testing…………………………………………………………... 2

 1.3: Scope of Thesis…………………………………………………………….. 3

2. RELEVANT WORK & SYSTEM DESIGN ….…………………………………...… 5

 2.1: Program Design…………………………………………………………… 5

 2.2: MIT Phase Based Amplification Method………………………………….. 6

 2.3: Stabilization Approaches…………………………………………...…….. 14

3. TESTING & RESULTS………………...…………………………………………… 19

 3.1: Frequency Separation Testing ...…………………………………………. 19

 3.2: Tripod Video Testing and Results …………………………………...…… 23

 3.3: Stabilization Testing …………………………………………….… 38

4. LIMITATIONS & CONCLUSIONS …………….…………………………………. 51

 4.1: Limitations ………………………………………………………... 51

 4.2: Conclusion ………………………………………………………... 51

5. FUTURE WORK …………………………………………………………………… 54

WORKS CITED ………………………………………………………………………. 56

APPENDIX A: MATLAB CODE ….……..……………………………………..…… 58

APPENDIX B: EXTERNAL LINKS………………………………………....………. 68

 vii

LIST OF FIGURES

Figure Page

1.1 General Vibration Testing Method.………………………………………….…..... 2

2.1.1 Top-level functional diagram for MATLAB program …………………….…… 5

2.2.1 Basic Image Pyramid diagram from Computer Vision: Algorithms and

Applications . ….……….…………………………..……..………....……………. 7

2.2.2 MIT motion magnification method from “Phase-Based Video Motion

Processing” ….……………..……………………….………………….…….….... 9

2.2.3 Acceleration Comparison graph from “Phase-Based Video Motion

Processing” ……………………….……………………..……………….……… 12

2.2.4 Image comparison from “Phased-Based Video Motion Processing”….…….…. 12

2.3.1 Top level MATLAB video stabilization method functional diagram……....….. 15

2.3.2 Process to estimate the transform matrix ………….…………………..………. 16

2.3.3 Top level functionality of the MATLAB image processing example ..…..……. 17

3.1.1 Location of Column in original video………………………………….………..20

3.1.2 Motion of guitar.avi (Magnification Factor: 75) ...……………….…………..... 20

3.1.3 Columns observed in each video………………………...……….…………….. 21

3.1.4 Original and 50-70 Hz frequency band comparison ……………….………….. 22

3.1.5 72-92 and 93-101 frequency bands comparison ……………………….…........ 22

3.1.6 105-115 Hz and 140-150 Hz frequency bands comparison …………………… 23

3.2.1 Dryer Video Frame …………………………………………....………………. 25

3.2.2 VibSensor data for Dryer Test ……………………………………...….……… 26

3.2.3 Frame from magnified video at magnification level of 120 …………...……… 27

3.2.4 Difference in Dryer Sheet box at a magnification factor of 120…..………....... 28

3.2.5 VibSensor data for washing machine……………………..…………………… 31

 viii

3.2.6 Location of row and column observed over the course of the video …….…… 32

3.2.7 Behavior of a row of pixels at 100 magnification ….……………………….… 33

3.2.8 Motion in the x-direction at 100 magnification .……………………………… 34

3.2.9 Comparison of y-direction motion with different magnification factors……… 35

3.2.10 Comparison of x-direction motion with different magnification factors..…… 35

3.3.1 Location of row (green) and column(magenta) used to observe stability ….… 39

3.3.2 Movement in the y-direction (horizontal) comparison …..…………………… 41

3.3.3 X direction (vertical) movement comparison ………………………………… 42

3.3.4 Row (green) and column (magenta) used to observe movement………………43

3.3.5 Effects of extraneous motion on behavior in y-direction…...………………… 44

3.3.6 Effects of extraneous motion on behavior in x-direction ..…………………… 45

3.3.7 Masks used for each stabilization method (Blue Rectangles)………………… 47

3.3.8 Movement in the y direction after masking ………...………………………… 48

3.3.9 Movement in the x direction after masking…………………………………… 49

 1

Chapter 1: Introduction & Background Information

1.1: Non-Destructive Testing

When a structure is in the presence of an external mechanical frequency

stimulus or vibration it begins to oscillate at a specific characteristic frequency,

which is commonly referred to as the natural frequency response. If the external

forces occur at the same frequency as the natural response the structure’s motion

is amplified, also known as mechanical resonance, and could lead to damage in

the structure [1]. The purpose of non-destructive testing is to determine if a

structure will be damaged under extremes of its expected environmental

conditions, and if so to measure the extent of the damage. Any damage simulated

in the testing should not destroy the structure. Such testing is typically used to

ensure the structure can survive and continue to function in a given extreme

environment, such as a windy hillside, space, or a rocket launch. Originally non-

destructive testing results were determined using human observations and visual

assessments; but as ensuring structural integrity became more critical, better

measuring equipment such as boroscopes, microphones, ultrasonic transducers,

and other sensors have been introduced to non-destructive testing to achieve more

accurate damage assessments [2]. However, the greater measurement accuracy

leads to an increase in cost for the measuring devices and does not provide the

tester or structure designer with a visual depiction of the structure’s motion which

could be very helpful for understanding the source and natural of the structure’s

response.

 2

1.2: Vibration Testing

 One commonly used non-destructive test is vibration testing. Vibration

testing, as described in Kenneth McConnel’s Vibration Testing: Theory and

Practice, is used to measure the dynamic response of a system under given

environmental conditions [3]. Typically, this means a structure is subjected to a

vibrational frequency that would occur in the environment it would be operating

in, for example severe vibrations during a rocket launch, and observing the

frequency responses from particular areas of the structure. Three of the most

common tests that fall under vibration testing are vibration monitoring, vibration

survey, and modal analysis [3]. Vibration monitoring is used to assess if the

structure can operate correctly in the environment [3]. The vibration survey is

used to see how a structure responds to vibrations applied over a certain

frequency range, while modal analysis gives details on the structure’s dynamic

characteristics, specifically how it moves and in which directions [3]. McConnel

also describes a general vibration testing configuration (Figure 1.1)

Figure 1.1: General Vibration Testing Method

 In this system an excitation is placed on the structure and measured through an

input force transducer, while motion of the structure is then measured by an

accelerometer. Both signals from the force transducer and accelerometer are then

 3

sent to an amplifier and then into a frequency spectrum analyzer. The data

collected from the frequency analyzer is then collected and stored in a computer

and displayed and analyzed by a computer program which the engineers use to

evaluate the structure’s performance. While this test setup provides the desired

quantitative motion measurements at different frequencies, it does not provide a

way to view the motion of the structure; particularly because most of the

structure’s movements are extremely small.

To produce a visualization of the structure’s dynamic behavior, MIT has

developed a MATLAB program that can detect small motions over a set range of

vibration frequencies in video recordings of a structure under test [4]. The

program uses complex steerable pyramids to magnify motions in the video using

the phase difference between each frame. In a separate experiment the researchers

at MIT were able to extract vibration data from videos of rotating machinery, a

small beam, and an earthquake [2]. With the vibration data from the video, the

non-destructive tests could not only gather quantitative vibration data but also

produce a video of the structure over that frequency range, which allows an

observer to see what parts of the structure move at that frequency and by what

relative amount. Having the amplified motion video enables the non-destructive

test to be more effective and to provide information on errors in the testing setup

and feedback to the modeling methods used to create the structure.

1.3: Scope of Thesis

The goal of this thesis project is to design a MATLAB program to allow a

person to see and magnify mechanical vibrations within certain frequency bands

 4

of the primary structure seen in a video recording. Unlike the original MIT

system, the program from this project will be designed to operate with the more

challenging case of motion video recorded by a handheld device, as well as the

simpler case of video from a stable, tripod-mounted camera. The result will

provide another method for engineers to verify that modal frequencies occur near

the ones predicted by modeling; and it can aid in the detection of unwanted

vibration frequencies that occur from the testing apparatus. The program could

also provide an inexpensive means of vibration characterization testing without

requiring additional expensive equipment or testing time in specialized vibration

test facilities; which could provide a considerable cost savings in the development

of new structures.

 5

CHAPTER 2: RELEVANT WORK & SYSTEM DESIGN

 The focus of this chapter is to explain the related works that contributed

to this project and how they are applied in this project. This chapter also covers

how the MATLAB program for this project is structured and how it functions, to

provide context for where the related work contributed to this project.

2.1: Program Design

 The purpose of the MATLAB program is to aid in the visualization of

motion of a structure during structural analysis tests, such as vibration testing. To

accomplish this the program has three functions: magnification, stabilization, and

user input. The top-level functionality of the program is shown in Figure 2.1.1.

Figure 2.1.1: Top-level functional diagram for MATLAB program

The first block shown in Figure 2.1.1 is the stabilization block. The purpose of

this block is to ensure the video does not contain any extraneous motion if it was

captured from a handheld device. The second block shown in Figure 2.1.1 gathers

the input video, magnification level, and frequency bands from the user. This

block is implemented using a function called freqbandamp (in Appendix A). The

function takes in the user inputs for the frequency bands as an array of low

frequencies and an array of high frequencies, the amount of magnification, the

output directory, frequency sample rate, and a video to have motions magnified.

Stabilize if
necessary

Get
settings

and video

Magnify
over a set
frequency

Output
videos of

each
frequency

band

 6

Then for each pair of low and high frequencies the function passes the user input

to the MIT phaseamplify function which magnifies the video at the desired

frequency bands (magnification block in Figure 2.1.1). The final block represents

the output of the system which are videos with magnified movement for each of

the user specified frequency bands.

 The program is designed to allow for a person performing a structural

analysis test, like vibration testing, to capture a short hand-held video from their

cellphone and amplify it over any given frequency range. However, the frequency

bands are limited to what the camera can capture accurately because the Nyquist

Criterion requires the sampling rate to be at least twice the frequency you desire

to reconstruct. For example, the Samsung Galaxy S8 can capture video at 30, 60

or 240 frames per second which would limit the maximum vibration frequencies

that can be visualized to 15, 30, and 120 Hz respectively [5].

2.2: MIT Phase Based Amplification Method

 The magnification functionality of this project uses the MIT phase-based

amplification algorithm MATLAB code. This code was an extension of previous

work at MIT that originally used Euclidean models to amplify the amplitude of

objects moving in a video. While their Euclidean method was successful; if there

was any type of noise in the video, the noise was also amplified, which is

undesirable. To address the noise issue, MIT focused on developing a phase-

based motion amplification model, which resulted in more amplification and less

sensitivity to noise. Since the phase-based method provides more amplification

than the previous work, it is an appropriate tool for seeing the smaller motions

 7

present during vibration testing. Another benefit of the phase-based method is that

it incorporates a threshold parameter α, which can be used to minimize large

motions present in a stable video [4].

 The MIT code amplifies the small motions by amplifying the small

changes in local phase using a complex steerable pyramid. A pyramid is made up

of multiple images in different sizes as shown in Figure 2.2.1.

Figure 2.2.1: Basic Image Pyramid diagram from Computer Vision: Algorithms and

Applications [6]

The reason the higher layers appear smaller in Figure 2.2.1 is because the image

pixels in each layer as you move up the pyramid are down sampled by a factor of

two. When the image is down sampled it decreases in size and image details

become less refined. Multi-resolution pyramids are typically used to accomplish

image decomposition for image compression, using orthogonal wavelet,

Laplacian, or Discrete Cosine decompositions. Pyramids are also used to detect

objects in an image when given a template example of the desired object. Most

object detection algorithms that use template matching are sensitive to scale and

rotation, which means any difference between the size of the template and the

 8

object in the picture will result in no detection. This is not ideal when trying to

detect multiple objects, like faces, in an image. To help find all the objects of the

same type in an image despite them having different sizes from each other and

compared to the template, multiple levels of image pyramids with different

scalings are tested. This allows different sized features in the image to be scaled

to better match the size of the template, resulting in a higher likelihood of

detection.

 The complex steerable pyramid used in the MIT algorithm offers

additional benefits beyond a typical image pyramid. A steerable pyramid

performs a non-orthogonal polar-separable decomposition in the frequency

domain, thus allowing independent representation of scale, orientation, and

position. The resulting image representation is both translation-invariant and

rotation-invariant. The primary drawback of this method is that the representation

is overcomplete by a factor of 4k/3, where k is the number of orientation bands

used in the decomposition; thus making this decomposition less data efficient.

The overcomplete property, however, means that there is no aliasing between

levels in the pyramid, which does occur in other types of pyramid decompositions

because information is lost in the downsampling at each of the pyramid levels [4].

Since the complex steerable pyramid does not alias any information, a perfect

reconstruction of the video can be recreated from the decomposition.

The other unique element of steerable pyramid decomposition that is used

here is the quadrature phase filters, which provide even and odd-phase

orientations of the spatial filters [4]. These both output complex values which can

 9

be used to extract the magnitude and phase measurements in a local area in the

video. Just as the phase variations of Fourier basis functions (sine waves) are

related to translation via the Fourier shift theorem, the phase variations of the

complex steerable pyramid correspond to local motions in spatial subbands of an

image [4]. The pyramid also stores the position and scale of the video frames,

which are useful when you desire to amplify the phase in a video. Also, the

complex steerable pyramid uses a Gabor wavelet transform instead of a traditional

wavelet transform, which allows for better approximation of large changes in

contrast in an image.

 The magnification method utilizes the steerable pyramid and bandpass

filters to extract and magnify the motion a video. The process is described in

Figure 2.2.2, which is the figure used in the MIT phase-based motion paper to

describe their magnification method.

Figure 2.2.2: MIT motion magnification method from “Phase-Based Video Motion

Processing” [4]

 10

The first stage of the process is to calculate the local phase over every orientation

and scale in the complex steerable pyramid for each single frame of the input

video (Figure 2.2.2 a). The number of orientations can be set by the user when

deciding what pyramid to use. For example, the octave pyramid has 4 orientations

while the half octave has 8. The scales are calculated in the getFilters which is

part of phaseAmplify. The number of scales used is dependent on the size of the

video. In the implementation of this project octave pyramids were used, and the

size of the video was 720 by 1080, which resulted in 30 scales. Then the localized

phase information from time adjacent video frames sent into a temporal bandpass

filter (Figure 2.2.2 b) to isolate changes occurring within the user specified range

of frequencies. These temporally bandpassed phases correspond to motion in

different spatial scales and orientations. Depending on user input, the amplitude

and phase can be passed through an amplitude-weighted spatial smoothing filter

to increase the phase SNR value (Figure 2.2.2 c). After the optional denoising

step, the phase difference is calculated, and the motion is either magnified with

the given alpha value or attenuated depending on if the motion is to be magnified

or suppressed (Figure 2.2.2 d). The threshold between attenuation and

magnification can also be set by the user. The magnification or attenuation is

accomplished by modifying the value stored in the complex steerable pyramid

coefficient. Finally, the frame is reconstructed by inverting the process with

which the image pyramid was created. This process is repeated over every single

frame in a given video.

 11

 There is a limitation on how much the phase can be shifted until the limits

in the spatial support of the pyramid are reached. For a full octave bandwidth the

upper bound is
𝜆

4
 , where λ is the inverse of the frequency the filter selects; while

half-octave bandwidth filters have a bound that is
𝜆

2
 [4]. The increase occurs

because the filters in the sub-octave band are narrower in the frequency domain,

which means in the spatial domain they are larger and there is more room to move

the image frames without causing distortions. In terms of the magnification in a

video this mean objects that move at a lower frequency in the video can have their

phase shift magnified more than objects that move at a higher frequency. Also,

this shows that real-time results, which are typically carried out using an octave

pyramid, will have different results than when using a sub-octave pyramid.

 Overall the algorithm is successful at magnifying small motions that are

not noticeable to the human eye [4]. In the original papers, there was also some

experimentation on how effective the algorithm is at accurately representing the

actual motion in a scene. To test the algorithm, a metal structure with an

accelerometer attached was hit with a hammer to induce vibrations. The test was

recorded by a DSLR camera at 60 frames per second and passed through the

algorithm to find the phase differences. The structure displacements were

calculated from the phase differences; and the acceleration of the structure was

found by taking the second derivative of the Gaussian-filtered displacement data,

and rescaling and realigning the results to match the scale and position of the

accelerometer data. A comparison of the accelerations measured by the

accelerometer and the calculated algorithm results are plotted in Figure 2.2.3.

 12

Figure 2.2.3: Acceleration Comparison graph from “Phase-Based Video Motion Processing” [4]

The acceleration generated from the phase signal by the algorithm is shown in red

and the measured accelerometer data is shown in blue. The motions between the

two are nearly identical with only the peaks not matching up exactly, which

means the algorithm does properly capture motions in the video sequence.

Another test performed with the same apparatus was to magnify the original video

motion by 50 times and compare that motion in the video to a video that captured

the motion with 50 times harder force on the metal structure. The resulting image

frames are shown in Figure 2.2.4.

Figure 2.2.4: Image comparison from “Phased-Based Video Motion Processing” [4]

The experimental structure is shown in Figure 2.2.4 (a) and the image frames are

shown in Figure 2.2.4 (b). The source shown in the top has its motion magnified

 13

50 times by the algorithm, which resulted in the middle picture. The bottom

image in Figure 2.2.4 (b) is a frame from when the hammer force was increased

by 50 times. The motion magnified image captures the exact same motion, but

with the lines extend in the light brown area. These results coupled with the

acceleration comparison validate the algorithm’s ability to capture real motion

and provide strong motivation for use in a vibration testing scenario.

 The MIT paper concludes that the phase-based algorithm is less

susceptible to noise and has a larger magnification than a previous Eulerian Video

Magnification method [4] . However, there are still limitations with the current

algorithm. One of the main limitations is that the video must be captured from a

camera on a stable platform, like a tripod, and not by a handheld device. The

reason behind this is that when a camera is in a person’s hand there will be small

movements that occur due to minute hand motions. These hand motions fall in the

vibration frequency ranges being amplified by the algorithm and will distort the

motion of the object or structure being analyzed. Another issue with the phase

magnification method is that noise in the video could also cause distortions that

would mask the movement. The final limitation is the length of a video that can

be processed in a reasonable time. Longer and higher resolution videos take

longer to process; although they might yield better results. However, these

limitations can be overcome by acquiring shorter videos, using an image

stabilization filter, and ensuring that the video does not contain excessive noise.

 14

2.3: Stabilization Approaches

 Since the current MIT magnification algorithm is limited to a camera on a

tripod, the second component of the project focuses on stabilizing a hand-held

video so accurate vibrations can be detected with less expensive and more

convenient means. The image stabilization method employed needs to be able to

handle the non-linearities that are introduced by the rolling shutter of a CMOS

image sensor, which most cellphones use to take videos and pictures [7]. Rolling

shutter is when an image is captured row by row instead of all at once. The time

difference between each row capture cause distortions in the image when there is

movement form the camera [7]. For example, if there is horizontal movement the

frame will be bent to one side, while if there is vertical movement the frames will

either be shrunk or stretched [7]. Both distortions do not affect every pixel in the

frame the same, so using an inverse filter will not work. Typically, inverse

filtering is done using a linear method, however since not all the pixels have the

same amount of distortion a nonlinear method needs to be used [7]. Also, since

hand motion is not the same throughout the video each frame will have to be

adjusted one at a time. Two methods were explored as possible solutions:

MATLAB’s video stabilization algorithm and MATLAB’s image registration

example.

The MATLAB video stabilization algorithm essentially finds the

differences in translation, scaling, and rotation between a point in two frames of a

video and applies a transform to make the frames align. This is repeated for all the

 15

frames in a video. The way MATLAB implements the algorithm is described in

Figure 2.3.1.

Figure 2.3.1: Top level MATLAB video stabilization method functional diagram

First the stabilization algorithm reads individual frames from the input video.

Next the algorithm determines the important points in each frame using the

Features from Accelerated Segment Test (FAST) feature detection algorithm,

which is one of the fastest corner detection algorithms [8]. FAST works by first

detecting features and then generating a feature vector. Specifically the features

are detected by using a circle of 16 pixels around a center pixel and if there are 12

pixels in the circle that are either above or below a designated threshold of the

center pixel value the pixel is marked as a feature [9]. The 16 points are then

saved as a feature vector and can be matched by using the FAST feature matching

algorithm or another algorithm [9]. In this implementation, once the corners are

detected, they are compared to the other features using the Fast Retina Key

(FREAK) point descriptors of each of the features. FREAK descriptors are

designed to mimic the human retina, which is accomplished by “comparing the

light intensities over a retinal sampling pattern” [10]. The FREAK descriptors

produce a binary output and the Hamming distance of features in each of the

image frames is then calculated. The points with the smallest Hamming distance

between the frames are determined to be the same feature. Next the spatial

Read frames from
video file

Find the
important points

in the video

Find features with
high

correspondence

Estimate
Transform

Transform image
Repeat for all
frames in the

video

 16

transform between images is estimated by using the M-estimator Sample

Consensus (MSAC) algorithm, which is a variant of the Random Sample

Consensus (RANSAC) algorithm. The RANSAC algorithm takes a random

dataset, fits a model to the data set and calculates the number of outliers [8]. The

algorithm reiterates until the stop criteria is met. The MSAC algorithm performs

in a similar manner to the RANSAC, but it includes an M-estimator to provide a

probability component to the algorithm [11]. The probability component reduces

the number of iterations the RANSAC algorithm must do to find a model that best

fits the data [9]. The process used to estimate the transform is encapsulated in

Figure 2.3.2.

Figure 2.3.2: Process to estimate the transform matrix

The first part of the transform estimation uses the MSAC algorithm and

determines the points from the first frame that match closest to points in the

second frame. The initial transform from the MSAC algorithm is represented in

the form:

[

𝑎1 𝑎3 0
𝑎2 𝑎4 0
𝑡𝑥 𝑡𝑦 1

]

where a represents the scale, rotation and shearing effects and t represents

translation. The estimation begins by extracting the scale and rotation parameters

Extract
scale and
rotation

from
submatrix

Compute
theta

Compute
Scale

Keep
translation
information

Reconstruct
s-R-t

Transform

 17

from the initial transform and computes the rotation angle theta and scale through

averaging the two possible values for each of the parameters. The translation is

kept the same and the matrix is updated to the form:

[

𝑠 ∗ cos(𝑡ℎ𝑒𝑡𝑎) 𝑠 ∗ −sin(𝑡ℎ𝑒𝑡𝑎) 0
𝑠 ∗ sin(𝑡ℎ𝑒𝑡𝑎) 𝑠 ∗ cos(𝑡ℎ𝑒𝑡𝑎) 0

𝑡𝑥 𝑡𝑦 1
]

which is then used by the algorithm to warp the current image frame to be on the

same level as the previous frame; and repeats the process for the rest of the video

frames.

 The second method for stabilization focused on applying MATLAB’s

image registration algorithms. The main difference between MATLAB’s

implementation of image registration and the previous method is that registration

uses only scale and rotation to align images, but not translation; unlike the

MATLAB video stabilization method. Since this method does not contain any

translation, which is a significant component in hand motion, the performance

should be worse than the previous stabilization method described. The overall

process for image registration is described in Figure 2.3.3.

Figure 2.3.3: Top level functionality of the MATLAB image processing example

The method takes in an image frame from the video and collects the features from

it using the Speeded Up Robust Features (SURF) algorithm which is a patented

feature detector like the FAST algorithm used in the stabilization method [12].

Read Image
Frame

Find Matching
Features

between current
frame and first

frame

Estimate
transformation

Inverse the
estimated

Transform matrix

Warp the current
frame to fit the
original frame

Repeat for all
frames

 18

The SURF algorithm is also used to detect features in a reference frame. The

SURF algorithm detects features by first using a square hessian matrix detector to

simulate a Gaussian smoothing filter [13]. The filter size is upscaled to generate

different pyramid levels [13]. The features are detected by suppressing any pixel

value that is not the maximum value in its 3x3x3 neighborhood and interpolating

the maximum determinant of the Hessian matrix to correspond with the image in

the pyramid [13]. However, the FAST algorithm can also be used for feature

detection. In this instance FAST feature detection was used because the structures

tested were made up of corners, which SURF does not detect as well as FAST

[12]. Also keeping the detection schemes the same provides for a better

comparison between the two methods. Next the features are matched using the

MSAC algorithm, just like the video stabilization method, and a spatial transform

between frames estimated. The estimation process is the same as the one

described in Figure 2.3.2, but instead of the scale and theta being averaged

between the two frames, they are kept the same as the initial values calculated

from the original transformation matrix. The inverse of the estimated matrix is

used to rotate the current frame back into the reference image frame’s orientation.

To make the algorithm work over a whole video the example code was formatted

into a function that repeats the procedure in Figure 2.3.3 until the end of the

video. Also, the reference frame was set to the first frame in the video so a

constant reference frame without any distortion would be used throughout the

image registration stabilization process.

 19

CHAPTER 3: TESTING & RESULTS

 To verify the functionality of the MATLAB program used to implement

the vibration detection system, the testing was broken down into verifying three

different functions: separating the motions in the video into multiple frequency

bands, verifying the ability to amplify and see expected motions, and stabilizing

handheld video. The videos resulting from these tests are linked in Appendix B.

3.1: Frequency Separation Testing

 To test the frequency separation functionality of the MATLAB program a

guitar (guitar.avi) provided by MIT was input into the system. The guitar.avi

video captures the motion after a guitar is strummed at 600 fps for 10 seconds at

a resolution of 432 by 192 pixels. The first string’s (E2) fundamental musical

frequency is 82.4 Hz if properly tuned, while the second (A2) and third (D3) are

110 Hz and 146.8 Hz respectively. To test the functionality 5 frequency bands

were tested. Three of them are around the fundamental frequencies of the first

three strings, one in a band below the first string’s fundamental frequency, and the

last one in a band between the first and second string’s fundamental frequencies.

To capture the motion a column capturing the first 4 strings (Figure 3.1.1) was

observed over the duration of the video for each of the frequency bands (Figure

3.1.2). Note the bands are wider than the fundamental frequency to account for

the possibility the guitar is not tuned.

 20

Figure 3.1.1: Location of Column in original video

Figure 3.1.2: Motion of guitar.avi (Magnification Factor: 75)

The results from Figure 3.1.2 show that the lowest string (E2) only appears to

vibrate in the 72 to 92 Hz range, as expected. In frequencies below 72 Hz there

was no motion in any of the strings other than those caused by distortion, and for

frequencies from 92 to 101Hz there were no strings moving. Again, these results

are as expected because if there is movement in the higher strings they would

occur at their resonant frequencies and since the string that was plucked was the

lowest string and only its fundamental frequency and its harmonics would be

excited, no vibrations below its fundamental frequency should be observed. The

 21

results also show only A2 moving in the 105 to 115Hz band and D3 only moving

in the 140 to 150 Hz band, which makes sense since each string only vibrates in

their frequency range. All these results collectively illustrate the effectiveness of

the frequency separation in the MATLAB program.

 Since, the function is effectively separating the frequencies the next aspect

tested was the affect resolution has on the results. To test the effect of resolution

guitar.avi was down sampled by 2 and by 4, which generated two 9 second videos

at 216 by 96 pixels and 108 by 48pixels. Figure 3.1.3 shows the column in each

video used for comparing the motion, which are all the same location in each

video frame. Figure 3.1.4 to Figure 3.1.6 show the results at each frequency band

for each of the resolutions.

Figure 3.1.3: Columns observed in each video

 22

Figure 3.1.4: Original and 50-70 Hz frequency band comparison

Figure 3.1.5: 72-92 and 93-101 frequency bands comparison

 23

Figure 3.1.6: 105-115 Hz and 140-150 Hz frequency bands comparison

The results show that decreasing the resolution decrease the ability to observe any

motion in the video. The 108 by 48-pixel video did not show any motion and the

motion in the 216 by 96 -pixel video show some motion, but not at the same

clarity at the higher resolution. In fact, the motion in the 216 by 96 video could be

distortion from lighting. The resolution test results imply the object under

observation should occupy the most pixels possible to get the most accurate

motion.

3.2: Tripod Video Testing and Results

 The tripod video tests focused on seeing if motions captured using a

cellphone image sensor could be observed in the resulting video. To test the

system a video was taken of a washing machine using a tripod and a Galaxy S8

cellphone in the slow-motion setting (240 fps), to ensure the sampled rate would

 24

be above the Nyquist rate for the low frequency range of the washing machine’s

vibration (stimulated by rotation of agitator and drum). Using a tripod would

ensure that any motions detected would only be due to the washing machine and

not the sensor. After the video was taken, an application program (cellphone app)

called VibSensor (by Now Instruments and Software, Inc) was used to determine

the power spectral density (PSD) of vibration in the three orthogonal directions x,

y, and z. based on data from the cellphone’s own internal accelerometers. The

frequencies that had the highest peaks in the PSD graph were used to determine

the frequency bands that were going to be observed with the motion amplification

code. The frequency bandwidths were chosen to be narrow to focus as close to the

peak frequencies as possible. Once the frequency boundaries were decided, the

video and the frequency bands were passed into the MATLAB function and the

motion observed is compared to the expected motion in each frequency band.

 In the first set of videos taken of a head-on view of a front-loading dryer

during the drying cycle in an indoor garage with only artificial light as the light

source (Figure 3.2.1) and the VibSenor was set to have the x, y and z directions

relate to left to right, front and back, and up and down motions respectively. The 5

second dryer video was captured at a frame rate of 240 fps with a resolution of

720 by 1280 pixels.

 25

Figure 3.2.1: Dryer Video Frame

The VibSenor data (Figure 3.2.2) reports that there are resonances detected at

multiple frequencies in all directions. The x direction had resonances at 19 Hz and

16 Hz, while the frequencies in the y direction occur at 14 and 13 Hz. The

resonant frequencies in the z direction occur at 25Hz and 30Hz, which are

significantly higher than the other two directions. The power spectrum plot

illustrates how the power in the x and y directions decreases at higher frequencies,

while the z direction increases.

 26

(a) Resonant Frequencies

(b) Power Spectrum

Figure 3.2.2: VibSensor data for Dryer Test

After looking at the VibSenor data, the frequency bands to test were chosen to be

10 to 19 Hz and 24 to 28 Hz, because these contained the resonant frequencies of

all the orthogonal directions.

The motion amplification results however did not show clear movement

results, in fact everything appeared to be moving. The movement is most

prominent in the 10-19 Hz magnification video, and this could be due to a couple

of things. The first being that the tripod was on a laundry basket which might not

have been as sturdy and induced a small movement in the video. However,

 27

looking at the original video there is not large-scale motion so this most likely not

the cause. In the original video there is a large light flicker at the end which

produces motion on the door of the dryer and when the video is slowed down to a

quarter of the speed the change in lighting creates feint horizontal flickering lines

in the frames. This is most likely the cause of the motion in the vertical direction.

There also was a strange dark and light pattern that appeared in the video, which

is assumed to be due to the lights since they flicker at 60 Hz, as shown in Figure

3.2.3.

Figure 3.2.3: Frame from magnified video at magnification level of 120

The light distortion overpowered any movement of the dyer, since both the dyer

and the wall are white. However, the algorithm was able to enhance the

movement of other objects that appeared on top of the dryer. The orange dryer

sheet box provided the best source of movement. Figure 3.2.4 compares a frame

 28

from each video taken at the same time stamp to see the effects of the 120-

magnification factor in the 24 to 28Hz band.

Original

10 – 19 Hz Band after magnification

After magnification in the 24 to 28 Hz band

Figure 3.2.4: Difference in Dryer Sheet box at a magnification factor of 120

After magnification the floppy part of the lid is significantly more curved

than the original and contains more light distortion. The difference shows that the

box was moving up and down, which is expected in the 24 to 28 Hz range, thus

the magnification filter is doing the job correctly. Since the program is effectively

magnifying and producing the movement expected in the higher frequency

 29

ranges, the reason the dryer did not appear to move is an artifact of the way the

video was taken.

There are several reasons the motion enhancement did not work as

expected in this example. The main issue is that the dryer did not have significant

contrast from its surroundings. This is an issue because it would make it more

difficult for the eye to see the motion. Another issue is that the dryer does not

occupy a majority of the image field. As seen in the guitar example, when the

resolution is too low distortions from other parts of the video, such as artificial

lighting, prevent the observation of the desired magnified motion. Finally, the

angle of the dryer is not ideal to capture motion in all three directions, since the x

direction would be coming toward the camera which is hard to detect in the

image, and the dryer surfaces are not perpendicular to the image edges.

For the next set of videos, the following changes were made to the video

capture to improve the testing conditions:

1) A checker board table cloth was placed on top of a washer to

provide high contrast edges to aid the detection of motion;

2) The camera angle was changed to view the top of the washer from

an oblique angle so that motion in all three directions could be

observed;

3) The camera was moved closer to the washer to fill more of the

field of view.

4) More natural light was used to illuminate the objects to reduce the

effect of artificial lighting flicker on the results.

 30

The rest of the video capture methods are the same as the first video. The changes

ensure there will be enough contrast between the structure we want to observe and

the background. Having the large contrast allows the structure’s movement to be

seen in more clarity. The change in the angle of the camera will also make it

easier to capture all the directions the washer can move.

 The structure tested in the second testing setup was a washer from my

apartment complex, which is different from the first structure. The washer used in

the video was in the rinse cycle in an indoor environment with both artificial and

natural light sources. The video captured used in testing is 3 seconds in length,

has a resolution of 1920 by 1080, and a frame rate of 240 fps. To find the resonant

frequencies the VibSenor app was again placed on top of the washer and the data

collected is shown in Figure 3.2.5.

 31

Figure 3.2.5: VibSensor data for washing machine

The VibSenor data reveals the resonant frequencies for the directions occur in

similar bands, so the frequency bands generated will contain movement in the x,

y, and z-direction. The power spectrum shows a trend like the dryer in the first

test, in which the z separates from the x and y movement at higher frequencies.

Using the VibSensor data the frequency bands tested were 15 to 17 Hz, 26 to

28Hz, and 43 to 46 Hz. The 15 to 17 Hz band will capture the low resonant

frequencies for the x and y directions, while the movement in the z direction will

be minimized. The 26 to 28 Hz band captures the high resonant frequency band

for the x direction and larger movements in the y and z direction, so this band

 32

should have movement in all directions. The 43 to 46 Hz band will capture the

higher resonant frequency in the z direction, while movements in the x and y

direction become small. So, in the highest band, movement in the z direction will

be the most apparent.

 Next the video captured was trimmed and sent into the magnification

program. The reason for the trimming was to make the processing time shorter,

and the only effect this will have is the output videos will be the same length as

the trimmed video. To see the effect of the video in a 2D format, a row or column

of pixels was selected and observed over the entire video. The columns and rows

only cover a single transition from a black to white square on the checker pattern

tablecloth. The row and column that is observed are shown as green and pink

respectively in Figure 3.2.6.

Figure 3.2.6: Location of row and column observed over the course of the video

The first set of results focuses on the motion in the y direction

(horizontal). To observe the y direction the same pixel row was captured from

every frame and placed into a single image, with pixels from the first frame being

 33

on the top of the image and pixels from the last frame on the bottom of the image.

The results from the tripod test are shown in Figure 3.2.7.

Original

15-17 Hz

26-28 Hz

43-46 Hz

Figure 3.2.7: Behavior of a row of pixels at 100 magnification

The original video shows no oscillation in the row pixels throughout the entire

video, however when magnified an oscillation appears. The amplitude of

oscillation is the largest (9 pixels) in the 15 to 17 Hz band and the smallest

amplitude oscillation (4 pixels) occurs in the 43-46 Hz band, which is expected.

Also the frequency of oscillations were calculated using

(𝑁𝑐𝑦𝑐𝑙𝑒𝑠)(𝑓𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑛𝑁𝑐𝑦𝑐𝑙𝑒𝑠
 and yielded 15.8Hz, 27.8Hz, and 45 Hz for 15-17, 26-

28, and 43-46 Hz bands respectively as expected. The VibSensor data in Figure

3.2.5 shows that the y axis has the largest magnitudes at lower frequencies and

has a large drop in value as the 43-46Hz is reached, so the results fit the data

VibSensor collected.

 The movement in the x-direction (vertical) was observed next by tracking

a single column of pixels throughout each video frame, starting from the far left.

 34

Figure 3.2.8 shows the movement in the x-direction from the original video and

the three magnified frequency bands.

Original

15-17 Hz

26-28 Hz

43-46 Hz

Figure 3.2.8: Motion in the x-direction at 100 magnification

Again, the magnified frequency bands show movement that was not present in the

original video. With amplifications for the 15-17, 26-28, and 43-46 Hz bands

being 8,4,2 respectively. Again, the magnitude of the oscillation decreases as the

frequency increase which is expected from the VibSensor data. The frequencies

calculated fell within their designated frequency range with 15.8, 27.3 and 43.6

Hz.

 Next the effect of amplification was reviewed. For this test the same input

video was used, but instead was only magnified by a factor of 50. The same row

and column were observed in both the 100 and the 50-magnification factor for

each of the frequency bands and are shown in Figure 3.2.9 and Figure 3.2.10

respectively.

 35

Figure 3.2.9: Comparison of y-direction motion with different magnification factors

Figure 3.2.10: Comparison of x-direction motion with different magnification factors

 36

The images show there is a difference in motion between the 50 and 100

magnification factors. In the y-direction the amplitudes for the 50 magnification

factor starting from the lowest frequency band to the highest are 6, 4, and 3 pixels.

These values are only about 50% lower than the 100 magnification factor (9, 6,

and 4 pixels). The expected results were for the magnification to be double the

size of the 50 magnification factor’s amplitudes. The difference could be due to

the amount of distortion present in the y-direction, which made it difficult to

discern where the peaks occurred on the waveform. The amplitudes in the x

direction were 4, 2, and 1 pixel with respect to 15-17, 26-28, and 43-46 Hz bands.

These values are exactly half of the amplitudes that appear in the 100

magnification factor images (8, 4, and 2 pixels), which is expected. The peaks in

these images were easier to discern than the y-direction because the distortion was

not as pronounced on the waveform unlike in the y-direction video. The results

from the amplification test show that increasing the magnification factor does

increase the observed amplitude, but also distortion will limit the accuracy of the

amplitude magnification.

Finally, the videos themselves were observed to see the all the movement

captured. The video results show that there is movement which is not seen in the

first video. The 15 to 17 Hz video shows the most movement, which occurs in the

x and y directions. This behavior is expected because the movement in the x and y

direction are significantly higher than the movement in the z direction. In the 26

to 28 Hz video the overall movement seen is less than the 15 to 17 Hz, but this is

expected because the magnitude of the accelerations is less than the ones present

 37

in the 15 to 17 Hz band for the x and y directions. In the 26 to 28 Hz video there

is some up and down movement that can be seen but it is still not as apparent as

the movement in the x and y direction. This is consistent because the z direction is

just starting to be larger than the x and y acceleration magnitudes. Finally, in the

43 to 46 Hz frequency band video the movement is the smallest and appears as a

vibration in the video itself. Due to the movement of the vibration it is difficult to

distinguish the direction the washing machine is moving in, however in the final

portion of the video there is an up and down movement, which is expected.

 Overall, the second round of testing captured the motion of the structure

the best. The checkered tablecloth and the camera angle changes made the motion

easier to see. However, there is still the same light distortion, which was seen in

the first video testing set. However, since the video in the second round of testing

increased the contrast and was taken with the presence of natural light the

movement was easier to see. The main problem with the second round of video

taken was the dryers in the background were in operation, so their movement was

also amplified in the video. The dryer movement in the background draws the eye

away from the movement of the washer, which is what is under test; so to prevent

this from happening in the future videos should be taken with a background that is

stationary. Even with the moving background the MATLAB program was able to

show movement that was in the realm of what was expected, so the vibration

enhancement program appears to work properly on videos taken from a tripod.

 38

3.3: Stabilization Testing

 After verifying the MATLAB program amplifies vibrations in the tripod

video in a meaningful way, the image stabilization methods for handheld cameras

were then tested. The input to the stabilization method is a handheld cellphone

camera video (240 fps frame rate and 1280 by 720 resolution for 21 seconds) of

the structure we want to analyze. In this case the washing machine test setup from

the second test was filmed again, because it gave the best results for the tripod

video and the motion is easier to see. The view of the structure was changed from

the original video because there was a wall that made it hard to film a handheld

video. The video was captured using the same Samsung Galaxy 8 in the tripod

tests with the same settings. Since the washing machine is the same one used in

the previous tripod test the same VibSensor data will be used to magnify the

videos.

 Before the video can be processed through the magnification program, the

handheld camera input video must go through an image stabilization process to

remove as much of the extraneous overall movement as possible. The stabilization

was attempted using each of the two methods previously described.

The first tests used MATLAB’s video stabilization method that effectively

moves the image frame boundaries in order to make the video appear stable.

During the testing, however; the video output of this method was found to still

contain a large percentage of the hand movement that was present in the original

video without stabilization. Therefore, when magnified the movement of the

washing machine was not easily distinguished from the overall movement of the

 39

camera. When the motion in the stabilized video is compared to the original input,

the amount of motion removed is minimal.

 The second method of stabilization used image registration. The image

registration method uses a single frame as a reference and then rotates and scales

the subsequent images to try and match the original image. The resulting video

using this method had no apparent movement in the horizontal and vertical

directions, but variations in the chosen image scaling that is part of this correction

creates a pulsing effect. When the image registration video was passed through

the magnification algorithm the pulsing was magnified which overshadowed all

the movement of the washing machine.

The motion stabilized videos for both stabilization method still show

extraneous motion, but to directly compare the two methods, images depicting the

x and y directional movement in the frame were created. The technique is the

same as the one performed for the video captured using the tripod, and Figure

3.3.1 shows the locations where the row and column pixels are located in the

frame.

Figure 3.3.1: Location of row (green) and column(magenta) used to observe stability

 40

The area in blue rectangle was chosen to measure the stability because it is

stationary through the entirety of the video, and so any motion seen in these

features is undesired motion that we want the stabilization methods to remove.

The motion in the y (horizontal) direction can be seen in Figure 3.3.2. Note again

the top of each image represents the first frame and the bottom of each image

represents the last frame.

 41

Original

Video Stabilization

Image Registration

Figure 3.3.2: Movement in the y-direction (horizontal) comparison

The change between the original background motions and the video stabilization

movements is very small, as expected. The main differences are the video

stabilization image is in black and white and the behavior at the bottom of the

motion image (later time in the video) is slightly less drastic. However, the image

 42

registration method eliminated all the slow horizontal variations it found in the

original video and only left a slight oscillation due to the scaling pulse behavior

observed in the video.

 The next step is to observe the movement in the x-direction (vertical) to

see how each method behaves. Note in Figure 3.3.3 the left side of each image

represents the first frame and the right side represent the last frame.

Original

Video Stabilization

Image Registration

Figure 3.3.3: X direction (vertical) movement comparison

 43

Again, the image registration removes the major vertical movement in the original

video but induces small amounts of ripple. The Video stabilization method does

not perform as well as the image registration and exacerbates the movement and

blurring of the dark curve in the original image.

At this stage image registration out performs the video stabilization

method, but the residual motions in each stabilized video are still large enough to

affect the vibration magnification method results. The residual movements would

have the largest detrimental effect on the vibration magnification’s highest

frequency band (43-46Hz), because the motion in this band is the smallest and

therefore hardest to detect.

To assess the impact of handheld camera motion on the vibration

magnified videos, the handheld video was first processed with the magnification

program without any image stabilization. Figure 3.3.4 shows the location of the

rows and columns observed for motion in this test. Figure 3.3.5 shows the effects

of magnification on the original, unstabilized video in the y direction, while

Figure 3.3.6 shows the movement in the x direction.

Figure 3.3.4: Row (green) and column (magenta) used to observe movement

 44

Original

Magnified

15-17 Hz

Magnified

26-28 Hz

Magnified

43-46 Hz

Figure 3.3.5: Effects of extraneous motion on behavior in y-direction

 45

Original

15-17 Hz

26-28 Hz

43-46 Hz

Figure 3.3.6: Effects of extraneous motion on behavior in x-direction

The motion shown in the various frequency bands seems to show motion that

changes significantly over time. In both the x and y directions there is a sinusoidal

waveform with a sinusoidal envelope. This behavior is not present in tripod video,

so the sinusoidal envelope is induced from the hand motion. The envelope causes

inaccurate measures of amplitude since the envelope does not necessarily reflect

motion in a certain direction or of the washer. So, if the hand motion is not

properly removed accurate information cannot be extracted form the data.

 46

 Since neither image stabilization method appeared to be suitable for

improving these magnified vibration videos, an attempt to improve the

stabilization methods using a mask was implemented. The purpose of using a

mask is to only use truly stationary image features in the determination of the

stabilization parameters, rather than including the parts of each image frame

containing features whose motion we are trying to magnify. In this case the

masking focused the image stabilization was on the divider between the two rows

of washers since it is stable throughout the video. The only changes to the

stabilization code required were to only search for matching image features in a

certain area. However, this initially resulted in both the methods breaking down,

due to the lack of well-defined feature corners for the stabilization algorithms to

operate on. The methods were able to compute stabilizations once more image

areas that included corner features were included, which unfortunately had to

include part of the top of the vibrating washer. Figure 3.3.7 shows the masks (in

blue) used for each stabilization method.

 47

Video Stabilization Mask

Image Registration Mask

Figure 3.3.7: Masks used for each stabilization method (Blue Rectangles)

 Once the masked were designed, and the unmagnified hand-held video

was passed through each updated stabilization method, and the residual

movement in the x and y directions were once again compared (Figure 3.3.8 and

3.3.9).

 48

Original

Video Stabilization

Image Registration

Figure 3.3.8: Movement in the y direction after masking

 49

Original

Video Stabilization

Image Registration

Figure 3.3.9: Movement in the x direction after masking

When comparing the stabilization results with and without masking, the masking

did not improve the image registration method significantly. However, the video

stabilization results actually degraded. While the video stabilization code was

updated to work in color and not black and white, the output was choppier in the x

direction than before. The choppiness causes the video to contain translational

motion, which will certainly be amplified by the vibration magnification

processing. The y direction also showed large dark bands that are not present in

the original video, which suggests large movements and motion blurring occur at

these points. When observing the stabilized video results, the image registration

video still had scale pulsing like the previous, unmasked implementation; but the

video stabilization method contained some segments where the video did not

 50

move. However, the lack of movement did not last, and other exaggerated large

movements occurred, which is not desired.

 After running the both masked stabilization videos through the

magnification filter the performance did not improve with masking for either

method. The image registration method results contain the exact same distortions

as in the original implementation. The video stabilization performed considerably

worse in the vibration magnified video, once the masking was implemented. In

the masked results, the 15-17 Hz frequency band is blurry, so no fine movements

can be detected, and the large motions seen in the unmagnified results of the

masking were amplified even more. Unfortunately, the masking did not improve

performance of either method as expected.

Looking at the results of the stabilization methods there is no currently

available effective way to handle a hand-held video in a way that will provide

meaningful information with vibration magnification. The most promise seems to

lie in image registration, but the image scaling would have to be minimized to

extract any meaningful information once the hand-held videos are magnified.

Until the pulsing problem can be fixed, the vibration magnification system can

only handle videos from a stationary tripod that contain high image contrast.

However, future work can be done to explore other techniques to minimize the

effect of the global motion from a hand-held video.

 51

CHAPTER 4: LIMITATIONS & CONCLUSIONS

4.1: Limitations

 According to Nyquist Theorem to be able to recover a signal at a specified

frequency the sampling rate needs to be at least twice the frequency. In practice,

the signal is oversampled to ensure there is no loss of data. Since cameras have set

sampling rates, called frame rates, the frequencies that they can observe are

limited. For example, the Samsung Galaxy S8 has frame rates of 30, 60, and 120

fps which means it can observe vibration frequencies only up to 60 Hz [9]. To

observe higher frequencies, a highspeed camera would need to be used.

 Another limiting factor is the length of the video. To make obtaining the

results relatively fast, the video should be at the minimum resolution to needed

capture the structure clearly and less than 10 seconds in length. Larger videos can

still be processed but will take longer and will require more memory.

 The final limitation is that the video needs to be taken from a stable

platform such as a tripod. The video from a handheld video currently contains too

much motion, which cannot be removed, and masks the motion from the object

under test.

4.2: Conclusion

 The reason for developing the MATLAB program was to try and make a

tool to take in a video from a cell phone and magnify the movements in them. The

program successfully implemented the system and allowed for the user to specify

the frequency bands and the amount of magnification, which is useful for

structural analysis testing, especially vibration testing. The magnification at

 52

specific frequency bands gave expected responses when taken from a stable

platform such as a tripod. However, the stabilization methods tested did not

remove enough of the image sensor motion from the video captured from the

hand-held camera. Since there were still large motion artifacts present when the

video was magnified all the small motions of the washing machine were masked

by the magnified motions of the camera. Even though the stabilization method

does not eliminate enough of the motion, the MATLAB program will still work if

the input is from a stable platform such as a tripod.

 To make the motion of the structure easier to see in the frequency band

videos, the video should have a large amount of contrast and the structure should

take up most of the image field. The contrast allows the eye to easily see the

motion and if the structure is the focus of the video the eye will naturally be

drawn to structure movement. Another consideration would be to make sure all

the objects in the background are stationary or are not operating in the frequency

band were vibration behavior is being observed. Having a stationary background

will also aid in making the structure’s movement easier to see and if additional

surrounding equipment operates in the frequency band which is being observed,

their behavior will also be present in the video. A clear example of this was seen

during the second test of the washing machine. The background was comprised of

dryers that were operating at the same time. Based off of data taken from the

dryer in the first round of testing, dryers would have similar resonant vibration

frequencies to the washers. Therefore, when the second-round test videos were

processed for motion enhancement, both the motion of the washing machine and

 53

the dryers in the background moved in similar amounts. The background dryer

motion distracts from the motion of the top of the washer, making it more difficult

to observe the vibration behavior of the washer.

 Overall the MATLAB program designed in this thesis is a good starting

place for using computer vision in structural analysis testing. The program

provides a way to see the motion going on a certain frequency band in a way that

is not currently utilized. The program was designed to be as general as possible,

so it can be utilized in any type of structural testing and take in data from any type

of camera. The limiting factors are the requirement for limited motion in the

testing setup and video capture method, computing time, and frame rate of the

camera. As time progresses and technology improves this technique might be

revisited and incorporated in structural testing or in troubleshooting without using

an expensive test setup.

 54

CHAPTER 5: FUTURE WORK

The next logical step for future work in developing a useful system for

structural analysis is to input a video from a structural test. One way to do this

would be to design a structure with a resonate frequency below 120 Hz and film

the structure during a vibration test. The vibration test will test how the current

system handles large motions of the structure. Depending on the results of this test

other algorithms and programs in the MIT code can be explored. Specifically,

there is a code that can attenuate large motions in a video, while magnifying the

small ones. This function could prove useful if both the larger motions and the

smaller motions want to be seen in the same video.

Another route to be explored is utilizing Riesz pyramids instead of

complex steerable pyramids. MIT explored this route in 2014 and just published a

pseudo code that describes how to implement this pyramid structure in MATLAB.

The reason for the switch to these pyramids would be to decrease the amount of

time required to process the video file. The reason for this is because the complex

steerable pyramids are more over complete than the Riesz pyramids [14]. Having

a more over complete pyramid equates to having more data to process, thus

having longer processing time on videos. The results from MIT show that for

cases where the motion is confined to one orientation Riesz pyramid motion

enhancement can be performed in real time. However, this might not be desired

since the behavior of a structural motion is not necessarily constrained to a single

orientation, especially at different locations on the structure.

 55

Also, there are new apps being developed that allow the user to increase the

frame rate of their cellphone camera. The effects of using an application would

allow for a phone camera to increase the range of frequencies that can be

observed in the videos captured. However, the effects of these apps have not been

observed. To see the effects a test like the one done by MIT to prove the motion

captured using the motion amplification method provided similar acceleration

values to an accelerometer attached to the metal structure. Another parameter to

monitor is if there are any additional distortions such as blur added to the video

captured from the camera while using the app.

Finally, new stabilization methods could be implemented to try and remove

the hand motion. The image registration showed some promise, so if there was a

way to include translation parameters into the transform matrix, that could

potentially improve the method’s performance. Masking could also be

incorporated in different ways or using specific features in a testing environment

could be used instead of using the corner detecting algorithm. Also developing a

way to better account for the motion blur in a rolling shutter might become

necessary if there is a large amount of motion in the structure while it undergoes

testing.

 56

WORKS CITED

[1] J. P. Hughes, “MECHANICAL RESONANCE.” [Online]. Available:

http://www.physics.rutgers.edu/~jackph/2005s/PS02.pdf. [Accessed: 25-May-

2018].

[2] O. Buyukozturk, J. G. Chen, N. Wadhwa, A. Davis, F. Durand, and W. T.

Freeman, “Smaller Than the Eye Can See: Vibration Analysis with Video

Cameras.”

[3] K. G. McConnell, Vibration testing : theory and practice. Wiley, 1995.

[4] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video

motion processing,” ACM Trans. Graph., vol. 32, no. 4, p. 1, 2013.

[5] “Specifications | Samsung Galaxy S8 and S8+ – The Official Samsung Galaxy

Site.” [Online]. Available: http://www.samsung.com/global/galaxy/galaxy-

s8/specs/. [Accessed: 25-May-2018].

[6] R. Szeliski, Computer Vision : Algorithms and Applications, vol. 5. 2010.

[7] W. Hong, D. Wei, and A. U. Batur, “Video Stabilization and Rolling Shutter

Distortion Reduction,” in 2010 IEEE 17th International Conference on Image

Processing, 2010, pp. 3501–3504.

[8] “Video Stabilization Using Point Feature Matching - MATLAB &

Simulink.” [Online]. Available:

https://www.mathworks.com/help/vision/examples/video-stabilization-using-

point-feature-matching.html. [Accessed: 18-May-2018].

[9] E. Rosten and T. Drummond, “Fusing points and lines for high performance

tracking,” Proc. IEEE Int. Conf. Comput. Vis., vol. II, pp. 1508–1515, 2005.

[10] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast Retina Keypoint.”

[11] W. Hoff, “Computer Vision,” 2005. [Online]. Available:

http://inside.mines.edu/~whoff/. [Accessed: 25-May-2018].

 57

[12] “Find Image Rotation and Scale Using Automated Feature Matching.” [Online].

Available: https://www.mathworks.com/examples/image/mw/images-

ex77496944-find-image-rotation-and-scale-using-automated-feature-matching#9.

[Accessed: 18-May-2018].

[13] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 3951 LNCS, pp. 404–417, 2006.

[14] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Riesz Pyramids for

Fast Phase-Based Video Magnification.”

 58

APPENDIX A: MATLAB CODE

Main Execution file:

%Thesis Main Run

%% Intialization (from MIT setPath)

% Adds directories to MATLAB path

% Paths for the linear method

addpath(fullfile(pwd, 'Linear'));

addpath(fullfile(pwd, 'Util'));

addpath(fullfile(pwd, 'matlabPyrTools'));

addpath(fullfile(pwd, 'matlabPyrTools', 'MEX'));

% Paths for the phase-based method

addpath(fullfile(pwd, 'PhaseBased'));

addpath(fullfile(pwd, 'pyrToolsExt'));

addpath(fullfile(pwd, 'Filters'));

clear;

dataDir = './data';

resultsDir = 'ThesisResults/';

mkdir(resultsDir);

defaultPyrType = 'halfOctave'; % Half octave pyramid is default as discussed in

paper

scaleAndClipLargeVideos = true; % With this enabled, approximately 4GB of

memory is used

% Uncomment to use octave bandwidth pyramid: speeds up processing,

% but will produce slightly different results

defaultPyrType = 'octave';

% Uncomment to process full video sequences (uses about 16GB of memory)

% scaleAndClipLargeVideos = false;

%% Stabilization Filter using video stabilization method

%Use this section if the input video is not on a tripod

inFile = fullfile(dataDir, 'Test2shaky.mp4');

stable = stabl_vid(inFile);

%% STABILIZATION USING IMAGE REGISTRATION

inFile = fullfile(dataDir, 'Test2shaky.mp4');

stable = img_reg(inFile);

%% Guitar Test File

inFile = fullfile(dataDir, 'guitar.avi');

 59

samplingRate = 600;

loCutoff = 72;

hiCutoff = 92;

alpha = 25; %how much you magnify by

sigma = 2; %amount of bluring

pyrType = defaultPyrType;

fl = [105,140];%[50,72,93,105,140];

fh = [115,150]; %[70,92,101,115,150];

freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

% phaseAmplify(inFile, alpha, loCutoff, hiCutoff, samplingRate,

resultsDir,'sigma', sigma, 'pyrType', pyrType);

%% Dryer

inFile = fullfile(dataDir, 'still_120fpsTrim.mp4');

samplingRate = 240;

alpha = 120; %how much you magnify by

sigma = 2;

pyrType = defaultPyrType;

fl = [10 24];

fh = [19 28];

freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

%% Washing Machine

inFile = fullfile(dataDir, 'still_120T2Trim.mp4');

samplingRate = 240;

alpha = 100; %how much you magnify by

sigma = 2;

pyrType = defaultPyrType;

fl = [15 26 43];

fh = [17 28 46];

freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

%% Handheld Video without Stabilization

inFile = fullfile(dataDir, 'Test2shaky.mp4');

samplingRate = 240;

alpha = 75; %how much you magnify by

sigma = 2; %amount of blurring

pyrType = defaultPyrType;

fl = [15 26 43];

fh = [17 28 46];

freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

%% Handheld Video after stabilization

%Testing Result

inFile = fullfile(dataDir, 'Test2shaky.mp4_imgreg.avi'); %Put file name of

stabilized video as the inFile

 60

samplingRate = 240;

alpha = 75; %how much you magnify by

sigma = 2; %ammount of blurring

pyrType = defaultPyrType;

fl = [15 26 43];

fh = [17 28 46];

freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

%% Masking Stabilization Results

%Video Stabilization Result

inFile = fullfile(dataDir, 'Test2shaky.mp4_Masked_stable.avi'); %Put file name of

stabilized video as the inFile

samplingRate = 240;

alpha = 75; %how much you magnify by

sigma = 2; %ammount of blurring

pyrType = defaultPyrType;

fl = [15 26 43];

fh = [17 28 46];

freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

% %Image Registration Result

% inFile = fullfile(dataDir, 'Test2shaky.mp4_imgreg_updated.avi'); %Put file

name of stabilized video as the inFile

% samplingRate = 240;

% alpha = 75; %how much you magnify by

% sigma = 2; %ammount of blurring

% pyrType = defaultPyrType;

% fl = [15 26 43];

% fh = [17 28 46];

% freqbandamp(inFile, alpha , fl, fh,samplingRate, resultsDir,'sigma', sigma,

'pyrType', pyrType);

freqbandamp function:

function outName=freqbandamp(vidFile, magPhase , fl, fh,fs, outDir, varargin)

for i = 1:length(fl)

fprintf('PROCESSING FREQUENCY BAND %2d\n',i);

outName = phaseAmplify(vidFile, magPhase , fl(i), fh(i),fs, outDir);

end

fprintf('Operation Complete\n');

end

 61

Video Stabilization Code (no color):

%created from MATLAB website and modified using research...

function out_vid=stabl_vid(vid_file)

%Load and create video file

hVideoSrc = vision.VideoFileReader(vid_file, 'ImageColorSpace', 'Intensity');

out_vid=VideoWriter(sprintf('%s_stable.avi',vid_file),'Uncompressed AVI');

open(out_vid);

% Reset the video source to the beginning of the file.

reset(hVideoSrc);

hVPlayer = vision.VideoPlayer; % Create video viewer

% Process all frames in the video

movMean = step(hVideoSrc);

imgB = movMean;

imgBp = imgB;

correctedMean = imgBp;

ii = 2;

Hcumulative = eye(3);

while ~isDone(hVideoSrc)

 % Read in new frame

 imgA = imgB; % z^-1

 imgAp = imgBp; % z^-1

 imgB = step(hVideoSrc);

 movMean = movMean + imgB;

 % Estimate transform from frame A to frame B, and fit as an s-R-t

 H = cvexEstStabilizationTform(imgA,imgB);

 HsRt = cvexTformToSRT(H);

 Hcumulative = HsRt * Hcumulative;

 imgBp =

imwarp(imgB,affine2d(Hcumulative),'OutputView',imref2d(size(imgB)));

 writeVideo(out_vid,(imgBp));

 % Display as color composite with last corrected frame

 step(hVPlayer, imfuse(imgAp,imgBp,'ColorChannels','red-cyan'));

 correctedMean = correctedMean + imgBp;

 ii = ii+1;

end

correctedMean = correctedMean/(ii-2);

movMean = movMean/(ii-2);

% Here you call the release method on the objects to close any open files

% and release memory.

 62

 close(out_vid)

release(hVideoSrc);

release(hVPlayer);

end

video stabilization code (color version)

%created from MATLAB website and modified using research...

function out_vid=stabl_vid(vid_file)

%Load and create video file

% hVideoSrc = vision.VideoFileReader(vid_file, 'ImageColorSpace', 'Intensity');

v =VideoReader(vid_file);

out_vid=VideoWriter(sprintf('%s_stable_updated.avi',vid_file),'Uncompressed

AVI');

open(out_vid);

% Reset the video source to the beginning of the file.

% reset(hVideoSrc);

%

% hVPlayer = vision.VideoPlayer; % Create video viewer

% Process all frames in the video

movMean = readFrame(v);

imgB = movMean;

imgBp = imgB;

correctedMean = imgBp;

ii = 2;

Hcumulative = eye(3);

 while hasFrame(v) %~isDone(hVideoSrc)

 % Read in new frame

 imgA = imgB; % z^-1

 imgAp = imgBp; % z^-1

 imgB = readFrame(v);

 movMean = movMean + imgB;

 % Estimate transform from frame A to frame B, and fit as an s-R-t

 H = cvexEstStabilizationTform(imgA(:,:,1),imgB(:,:,1));

 HsRt = cvexTformToSRT(H);

 Hcumulative = HsRt * Hcumulative;

 imgBp =

imwarp(imgB,affine2d(Hcumulative),'OutputView',imref2d(size(imgB)));

 writeVideo(out_vid,(imgBp));

 % Display as color composite with last corrected frame

 63

% step(hVPlayer, imfuse(imgAp,imgBp,'ColorChannels','red-cyan'));

 correctedMean = correctedMean + imgBp;

 ii = ii+1;

end

correctedMean = correctedMean/(ii-2);

movMean = movMean/(ii-2);

% Here you call the release method on the objects to close any open files

% and release memory.

 close(out_vid)

end

 64

Video Stabilization with Mask:

%created from MATLAB website and modified using research...

function out_vid=stabl_vid_mask(vid_file)

%Load and create video file

v =VideoReader(vid_file);

out_vid=VideoWriter(sprintf('%s_Masked_stable.avi',vid_file),'Uncompressed

AVI');

open(out_vid);

% Reset the video source to the beginning of the file.

% Process all frames in the video

movMean = readFrame(v);

imgB = movMean;

imgBp = imgB;

correctedMean = imgBp;

ii = 2;

Hcumulative = eye(3);

 while hasFrame(v)

 % Read in new frame

 imgA = imgB; % z^-1

 imgAp = imgBp; % z^-1

 imgB = readFrame(v);

 movMean = movMean + imgB;

 %Mask

 x=zeros(size(imgA(:,:,1)));

 y=x;

 x(1:150, 1:720)=imgA(1:150,1:720,1)/255;

 y(1:150, 1:720)=imgB(1:150,1:720,1)/255;

 % Estimate transform from frame A to frame B, and fit as an s-R-t

 H = cvexEstStabilizationTform(x,y);

 HsRt = cvexTformToSRT(H);

 Hcumulative = HsRt * Hcumulative;

 imgBp =

imwarp(imgB,affine2d(Hcumulative),'OutputView',imref2d(size(imgB)));

 writeVideo(out_vid,(imgBp));

 % Display as color composite with last corrected frame

 correctedMean = correctedMean + imgBp;

 ii = ii+1;

end

correctedMean = correctedMean/(ii-2);

movMean = movMean/(ii-2);

% Here you call the release method on the objects to close any open files

% and release memory.

 close(out_vid)

end

 65

Image Registration Code:

function stable_vid = img_reg(vid_file,setting)

%Load and create video file

v=VideoReader(vid_file);

v.FrameRate

stable_vid=VideoWriter(sprintf('%s_imgreg_updated',vid_file),'Uncompressed

AVI');

open(stable_vid);

%Stablization Method

%Get First Frame

frameA = readFrame(v);

ind_count=1;

[m n r] = size(frameA);

% frame_color = zeros(m,n,3);

while hasFrame(v)

 fprintf('PROCESSING Frame %2d\n',ind_count);

%Get Second Frame

frameB = readFrame(v);

%Get Color layers

if setting == 1

red = imgreg_layer(frameA,frameB,1);

else

 red = imgreg_layer_mask(frameA,frameB,1,[1 155],[1 1000]);

end

% green = imgreg_layer(frameA,frameB,2);

% blue = imgreg_layer(frameA,frameB,3);

% %combine

% frame_color(:,:,1)=red(:,:);

% frame_color(:,:,2)=green(:,:);

% frame_color(:,:,3)=blue(:,:);

writeVideo(stable_vid,red);

% frameA=red;

 ind_count=ind_count+1;

 end

close(stable_vid);

end

 66

imgreg_layer:

function color_layer = imgreg_layer(frameA, frameB,layer)

%Find Matching Features

ptsframeA = detectFASTFeatures(frameA(:,:,layer));

[featuresframeA, validPtsframeA] = extractFeatures(frameA(:,:,layer),

ptsframeA);

ptsframeB = detectFASTFeatures(frameB(:,:,layer));

[featuresframeB, validPtsframeB] = extractFeatures(frameB(:,:,layer),

ptsframeB);

indexPairs = matchFeatures(featuresframeA, featuresframeB);

matchedframeA = validPtsframeA(indexPairs(:,1));

matchedframeB = validPtsframeB(indexPairs(:,2));

%Estimate Transformation

[tform, inlierframeB, inlierframeA] = estimateGeometricTransform(...

 matchedframeB, matchedframeA, 'similarity');

%Solve for Scale and Angle

Tinv = tform.invert.T;

ss = Tinv(2,1);

sc = Tinv(1,1);

scale_recovered = sqrt(ss*ss + sc*sc);

theta_recovered = atan2(ss,sc)*180/pi;

%Recover Image

outputView = imref2d(size(frameA));

color_layer = imwarp(frameB,tform,'OutputView',outputView);

end

 67

imreg_layer_mask:

function color_layer = imgreg_layer_mask(frameA, frameB,layer,rows,col)

%Find Matching Features given mask

ptsframeA = detectFASTFeatures(frameA(rows(1):rows(2),col(1):col(2),layer));

[featuresframeA, validPtsframeA] =

extractFeatures(frameA(rows(1):rows(2),col(1):col(2),layer), ptsframeA);

ptsframeB = detectFASTFeatures(frameB(rows(1):rows(2),col(1):col(2),layer));

[featuresframeB, validPtsframeB] =

extractFeatures(frameB(rows(1):rows(2),col(1):col(2),layer), ptsframeB);

indexPairs = matchFeatures(featuresframeA, featuresframeB);

matchedframeA = validPtsframeA(indexPairs(:,1));

matchedframeB = validPtsframeB(indexPairs(:,2));

%Estimate Transformation

[tform, inlierframeB, inlierframeA] = estimateGeometricTransform(...

 matchedframeB, matchedframeA, 'similarity');

%Solve for Scale and Angle

Tinv = tform.invert.T;

ss = Tinv(2,1);

sc = Tinv(1,1);

scale_recovered = sqrt(ss*ss + sc*sc);

theta_recovered = atan2(ss,sc)*180/pi;

%Recover Image

outputView = imref2d(size(frameA));

color_layer = imwarp(frameB,tform,'OutputView',outputView);

end

 68

APPENDIX B: External Links

Link to result videos:

https://drive.google.com/open?id=1hwQjJJ3dpnXUW7I15u5hTMoQHyFzV58n

Link to the MIT phase-based magnification code:

http://people.csail.mit.edu/nwadhwa/phase-video/

https://drive.google.com/open?id=1hwQjJJ3dpnXUW7I15u5hTMoQHyFzV58n
http://people.csail.mit.edu/nwadhwa/phase-video/

