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ABSTRACT

Software Requirements Classification Using Word Embeddings and Convolutional

Neural Networks

Vivian Fong

Software requirements classification, the practice of categorizing requirements by their

type or purpose, can improve organization and transparency in the requirements

engineering process and thus promote requirement fulfillment and software project

completion. Requirements classification automation is a prominent area of research

as automation can alleviate the tediousness of manual labeling and loosen its necessity

for domain-expertise.

This thesis explores the application of deep learning techniques on software re-

quirements classification, specifically the use of word embeddings for document rep-

resentation when training a convolutional neural network (CNN). As past research

endeavors mainly utilize information retrieval and traditional machine learning tech-

niques, we entertain the potential of deep learning on this particular task. With the

support of learning libraries such as TensorFlow and Scikit-Learn and word embed-

ding models such as word2vec and fastText, we build a Python system that trains

and validates configurations of Näıve Bayes and CNN requirements classifiers. Apply-

ing our system to a suite of experiments on two well-studied requirements datasets,

we recreate or establish the Näıve Bayes baselines and evaluate the impact of CNNs

equipped with word embeddings trained from scratch versus word embeddings pre-

trained on Big Data.
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et al. [29] compared to our CNN word embedding approaches. . . . 78

5.3 Comparison of most effective security requirements classifiers on sin-
gle domain evaluations between Knauss et al. [26], Munaiah et al.
[37], and our CNN word embedding approaches. . . . . . . . . . . . 79

6.1 Summary of NB baseline and CNN performance for binary classifi-
cation problems, trained with 140 epochs and run with 10-fold cross-
validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Summary of NB baseline and CNN F1-scores for NFR-Types multi-
label classification, trained with 140 epochs and run with 10-fold
cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Summary of NB baseline and CNN TP count for NFR-Types multi-
label classification, trained with 140 epochs and run with 10-fold
cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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A.2 Näıve Bayes (with TfidfVectorizer) results for NFR-NF binary
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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Chapter 1

INTRODUCTION

Requirements engineering (RE) describes the process of discovering, documenting,

and maintaining requirements during the software development life cycle [43]. Re-

quirements outline the business needs and use cases that establish the necessity of a

product, as well as overall system performance criteria. Whether it be for a school

assignment or industry development, the modeling and fulfillment of requirements is

crucial to measuring a product’s completion and a team’s success. Design and imple-

mentation decisions should all directly correlate with requirements established within

the project.

Software requirements can be of different types, encapsulating criteria within a

specific area of interest in the software product. For example, requirements can

be classified as functional (explicit features, or functions, of the product) or non-

functional (implicit quality criteria for the product), which can be further drilled

into more specific categories. Furthermore, requirements may serve different pur-

poses, from highlighting security vulnerabilities to measuring scalability necessities

to assessing general look-and-feel [4, 14]. Identifying all requirements of a specific type

(i.e., security-related) allows engineers and other participants of the software develop-

ment cycle to hone in on particular non-functional concerns for the system and assess

project completeness, ultimately promoting awareness of requirements that are often

overlooked. Software specialists can immediately locate which requirements interest

them without needed to peruse through the entire SRS (e.g., the UX designer is likely

interested in look-and-feel requirements). However, the manual task of labeling what

category a requirement falls under is tedious. On top of that, manual requirements

labeling requires domain-expertise, which can be limited and expensive, highlighting
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the need to explore automated methods.

Automated requirements labeling can be defined as a machine learning classifi-

cation problem. Machine learning is a sub-field within artificial intelligence that en-

compasses a type of algorithm that discovers, or learns, patterns from existing data,

detecting trends to help make predictions on new data [36]. Classification is the ma-

chine learning task of identifying which category out of a set of categories an item

belongs to [19]; it requires a set of pre-labeled data to learn from, using that knowledge

to predict the labels for unseen data. Previous automated requirements classification

research primarily investigate traditional learning and vectorization methods such as

Näıve Bayes and TF-IDF.

In this thesis, we aim to study the impact of deep learning, a subdivision within

machine learning, on the classification of software requirements. Deep learning tech-

niques, characterized by multi-layer graphs of data transformation, are booming in

popularity with their breakthroughs in machine translation, image and voice recog-

nition, and other fields within technology. In recent years, deep learning has helped

develop a way to transform text into a medium that computers can consume and

extract semantic information from, making advancements towards replicating the hu-

man ability to process language. At their core, requirements specifications are plain

text documents that can be processed like natural language. They are commonly

very short in length and written in formal language with domain-specific diction. In

addition, requirements specifications contain a relatively small volume of samples.

These characteristics foster an unconventional environment for deep learning as such

methods are often applied on extremely large datasets of feature-rich samples.

We investigate two specific aspects of deep learning: (1) convolutional neurals

networks to train a classifier in performing requirements classification, and (2) word

embeddings to represent our requirements documents. A convolutional neural net-

2



work (CNN) is a deep neural network designed to learn from a grid-like topology in

the input data [19]. Traditionally, CNNs are used to tackle image recognition tasks,

but its efficacy in text classification has been recently proven [23]. Word embeddings

are rich vector representations of words that claim to capture syntactic and semantic

relationships between words, resultant from training neural networks on very large

corpora (“Big Data”) [35, 34]. This leads us to pose our primary research questions:

1. RQ1: Can deep learning models such as CNNs offer competitive performance

on software requirements classification?

2. RQ2: Can leveraging the power of Big Data when vectorizing our documents

with pre-trained word embeddings boost CNN performance on software require-

ments classification?

Our paper to the 25th International IEEE Requirements Engineering Conference

titled “RE Data Challenge: Requirements Identification with Word2Vec and Tensor-

Flow” [17] initiates our research with a replication of prior work baselines in addition

to a pilot assessment of word2vec word embeddings and TensorFlow CNNs on two

binary requirements classification problems. Since that paper, we dive deeper into

the study to assemble the following list of contributions:

1. Recreation or establishment of Näıve Bayes baselines.

2. Feasibility assessment of CNNs on binary and multi-label requirements classifi-

cation.

3. Comparison of three word embedding methods in assisting requirements docu-

ment representation when training CNNs.

4. A set of evaluations of requirements classification using two well-studied datasets.

3



The rest of this document is organized as follows: Chapter 2 dives into the

background in software requirements engineering, machine learning methodology and

tools, as well as the datasets we utilize and some prior work. Chapter 3 details our

system design, and Chapter 4 outlines our experiments and discusses their results.

Chapter 5 briefly discusses the current related work active in the field. Lastly, Chapter

6 summarizes our conclusions and future work.
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Chapter 2

BACKGROUND

2.1 Requirements Specifications

Upon the launch of a product idea, product managers in software teams need to

understand the needs of their potential customers and users, a process called require-

ments elicitation. Depending on the development style adopted by the team, the

requirements elicitation process may take a long time to complete. The artifacts pro-

duced during this process are software requirements specifications (SRS), documents

that list and detail each user or system requirement that needs to be satisfied for the

product to be complete.

Various types of requirements are considered during requirements elicitation. Func-

tional requirements (FR) can define specific behaviors, features, and use cases of the

product. FRs can be broken down into high-level requirements (HLR) and low-level

requirements (LLR). HLRs can be abstract statements defining an overall feature

needed, and LLRs are more detailed descriptions of what the product needs in order

to realize the HLR. Non-functional requirements (NFR), on the other hand, assess

system properties and constraints such as performance, scalability, and security [43].

In short, FRs describe what the system should do and NFRs describe how the sys-

tem should perform it [18]. Table 2.1 showcases some examples of functional and

non-functional requirements.

2.1.1 Requirements Classification

Requirements elicitation, SRS documentation, and maintenance all make up a process

called requirements engineering (RE) [43]. An area of research within requirements

5



Table 2.1: Examples of functional and non-functional requirements from
the NFR dataset.

Requirement Type Requirements Text

Functional “The system will notify affected parties when changes occur affecting classes including

but not limited to class cancellations class section detail changes and changes to class

offerings for a given quarter.”

Performance “Any interface between a user and the automated system shall have a maximum

response time of 5 seconds unless noted by an exception below.”

Scalability “The product shall be capable of handling up to 1000 concurrent requests. This

number will increase to 2000 by Release 2. The concurrency capacity must be able

to handle peak scheduling times such as early morning and late afternoon hours.”

Security “User access should be limited to the permissions granted to their role(s) Each level

in the PCG hierarchy will be assigned a role and users will be assigned to these roles.

Access to functionality within RFS system is dependent on the privileges/permission

assigned to the role.”

engineering is requirements classification.

Requirements classification (or requirements identification) is the task of identi-

fying requirements as belonging to a specific category, thus highlighting their role in

the project. Two examples of classification tasks are (1) distinguishing between func-

tional and non-functional requirements, and (2) determining whether a non-functional

requirement is related to concerns such as security, performance, reliability, etc [14].

NFRs are important because they pinpoint areas that affect the health and well-

being of the system as a whole rather than just a single feature in a module. Fulfilling

them requires not only careful design decisions in the beginning, but also continuous

effort throughout the entire software development process. Unfortunately, as Kur-

tanović et al. concludes [29], NFRs are often identified later in the software process

[12, 29] and are vaguely described and poorly managed [18], causing engineers to ne-

glect their importance [11]. Classifying requirements can help promote transparency

and organization within the SRS and stimulate awareness toward crucial system con-
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cerns that should be as much of a priority to engineers as feature development.

However, manually classifying requirements calls for engineers who have exper-

tise in the respective areas (i.e., proper identification of security requirements calls

for security knowledge). This resource barrier can discourage project managers and

engineers from properly assessing NFRs throughout the development process, leav-

ing neglected or unidentified issues in the back seat and thus amplifying the risk for

defects, performance inadequacies, and technical debt. Automating this task can al-

leviate the need for domain-experts, which in turn can promote the practice within

the software community. In order to automate requirements classification, we must

explore machine learning methodologies.

2.2 Machine Learning

Machine learning is a sub-field within AI that studies the making of predictions on

data by learning from the characteristics of past samples [36]. Machine learning is

a form of applied statistics that utilizes computers to estimate extremely complex

functions [19], making it a powerful mechanism for solving abstract problems that

are too difficult for humans to specify explicit algorithms for [36].

Machine learning algorithms can be divided into two categories: supervised and

unsupervised learning. Supervised learning is the category of learning algorithms

that builds a model by training on data that have been annotated with labels [19].

Having pre-labeled training data provides the model information as to how many

classes exist within the data, allowing the model to focus on analyzing the features

that distinguish these particular classes instead of formulating groups from scratch.

Oftentimes, the requisite for labeled data poses a hurtle as most data in this world are

untagged and manual tagging is often impractical. In contrast, unsupervised learning

algorithms train on unlabeled data [19]. The advantage of unsupervised methods is
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their disregard for explicit labeling. In the process, the model generates predictions

of the possible distinguishing groups within the data.

Machine learning can be utilized to tackle a variety of problem areas, including

regression, classification, and anomaly detection [19]. The work of this thesis focuses

on supervised learning approaches to classification problems.

Classification

Classification is the task of determining which category, or class, out of k categories

an input belongs to [19]. More formally, with an input vector x, a classification

algorithm needs to formulate a function f : IRn → {1, . . . , k} so that y = f(x),

outputting the predicted class y [19].

A classic example of binary classification is the image recognition task of distin-

guishing whether a photo of a fluffy animal is one of a cat or dog. The input can be

represented as a matrix of numerical pixel values x, and the output can be a one-

hot vector y signaling which class the image is predicted to belong to. The example

becomes a multi-label classification problem if we add more animals into the list of

possible animal categories.

Numerous different types of learners can perform the task of classification, also

known as classifiers. In the following subsections, we discuss Näıve Bayes, percep-

trons, and support vector machines. Rather than perform a deep dive into the math-

ematics or algorithms, the purpose of these sections is to provide a brief introduction

to the nature and construction of these classifiers.
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2.2.1 Näıve Bayes

The Bayesian learner, also known as the Näıve Bayes (NB) classifier, is a straightfor-

ward probabilistic approach [36]. Despite its simplicity, Näıve Bayes is very practical

and its performance can sometimes rival more sophisticated methods [36]. Conse-

quently, NB is often a common first choice when tackling text classification tasks.

As this thesis involves textual requirements, we will explain NB in terms of docu-

ment analysis. Given categories C = {c1, . . . , c|C|} and documents D = {d̄1, . . . , d̄|D|},

the probability P that the document d̄j belongs to category ci is computed in Bayes

Theorem [41, 36]:

P (ci | d̄j) =
P (ci)P (d̄j | ci)

P (d̄j)
(2.1)

where document d̄j = 〈w1j, . . . , w|T |j〉 is represented by a vector of weights for each

term in the vocabulary set T from all documents D. The topic of vector representa-

tions is further elaborated in Section 2.4.2.

P (d̄j) is the probability that a random document in the corpus is represented by

vector d̄j, and P (ci) is the probability that a random document in the corpus is of

category ci [36]. Because the number of possible variations for d̄j is too high, com-

puting P (ci | d̄j) can be impossible. To alleviate this bottleneck, an assumption that

“any two coordinates of the document vector are, when viewed as random variables,

statistically independent of each other” is made [41]. This independence assumption

is what characterizes this method as a näıve approach. Equation 2.2 is the formula

for the independence assumption [41, 36]:

P (d̄j | ci) =

|T |∏
k=1

P (wkj | ci) (2.2)
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2.2.2 Perceptrons

A perceptron is a simple linear binary classifier that determines a function that can

bisect linearly separable data into two classes in d-dimensional space [32].

Let X = {x̄1, . . . , x̄n} represent the set of data points where each sample x̄i is

represented by a d-dimensional vector langlea1, . . . , ad〉. With C = {+1,−1} as the

set category labels, let Y = {y1, . . . , yn} where yi ∈ C so that yi is the true class of

the input x̄i. Given a vector of weights w = 〈w1, . . . , wd〉 and threshold value θ, the

perceptron function

f(x̄) = w · x̄ =
d∑
j=1

wj · aj (2.3)

determines the class of input x̄ with the following decision procedure:

class(x̄) =


+1 if f(x̄) > θ

−1 if f(x̄) < θ

(2.4)

The f(x̄) = θ case is always counted as a misclassification [32].

Training a perceptron requires iterative fine-tuning of weight vector w until ei-

ther (1) the function f(x̄) either correctly classifies all x̄ ∈ X, or (2) the error rate

converges and stops decreasing [32]. Essentially, with each iteration of the training

algorithm, the perceptron function tilts and adjusts in the d-dimensional space until

it can successfully separate the two classes. Perceptrons are limited to a single linear

hyperplane, rendering them useless in cases with non-linear or ambiguous separation

boundaries.

2.2.3 Support Vector Machines

A support vector machine (SVM) is essentially an improved perceptron that can clas-

sify non-linearly separable data [32]. A SVM determines the optimal hyperplane that
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Figure 2.1: Example of a support vector machine for the linearly non-
separable case.

divides the two classes of data and maximizes the distance between the hyperplane

and the closest data samples [32, 44, 41]. Adopting the same variable definitions as

Section 2.2.2, the function for the hyperplane is defined as follows [44]:

h(x̄) = w · x̄+ b = (
d∑
j=1

wj · aj) + b = 0 (2.5)

where b is a constant scalar value called the bias which can be treated the same as

the negative of the threshold θ in our discussion of perceptrons [32, 44].

The data points with the shortest distance γ (also referred to as the margin) to

the hyperplane are known as support vectors. The goal of the SVM is to determine

the weight vector w and bias b that maximize γ such that for all i = 1, . . . , n, the

following condition is fulfilled [32]:

yi · (w · x̄i + b) ≥ γ (2.6)

Figure 2.1 illustrates a two-dimensional, linearly non-separable example of a SVM

that separates the squares from the circle samples. For this case, there are samples
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of one class that on the wrong side of the hyperplane. To address this, Equation 2.6

can be revised by introducing slack variables ξi [32]:

yi · (w · x̄i + b) ≥ 1− ξi , ξi > 0 (2.7)

Penalties can be added (with the hinge loss function) to account for data points that

might be on the wrong side of the hyperplane [32]. SVMs can also use kernal tricks

to build non-linear separating curves.

2.3 Deep Learning

Deep learning is a subcategory of machine learning that solves a complex problem by

learning from a hierarchy of smaller, simpler representations, building a deep graph

of concepts with many layers [19].

2.3.1 History

Deep learning has a long train of history dating back to the 1940s, adopting several

aliases and riding waves of different philosophies throughout the decades. Although

the methodology is a current hot topic, deep learning has remained dormant and

unpopular for most of its history [19].

The first wave was introduced with the study of cybernetics in biological learning

and implementations of the perceptron in the 1940s–1960s. The second wave came

between 1980–1995 with the concept of backpropagation and neural network training.

Finally, the third and current wave arrived in 2006, adopting the buzzword deep

learning that we know and love today. Today’s appreciation for deep learning is

thanks to modern day computing infrastructure and growing data availability [19, 31],

allowing researchers and industry to utilize the science with their massive volumes of

data, contributing significant advancements in AI.

12



2.3.2 Neural Networks

The fundamental example of a deep learning model is the deep feedforward neural

network, a concept loosely inspired by the shape and nature of neural connectivity

within the brain. A neural network estimates a mathematical function f ∗ mapping

some input x̄ to some class label y, composed of a web of simpler intermediate func-

tions [19]. The model is also known as the multi-layer perceptron (MLP) as it can

be seen as an “acyclic network of perceptrons”, with the output of some perceptrons

used as the input to others [32]. Each individual perceptron in the network is known

as a neuron, with the fundamental difference being the use of a non-linear activation

function rather than a unit-step decision function. The following subsections describe

the architecture and training of a neural network.

Architecture

In a feedforward neural network, the input x̄ flows through the network of functions

to reach an output ŷ [19].

As shown in Figure 2.2, the initial layer to the network is the input layer, repre-

senting the units of the input vector x̄. The subsequent layers are known as hidden

layers. If the neural network f(x̄) is composed of three chained functions such that

f(x̄) = f3(f2(f1(x))), f1 is the first hidden layer of the network, f2 the second, and

f3 the third. These layers are “hidden” because the output of each function fi are

unknown to the input data. Finally, the last layer of a feedforward network is the

output layer, which represents the class label ŷ concluded by the classifier. The length

of the chain determines the depth of the network (hence “deep” learning).

Each neuron in its layer works in parallel. A neuron receives a vector of inputs

and weights from the previous layer to serve as an input to its activation function,
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Figure 2.2: Example of a neural network with three hidden layers.

a non-linear sigmoid function g (i.e., σ(x), tanh(x), ReLU) that we choose when

designing the model [19]. In other words, the output of a neuron is g(
∑
wixi), the

activation function applied on the sum of the scalar product between the weight and

input vectors from the previous layer, which is then sent over to the next layer as an

input.

In the case of SVMs and neural networks, we need to select a cost function that

represents the error of the model f(w, b) to optimize. Standard cost functions include

sum-squared error and cross-entropy loss [19]. Cross-entropy loss is discussed in

Section 2.6.4.

Gradient Descent

Gradient descent is a useful iterative approximation technique employed to train many

types of machine learning models. It looks for the optimal value for multivariate

functions, computing the gradient of the function and tuning the parameters with

each learning step to approach a local optima [32].
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Let η be the learning rate, or the fraction of the gradient we move w by in each

round. During each iteration, each wj ∈ w gets adjusted by the following formula

[32]:

wj := wj − η∇f(wj) (2.8)

It is evident that the learning rate η can play a large role in how quickly or accurately

gradient descent can perform; the weights might take too long to converge if η is

too small, whereas if η is too large, the optimum can be missed. Optimization algo-

rithms, such as Adam [24], have been developed to provide sophisticated strategies

to optimizing the learning rate and the performance of gradient descent.

Training

The outline below describes the steps to training a neural network [19]:

1. Initialization. Initialize the weights w for each neuron in the hidden and

output layers.

2. Learning Step. Each learning step is performed in two stages:

• Forward Propagation. On each step s, propagate a batch of input points

Xs ⊆ X through the network and compute the cost of the model with the

current weights.

• Back Propagation. Apply gradient descent on the current batch Xs from

the output layer through the hidden layers to adjust the weights of the

neurons.

3. Termination. Terminate once either the cost converges or drops below a cer-

tain threshold.
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Hyperparameters

Hyperparameters are settings for the classifier that need to be determined before

training [13, 19]. In the case of neural networks, the number of hidden layers and the

number of neurons per layer , learning rate, and activation function are examples of

hyperparameters that need to be set prior to training. The selection of hyperparam-

eters can greatly affect the performance of the model, however finding the optimal

combination of settings is proven to be an ongoing challenge in machine learning [13].

2.3.3 Convolutional Neural Networks

The convolutional neural network (CNN) is an evolution of the multi-layer perceptron

that specializes in automatic feature extraction [42] from data that can be processed

in a “grid-like topology” [19]. In other words, CNNs are designed to take advantage of

the locality and order of the input elements when learning, making it compatible with

tasks involving pattern recognition [17, 31]. The following subsection describes the

general architecture of a CNN for image recognition, followed by a deeper discussion

of a CNN model designed for sentence classification.

CNN Architecture

CNNs are composed of a stack of three types of layers: convolutional, pooling, and

fully-connected layers [38, 19]. Figure 2.3 illustrates an example architecture for a

CNN meant to classify handwritten digits from the MNIST dataset [31].

Input Layer. Just like with traditional neural networks, the input layer for a CNN

takes in a vector of input values. In the case of the image processing, the input is a

n× n matrix of pixel values representing the image. The input can also be expanded

in dimensionality to encompass multiple channels of values per unit in the grid (e.g.,
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Figure 2.3: CNN architecture for image classification (adapted from Le-
Cun et al. [31]).

RGB values per pixel).

Convolutional Layer. In the convolutional layer, a filter of size h×h is used to slide

across the input matrix, capturing n− h+ 1 regions of the input called convolutions.

Each convolution acts as a neuron, computing the scalar product between its weights

and regional input, followed by the activation function (namely rectified linear unit,

or ReLU) [38], resulting in a single feature. The features from each convolution are

aggregated into a feature map for each filter.

Pooling Layer. The pooling layer reduces the dimensionality of its input by a pro-

cess called subsampling [38, 19]. An example of subsampling is max-pooling where

the greatest value from the neural outputs from the convolutions from a particular

region is taken and the rest are discarded.

Fully-Connected Layers. The fully-connected layers that follow perform the same

operations as traditional neural networks — calculating scores to derive a prediction

of which class the input belongs to [38, 31]. A softmax layer is often used as the final

layer to a neural network, using the softmax function to normalize the output from
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the final hidden layer into probability values for each output class [45, 23]. Dropout

can also be applied to the softmax layer as a means of regularization — randomly

“turning off” neurons in the network by randomly settings values in the weight vector

to 0 in efforts to prevent overfitting [45]. The concept of overfitting is further discussed

in Section 2.5.2.

Through a combination of convolutional and pooling layers, CNNs transform the

complexity of the original input data, extracting the core patterns that distinguish

one class from another from the training data.

One-Layer CNN for Sentence Classification

Although originally designed for image recognition [28], CNNs have also been proven

to be effective textual contexts as well [15, 23]. We will discuss the one-layer CNN

architecture Kim et al. has designed for sentence classification [23], illustrated in

Figure 2.4.

Embedding Layer. We refer to the input layer in a sentence classification CNN

as the embedding layer, as the input sentence is formulated as a two-dimensional

embedding matrix built by concatenating together d-dimensional word vector repre-

sentations for each of the n tokens in the sentence [23, 45]. Figure 2.4 showcases

an example where the input sentence "This was a terrible disappointment!" is

transformed into an embedding matrix with 5-dimensional word embeddings. Word

embeddings are further discuss in Section 2.4.2.

Convolutional and Pooling Layers. The convolutional layer for a sentence classi-

fication CNN uses filters of size h × d to build n − h + 1 convolutions of the input,

representing n-grams of size h within the sentence [23, 45]. An n-gram is a continuous

sequence of n tokens in a sample of text. These n-grams are analogous to the regions
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Figure 2.4: CNN architecture for sentence classification (adapted from
Zhang et al. [45]).

of pixels in an image, hoping to capture location-based features within the input.

Following the convolutional layer is a pooling layer where subsampling is per-

formed to record the best outcome from each filter’s feature map. Max-pooling is often

employed to capture the most important feature from each feature map [23, 45]. The

selected outputs from each feature map are then concatenated into a single feature

vector, which is then funneled into the remaining layers of the network.

Although we allude in the earlier discussion of image classification CNNs that

the architecture can support a series of convolutional and pooling layers, Kim et al.

designed their sentence classification CNN with a single convolutional and pooling

layer [23]. The single convolutional layer can support a number of different filter

sizes, thus capturing various forms of n-grams. Figure 2.4 illustrates an example with

two filter sizes 3 × 5 and 4 × 5 (h1 = 3, h2 = 4), representing 3-grams and 4-grams.

The example features two filters of each size (m = 2), resulting in m · (n−h1 + 1) = 8
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convolutions of size 3 × 5 and m · (n − h2 + 1) = 6 convolutions of size 4 × 5. The

results from each convolution aggregate into a feature map of shape (n− h + 1)× 1

for each filter.

Fully-Connected Layers. The remainder of the network is identical to the image

processing CNN; the network needs to convert the feature vector from the pool-

ing layer into class prediction scores (i.e., softmax layer with optional regularization

methods).

2.4 Natural Language Processing

Natural language processing (NLP) studies the interpretation and generation of nat-

ural language by computers [21].

2.4.1 Text Preprocessing

Text preprocessing, a pipeline of cleaning operations to transform the raw, free-form

text into a “well-defined sequence of linguistically meaningful units” [21], is an es-

sential step for any NLP task. Real-world natural language documents (or corpora)

are often littered with typos, noise, as well as complex sentence patterns and diction

variation. Although NLP is relevant to all languages, the following subsections ex-

plore standard preprocessing techniques told in the perspective of processing English

text.

Text Segmentation

The first step in the preprocessing pipeline is often text segmentation, the process

of converting a corpus into sentence or word components. Word segmentation (or

tokenization) is often the most granular operation, splitting the text into individual
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word units known as tokens [21, 33]. This involves defining the boundaries for a word,

separating tokens by whitespace and punctuation as well as splitting contractions.

Text Normalization

Text normalization describes the standardization of linguistic variation. This ranges

from simple heuristics such as case normalization and stemming, to more complex

lexical analysis like lemmatization [21, 33].

Stemming refers to the heuristic process of chopping off the end of a word in hopes

to remove derivational affixes [33]. Lemmatization refers to the process of normalizing

morphological variants of the words in a corpus [21, 33]. For example, in a lemma

dictionary, the set of verbs

B = {"see", "saw", "seeing", "seen"}

all map to the same verb "see" [33]. This implies that all encounters of verbs in set

B can be converted to their lemma "see".

Stop Word Removal

Stop words are very common words that provide little to no value in the processing

of a corpus (e.g., "a", "the", "to") [33]. Sometimes the removal of stop words can

reduce noise in a document and improve NLP performance.

2.4.2 Vector Representations

In order to extract features from documents to carry out classification, the text needs

to be converted to some form of vector representation that provides quantitative

characteristics of the text.

21



Frequency

The most basic representation is word count vectors, where each document in the

corpus is represented by a vector of the total vocabulary size marking frequencies for

each word in the document.

TF-IDF

A vector representation is term frequency–inverse document frequency (TF-IDF) [40,

41], often used in information retrieval and data mining [33]. A TF-IDF vector is

formed by calculating the TF-IDF weight for each term t in document d by multiplying

its term frequency tft,d and inverse document frequency idft:

tft,d = ft,d (2.9)

idft = log
N

dft
(2.10)

tfidft,d = tft,d · idft (2.11)

where tft,d measures the frequency of term t in document d, and idft measures the im-

portance of t relative to its document frequency df and the total number of documents

N [40, 41].

Word2vec

Google introduced word2vec [8] in 2013, a toolkit of model architectures to train to

produce word vector representations that can retain linguistic contexts that are lost

in previous vectorization methods. Supported by Google’s ever-growing supply of

online corpora, Mikolov et al. designed a collection of shallow neural networks to

learn “high-quality distributed vector representations that capture a large number of

precise syntactic and semantic word relationships” [35, 34]. These word vector repre-

sentations, now coined as word embeddings, can feature several hundred dimensions.
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Figure 2.5: Skip-gram model (adapted from Mikolov et al. [34]).

Skip-gram Model. Mikolov et al. designed the Skip-gram model in attempt to train

a shallow neural network to predict neighboring words to a word in a corpus [34].

Although the outputs from this model were unsuccessful at answering their research

question, they noticed interesting attributes to the penultimate layer in the network.

The penultimate layer in the Skip-gram model contained vectors later dubbed as word

embeddings, yielding word representations in a multidimensional space.

Use Cases. The key piece of novelty to word2vec is its ability to encapsulate not

just syntactic similarity, but also semantic relationships between words with the use

of standard vector arithmetic. For example,

vector("king")− vector("man") + vector("queen") ≈ vector("woman") (2.12)

On the same wavelength, word2vec can discern that "France" is to "Paris" as

"Germany" is to "Berlin" and other similar relationships [34]. These examples show-

case how the advancements of word2vec propels NLP research several steps toward

the ultimate goal of supplying computers the ability to decode natural language like

humans can.
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While word2vec provides the tools to build your own word embeddings from a text

corpus, Google has also released a pre-trained word2vec model trained on the 100 bil-

lion word Google News corpus, producing 3 million 300-dimensional word embeddings

[8].

FastText

Open-sourced by Facebook AI Research (FAIR) lab in 2016, fastText [1] is a library

that employs state-of-the-art NLP and machine learning concepts. FastText presents

two major contributions: (1) a text classifier that drastically improves computational

efficiency from neural network models [22], and (2) an advancement to the word2vec

Skip-gram model in training word embeddings [10].

As fastText was released recently and caught our attention toward the tail-end of

our research, we were only able to incorporate the embeddings into our experiments.

Subword Model. The Skip-gram model represents each word with one distinct vec-

tor representation, ignoring the internal structure of words [10]. This is a limitation

that is exceptionally relevant to morphologically rich languages, such as Turkish and

Finnish. In response, Bojanowski and Grave et al. propose the Subword model where

every word is represented by bag of character n-grams (i.e., 3 ≤ n ≤ 6) of the word

plus the word itself [10]. The vector representation for a word is then calculated as the

sum of all the vector representations for its n-grams. The Subword model extension

to Skip-gram has proven to build more accurate vector representations for complex,

technical, and infrequent words.

FAIR lab has published 294 pre-trained fastText models trained on different

language versions of Wikipedia [1]. The English version contains 1 million 300-

dimensional word embeddings.
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2.5 Model Validation

In order to fairly assess the performance of a model on a dataset, the classifier needs

to be trained and evaluated on different partitions of the dataset. The portion used

for training is known as the training set, whereas the remainder of the dataset used

for testing is known as the test set or validation set [19]. A common training-test set

ratio is 80% for training and 20% for test.

2.5.1 Cross-Validation

Statistical uncertainty can arise for small validation sets, as a single validation set

might not properly represent the dataset as a whole. A technique to counteract this

dilemma is k-fold cross-validation: repeating the training and testing procedure on k

randomly selected, non-overlapping partitions of the dataset and taking the average

score from all k folds [27, 19]. A common choice for k is 10, resulting in ten validation

trials. This strategy ensures that the classifier gets a chance to train and test on

different portions of the dataset, reducing the influence of unique characteristics that

might not be representative of the entire dataset.

Stratification. An accessory on top of cross-validation is stratification, a process

where each fold is engineered to contain approximately the same ratio of classes as

the whole dataset, ensuring a decent representation of the original dataset in every

fold [27].

2.5.2 Overfitting

A major challenge in training machine learning models is overfitting, a condition

where the model is learning too many features specific to the training data, missing
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big-picture trends [19]. We train machine learning models to ultimately use their

predictive power on new, unseen data in the future, so an overfitted model is deemed

rather useless as it cannot recognize the same patterns in a different dataset.

2.6 Performance Metrics

Machine learning tasks often employ a suite of metrics to gauge the performance of

classifiers. The subsections below define the measures we consider throughout our

work.

2.6.1 Confusion Matrix

A confusion matrix is often used for binary classification tasks, showcasing how well

the items in a validation set are classified and providing more details on the perfor-

mance of the classifier. Table 2.2 displays the different labels a class prediction can

take, given the status between the true value and the predicted value.

Table 2.2: Confusion matrix legend.

True Value

Positive Negative

Predicted Positive TP FP

Value Negative FN TN

True positives (TP) are positively-labeled samples that are correctly predicted

as positive. False positives (FP) are negatively-labeled samples that are incorrectly

predicted as positive. True negatives (TN) are negatively-labeled samples that are

correctly predicted as negative. False negatives (FN) are positively-labeled samples

that are incorrectly predicted as negative.
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2.6.2 Accuracy

Accuracy is the percentage of correctly classified samples overall. If N is the size of

the validation set, then

accuracy =
TP + TN

N
(2.13)

Accuracy is a primitive measure as it does not tell us exactly how well a model is

at classifying a specific class. For example, if the validation set has three positive

samples and seven negative samples, and the classifier predicts all ten samples to be

negative, then it achieves a seemingly decent accuracy of 70%. However, upon closer

inspection, the model classified everything as negative and failed to gather features

distinguishing the two classes, making it a weak classifier.

2.6.3 Recall, Precision, and Fβ-score

To counteract the inadequacies of the accuracy measure, machine learning studies

often supplement their metrics with recall, precision, and their harmonic mean. The

following definitions describe the metrics in terms of classifying the positive class.

Recall is the percentage of positively-labeled samples that are successfully pre-

dicted:

recall =
TP

TP + FN
(2.14)

Precision is the percentage of positively predicted samples that are actually labeled

positive:

precision =
TP

TP + FP
(2.15)

Fβ-score is the weighted harmonic mean of recall and precision, where β measures

the relative importance of the two:

Fβ = (1 + β2) · recall · precision
β2 · recall + precision

(2.16)
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When β = 1, the measure does not weigh preference to either recall or precision,

meaning F1-score is best when recall = precision = 1 and worst when recall =

precision = 0.

2.6.4 Cross-Entropy Loss

Cross-entropy loss, or just loss, is the negative log-likelihood between the training

data and the model distribution. More formally, cross-entropy loss L measures how

close the probability distribution between the true distribution p and the predicted

distribution q [19]:

L(p, q) = −
∑
x

p(x) · log q(x) (2.17)

Cross-entropy loss is a common cost function used to assess the performance of neural

networks.

2.7 Tools

To assist in our research endeavors, we fortunately have access to well-developed open-

source tools for document processing, embedding management, classifier construction,

and model training.

2.7.1 Natural Language Processing Toolkit

Natural Language Processing Toolkit (NLTK) [3] is exactly what its name implies

— a Python toolkit for NLP tasks. NLTK provides access to over 50 corpora and

lexical resources as well as libraries for text processing operations such as tokenization,

stemming, and lemmatization [3].
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2.7.2 Scikit-Learn

Scikit-Learn [5] is a well-established machine learning package available for Python

programs. The library includes a rich suite of machine learning implementations,

allowing us to employ their versions of traditional classifiers such as Näıve Bayes.

Scikit-Learn also supplies a plethora of utility functions for data preprocessing, model

validation, and metric computations.

2.7.3 Gensim

Gensim [2] is a Python framework for vector space modeling. Gensim provides APIs

for using word2vec and fastText, making it convenient for us to utilize a common

platform to load both types of word embedding models and incorporate them into

our system.

2.7.4 TensorFlow

TensorFlow [7] is “an open-source software library for numerical computation using

data flow graphs”, released by Google in 2015 in efforts to promote research in deep

learning. Although not limited to neural networks, TensorFlow programs utilize mul-

tidimensional array data structures called tensors which serve as edges in a graph,

connecting the nodes within a network. In other words, tensors hold the data that

flow in and out of neurons, passing through layers in a neural network. This thesis

work was conducted using TensorFlow 1.3.

GPU Offloading. TensorFlow is a computationally heavy framework that supports

both CPU and GPU device types. As GPUs are built to handle mathematical oper-

ations much more efficiently than CPUs, offloading a TensorFlow program onto the

GPU can drastically reducing training time; anecdotally, the time it took to run our
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experiments reduced by nearly 20-fold. Despite the small size of our datasets, the

GPU offloading made running numerous experiments with 10-fold cross-validation

much less painful.

2.8 Datasets

The two datasets we research were provided to us by the 25th IEEE International

Requirements Engineering Conference (RE ’17) call for data track papers1. Our work

addresses the data track challenge area of requirements identification.

2.8.1 Security Requirements (SecReq)

Security is a category of non-functional requirement that embodies product, business,

and customer safety — focusing on values such as ensuring system impenetrability,

protecting business assets, and preserving user privacy. Despite the high stakes,

designing and building secure systems is challenging due to the scarcity of software

security expertise [25]. The acknowledgment of such challenges consequently launched

the research and development for tactics to help non-security experts in identifying

system areas that can introduce security vulnerabilities.

Table 2.3: SecReq dataset, broken down by SRS [25].

SRS # Requirements # Security-Related % Security-Related

ePurse 124 83 66.9%

CPN 210 41 19.5%

GPS 173 63 36.4%

Combined 507 187 36.9%

1http://re2017.org/pages/submission/data papers/ (accessed January 2018)
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Table 2.4: Examples of security-related and not security-related require-
ments from SecReq.

SRS Requirements Text Security-Related?

ePurse
“All load transactions are on-line transactions. Authorization of funds for load trans-

actions must require a form of cardholder verification. The load device must support

on-line encrypted PIN or off-line PIN verification”

Yes

“A single currency cannot occupy more than one slot. The CEP card must not

permit a slot to be assigned a currency if another slot in the CEP card has already

been assigned to that currency.”

No

CPN
“On indication received at the CNG of a resource allocation expiry the CNG shall

delete all residual data associated with the invocation of the resource.”

Yes

“It shall be possible to configure the CNG (e.g. firmware downloading) according to

the subscribed services. This operation may be performed when the CNG is connected

to the network for the first time, for each new service subscription/modification, or

for any technical management (e.g. security, patches, etc.).”

No

GPS
“The back-end systems (multiple back-end systems may exist for a single card), which

communicate with the cards, perform the verifications, and manage the off-card key

databases, also shall be trusted.”

Yes

“If an Application implicitly selectable on specific logical channel(s) of specific card

I/O interface(s) is deleted, the Issuer Security Domain becomes the implicitly se-

lectable Application on that logical channel(s) of that card I/O interface(s).”

No

Knauss et al. assembled the SecReq dataset in efforts to promote research in se-

curity requirements elicitation automation and enhance security awareness [25]. The

SecReq dataset is composed of three industrial SRS documents: Common Electronic

Purse (ePurse), Customer Premises Network (CPN), and Global Platform Specifica-

tion (GPS) [25]. Each document is broken down into individual requirements, labeled

as either security-related or not security-related. The composition of the SecReq

dataset allows for a straightforward binary classification task. Table 2.3 outlines the

SRS breakdown and Table 2.4 provides requirements examples from each document.
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2.8.2 Quality Attributes (NFR)

Table 2.5: NFR dataset, broken down by project and requirements type
[14].

Project ID

Requirement Type Label 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Availability A 1 1 1 0 2 1 0 5 1 1 1 1 1 1 1 18

Legal L 0 0 0 3 3 0 1 3 0 0 0 0 0 0 0 10

Look-and-Feel LF 1 2 0 1 3 2 0 6 0 7 2 2 4 3 2 35

Maintainability MN 0 0 0 0 0 3 0 2 1 0 1 3 2 2 2 16

Operational O 0 0 6 6 10 15 3 9 2 0 0 2 2 3 3 61

Performance PE 2 3 1 2 4 1 2 17 4 4 1 5 0 1 1 48

Scalability SC 0 1 3 0 3 4 0 4 0 0 0 1 2 0 0 18

Security SE 1 3 6 6 7 5 2 15 0 1 3 3 2 2 2 58

Usability US 3 5 4 4 5 13 0 10 0 2 2 3 6 4 1 62

Total NFRs 8 15 21 21 37 44 8 71 8 15 10 20 19 16 12 326

Functional F 20 11 47 25 36 26 15 20 16 38 22 13 3 51 15 358

Total 28 26 68 47 73 70 23 91 24 53 32 33 22 67 127 684

The Quality Attributes (NFR) dataset [4], also known as the PROMISE corpus, is

a compilation of requirements specifications for 15 software projects developed by

MS students at DePaul University as a term project for a Requirements Engineering

course [14]. The dataset consists of 326 non-functional requirements (NFRs) of nine

types and 358 functional requirements (FRs). Table 2.5 tabulates the distribution of

requirement types among the 15 projects, and Table 2.6 provides examples of each

type of requirement.

The NFR dataset lends itself to three different types of classification tasks: (1)

binary classification of NF versus F requirements, and (2) binary classification of a NF

requirement type, and (3) multi-label classification of various NF requirement types.
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Table 2.6: Examples of requirements of different types from NFR.

Label Requirements Text

A “The RFS system should be available 24/7 especially during the budgeting period.

The RFS system shall be available 90% of the time all year and 98% during the

budgeting period. 2% of the time the system will become available within 1 hour of

the time that the situation is reported.”

L “The System shall meet all applicable accounting standards. The final version of the

System must successfully pass independent audit performed by a certified auditor.”

LF “The website shall be attractive to all audiences. The website shall appear to be fun

and the colors should be bright and vibrant.”

MN “Application updates shall occur between 3AM and 6 AM CST on Wednesday morn-

ing during the middle of the NFL season.”

O “The product must work with most database management systems (DBMS) on the

market whether the DBMS is colocated with the product on the same machine or is

located on a different machine on the computer network.”

PE “The search for the preferred repair facility shall take no longer than 8 seconds. The

preferred repair facility is returned within 8 seconds.”

SC “The system shall be expected to manage the nursing program curriculum and class/

clinical scheduling for a minimum of 5 years.”

SE “The product shall ensure that it can only be accessed by authorized users. The

product will be able to distinguish between authorized and unauthorized users in all

access attempts.”

US “If projected the data must be readable. On a 10x10 projection screen 90% of viewers

must be able to read Event / Activity data from a viewing distance of 30.”

F “System shall automatically update the main page of the website every Friday and

show the 4 latest movies that have been added to the website.”
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2.9 Prior Work

2.9.1 Classifying Security Requirements

Näıve Bayes Approach

Knauss et al. made a first attempt at classifying security requirements within the

SecReq dataset with the Näıve Bayes approach [26]. They conducted two sets of

experiments using 10-fold cross-validation for each combination of training and test

sets:

1. Single Domain. Train a classifier with one individual SRS and test on another

individual SRS.

2. Multi Domain. Train a classifier with a combination of SRS documents and

test on an individual SRS.

The experiments are designed to gauge the effectiveness of training a classifier to

use in classifying security requirements in different domains, consequently assessing

whether overfitting can be avoided.

The results are aggregated in Table 2.7. Knauss et al. deemed a classifier to be

useful if it achieves at least 70% recall and 60% precision [26]. Unsurprisingly, all

experiments with classifiers trained and tested within the same domain(s) pass the

test, whereas almost all the experiments with classifiers tested on an foreign domain

do not.
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Table 2.7: SecReq Näıve Bayes classification experiments by Knauss et al.
[26].

Experiment Training Set Test Set Recall Precision F1-score

Single Domain

ePurse

ePurse 0.93 0.83 0.88

CPN 0.54 0.23 0.33

GPS 0.85 0.43 0.57

CPN

ePurse 0.33 0.99 0.47

CPN 0.95 0.98 0.96

GPS 0.19 0.29 0.23

GPS

ePurse 0.48 0.72 0.58

CPN 0.65 0.29 0.40

GPS 0.92 0.81 0.86

Multi Domain

ePurse + CPN

ePurse 0.95 0.80 0.87

CPN 0.85 1.00 0.92

GPS 0.56 0.51 0.53

ePurse + CPN 0.93 0.81 0.87

ePurse + GPS

ePurse 0.98 0.78 0.87

CPN 0.85 0.26 0.40

GPS 0.85 0.80 0.82

ePurse + GPS 0.96 0.80 0.87

CPN + GPS

ePurse 0.31 0.84 0.46

CPN 0.75 0.88 0.81

GPS 0.88 0.81 0.84

CPN + GPS 0.87 0.82 0.85

ePurse + CPN + GPS

ePurse 0.95 0.80 0.87

CPN 0.85 0.94 0.89

GPS 0.88 0.78 0.83

ePurse + CPN + GPS 0.91 0.79 0.84

2.9.2 Classifying Quality Attributes

Keyword Mining Approach

Cleland-Huang et al. first conducted a small experiment to evaluate how effective a

simple keyword mining approach can be when classifying non-functional requirements

[14]. The team mined security and performance catalogs to extract sets of keywords

associated with security and performance. Requirements containing words from the

security keyword set were predicted as security NFRs, and those containing words
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from the performance keyword set were predicted as performance NFRs. Require-

ments containing words from both were likewise classified as both, and requirements

containing none were classified as neither.

The security classifier scored 79.8% for recall and 56.7% for precision, whereas

the performance classifier scored 60.9% for recall and 39.6% for precision. The poor

precision is due to the fact that many of these keywords were shared by other types

of NFRs. The researchers did not replicate this experiment with any other NFR

types due to the difficulty in finding catalogs related to the quality attribute to mine

keywords from.

Weighted Indicator Approach

Cleland-Huang et al. next proposed a weighted indicator approach based on informa-

tion retrieval to detect and classify NFRs [14]. The classifier is built on an explicit

supervised learning-like model with pre-labeled training sets and a manual feature

extraction process.

The method is detailed as follows: The requirements are first preprocessed with

stop word removal and stemming. Using a pre-labeled training set, indicator terms

for each NFR type are then mined and assigned probabilistic weights. Afterward,

using the indicator terms, a requirement can be classified as a certain NFR type if its

computed probability score beats a chosen threshold.

The researchers ran 15 iterations of the leave-one-out cross-validation technique,

partitioning 14 out of the 15 projects to use as the training set and reserving the last

project for validation. Table 2.8 showcases the results from selecting the 15 terms

with the highest weights as indicator terms and choosing a threshold value of 0.04.
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Table 2.8: Results from using top-15 terms at classification with threshold
value of 0.04, by Cleland-Huang et al. [14].

NF Type Label Recall Precision

Availability A 0.8889 0.1111

Legal L 0.7000 0.1628

Look and Feel LF 0.5143 0.1169

Maintainability MN 0.8824 0.1087

Operational O 0.7213 0.1137

Performance PE 0.6250 0.2727

Scalability SC 0.7222 0.1111

Security SE 0.8070 0.1840

Usability US 0.9839 0.1442

Average 0.7669 0.1416

Semi-supervised Learning Approach

Fully-supervised learning requires a large amount of pre-labeled samples for train-

ing, meaning analysts need to manually review the requirements and make decisions

as to which category the requirement belongs to. In hopes to alleviate such a time

consuming prerequisite, Casamayor et al. [11] proposed a semi-supervised learning

approach to NFR classification. The approach requires a reduced amount of pre-

labeled data by incorporating unlabeled data into the learning process through a

semi-supervised algorithm called Expectation Maximization (EM), which they built

with Bayesian classifiers. They employed the one-vs.-all strategy for multi-label clas-

sification, where a binary classifier is trained for each class and during validation,

requirements are classified as the class from the binary classifier that produces the

highest score.

The requirements documents first undergo normalization, stop word removal, and

stemming before being transformed into TF-IDF vectors. Experiments were run using

stratified 10-fold cross-validation.
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(a) Recall (b) Precision

Figure 2.6: Recall and precision results from one-vs.-all multi-label
classification of NFR types from Casomayor et al. [11].

.

Casomayor et al. demonstrate that their semi-supervised approach beats the

performance of supervised methods like Näıve Bayes, k-nearest neighbors, and TF-

IDF. Figure 2.6 showcases the recall and precision scores for one-vs.-all multi-label

classification of NFR types over a range of volumes of pre-labeled data.
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Chapter 3

DESIGN AND IMPLEMENTATION

To restate our research questions at hand, our goal for this thesis is to evaluate the

effect of two deep learning methodologies applied directly to the domain of software

requirements documents and the task of requirements classification. Specifically, we

aim to investigate the following:

1. RQ1: The feasibility of deep learning models, namely CNNs, on requirements

document analysis.

2. RQ2: The efficacy of pre-trained word embeddings in requirements document

vectorization.

The unique properties of software requirements documents pose a number of con-

cerns when considering deep learning techniques as the nature of the data does not

align with the conditions conventionally well-suited for deep learning applications.

Specifically, the following attributes of our data pique our interest:

1. Software requirements documents tend to be short in length, resulting in feature-

poor data samples. Deep learning analyses typically require feature-rich data,

so in the case of text, translates to much lengthier documents.

2. Software requirements datasets tend to be shallow in volume, in the order of

hundreds of samples. Deep learning is typically employed to analyze massive

volumes of data, in the order of millions or billions.

We want to evaluate whether the usage of feature-rich word representations pro-

vided through word embeddings can enrich the features of these documents and make
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Figure 3.1: System design activity diagram.
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up for their sparseness. Especially since requirements documents are often character-

ized by formal writing and domain-specific jargon, the words that make up the re-

quirement text must be key in identifying characteristics of individual requirements.

Since word embeddings are claimed to preserve semantic relationships between words

that are otherwise lost in traditional vectorization methods such as TF-IDF [34, 35],

we want to investigate whether these advantages can counteract the feature-poor

quality of requirements samples.

In order to study these inquiries, we needed to design an instrument that can

orchestrate the data preparation, classifier training, and performance evaluation nec-

essary to assess the impact of the technologies mentioned above against our concerns

with the nature of our domain. We built such a system with the help of machine

learning tools such as TensorFlow, Scikit-Learn, Gensim, and NLTK. Figure 3.1 show-

cases an activity diagram that breaks down the operation flow within our system.

The system features one flow to train a Näıve Bayes classifier using Scikit-Learn’s

MultinomialNB1 implementation, as well as a flow to train a one-layer text classifica-

tion CNN modeled after the sentence classification CNN design proposed by Kim et

al. [23] and illustrated in Figure 2.4. The following sections walk through the steps

of the activity diagram, further discussing each operation in detail.

3.1 Run Configurations

Our system accepts a set of command line configurations (or parameters) for each

experiment run, categorized and detailed in Table 3.1. The program configurations

are parsed in Block 1 of the activity diagram in Figure 3.1.

1sklearn.naive bayes.MultinomialNB
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Table 3.1: Run configuration options.

Category Configuration Type Description

Dataset

Training Set str Dataset for training.

Test Set str Dataset for testing.

Label(s) set(str) Label(s) to classify.

Validation

Cross-Validation bool Whether to run k-fold cross-validation.

# of Folds (k) int If k-fold cross-validation is set, specify k (e.g., 10).

Test Percentage float If k-fold cross-validation is not set, specify % of dataset reserved for test (e.g., 0.25).

Preprocessing

Stratification bool Whether to stratify the training and test sets.

Stop Word Removal bool Whether to remove stop words from the corpora.

Lemmatization bool Whether to lemmatize the corpora.

Classifier

CNN bool Whether to train a CNN classifier.

Embeddings str Word embedding initialization ("random", "w2v", or "fasttext").

Filter Sizes set(int) Set of filter sizes (e.g., {1, 2, 3}).

# of Filters int Number of filters per filter size (e.g., 128).

# of Epochs int Number of epochs to train for (e.g., 140).

NB bool Whether to train a NB classifier.

Vectorizer str Vectorization method ("count" or "tfidf").

Program Seed int Seed to control randomization (e.g., 42).

3.2 Data Loading and Preprocessing

Next in the pipeline, the data is loaded and preprocessed (according to the program

configurations) and converted into a uniform data format for our classifiers to accept.

This occurs in Block 2 of the activity diagram in Figure 3.1.

3.2.1 Raw Data Formats

As the SecReq and NFR datasets come in different formats, we discuss processing

both dataset separately.

SecReq

The SecReq dataset is comprised of three different SRS documents in the form of

three similarly formatted semicolon-delimited CSV files: ePurse-selective.csv,
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The CNG shall support mechanisms to authenticate itself to the NGN for

connectivity purposes.;sec

(a) Security-related

The CND should be able to support bootstrap capabilities in order to

retrieve network configuration data to connect the NGN.;nonsec

(b) Not security-related

Figure 3.2: Examples of SecReq raw data format.

CPN.csv, and GPS.csv. Each data point in the collection features two attributes:

the requirements text and the requirements class label (sec or nonsec). Figure

3.2a showcases an example of a security-related requirement, whereas Figure 3.2b

showcases an example of a non-security-related requirement.

NFR

The NFR dataset comes in an ARFF file (typically used to load Weka2 programs)

nfr.arff, which conveniently is also a comma-separated document that, by stripping

some extraneous metadata, we can convert to a standard CSV. Each data point in

the file features three attributes: the project ID, the requirements text (wrapped in

single quotes), and the requirements class label (documented in Table 2.5). Figure

3.3 showcases an example of a performance (PE) requirement from Project 4.

4,‘The Disputes application shall support 350 concurrent users without any

degradation of performance in the application.’,PE

Figure 3.3: Example of NFR raw data format.

2https://weka.wikispaces.com/
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3.2.2 Classifier Input Format

Our classifiers expect the data to be in the form of a list of requirements text strings

(x text) and an accompanying list of one-hot vectors representing the associated

requirements class (y). More specifically, we convert the class label for each data

sample into a one-hot vector with each index representing a class, with the value of

1 indicating the active class. For example, for the two classes for SecReq, the vector

[0, 1] represents the positive class sec and [1, 0] represents the negative class

nonsec.

The CSV file is first parsed into a DataFrame3 for Python convenience, with each

row in the DataFrame representing a single requirements sample. Each requirements

sample undergoes the following preprocessing procedures:

1. Clean the requirements text string by first tokenizing it into words and then

stripping it of punctuation and contractions.

2. If stop word removal or lemmatization is enabled, then each token is processed

with the respective operation.

3. For each requirements sample, the cleaned tokens are stitched back together

into a space-separated string and appended to the list x text.

4. The corresponding class label is converted into a one-hot vector and appended

to the list y.

After processing all requirements samples in the dataset, x text and y are primed

and ready for the rest of the system.

3pandas.DataFrame
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3.2.3 Training and Test Set Division

After preprocessing, the dataset needs to be split into training and test sets according

to the program configurations. This occurs in Block 3 of the activity diagram in Figure

3.1.

If we are training and testing on the same dataset, then a percentage p of the

dataset is reserved for testing and the remainder for training. Otherwise, if we are

training and testing on different datasets, then p% of the first dataset is pulled for

testing and (100− p)% percent of the second dataset is used for training.

If k-fold cross-validation is set, then we employ Scikit-Learn’s KFold4 (or if strat-

ification is set, StratifiedKFold5) to evenly divide our samples into k training and

test folds. Otherwise, we shuffle the samples and use the test percentage p specified

in the program configuration.

3.2.4 Pre-trained Embedding Model Loading

If a pre-trained word embedding model is selected, then the model needs to be loaded

into the system from the external model file. This occurs in Block 4 of the activity

diagram in Figure 3.1.

The two available pre-trained embedding models we consider are the Google News

word2vec model (later referred to as news) and the Wikipedia fastText model (later

referred to as wiki), introduced in Section 2.4.2. We use Gensim’s KeyedVectors6 im-

plementation to load either model into a common lookup table format. Section 3.3.1

further elaborates on how the pre-trained embedding model is utilized in document

vectorization.

4sklearn.model selection.KFold
5sklearn.model selection.StratifiedKFold
6gensim.models.KeyedVectors
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3.3 Classifier Training

Once all the necessary data is prepared, the next step is to run the experiment by

building, training, and testing either a CNN or Näıve Bayes classifier. This occurs in

Blocks 5-9 of the activity diagram in Figure 3.1, where the flows diverge at Block 7

depending on the classifier selected.

3.3.1 CNN

We designed a custom class WordEmbeddingCNN using the TensorFlow GPU frame-

work, closely modeling the sentence classification CNN architecture proposed by Kim

et al. [23] and described in Section 2.3.3. The CNN classifier is built in Block 7A of

the activity diagram in Figure 3.1. Figure 3.4 illustrates the structure of our CNN.

Figure 3.4: Illustration of WordEmbeddingCNN layer initialization.
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Hyperparameters

Our WordEmbeddingCNN requires a set of hyperparameters to configure the CNN.

Table 3.2 lists the parameters necessary to initialize the CNN.

Table 3.2: WordEmbeddingCNN hyperparameters.

Hyperparameter Variable Description

Sequence Length n Size of each input vector.

Number of Classes |y| # of available class labels.

Embedding Size d Size of the word embedding vectors.

Filter Sizes H Set of available filter sizes.

Number of Filters m # of filters per filter size.

Architecture

The architecture for our WordEmbeddingCNN closely resembles the one-layer sentence

classification CNN structure introduced by Kim et al. [23], with the distinction that

we use entire requirements as input rather than solely a single sentence.

Embedding Layer. The embedding layer is where the input tensor is transformed

into an embedding matrix, meaning the raw input text is converted to a stack of their

respective embeddings. This occurs in Block 1 of Figure 3.4.

In order to streamline the embedding matrix construction for this corpus, our first

prerequisite is to create a lean vocabulary-to-embedding lookup table by matching

the corpus vocabulary with its corresponding embedding from the raw embedding

lookup. The product of this inner join can be referred to as the corpus embedding

lookup. We serialize the corpus embedding lookup to a file for future runs with this

corpus and embedding model combination. If a pre-trained model is not provided
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(i.e., the random embedding configuration was selected), the values for the input

embedding matrix are initialized from a uniform distribution.

To actually build the embedding matrix that will represent the input text, we

(1) iterate through each token in the text, (2) search for its d-dimensional word

embedding from the corpus embedding lookup, and (3) stack them together to create

a N × d matrix, where N is the length of the longest requirement in the dataset.

Words not present in the corpus embedding lookup are initialized as zero vectors

of size d. Furthermore, for documents that contain fewer than N tokens, we pad

the remainder of the embedding matrix with zero vectors. Table 3.3 illustrates an

example embedding matrix where the embeddings are of size d = 5, the input text is

of length n = 7, and the length of the longest document is N = 10. The term "CEP"

is not recognized in the corpus embedding lookup, and thus is represented as a zero

vector.

Table 3.3: Embedding matrix example (d = 5, n = 7, N = 10).

the 2.2435e−02 −1.2019e−02 3.6679e−02 −3.1872e−02 9.8377e−03

CEP 0 0 0 0 0

card −7.4428e−02 −7.1579e−02 −1.3532e−01 3.4365e−02 −4.9633e−03

must −1.4689e−03 −4.7007e−02 −5.4129e−02 −4.2301e−02 −7.2291e−02

authenticate −1.5580e−02 3.1999e−02 3.4009e−02 6.7306e−02 2.1990e−02

the 2.2435e−02 −1.2019e−02 3.6679e−02 −3.1872e−02 9.8377e−03

terminal −7.9057e−02 −1.1039e−01 −2.0125e−02 1.4814e−01 7.6921e−02

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Convolutional and Pooling Layers. Following the preparation in the embedding

layer is a collection of convolutional and pooling layers acting in parallel, initialized in

Block 2 of the activity diagram in Figure 3.4. Recall that a convolution represents an

n-gram in the text sample and results in one feature. The CNN design by Kim et al.
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calls for a single convolutional layer supporting multiple filter sizes, but TensorFlow

requires each convolutional layer to support just one filter size. We can emulate the

one-layer design by initializing a convolutional and max-pooling layer for each filter

size h and keeping the layers parallel. Each convolutional layer is max-pooled and

the output from all pooling is concatenated into a final feature vector to funnel to

the dropout layer. Revisit Figure 2.4 for an illustration of how convolutions are built

and pooled.

Dropout Layer. Specifically to our design, we follow the convolutional and pooling

layers with a dropout layer, as shown in Block 3 of the activity diagram in Figure

3.4. We use the TensorFlow dropout API to facilitate the dropout of neurons given

a dropout probability p. For our experiments, we kept p = 0.5 but other values can

be explored in the future.

Output Layer. The output layer, initialized in Block 4 of the activity diagram in

Figure 3.4, is where a softmax regularization function is applied to convert the output

values from the dropout layer to normalized scores for class prediction.

Training

After building an instance of our WordEmbeddingCNN, we proceed to define the training

and testing procedures for the given classification task.

Optimization Strategy. We need to declare an optimizer to optimize the perfor-

mance of gradient descent, as explained in Section 2.3.2. In our design, we chose to

employ TensorFlow’s AdamOptimizer7 implementation to help minimize the cross-

entropy loss for each round of training.

7tensorflow.train.AdamOptimizer
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Batch Iteration. The input points are divided into batches of a pre-configured size.

As explained in Section 2.3.2, for each learning step s, a batch of inputs is propagated

through the network, revising the weights of each neuron through forward and back

propagation. In our design, we arbitrarily chose a batch size of 64 samples.

3.3.2 Näıve Bayes

For the Näıve Bayes classifier, we employ Scikit-Learn’s MultinomialNB implemen-

tation. The NB classifier is built in Block 7B of the activity diagram in Figure 3.1.

Feature Extraction

The features that we supply our MultinomialNB classifier is a vectorized version of our

input text. Rather than word embeddings, we solely use the count and TF-IDF vec-

torization methods discussed in Section 2.4.2 using Scikit-Learn’s CountVectorizer8

and TfidfVectorizer9 implementations.

Training

Training the NB classifier is straightforward compared to the CNN. We simply fit the

training data to the classifier using MultinomialNB’s built-in functions.

3.3.3 Testing and Result Compilation

For each fold (or the entire run if k-fold cross-validation is not set), the trained

classifier is tested against its designated test set. The performance metrics discussed

in Section 2.6 are compiled for each test (Block 10) and averaged at the end of the

entire run (Block 11).

8sklearn.feature extraction.text.CountVectorizer
9sklearn.feature extraction.text.TfidfVectorizer
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3.4 Exportation

After the final metrics are compiled into a Pandas DataFrame, the results are exported

to a CSV file for records (Block 12).

Formatting Scripts

As each individual run is exported to a single CSV file, comparing the metrics from

various runs can be cumbersome with the sheer volume of result files. We composed

various Python scripts to help aggregate the loose data into more cohesive collections

of results.
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Chapter 4

EXPERIMENTS AND RESULTS

Recall that our research questions for this thesis are to assess the feasibility of CNNs

applied to the domain of software requirements (RQ1), and measure the influence of

pre-trained word embeddings in vectorizing our software requirements classification

(RQ2). In order to accomplish this, we define various classification problems from

our two datasets. For each classification problem, we train three types of classifiers:

1. Näıve Bayes, to serve as a baseline.

2. CNN with random word embeddings, to assess the feasibility of employing CNNs

on this task (RQ1).

3. CNN with pre-trained word embeddings, to assess the influence of pre-trained

word embeddings on requirements vectorization (RQ2).

The SecReq and NFR datasets lend themselves to very straightforward classifi-

cation tasks. Table 4.1 outlines the primary classification problems we consider. We

include NFR-SE as a primary classification problem because of our interest in security

requirements from SecReq.

Table 4.1: SecReq and NFR primary classification problems.

Name Dataset Classification Type Description

SecReq-SE SecReq Binary Security-related (SE) vs. not security-related

NFR-NF NFR Binary Non-functional (NF) vs. functional (F)

NFR-Types NFR Multi A vs. L vs. LF vs. MN vs. O vs. PE vs. SE vs. SC vs. US

NFR-SE NFR Binary Security-related (SE) vs. not security-related NFRs
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Using the system described in Chapter 3, we designed a suite of experiments

targeting our research questions, incorporating the primary classification problems

defined in Table 4.1. For each run of our system, we (1) seed the random state

to control randomness, allowing for reproducibility, and (2) stratify the k-folds in

cross-validation to promote fair representation of the dataset in each fold.

The following list provides an overview of the experiments conducted:

1. Experiment 1: Näıve Bayes Baselines. Reproduce or establish Näıve Bayes

baselines for the primary classification problems (refer to Table 4.1).

2. Experiment 2: Optimal CNN Models for Binary Classification. Determine the

optimal CNN model for each word embedding configuration for the binary clas-

sification problems.

3. Experiment 3: Optimal CNN Models for Multi-label Classification. Determine

the optimal CNN model for each word embedding configuration for the NFR

type multi-label classification problem. Compare the performance of a single

multi-label classifier versus the performance of individual binary classifiers for

each NFR type.

4. Experiment 4: Epoch Convergence. Using the optimal CNN models determined

from Experiment 2, evaluate where the CNN performance converges from the

number of training epochs.

5. Experiment 5: Cross-Dataset Security Requirements Classification. Evaluate

the potential of overfitting and the quality of the models by assessing the per-

formance of security classifiers trained on one dataset and validated on another.

Initial explorations of Experiments 1-2 on the SecReq-SE and NFR-NF problems are

reported in our paper published to the RE ’17 conference [17]. The discoveries from

our RE paper helped shape the design of the experiments explored in this thesis.
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4.1 Experiment 1: Näıve Bayes Baselines

In Experiment 1, we attempt to either establish (or reproduce, in the case of SecReq-

SE) a baseline to refer to in our later experiments that involve deep learning. We

choose Näıve Bayes as it is a straightforward text classification method often em-

ployed for baseline metrics. As explained in our system design, we utilize Scikit-

Learn’s MultinomialNB as well as their CountVectorizer and TfidfVectorizer

feature extractors. We run our Näıve Bayes classifiers with 10-fold cross-validation.

The following subsections showcase the results from using CountVectorizer, as

the results from word frequency produce superior results to TF-IDF. Refer to Ap-

pendix A for the TF-IDF results.

4.1.1 SecReq-SE

For SecReq-SE, we attempt to train a security requirements classifier to reproduce the

Näıve Bayes results from Knauss et al. [26]. As discussed in Section 2.8.1, Knauss et

al. built their own Näıve Bayes classifier using word presence as features and trained

it on the SecReq dataset [26].

Table 4.2: Näıve Bayes results for SecReq-SE binary classification.

Method Recall Precision F1-score

MultinomialNB + CountVectorizer 0.888 0.791 0.834

Knauss et al. [26] 0.91 0.78 0.84

Table 4.2 compares our results with the original metrics from Knauss et al. Our

metrics run fairly close with minor difference likely attributed to the disparity in

classifier implementation and feature extraction (Knauss et al. used word presence

whereas we use word frequency).
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4.1.2 NFR-NF

For NFR-NF, we establish a baseline for identifying non-functional requirements versus

functional requirements. Training a binary NF vs. F Näıve Bayes classifier on the NFR

corpus produces strong baseline performance with a 92.1% F1-score for identifying NF

requirements. The metrics for each class label are broken down in Table 4.3.

Table 4.3: Näıve Bayes (with CountVectorizer) results for NFR-NF binary
classification.

Requirement Type Recall Precision F1-score

NF 0.926 0.915 0.921

F 0.874 0.895 0.884

Average 0.900 0.905 0.903

4.1.3 NFR-Types

For NFR-Types, we want to establish baseline metrics for distinguishing all nine NF

types in the dataset. To mimick previous studies in classifying NFR types [14], we first

remove all functional (F) requirements from the dataset, leaving 326 non-functional

requirements. Because this task involves the classification of multiple labels, we

evaluate two approaches: (1) training a single multi-label classifier, and (2) training

multiple binary classifiers, one for each label. The metrics for both classification tasks

are broken down in Table 4.4.

Training classifiers against the NF types on the NFR corpus produces more variable

metrics, with some labels performing much better than others. This is mainly due to

the sheer difference in volume between the class label samples, visualized in Table 2.5.

For example, our classifier fails to identify a single legal (L) requirement, likely because

legal samples make up only 3% of the dataset. Likewise, classes with substantial

presence in the dataset such as operational (O), performance (PE), security (SE), and
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Table 4.4: Näıve Bayes (with CountVectorizer) results for NFR-Types
multi-label classification and individual NFR label binary classification.

Classification Type Metric A L LF MN O PE SC SE US Average Total

Multi

Rec. 0.250 0.0 0.525 0.0 0.805 0.780 0.300 0.862 0.893 0.491 -

Prec. 0.367 0.0 0.867 0.0 0.603 0.778 0.500 0.825 0.587 0.503 -

F1 0.297 0.0 0.654 0.0 0.690 0.779 0.375 0.843 0.708 0.497 -

TP 4.5 0.0 18.4 0.0 49.1 37.4 5.4 50.0 55.4 - 220.2

Binary

Rec. 0.150 0.0 0.317 0.100 0.288 0.663 0.200 0.638 0.574 0.326 -

Prec. 0.300 0.0 0.800 0.100 0.700 0.922 0.300 0.958 0.885 0.552 -

F1 0.200 0.0 0.454 0.100 0.408 0.771 0.240 0.766 0.696 0.410 -

TP 2.7 0.0 11.1 1.6 17.6 31.8 3.6 37.0 35.6 - 141.0

usability (US) produce more promising results.

One-vs.-All. With the second approach of training a binary classifier for each NF

type, ideally we would set up a one-vs.-all classification experience, where we train

a binary classifier for each individual label, and during classification, assign the label

to a sample from the binary classifier that earned the highest score. Unfortunately,

as addressed in our future work, our system design does not yet support this in-

frastructure, leaving us unable to facilitate a proper comparison between multi-label

classifiers and one-vs.-all classification.

4.1.4 NFR-SE

The performance for NFR-SE is included in Table 4.4 under SE binary classification.

The Näıve Bayes classifier achieves a recall of 63.8% and very high precision of 95.8%.

4.2 Experiment 2: Optimal CNN Models for Binary Classification

Experiment 2 is an extension to the work from our RE Data Challenge paper [17]

and is the core of this thesis. In our RE paper, we conducted an initial investigation

of word2vec and CNN configurations on SecReq-SE and NFR-NF, comparing perfor-
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mances of CNNs of two different filter counts (30 and 50) trained over a range of

epochs (20 to 100), both with and without the incorporation of pre-trained word2vec

word embeddings [17]. The results imply that these classifiers do grant a lift in

performance in comparison to Näıve Bayes.

We can refer to our work from the RE paper as our pilot experiment — a trial

assessing whether we should allocate more time and resources to research the potential

of these methods. In the pilot experiment, we set the filter sizes of our CNN to be

{3, 4, 5} (as suggested by Kim et al. [23]) without full comprehension of what filter

sizes represent in respect to our corpus. Now that we understand that a filter of size

n harbors n-grams of our text, we deduce that 4 and 5-grams are much too large for

short documents like software requirements. Realizing this, we design Experiment 2

as an exhaustive search for the optimal CNN model for each word embedding method

(random, word2vec, fastText) over a range of filter sizes (subsets of {1, 2, 3}) and

number of filters per size (16, 32, 64, 128, 256).

We train each CNN for 140 epochs and validate through 10-fold cross-validation.

In the pilot experiment, we have the number of epochs as an independent variable;

for this experiment, we select a number seemingly high enough to reach performance

convergence but not too high as to add unnecessary training time. Our selection for

number of epochs is later validated in Experiment 4, discussed in Section 4.4.

We run this experiment on all the three primary binary classification problems

and report the highest scoring CNN model for each word embedding type, resulting in

three CNN models for each classification problem. We also compare the performance

of the three optimal CNN models with the other word embedding initializations.
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Scoring Function

In order to determine the optimal CNN model, we need to devise a scoring function

S to measure how good a CNN model is. We consider the following criteria for the

scoring function:

• F1-score (f), to measure the recall and precision of the model applied on a given

dataset.

• Loss (`), to measure how firm the model is with its predictions.

• Filter Sizes (H) and # of Filters (m), to assess the complexity of the shape of

the model.

The scoring function, shown in Equation 4.1, favors higher F1-scores, lower loss

scores, lower CNN complexity.

S(f, `,H,m) =
1

2
·
( f

maxf1...fT
+

min`1...`T
`

)
+ C(H,m) (4.1)

Let T be the total number of configurations considered. The final score S is equal to

the average between the rank of F1-score f and loss ` relative to the highest F1-score

and lowest loss among the collection of configurations, plus a penalty C.

C(H,m) = −0.01 ·
(
|H| · m

maxM

)
(4.2)

We define the penalty C in Equation 4.2 as the negative product between |H|,

the number of filter sizes (e.g., if H = {1, 2, 3}, then |H| = 3), and m, the number

of filters per size normalized by the maximum filter count considered. The product

is reduced by two decimal places to fit the range of S.

58



4.2.1 SecReq-SE

Table 4.5 reports an optimal CNN model for each word embedding type and its

performance on SecReq-SE. Table 4.6 showcases the loss and F1-scores of each optimal

CNN model identified in Table 4.5 applied to the other word embedding initializations.

Table 4.5: SecReq-SE: Optimal CNN model results, trained with 140
epochs.

Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score S

random {1, 2} 16 0.273 0.894 0.815 0.880 0.846 0.755

word2vec {1, 2} 128 0.163 0.928 0.877 0.919 0.897 0.971

fastText {1, 2, 3} 32 0.161 0.936 0.915 0.907 0.911 0.993

Table 4.6: SecReq-SE: Loss and F1-score from optimal CNN models applied
to each word embedding type.

Filter Sizes × # of Filters
random word2vec fastText

Loss F1 Loss F1 Loss F1

{1, 2} × 16 0.273 0.846 0.180 0.896 0.190 0.884

{1, 2} × 128 0.348 0.856 0.163 0.897 0.168 0.898

{1, 2, 3} × 32 0.316 0.853 0.184 0.897 0.161 0.911

Recall from Table 4.2 in Experiment 1 the Näıve Bayes baseline metrics for

SecReq-SE: 88.8% recall and 79.1% precision from our implementation and 91% re-

call and 78% precision from Knauss et al. With the plain CNN without pre-trained

word embeddings, we already achieve a significant 9-10% boost in precision but with

the expense of recall. With the incorporation of pre-trained word embeddings to

our CNNs, we can achieve an even greater boost of about 12-14% precision from the

baseline while preserving recall. Both models with word2vec and fastText perform

comparably, but fastText achieves the closest recall to the baseline.
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4.2.2 NFR-NF

Table 4.7 reports an optimal CNN model for each word embedding type and its

performance on NFR-NF. Table 4.8 showcases the loss and F1-scores of each optimal

CNN model identified in Table 4.7 applied to the other word embedding initializations.

Table 4.7: NFR-NF: Optimal CNN model results, trained with 140 epochs.

Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score S

random {1, 2, 3} 32 0.287 0.923 0.959 0.918 0.938 0.862

word2vec {1, 2} 64 0.212 0.923 0.943 0.929 0.936 0.990

fastText {2, 3} 32 0.223 0.932 0.962 0.929 0.945 0.974

Table 4.8: NFR-NF: Loss and F1-score from optimal CNN models applied
to each word embedding type.

Filter Sizes × # of Filters
random word2vec fastText

Loss F1 Loss F1 Loss F1

{1, 2, 3} × 32 0.287 0.938 0.219 0.942 0.229 0.945

{1, 2} × 64 0.308 0.928 0.212 0.936 0.226 0.942

{2, 3} × 32 0.318 0.932 0.222 0.939 0.223 0.945

Recall from Table 4.3 in Experiment 1 that Näıve Bayes for NFR-NF yields a

baseline of 92.6% recall and 91.5% precision. Both CNN models equipped with pre-

trained embeddings safely beat the baseline performance by a few percentage points,

with fastText leading recall improvement by 3.6% and precision by 1.4%, an overall

lift of 2.4% in F1-score. The optimal CNN model without pre-trained embedding

support produces comparable results to the baseline.

4.2.3 NFR-SE

Table 4.9 reports an optimal CNN model for each word embedding type and its

performance on NFR-SE. Table 4.10 showcases the loss and F1-scores of each optimal
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CNN model identified in Table 4.9 applied to the other word embedding initializations.

Table 4.9: NFR-SE: Optimal CNN model results, trained with 140 epochs.

Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score S

random {1} 128 0.319 0.918 0.593 0.957 0.732 0.632

word2vec {1, 2} 32 0.148 0.940 0.743 0.929 0.826 0.930

fastText {1} 64 0.134 0.951 0.774 0.953 0.854 0.991

Table 4.10: NFR-SE: Loss and F1-score from optimal CNN models applied
to each word embedding type.

Filter Sizes × # of Filters
random word2vec fastText

Loss F1 Loss F1 Loss F1

{1} × 128 0.319 0.732 0.161 0.851 0.139 0.847

{1, 2} × 32 0.370 0.685 0.148 0.826 0.153 0.838

{1} × 64 0.302 0.697 0.156 0.850 0.134 0.854

Recall from Table 4.4 in Experiment 1 that Näıve Bayes for NFR-SE yields a

baseline of 63.8% recall and 95.8% precision. With such a high baseline, none of

the CNN configurations beat the baseline precision. The fastText-powered CNN

configuration offers the highest recall, providing a boost of 13.6%, while performing

at baseline precision. Curiously, random performs at baseline precision but does not

meet baseline recall, whereas word2vec beats baseline recall but fails to reach baseline

precision.

4.2.4 Discussion

For Experiment 2, we compose a scoring function and run an exhaustive search to

find the optimal CNN model for each word embedding method for each classification

task. Our general conclusions mirror those from our pilot experiment — CNNs can

potentially provide a lift in performance metrics within the SecReq and NFR datasets,
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especially when employing pre-trained word embedding models to our training.

In this experiment, we deviate from the pilot by (1) keeping the number of training

epochs for constant, and (2) running all the combinations of {1, 2, 3} filter sizes. In

addition, we introduce a new pre-trained word embedding model: fastText trained

on the Wikipedia corpus. Judging based on our results for each classification problem,

it can be observed that both word2vec and fastText pre-trained word embedding

models generally offer an improvement in performance, with fastText in the lead.

4.3 Experiment 3: Optimal CNN Models for Multi-label Classification

Experiment 3 is a direct continuation of Experiment 2, carrying on its motivations

and procedures but applied to a different classification task. While we group all the

binary problems together in Experiment 2, we devote Experiment 3 to the multi-

label problem, namely the classification of NF types. As discussed in Section 4.1.3,

we do not yet have the support for one-vs.-all classification, so we cannot provide a

proper comparison between the performance of a single multi-label classifier versus

one-vs.-all classification.

In this section we orchestrate an exhaustive search for the optimal CNN configu-

rations for each word embedding initialization for the multi-label CNN classifier for

NFR-Types. We employ the same scoring function introduced in Experiment 2, with

the adjustment of f being the average F1-score between all the labels. Afterward,

we train CNNs for every class label with each of the optimal models. Although the

results from the multi-label classifier and the individual binary classifiers cannot be

compared at face value, we can still make some observations about the nature of the

problem at hand.
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4.3.1 NFR-Types: Multi-label

Table 4.11 organizes the results for the optimal CNN model for each word embedding

initialization for multi-label classification of NFR types.

Table 4.11: NFR-Types: Optimal multi-label CNN model results, trained
with 140 epochs.

Embedding Filter # Filters
Loss Acc. Metric A L LF MN O PE SC SE US Avg. Total S

Type Sizes per Size

random {1} 256 0.909 0.731

Rec. 0.700 0.550 0.725 0.200 0.750 0.813 0.533 0.848 0.798 0.657 -

0.751
Prec. 0.683 0.600 0.777 0.200 0.707 0.762 0.600 0.843 0.732 0.656 -

F1 0.692 0.573 0.750 0.200 0.728 0.787 0.565 0.845 0.764 0.655 -

TP 12.3 6.0 27.2 3.2 43.1 36.6 10.8 48.9 45.4 - 233.4

word2vec {1, 2} 256 0.611 0.804

Rec. 0.750 0.700 0.733 0.550 0.883 0.797 0.567 0.893 0.876 0.750 -

0.977
Prec. 0.867 0.800 0.813 0.517 0.745 0.849 0.850 0.855 0.854 0.794 -

F1 0.804 0.747 0.771 0.533 0.808 0.822 0.680 0.873 0.865 0.767 -

TP 15.6 8.0 28.5 8.3 45.4 40.7 15.3 49.6 52.9 - 264.3

fastText {1, 2, 3} 256 0.632 0.792

Rec. 0.750 0.700 0.817 0.400 0.819 0.797 0.550 0.907 0.845 0.732 -

0.947
Prec. 0.800 0.767 0.855 0.500 0.780 0.823 0.700 0.817 0.789 0.759 -

F1 0.832 0.674 0.847 0.450 0.800 0.803 0.663 0.888 0.859 0.757 -

TP 15.6 7.0 29.8 7.2 45.2 39.7 14.4 49.7 53.3 - 262.0

Recall in Experiment 1, we establish a Näıve Bayes baseline for the multi-label

classifier shown in Table 4.4. The results from Table 4.11 collectively produce a

generous boost in overall performance, from a 15.8% F1-score and 13.2 TP increase

with the random configuration to a 25-27% F1-score and 41.8-44.1 TP increase with

fastText and word2vec. As for each individual class label, the multi-label CNNs

generally offer a modest improvement to the metrics for the well-represented classes

(i.e., O, PE, SE, US).

However, the impact of CNNs and word embeddings can best be observed through

the change in metrics for classifying under-represented class labels in the data (i.e.,

A, L, MN). While the multi-label Näıve Bayes classifier produces a F1-score of 29.7%

and 4.5 TP with classifying A requirements, the multi-label CNNs provide a 39.5-

53.5% raise in F1-score and 7.8-11.1 additional TP , from 66% with random to 78%

with word2vec. In addition, while the multi-label Näıve Bayes classifier could not

identify a single L and MN requirement, the multi-label CNNs identify as many as 8

true positives for either label.
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4.3.2 NFR-Types: Binary CNNs

Table 4.12 organizes the results from configuring binary CNNs for classifying each

NFR type with the optimal models discovered above in Section 4.3.1.

Table 4.12: NFR-Types: Individual binary CNN results, trained with 140
epochs.

Embedding Filter # Filters
Metric A L LF MN O PE SC SE US Avg. Total

Type Sizes per Size

random {1} 256

Rec. 0.350 0.300 0.450 0.0 0.364 0.640 0.350 0.619 0.531 0.401 -

Prec. 0.600 0.400 0.767 0.0 0.806 0.925 0.600 0.913 0.947 0.662 -

F1 0.442 0.343 0.567 0.0 0.502 0.757 0.442 0.738 0.680 0.499 -

TP 6.3 3.0 15.8 0.0 22.2 30.7 6.3 35.9 32.9 - 153.1

word2vec {1, 2} 256

Rec. 0.450 0.450 0.550 0.050 0.579 0.720 0.300 0.776 0.621 0.500 -

Prec. 0.800 0.500 0.917 0.100 0.946 0.918 0.350 0.945 0.933 0.712 -

F1 0.576 0.474 0.688 0.067 0.718 0.807 0.323 0.852 0.746 0.587 -

TP 8.1 4.5 19.3 0.8 35.3 34.6 5.4 45.0 38.5 - 191.5

fastText {1, 2, 3} 256

Rec. 0.400 0.550 0.500 0.0 0.564 0.700 0.350 0.719 0.593 0.486 -

Prec. 0.700 0.600 1.0 0.0 0.958 0.933 0.567 0.983 0.930 0.741 -

F1 0.509 0.574 0.667 0.0 0.710 0.800 0.433 0.831 0.724 0.587 -

TP 7.2 5.5 17.5 0.0 34.4 33.6 6.3 41.7 36.8 - 183.0

We can compare the metrics in Table 4.12 with the Näıve Bayes equivalent found in

Table 4.4 in Experiment 1. Similarly to the multi-label CNN, the binary CNN models

seem to generally provide a modest improvement for the individual classification of

each class label in comparison to the Näıve Bayes baselines. The average F1-score for

each NFR type binary CNN for each word embedding initialization provide a lift of

8.9-17.7% from the Näıve Bayes average.

4.3.3 Discussion

In Experiment 3, we run an exhaustive search for the optimal CNN models for multi-

label NFR type classification. We then compare the performance of these CNN

models with the Näıve Bayes metrics discussed in Section 4.1.3. In addition, we

train individual binary CNNs for each NFR type and compare their performance

with the Näıve Bayes equivalents.
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Overall, the multi-label CNNs not only provide a general improvement to all

baseline metrics, they also appear to work very well in improving the identification

of under-represented class labels in an unbalanced multi-label classification problem.

On the other hand, the binary CNNs for individual NFR types also seem to pro-

vide a slight general improvement across the board, but no outstanding trends were

observed.

4.4 Experiment 4: Epoch Convergence

We need to validate that the choice to train on 140 epochs does not jeopardize perfor-

mance. Recall that we arbitrarily chose 140 epochs through primitive diagnostics —

choosing a number high enough to safely past the point of performance convergence

but low enough to not excessively inflate the run time for each experiment.

We run this experiment on a subset of the primary classification problems to

observe the performance trends applied to our two datasets. For SecReq-SE and

NFR-NF, we run the optimal CNN models for each embedding initialization, from 20

epochs to 300 epochs with an interval of 20, to graph the effect of training epochs on

F1-score and cross-entropy loss.

Figure 4.1 illustrates the F1-score and cross-entropy loss for each embedding ini-

tialization over the domain of epochs for SecReq-SE. Likewise, Figure 4.2 serves the

equivalent for NFR-NF.

4.4.1 SecReq-SE

The performance trends for SecReq-SE over 20 to 300 epochs, shown in Figure 4.1a

and 4.1b, illustrate a very clear convergence of F1-score and cross-entropy loss for

the pre-trained word embedding (word2vec and fastText) trend lines. Figure 4.1a
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(a) # of Epochs vs. F1-score

(b) # of Epochs vs. Loss

Figure 4.1: # of Epochs vs. Performance for SecReq-SE optimal CNN.
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(a) # of Epochs vs. ∆Loss

(b) # of Epochs vs. Loss

Figure 4.2: # of Epochs vs. Performance for NFR-NF optimal CNN.
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shows that F1-scores for word2vec and fastText converge after 100 epochs, whereas

random stays relatively level throughout. The word2vec and fastText trend lines

both start off lower than random, but they both improve at nearly the same pace and

supersede random after 60 epochs.

Similar observations can be observed for cross-entropy loss. Figure 4.1b shows that

loss for word2vec and fastText, as expected, follow similar trend lines in contrast

to random; the pre-trained embedding lines converge somewhere between 100 to 160

epochs.

An interesting observation is that for both metrics, the random trend lines in

Figures 4.1a and 4.1b result in straight line rather than a curve, remaining relatively

level throughout the entire domain. The pre-trained word embedding models, on the

other hand, show a clear improvement in F1-score and loss within 100 epochs.

4.4.2 NFR-NF

The performance for NFR-NF generally follow similar trends as SecReq-SE. Figure 4.2a

illustrates the influence of training epochs on F1-score, with word2vec and fastText

once again following the same curve. The random trend line starts off aligned with

the pre-trained word embedding models, but after 80 epochs, it starts to dip and fall

far beneath the other two — a tell-tale sign of overfitting.

Figure 4.2b showcases interesting observations on the trend of cross-entropy loss.

Similarly to SecReq-SE, the random trend line also appears linear. However, here

it features a strong positive slope, supporting the observations of its declining F1-

score past 80 epochs. The pre-trained word embedding models once again follow the

same trend; although fastText starts off slightly worse than word2vec, they produce

nearly identical loss values past 80 epochs.
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4.4.3 Discussion

Experiment 4 was designed to validate the selection of 140 epochs for training CNNs

in Experiment 2 and beyond. In retrospect, not only should this experiment have

been conducted for all classification problems defined in Table 4.1, it also should have

been done before Experiment 2.

We want to train for a number of epochs high enough where performance is sta-

bilized, but not too high as to avoid adding extraneous training time to each run.

In addition, we want to avoid blatant overfitting, as observed with random in Figure

4.2b. Thus, we conclude that 140 epochs is a decent selection as the metrics from the

two classification problems both converged at around 100 epochs.

4.5 Experiment 5: Cross-Dataset Security Requirements Classification

In an attempt to assess the quality of our classification models, we devise three

cross-dataset security requirements classification problems utilizing SecReq-SE and

NFR-SE:

1. Train on SecReq-SE and validate on NFR-SE, to gauge the quality of a security

requirements classifier built from SecReq.

2. Train on NFR-SE and validate on SecReq-SE, to gauge the quality of a security

requirements classifier built from NFR-SE.

3. Hybrid dataset combining SecReq-SE and NFR-SE, to gauge the performance of

a security requirements classifier built from two different datasets.

10-fold cross-validation is applied to all three problems. For Problems 1 and

2 where the training and test sets come from different datasets, we perform cross-

validation by training on 90% of the training set and validating on 10% of the test

69



set. To supplement those metrics, we train another classifier on the entire training set

and validate on the entire test set. The following subsections detail the cross-dataset

experiments conducted.

4.5.1 Train on SecReq-SE, Validate on NFR-SE

Our first assessment is to gauge how effective a security requirements classifier is

when trained on SecReq and validated on a different dataset, in this case NFR-SE.

Tables 4.13 and 4.14 tabulate the performance metrics for Näıve Bayes and our series

of CNN classifiers (built with the optimal models for SecReq-SE, discussed in Section

4.2.1), run with and without 10-fold cross-validation.

Table 4.13: Results from NB and CNN classifiers trained on SecReq-SE,
validated on NFR-SE using 10-fold cross-validation.

Classifier Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score

NB - - - - 0.759 0.450 0.365 0.403

CNN

random {1, 2} 16 0.646 0.776 0.191 0.277 0.226

word2vec {1, 2} 128 0.482 0.779 0.410 0.401 0.405

fastText {1, 2, 3} 32 0.517 0.749 0.421 0.351 0.383

Table 4.14: Results from NB and CNN classifiers trained on SecReq-SE,
validated on NFR-SE, without cross-validation.

Classifier Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score

NB - - - - 0.740 0.409 0.325 0.362

CNN

random {1, 2} 16 0.575 0.787 0.258 0.370 0.304

word2vec {1, 2} 128 0.482 0.809 0.212 0.438 0.286

fastText {1, 2, 3} 32 0.359 0.866 0.455 0.700 0.551

As observed in Table 4.13, all classifiers run with 10-fold cross-validation perform

with F1-scores ≤ 40%, half the score of our Näıve Bayes and CNN classifiers trained

and validated on NFR-SE alone. However, the Näıve Bayes baseline for this experi-
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ment performs at comparable levels with CNNs (with the exception of random, which

performs much worse). This suggests that the nature of the datasets, whether it be

the quality of SecReq in training or the nature of NFR-SE when testing with such a

large k, is likely the culprit rather than the different classifiers we employ.

Table 4.14 display the results from this classification problem, except without

cross-validation. We train on the entire SecReq dataset and test on the entire NFR-

SE dataset. The metrics suggest similar results, with the exception of the fastText-

powered CNN achieving double the precision of the Näıve Bayes baseline.

4.5.2 Train on NFR-SE, Validate on SecReq-SE

Our second assessment is to gauge how effective a security requirements classifier is

when trained on NFR-SE and validated on a different dataset, in this case SecReq.

Tables 4.15 and 4.16 tabulate the performance metrics for Näıve Bayes and our series

of CNN classifiers (built with the optimal models for NFR-SE, discussed in Section

4.2.3), run with and without 10-fold cross-validation.

Table 4.15: Results from NB and CNN classifiers trained on NFR-SE,
validated on SecReq, using 10-fold cross-validation.

Classifier Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score

NB - - - - 0.673 0.246 0.612 0.351

CNN

random {1} 128 1.494 0.663 0.139 0.618 0.227

word2vec {1, 2} 32 0.762 0.656 0.335 0.522 0.408

fastText {1} 64 0.723 0.655 0.430 0.524 0.472

As expected, our results for this experiment in Table 4.15 follow similar trends to

its converse discussed above in Section 4.5.1. For 10-fold cross-validation, the highest

F1-scores still fall less than half of its performance from our Näıve Bayes and CNN

classifiers trained and validated on SecReq-SE alone. It seems that the incorporation

of pre-trained word embeddings help boost recall 8.9-18.4% above the Näıve Bayes
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Table 4.16: Results from NB and CNN classifiers trained on NFR-SE,
validated on SecReq, without cross-validation.

Classifier Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score

NB - - - - 0.685 0.263 0.644 0.373

CNN

random {1} 128 1.491 0.671 0.145 0.684 0.240

word2vec {1, 2} 32 0.722 0.673 0.358 0.566 0.438

fastText {1} 64 0.576 0.737 0.676 0.621 0.647

baseline and 19.6-29.1% above the random CNN configuration.

Table 4.16 display the results from this classification problem, except without

cross-validation. We train on the entire NFR-SE dataset and test on the entire SecReq

dataset. The experiment results in fairly close results to cross-validation, with the

same exception of the fastText-powered CNN achieving more than double the recall

of the Näıve Bayes baseline.

4.5.3 Hybrid Security Dataset

Our final cross-dataset assessment involves creating a hybrid security requirements

dataset by combining both SecReq-SE and NFR-SE. The hybrid dataset contains 803

total requirements, 245 of which are security-related; 76% of the security-related

requirements from SecReq and 24% from NFR.

Table 4.17 tabulate the performance metrics for Näıve Bayes and our series of

CNN classifiers (built with both the optimal models for SecReq-SE and NFR-SE,

discussed in Sections 4.2.1 and 4.2.3), run with 10-fold cross-validation.

In comparison to the Näıve Bayes performance, the CNNs provide a 5.8-10.1% lift

in precision. We observe that the random embedding CNNs already offer the improve-

ments in precision, suggesting that the employment of CNNs on this hybrid dataset

is responsible for improvements in precision with the expense of recall. However,
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Table 4.17: Results from NB and CNN classifiers trained and validated
on security hybrid dataset, using 10-fold cross validation.

Classifier Embedding Type Filter Sizes # Filters per Size Loss Accuracy Recall Precision F1-score

NB - - - - 0.893 0.824 0.807 0.815

CNN

random
{1, 2} 16 0.398 0.887 0.689 0.886 0.776

{1} 128 0.394 0.896 0.727 0.891 0.801

word2vec
{1, 2} 128 0.262 0.915 0.787 0.901 0.840

{1, 2} 32 0.243 0.902 0.784 0.865 0.822

fastText
{1, 2, 3} 32 0.219 0.916 0.780 0.908 0.839

{1} 64 0.237 0.911 0.799 0.880 0.838

it appears that the addition of pre-trained word embeddings help the CNN models

counteract the fall in recall.

4.5.4 Discussion

Experiment 5 is a surface level attempt at assessing the prospect of our CNN models

overfitting to a specific dataset. As our datasets are comprised of very domain-

specific vocabulary and writing styles, we suspect that there is a strong potential for

overfitting.

Our results from Section 4.5.1 and 4.5.2 show our CNN models performing either

just as poorly as Näıve Bayes or slightly better in either recall or precision. This

suggests that the general nature of training a classifier on word features on one of

these datasets and applying the model on a completely different one is difficult as

the classifier learns dataset-specific trends. Hence, whatever performance boost from

our CNN models in comparison to Näıve Bayes can be assumed to be independent of

overfitting.
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Chapter 5

RELATED WORK

During the timeframe of this thesis, we submitted our findings from our initial trial of

word2vec and TensorFlow applications on requirements classification to the proceed-

ings of the RE Data Challenge posed in the 25th IEEE International Requirements

Engineering Conference (RE ’17) [17]. Alongside us, a number of other researchers

also tackled the same focus area of requirements classification, exploring new prepro-

cessing, sampling, and modeling strategies. The following list previews these sister

papers from RE ’17:

• Abad et al. [9] questioned how “grammatical, temporal, and sentimental char-

acteristics of a sentence” impact the classifying functional vs. non-functional

requirements in the NFR dataset. They also evaluated the performance of var-

ious machine learning algorithms on NFR type classification.

• Kurtanović et al. [29] questioned whether various sampling strategies can suc-

cessfully handle class imbalance and improve performance of requirements clas-

sification.

• Munaiah et al. [37] investigated whether a “domain-independent classifier can

effectively identify security requirements across domains”.

5.1 Preprocessing Strategies

Abad et al. evaluated the effects of the following preprocessing rules to standardize

the requirements text [9]:
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• Part-of-speech (POS) Tagging. Tag each word in each requirement with

their POS (i.e., noun, verb, adjective).

• Entity Tagging. Define a dictionary of context-based products and users that

can be assigned a general entity name (e.g., "realtor"⇒ "USER").

• Temporal Tagging. Normalize all time-telling expressions into general types

of temporal objects (e.g., "6pm"⇒ "TIME", "2 minutes"⇒ "DURATION").

• Co-occurrence and Regular Expression Replacements. Replace regular

expressions of common POS patterns and words related to keywords with the

keyword itself.

The requirements were first cleaned of formatting errors and encoding. The part-

of-speech were then assigned, prompting for the extraction of syntactic and keyword

features. A final feature set was assembled for both the unprocessed and processed

data, which were then used to train a C4.5 decision tree for NF vs. F requirements

classification for both datasets. Both classifiers were evaluated with 10-fold cross-

validation.

The results from the experiments show that the additional preprocessing steps

significantly improve the accuracy of the decision tree classifier from 89.92% to 94.40%

and F1-score from 90% to 94%. Refer to Table 5.1 below for exact measurements.

5.1.1 Comparison

Table 5.1 displays the results from Abad et al., comparing the performance boost

from their preprocessing methods against the unprocessed dataset. The table also

showcases our CNN and word embedding approaches on NFR-NF (retrieved from Ta-

ble 4.7), the same classification problem investigated by Abad et al. We observe that

75



our researched methods score comparably in F1-score and also beat the unprocessed

baseline in recall.

Table 5.1: NFR-NF binary classification results from Abad et al. [9] com-
pared to our CNN word embedding approaches.

Method Recall Precision F1-score

Abad et al. [9]
Unprocessed 0.88 0.95 0.91

Processed 0.93 0.98 0.95

CNN

random 0.96 0.92 0.94

word2vec 0.94 0.93 0.94

fastText 0.96 0.93 0.95

5.2 Sampling Strategies

Using the NFR dataset, Kurtanović et al. ran a series of experiments with SVM-based

classifiers to test the effects of the following sampling strategies [29]:

• Undersampling. The majority class is undersampled, or reduced, to achieve

a balanced distribution.

• Oversampling. The minority class is oversampled, or supplemented, with

additional samples acquired from another dataset to achieve a balanced distri-

bution.

The additional dataset they had on hand was the UC dataset, a requirements

dataset with usability and performance requirements derived from a sample of crawled

Amazon software user comments (UC). The team thus investigated the effects of

under- and oversampling on classifying usability (US) and performance (PE) require-

ments.
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The requirements were first normalized, stripped of stop words, and lemmatized.

Two types of experiments were conducted, one that emphasized minority class rarity

and another that expanded the minority class. For the former, the minority class was

undersampled for the training set and then oversampled by filling it with a random

subsample from the UC dataset. For the latter, the entire minority class sample from

the NFR dataset was used and oversampled with additional examples from the UC

dataset. For both types of experiments, the final training set had an equal ratio

of both classes. A SVM binary classifier for either US and PE were trained for all

experiments and ran with 10-fold cross-validation.

For the first experiment, the results show that using just the NFR dataset and

using the UC dataset yields similar classification performance. For the second ex-

periment, the results show that oversampling the minority class with the UC dataset

does not significantly improve classification performance. Refer to Table 5.2 below

for exact measurements.

5.2.1 Comparison

Table 5.2 showcases the results from the research from Kurtanović et al. on under- and

over-sampling using the NFR and UC datasets on binary classification of US and PE

requirements. The table also compares their results with our CNN word embedding

models on NFR-US and NFR-PE (retrieved from Table 4.12). Judging based on the

metrics, it appears as though their oversampling method improves precision for NFR-

PE, but at the expense of recall, thus resulting in no improvement in overall F1-score.

Furthermore, our deep learning approaches perform comparably to the oversampling

metrics, only beating their baseline in precision.
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Table 5.2: NFR-US and NFR-PE binary classification results from Kur-
tanović et al. [29] compared to our CNN word embedding approaches.

Method US PE

NFR Sample UC Sample Rec. Prec. F1 Rec. Prec. F1

Kurtanović et al. [29]

Baseline
33% C1min - 0.80 0.60 0.69 0.66 0.70 0.68

66% C1min - 0.85 0.80 0.82 0.88 0.89 0.88

Oversampling
33% C1min 66% C1min 0.66 0.58 0.62 0.52 0.93 0.67

66% C1min 33% C1min 0.83 0.83 0.83 0.74 0.93 0.82

CNN

random 0.54 0.95 0.68 0.64 0.93 0.76

word2vec 0.62 0.93 0.75 0.72 0.92 0.81

fastText 0.54 0.93 0.72 0.70 0.93 0.80

5.3 Domain-Independent Model and One-Class SVMs

Although classifiers work best when trained and applied on domain-specific data [26],

domain-specific datasets are not readily available. Because of this, Munaiah et al.

acquired a domain-independent dataset called the Common Weakness Enumeration

(CWE) to evaluate the efficacy of domain-independent classifiers in identifying secu-

rity requirements across domains [37]. Although CWE is not a requirements dataset,

it does contain security-related text.

Munaiah et al. wanted to assess the performance of one-class classification for se-

curity requirements identification trained on a domain-independent dataset. In order

to do this, they built a One-Class SVM, trained it on TF-IDF vectorized documents

from the CWE dataset, and tested it on the individual SRS documents in the SecReq

dataset (i.e., CPN, ePurse, GPS). Their results show that the One-Class SVM beat the

Näıve Bayes baseline from Knauss et al. [26], yielding a 16% boost in the average

F1-score. Refer to Table 5.3 for exact measurements.
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5.3.1 Comparison

Table 5.3 tabulates the performance comparison between the Näıve Bayes baselines by

Knauss et al., One-Class SVM approach by Munaiah et al., and our best CNN models

on SecReq single domain classification. In their paper, Munaiah et al. misreported

the baseline metrics from Knauss et al., confusing recall and precision. Thus, we can

only evaluate the F1-scores from their experiments.

The table showcases the best results from validating on one SRS document while

training on a different document. For CPN and GPS, our approach performs comparably

with the One-Class SVM approach by Munaiah et al. However, for ePurse, our

approach scores a significant 21% higher in F1-score.

Table 5.3: Comparison of most effective security requirements classifiers
on single domain evaluations between Knauss et al. [26], Munaiah et al.
[37], and our CNN word embedding approaches.

Validation Method Training F1-score

CPN

Näıve Bayes (Knauss et al. [26]) GPS 0.40

One-Class SVM (Munaiah et al. [37]) CWE 0.74

CNN + word2vec GPS 0.73

ePurse

Näıve Bayes (Knauss et al. [26]) GPS 0.58

One-Class SVM (Munaiah et al. [37]) ExCWE 0.61

CNN + fastText GPS 0.82

GPS

Näıve Bayes (Knauss et al. [26]) ePurse 0.57

One-Class SVM (Munaiah et al. [37]) ExCWE 0.68

CNN + word2vec/fastText ePurse 0.67
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5.4 Topic Modeling, Clustering, and Binarized Näıve Bayes

Abad et al. compared the performance of various machine learning algorithms on

NFR type classification [9]. The methods explored were topic modeling, clustering,

and Näıve Bayes.

Topic modeling and clustering are both unsupervised learning techniques that at-

tempts to categorize unlabelled documents or text into groups. The topic modeling

algorithms they employed were Latent Dirichlet Allocation (LDA) and Biterm Topic

Modeling (BTM), and the clustering algorithms explored were Hierarchical Agglom-

erative and K-means. They also used a variation of multinomial Näıve Bayes called

Binarized Näıve Bayes (BNB) that utilizes word presence rather than frequency.

Each technique was used to train a multi-label classifier for identifying NFR types

in the NFR dataset. As an extension to their preprocessing experiments discussed in

Section 5.1, Abad et al. trained each classifier on the processed dataset as well as the

unprocessed dataset. Each experiment was validated with 5-fold cross-validation.

To summarize their findings, they concluded that (1) their preprocessing approach

significantly improved the performance of all classification methods (e.g., LDA and

BNB doubled in precision and recall), (2) BNB scored the highest performance, and

(3) BTM did not perform well in this task.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Document classification is a common machine learning problem, finding itself at the

intersection between disciplines of natural language processing and artificial intelli-

gence. With the growing popularity and availability of deep learning, it is natural

to consider deep learning for document analysis tasks. However, these methodologies

are usually reserved for large-scale problems with large volumes of feature-rich data

samples.

With that said, we are curious about the feasibility of a subset of deep learn-

ing methodologies applied to an unconventional environment: software requirements

document analysis. Software requirements documents are in nature short in length,

often comprised of a couple of sentences. In addition, the requirements datasets only

contain hundreds to thousands of documents, which is orders of magnitude less in

volume than typically deemed necessary for deep learning.

In this thesis, we investigate these concerns by exploring the efficacy of convo-

lutional neural networks in training classifiers for various classification problems ex-

tracted from two well-studied software requirements datasets. In conjunction, we

vectorize our requirements documents with word embeddings to explore whether pre-

trained word embeddings can supplement our documents with semantic features. We

measure the impact of these two concepts by comparing the performance with base-

line metrics acquired from training Näıve Bayes classifiers on word count features, a

standard machine learning approach also employed by Knauss et al. when studying

security requirements classification [26].
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Table 6.1: Summary of NB baseline and CNN performance for binary
classification problems, trained with 140 epochs and run with 10-fold cross-
validation.

Problem Classifier Embedding Type Recall Precision F1-score

SecReq-SE

NB - 0.888 0.791 0.837

CNN

random 0.815 0.880 0.846

word2vec 0.877 0.919 0.897

fastText 0.915 0.907 0.911

Max Improvement +0.027 +0.128 +0.074

NFR-NF

NB - 0.926 0.915 0.921

CNN

random 0.959 0.918 0.938

word2vec 0.943 0.929 0.936

fastText 0.962 0.929 0.945

Max Improvement +0.036 +0.014 +0.024

NFR-SE

NB - 0.638 0.958 0.766

CNN

random 0.593 0.957 0.732

word2vec 0.743 0.929 0.826

fastText 0.774 0.953 0.854

Max Improvement +0.136 –0.001 +0.088

Table 6.2: Summary of NB baseline and CNN F1-scores for NFR-Types
multi-label classification, trained with 140 epochs and run with 10-fold
cross-validation.

Classifier Embedding Type A L LF MN O PE SC SE US Avg.

NB - 0.297 0.0 0.654 0.0 0.690 0.779 0.375 0.843 0.708 0.497

CNN

random 0.692 0.574 0.750 0.200 0.728 0.787 0.565 0.845 0.764 0.657

word2vec 0.804 0.747 0.771 0.533 0.808 0.822 0.680 0.873 0.865 0.772

fastText 0.774 0.732 0.835 0.444 0.799 0.809 0.616 0.860 0.816 0.745

Max Improvement +0.507 +0.747 +0.181 +0.533 +0.118 +0.054 +0.305 +0.030 +0.157 +0.275
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Table 6.3: Summary of NB baseline and CNN TP count for NFR-Types
multi-label classification, trained with 140 epochs and run with 10-fold
cross-validation.

Classifier Embedding Type A L LF MN O PE SC SE US Total

NB - 4.5 0.0 18.4 0.0 49.1 37.4 5.4 50.0 55.4 220.2

CNN

random 12.3 6.0 27.2 3.2 43.1 36.6 10.8 48.9 45.4 233.4

word2vec 15.6 8.0 28.5 8.3 45.4 40.7 15.3 49.6 52.9 264.3

fastText 15.6 7.0 29.8 7.2 45.2 39.7 14.4 49.7 53.3 262.0

Max Improvement +11.1 +8.0 +11.4 +8.3 –3.7 +3.3 +9.9 –0.03 –2.1 +44.1

We staged a battery of experiments to evaluate our research questions, using the

classifier training system we built using TensorFlow, Scikit-Learn, Gensim and other

tools. Although the magnitude of improvement ranges from problem to problem, we

can observe a positive impact attributed to our CNNs, especially from those powered

with pre-trained word embeddings. For example, as shown in Table 6.1, our SecReq

security requirements CNN equipped with fastText accomplish an generous 7.4%

boost in F1-score, attributed the impressive 12.8% boost in precision. On the other

hand, because our baseline classifier for NFR-NF already scores very high, our NFR

non-functional requirements CNNs can only contribute a modest lift of just a few

percentage points.

We observe that the performance of the CNNs with randomly initialized word em-

beddings (random) hover around baseline measures, and the incorporation of word2vec

or fastText are responsible for the more significant boost in performance. Further-

more, it appears that the fastText embeddings perform slightly better in the binary

classification problems, whereas word2vec performs mildly better for the multi-label

NF type classification problem. These nuances can either be attributed to the intrica-

cies of the models in which these embeddings were trained with and/or the corpora

they were trained on.
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Overall, we conclude that utilizing word embeddings in document vectorization

when training CNNs provide a modest improvement in the domain of software re-

quirements classification. However, we speculate that the measurement of perfor-

mance boost is potentially diminished because of the high performance benchmarks

from the baseline methods. Thus, our studied methods might be more useful applied

to datasets and problems where other approaches are not as successful.

6.1 Future Work

The work of this thesis merely scrapes the surface of the research opportunities in this

field. Aside from exploring more datasets, there are numerous avenues left unexplored

in our methods and validation.

6.1.1 One-vs.-All Classification

As mentioned in Section 4.1.3, we considered comparing a single multi-label classifier

with the one-vs.-all strategy for the classification of the nine types of non-functional

requirements, as the one-vs.-all strategy was employed by prior research for the NFR

dataset [11]. Unfortunately due to the timeline of this thesis, we were unable to

implement support for this evaluation in our system.

6.1.2 CNN Optimization

We focused on filter sizes, filter count, and number of training epochs when configuring

our CNNs, leaving out a whole expanse of CNN hyperparameters. For example,

the dropout and l2 norm factors are two parameters that were left untapped in our

experiments. In addition, there are more sophisticated methods to optimizing CNNs

for small datasets besides exhaustive trial-and-error that we did not consider [45].
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We should also investigate more on the implications of the varying neural network

shapes, namely the benefits and tradeoffs of the filter sizes and filter volume. We

observe from our results from Experiments 2 and 3 that the optimal CNN models

often include filters of size 1, either alone or in conjunction with other sizes. Filters

of size 1 harbor unigrams within the documents, which in turn reduces the effect of

locality we expect to utilize. This triggers the question of what we are gaining from

using such a heavy structure versus more lightweight approaches.

6.1.3 Word Embeddings

Aside from neural network specific tuning, we also in the future try to stretch the

usage of word embeddings and fill in the holes that we left agape. For example, we

can supplement fastText with word2vec embeddings and vice versa if a vocabulary

word is absent in one model but present in another. We can further uncover the raw

influence of pre-trained word embeddings by vectorizing the documents with them

and feeding them into traditional machine learning classifiers such as Näıve Bayes

and SVMs.

To better compare the influence of the embedding models, we should consider

training a word2vec model on the Wikipedia corpus that our current fastText model

is based on and vice versa with the Google News corpus. Currently with the two

embedding models being trained on two different corpora, it is difficult to confidently

declare that the a word embedding model is better suited for a certain task because

of how it was trained versus what corpus it was trained on. Another avenue would

be to train word2vec and fastText models on a software specific corpus. However,

this might be impossible without industry grade power, especially if the corpora are

excessively large (as with Wikipedia and Google News).
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6.1.4 FastText

Lastly, with the fast-paced technology industry always publishing new and improved

tools to the public, we have witnessed numerous advancements and additions to

the methods we employed during the span of our research. Mid-way through our

efforts, we discovered Facebook’s fastText but only had the capacity to employ their

Wikipedia-trained word embeddings. Since then, Facebook has released a new set

of fastText embeddings pre-trained on the Common Crawl corpus. In addition, as

briefed in Section 2.4.2, the fastText bundle includes a text classifier that trains much

faster than deep neural networks without relinquishing performance quality. Future

research should explore the fastText text classifier and compare its performance as

well as training time metrics with our CNN outputs.
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APPENDICES

Appendix A

TF-IDF EXPERIMENTS

Table A.1: Näıve Bayes (with TfidfVectorizer) results for SecReq-SE
binary classification.

Method Recall Precision F1-score

MultinomialNB 0.637 0.878 0.738

Knauss et al. [26] 0.91 0.78 0.84

Table A.2: Näıve Bayes (with TfidfVectorizer) results for NFR-NF binary
classification.

Requirement Type Recall Precision F1-score

NF 0.946 0.878 0.911

F 0.807 0.917 0.858

Average 0.877 0.898 0.885

Table A.3: Näıve Bayes (with TfidfVectorizer) results for NFR-Types
multi-label classification.

Metric A L LF MN O PE SC SE US Average Total

Recall 0.150 0.0 0.233 0.0 0.724 0.763 0.0 0.907 0.921 0.411 -

Precision 0.300 0.0 0.450 0.0 0.573 0.901 0.0 0.653 0.504 0.376 -

F1-score 0.200 0.0 0.307 0.0 0.639 0.826 0.0 0.759 0.652 0.393 -

TP 2.7 0.0 8.2 0.0 44.2 36.6 0.0 52.6 57.1 - 201.4
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