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ABSTRACT

Funqual: User-Defined, Statically-Checked Call Graph Constraints in C++

Andrew Nelson

Static analysis tools can aid programmers by reporting potential programming mis-

takes prior to the execution of a program. Funqual is a static analysis tool that reads

C++17 code “in the wild” and checks that the function call graph follows a set of

rules which can be defined by the user. This sort of analysis can help the program-

mer to avoid errors such as accidentally calling blocking functions in time-sensitive

contexts or accidentally allocating memory in heap-sensitive environments. To ac-

complish this, we create a type system whereby functions can be given user-defined

type qualifiers and where users can define their own restrictions on the call graph

based on these type qualifiers. We demonstrate that this tool, when used with hand-

crafted rules, can catch certain types of errors which commonly occur in the wild.

We claim that this tool can be used in a production setting to catch certain kinds of

errors in code before that code is even run.
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Chapter 1

INTRODUCTION

Writing bug-free software is challenging if not impossible. In the past 30 years,

millions of dollars have been invested in tools that help developers write code that

is robust, readable, and correct [18]. In general these tools fall into two categories:

dynamic analysis tools such as gdb, valgrind, and IDA which analyze programs as

they are running; and static analysis tools such as lint, cppcheck, and gcc -Wall

which analyze programs before they are run. All these tools have different use cases

and can be used together to minimize the presence of errors in code.

While these tools are extremely helpful in finding bugs in code, they are by no

means complete. Every tool uses a finite set of techniques to detect a specific class

of issues. Some tools examine the types of values and expressions to enforce type

safety[18], some tools examine ownership of objects to enforce memory safety[11],

some tools examine the flow of values through a program to ensure security[8], and

many other tools do other things entirely.

This paper intends to add a new technique to the existing arsenal. This tool makes

it possible to check for errors which were previously undetectable. To motivate this

technique, we provide a problematic example. Listing 1.1 contains a snippet of C

code that has a bug in it — the reader is challenged to find it:
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1 #include <stdio.h>

2 #include <signal.h>

3 #include <unistd.h>

4

5 void sig_handler(int signo) {

6 printf("Received signal %d\n", signo);

7 }

8

9 int main(void) {

10 if (signal(SIGINT, sig_handler) == SIG_ERR) {

11 printf("Could not register signal handler\n");

12 return 1;

13 }

14

15 printf("Signal handler registered...\n");

16 while (1) {

17 printf("Waiting for signals...\n");

18 sleep(1);

19 }

20 }

Listing 1.1: Example piece of C code containing an error

Most well-seasoned C and C++ programmers would be at a loss to find the error

— and the error certainly is obscure. A quotation from the glibc library reference

may be helpful here:

If a function uses a static variable or a global variable, or a dynamically-

allocated object that it finds for itself, then it is non-reentrant and any

two calls to the function can interfere [10].

By “two calls”, the reference means two concurrent calls. In the above snippet of

code, a SIGINT signal sent to the process preempts whatever function was currently
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executing and transfers execution to sig_handler. Sig_handler proceeds to call

printf which may or may not already be executing in the main context. This is

problematic because printf grabs a global lock around stdout and in the case of

concurrent calls results in deadlock. Not good.

The glibc library reference goes on to explicitly mention several common functions

as being nonreentrant. A few of them are malloc, free, fprintf, printf, and any

function that modifies the global errno, although any function which uses static,

global, or dynamically-allocated state will fall into this category.

A stop-gap measure that could be implemented to solve this issue is to make a

rule: No interrupt handlers are allowed to call nonreentrant functions, and to ask your

peers to inspect all code by hand to enforce this requirement. This is tedious, error-

prone, and can be extremely difficult for code at scale. Let’s say, for instance, that

sig_handler called foo, and foo called bar, and bar called printf. Is it reasonable

to expect a human to detect this error in judgment that occurred through 4 layers of

indirection? Probably not.

To solve this problem, and many others like it, we created a tool called funqual.

Funqual allows C++ programmers to tag certain functions and will statically check

the call graph and function tags against a set of user-defined rules. This call graph

type system is totally orthogonal to the existing C++ type system and so does not

interfere with or expand the existing type rules which should be familiar to C++

programmers. Instead, funqual provides an additional set of restrictions which, when

used intelligently by the developer, can help to detect certain kinds of errors statically.

Funqual is written using libClang and does not require any additions to the syntax

of C++. As such, funqual can be run on C++17 code “in the wild” (code not

designed to work with funqual); additionally, code which has been annotated for use

with funqual can be compiled directly with gcc or clang without any modification.

3



This thesis is laid out as follows: Chapter 2 covers background information and

formally develops the concepts of a call graph and an indirect call. Chapter 3 cov-

ers related work in such a way as to contrast the techniques of funqual from the

techniques used by other tools in this domain. Chapter 4 gets into the theoretical

details of how the type system in funqual works including a high level overview, an

in-depth explanation of each individual rule, and some formal arguments for correct-

ness. Chapter 5 goes into the practical details about the implementation and usage

of funqual. Chapter 6 demonstrates funqual in action by showing how to apply it in

some real-world projects. Finally, Chapter 7 discusses future improvements that can

be made to funqual and Chapter 8 offers a conclusion.
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Chapter 2

BACKGROUND

This Chapter aims to provide context for funqual as well as to provide an intuition

for why funqual works the way that it does. Section 2.1 presents a brief review of

type systems that should be familiar to most programmers; special care is taken to

define systems of type qualifiers. Section 2.2 develops the concept of a call graph and

sets the stage for the two concepts to be combined later in the paper.

2.1. Classic Type Qualifiers

In most research into type-systems, type qualifiers are a way to refine variable types

in order to introduce additional constraints. These type qualifiers can generally be

applied to any base type and can often be combined to form even more specific types.

A classic example that most programmers of C-family languages will know is the

const type qualifier. Any identifier with the const qualifier can be initialized with a

value but can never be assigned to again. This restriction can be statically checked

and can often help prevent certain types of errors when used intelligently by the

programmer [5]. Another type qualifier which may be familiar to C programmers

is volatile which tells the compiler (and programmer) that this variable may be

changed suddenly by other execution environments [5]. The important thing to note

is that the rules surrounding these type qualifiers are orthogonal to the rules of the

main type system. A const identifier is treated the same way whether it a const

int or a const char* or a const Panda or even a const volatile int — the type

and the type qualifiers exist in separate type systems and so the rules are enforced

separately.
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Some compilers also have their own compiler-specific type qualifiers. In Microsoft

Visual C++, function parameters that are modified by the caller and referenced by

the callee can be annotated with the [Runtime::InteropServices::Out] qualifier

to tell the programmer and the compiler that this is an out parameter. Having a

programming environment rich in these type qualifiers can help make the intent of

source code easier for the programmer to infer and make it possible for those intents

to be statically checked by the compiler.

In the majority of these systems, defining additional type qualifiers is either rel-

egated to the language designers or to the compiler maintainers. There is not much

tooling or support for the average programmer to create their own type qualifiers and

there does not seem to be any sort of emphasis on creating project-specific qualifiers

to help maintain program semantics.

2.2. Turning Program Source into a Call Graph

The focus of this paper is on creating and analyzing type qualifiers for functions that

constrain where those functions can and cannot be called. The central notion behind

this sort of type checking is that every program has a call graph and that there are

certain patterns in the call graph which must be prevented.

A program’s call graph is a directed graph where each function is a vertex and

where each call is an edge directed from the caller to the callee. The type qualifiers

in this context are applied to the vertices and the things we wish to constrain are

connections between vertices. Below is an example of a C program and its associated

call graph.
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1 int breed_and_release_pandas() {

2 Panda *baby_panda = malloc(sizeof(Panda));

3 release_panda(baby_panda);

4 }

5

6 int save_the_pandas() {

7 stop_deforestation());

8 if (pandas_are_saved()) {

9 printf("Stopping deforestation saved the pandas!\n");

10 return 1;

11 }

12

13 breed_and_release_pandas();

14 if (pandas_are_saved()) {

15 printf("Breeding pandas in captivation and releasing them has

saved the pandas!\n");

16 return 1;

17 }

18 return 0;

19 }

20

21 int main(void) {

22 if (save_the_pandas()) {

23 printf("The pandas have been saved!\n");

24 }

25 }

Listing 2.1: Example C program. The call graph for this program is
shown in Figure 2.1

As demonstrated in Figure 2.1, every function in the source code has a vertex in

the graph and every function call in the source code has an edge in the graph. If

there is a call from function X to function Y in the source code, there will be an edge

pointing from node X to node Y in the associated call graph.
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main

save_the_pandas stop_deforestation

breed_and_release_pandas

printf

pandas_are_saved

release_panda

malloc

Figure 2.1: Example Call Graph. The source code associated with this
call graph is shown in Listing 2.1
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This graph representation makes it easy to reason about the program algo-

rithmically. Does main contain a call to breed_and_release_pandas? No. You

can tell because there is no edge from main to breed_and_release_pandas. Does

breed_and_release_pandas contain a call to release_panda? Yes. You can tell be-

cause there is an edge from breed_and_release_pandas to release_panda. Does

save_the_pandas indirectly call malloc? Yes. You can tell because there is a path

from save_the_pandas to malloc. Thanks to the call graph, questions about which

functions call which functions boil down to classic path finding algorithms.
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Chapter 3

RELATED WORK

Static program analysis is a hot topic in Computer Science research. The Association

for Computing Machinery (ACM) publishes several journals, such as Proceedings of

the ACM on Programming Languages (PACMPL), Transactions on Programming

Languages and Systems (TOPLAS), and Transactions On Software Engineering and

Methodology (TOSEM), which are focused (at least in part) on static verification and

type systems. It should come as no surprise that there is a large body of research

that is related to this thesis. This Chapter references a tiny fraction of this body

of work. Section 3.1 calls upon past research to assert unquestionably the positive

impact that static analysis has on the software development process. Section 3.2

explores a line of research dedicated to inserting supplemental specifications into

existing programming languages in order to improve the static checkability of those

languages. Lastly, Section 3.3 pays respect to the LLVM project which has enabled

so much of the research for this thesis.

3.1. On the Effectiveness of Static Analysis

Studies have long shown that static analysis is an essential tool for developing high-

quality software. The high speed and low cost of this type of verification make it an

economical method for finding faults in program code [18, 12].

Industry has taken this observation to heart. Many companies have their own

internal tools dedicated to statically checking code changes with a goal of detecting

common mistakes and stylistic issues. The Mozilla project is a good example of

this — since the early 2000s, Mozilla has used a fairly robust suite of internal tools

10



specifically crafted for Mozilla’s mostly C++ codebase. Using these tools, every Pull

Request into Mozilla Firefox is parsed and checked against a set of hand-written rules

to detect and report common issues [6, 1]. Much of this tooling was dedicated to

detecting memory issues. Of course, without modifying the grammar of C++, there

are limitations in what can be easily checked statically by these tools. Only a small

subset of the problem could be effectively detected.

More recently, Mozilla developed and began using a language called Rust which

was designed with certain static analysis characteristics in mind. The Rust language

implements an innovative type system meant to formally track the ownership of ob-

jects in memory. “Rust’s type system and runtime guarantee the absence of data

races, buffer overflows, stack overflows, and access to uninitialized or deallocated

memory” [11]. A common sentiment in the Rust-language community is that even

though the “Borrow Checker” (the part of the type system that enforces memory

safety) seems complicated at first, seasoned Rust users learn to depend on it to help

them reason through complicated programs [17]. Rust demonstrates that making a

type system more expressive and more restrictive can improve both the static check-

ability of a programming language and also the help the users of those languages.

3.2. Aftermarket Type Systems — Supplementing an Existing Language

The idea of introducing new forms of type checking into an existing language to

increase safety is nothing new. As early as 1994 tools such as LCLint have existed

which allow the programmer to write down specifications about their code that are

not necessarily supported by the original language standard. The LCLint tool can

take program source code as well as a file containing supplemental specifications and

perform static analysis that is more thorough and informed than could possibly be

achieved based on the language standard alone [4].
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A useful attribute of these supplemental static analysis tools is that they scale

incrementally — the programmer can use these tools to whatever extent they find

helpful and can increase or reduce the amount of information they pass on to these

tools as they see fit. Since these specifications are opt-in, adding new forms of spec-

ification to a tool like LCLint is a straightforward way to expand the scope of the

tool without breaking backwards compatibility. As an example, in 1996, Evans et al.

added a few variable type annotations to LCLint such as not-null, possibly-null,

and null. When used by the programmer, these annotations allow LCLint to check

for certain kinds of errors relating to nullness and memory allocation [3]. Such modi-

fications require zero action by the users that choose not to use them; if a variable is

not annotated then LCLint will not try to check that variable. However, as the user

adds more annotations, LCLint is able to check more variables. The amount of feed-

back LCLint is able to provide scales up and down with the amount of annotations

in the code.

In general, variable annotations like not-null and possibly-null are very similar

in use to the existing system of type qualifiers in the C family of languages. A

canonical example of a type qualifier would be the C const qualifier; a variable

marked const may be set once at declaration but never updated again (ignoring

unsafe casts). Type qualifiers and annotations like const and not-null have two

benefits: First, they declare the intent behind the code so that other programmers

reading the code have a better idea of how it works. Second, they dictate what the

programmer can and cannot do with an identifier so that the compiler or other static

checking tool can detect accidental misuse. However, their use is entirely optional

— the programmer can choose to treat an identifier as const or not-null without

actually adding the annotation [5].

“A Theory of Type Qualifiers” develops this concept in depth and explores the

theoretical and practical concerns involved with using type qualifiers in a language [5].

12



One of the most relevant observations to the work in this paper is that every type

qualifier introduces a form of subtyping. For all types T and any qualifier q, either

T ≤ qT or qT ≤ T depending on q1. Here we notate T qualified by q as qT and we

notate X is a subtype of Y as X ≤ Y . X ≤ Y should be interpreted to mean that X

can be safely used whenever Y is expected. For example int ≤ const int because

in any statement containing a const int, one could safely substitute an int however

the reverse is not true. In the same vein, not-null char* ≤ char* because any

statement referencing a char* could safely be given a not-null char* instead [5]. In

this paper we will apply this concept to the type qualifiers introduced by funqual in

order to argue for the correctness of funqual.

3.3. libClang and the Explosion of C++ Tooling

C++ is difficult to parse [9, 15, 13, 14]. Years of language additions, the need for

backwards compatibility, and the existence of a text-based preprocessor2 means that

the language grammar is large and complicated. As a result, even the simplest static

analysis tools require a huge amount of complexity to do basic parsing of source code.

Up until relatively recently, many C++ language tools settled on doing a partial parse

of the language using approximations and heuristics [15]. This method can lead to

artificial constraints on the language or to incorrect interpretations of the source.

As a result of the LLVM Compiler Infrastructure Project, we now have an excel-

lent set of tools for working with code. The Clang compiler is a fully featured compiler

from the LLVM project that supports a wealth of C-family language standards includ-

ing C++17. The LLVM project also provides libClang which exposes a convenient

1This notation is equivalent to the subset notation (i.e., T ⊆ qT or qT ⊆ T ). We choose to
use the less than operator because it matches the notation used by Foster in “A Theory of Type
Qualifiers”.

2In theory, preprocessing could be delegated to another tool like gcc. In practice this generally
leads to loss of information — most notably with #include directives obfuscating the locations of
symbols in source code.

13



API to the parser and the AST used by the Clang compiler. libClang enables de-

velopers to create their own tools that build on top of Clang’s C++ parser. This

means that developers of static analysis tools only need to focus on maintaining their

project’s contributions rather than supporting an entire parser/AST toolsuite [15].

Funqual is built using libClang and so the work done in this paper was only possible

thanks to the work done by the LLVM Compiler Infrastructure Project.
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Chapter 4

TYPE RULES

Funqual checks a program against a type system. It is a tool that takes in source code

as well some user-defined call graph rules, does some computation, and prints one of

two things: “This program is well-typed”, or “This program is not well typed” (in

practice the later case also comes with an explanation as to why the program is not

well-typed). If a program is well-typed, then it is free from call graph rule violations.

If a program is not well-typed, then it may contain one or more errors.

This chapter contains an overview of the rules implemented by funqual as well as

a brief exploration of what needs to happen behind the scenes in order to correctly

check these rules. Section 4.1 demonstrates the big picture of what these rules are

trying to accomplish. Section 4.2 explains how type qualifiers are applied to function

pointers and how funqual checks them. Section 4.3 is a detailed explanation of each

of the call graph constraints supported by funqual. Finally, Section 4.4 explains a few

special cases and explains how funqual handles them to create a complete call graph.

Note that this chapter focuses only on the conceptual design of funqual and its

type system. For details on how it is implemented or how to use it, refer to Chapter 5.

4.1. Overview

Before doing a deep dive into the specific rules of funqual, let us look at an example.

Recall the save the pandas example from Section 2. It is reproduced in this Section

as Listing 4.1 for convenience.
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1 int breed_and_release_pandas() {

2 Panda *baby_panda = malloc(sizeof(Panda));

3 release_panda(baby_panda);

4 }

5

6 int save_the_pandas() {

7 stop_deforestation());

8 if (pandas_are_saved()) {

9 printf("Stopping deforestation saved the pandas!\n");

10 return 1;

11 }

12

13 breed_and_release_pandas();

14 if (pandas_are_saved()) {

15 printf("Breeding pandas in captivation and releasing them has saved

the pandas!\n");

16 return 1;

17 }

18 return 0;

19 }

20

21 int main(void) {

22 if (save_the_pandas()) {

23 printf("The pandas have been saved!\n");

24 }

25 }

Listing 4.1: Example C program. Running this code in a production
environment may not actually save the pandas

Let us now imagine that there is some constraint whereby save_the_pandas

should not allocate memory. As programmers we would like to believe that we are

disciplined enough to remember this rule and enforce it ourselves. In practice, self-
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regulation like this often ends poorly. As a result we would like a tool like funqual to

enforce this constraint automatically.

Funqual allows us as programmers to create our own type qualifiers and

to apply whatever meaning we want to those qualifiers. In this particu-

lar case we create two type qualifiers: static_memory and dynamic_memory.

We also create one rule: restrict indirect call(static memory, dynamic memory).

When the programmer qualifies a function with static_memory, that de-

clares the intent that this function will never allocate memory on the heap.

When the programmer qualifies a function with dynamic_memory, that de-

clares the intent that this function always allocates memory on the heap1.

The rule restrict indirect call(static memory, dynamic memory) tells funqual that

static_memory functions are not allowed to call dynamic_memory functions either

directly or indirectly. If it is possible for a static_memory function to reach a

dynamic_memory function, then the rule has been violated and funqual should in-

form the user.

In the example about saving the pandas, we would qualify save_the_pandas as

static_memory and we would qualify malloc as dynamic_memory. Figure 4.1 shows

the call graph for Listing 4.1 with static_memory functions marked green and with

dynamic_memory functions marked red.

By turning the program into a directed graph and by assigning types to the

vertices, we have transformed the problem of type qualifier rule satisfaction into a

graph problem. A question like are there any static memory functions that inadver-

tently call dynamic memory functions essentially boils down to are there any paths

from green vertices to red vertices. In this example, the answer to that question

is yes. In the code, save_the_pandas calls breed_and_release_pandas which calls

1The meanings of these type qualifiers are as determined by the programmer; without a rule to
operate on them, funqual will completely ignore the type qualifiers.
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main

save the pandas stop deforestation

breed and release pandas

printf

pandas are saved

release panda

malloc

Figure 4.1: Color-coded Call Graph for Listing 2.1. Functions tagged
static_memory are highlighted green and functions tagged dynamic_memory

are highlighted red.
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malloc constituting an illicit call. Equivalently, save_the_pandas has an edge to

breed_and_release_pandas which has an edge to malloc constituting an illicit path.

A well-typed program has no paths from green vertices to red vertices. A poorly-typed

program will have at least one path.

4.2. Function Pointers and Indirect Type

Traversing a program for function calls and adding them to the call graph is relatively

straightforward. Knowing exactly what function is being called at the time of parsing

makes this process trivial. This does not account for all function calls, however. There

are multiple cases in modern C++ where a function call is either happening behind

the scenes or where the exact callee is not knowable. This section examines function

pointers and explains how they are represented in the call graph.

As a concrete example, refer to Listing 4.2. In this example, it is literally impossi-

ble to know which function strat is going to point to. This is a pointed example, but

rand can represent any expression whose result is unknowable during static analysis.

Additionally, in this example there are very clearly only three functions that strat

could point to. In a real program, there might be thousands of functions and they

might not all be listed in one place.
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1 int breed_and_release_pandas() {

2 Panda *baby_panda = malloc(sizeof(Panda));

3 return release_panda(baby_panda);

4 }

5

6 int (*)() get_random_strategy() {

7 switch (rand() % 3) {

8 case 0:

9 return breed_and_release_pandas;

10 break;

11 case 1:

12 return stop_deforestation;

13 break;

14 case 2:

15 return stop_hunting;

16 break;

17 }

18 }

19

20 int save_the_pandas() {

21 while (!pandas_are_saved()) {

22 int (*strat)() = get_random_strategy()

23 strat();

24 }

25 return 0;

26 }

27

28 int main(void) {

29 return save_the_pandas();

30 }

Listing 4.2: In this example C program, it is impossible to know
statically what the value of strat is. Because of this, funqual requires
the programmer to annotate function pointers with additional type
information.
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If we still intend to use funqual to enforce this restrict indirect call(

static memory, dynamic memory) rule then we are going to need some additional

tools. Since keeping track of all the possible values of strat is impractical, we

will instead keep track of the type of strat with respect to this call graph. Re-

call that the type of save_the_pandas is static_memory and that the type of malloc

is dynamic_memory. If we had a function pointer pointing to malloc, then the type

of that function pointer would have to also be dynamic_memory. In this example we

have a function pointer pointing to breed_and_release_pandas. We will say that

breed_and_release_pandas has indirect type dynamic_memory because it calls mal-

loc and so any function pointer that points to breed_and_release_pandas must have

indirect type dynamic_memory.

For this reason, when we use function pointers we will have two kinds of type

qualifiers: direct type qualifiers and indirect type qualifiers. Direct type refers to the

funqual type qualifiers we have explicitly assigned to the pointee. Indirect type refers

to the funqual type qualifiers of all the functions reachable from the pointee. Direct

type for both functions and function pointers must be explicitly annotated in the

code. Indirect types for function pointers must be annotated explicitly but indirect

types for functions can be inferred.

Listing 4.3 shows the same code as Listing 4.2 but with function types annotated.

Figure 4.2 shows the call graph for Listing 4.3 with the function pointer represented

as a cloud. Notice that we do not need to write any explicit annotations for the

indirect type of breed_and_release_pandas. Funqual has all the information it needs

to statically infer the indirect type of functions. In this case, the indirect type is

dynamic_memory because breed_and_release_pandas calls malloc. Also notice that

strat has indirect type dynamic_memory. This matters because it is possible that

calling strat might result in a dynamic_memory function getting called.
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1 int breed_and_release_pandas() {

2 Panda *baby_panda = malloc(sizeof(Panda));

3 return release_panda(baby_panda);

4 }

5

6 int indirect_dynamic_memory (*)() get_random_strategy() {

7 switch (rand() % 3) {

8 case 0:

9 return breed_and_release_pandas;

10 break;

11 case 1:

12 return stop_deforestation;

13 break;

14 case 2:

15 return stop_hunting;

16 break;

17 }

18 }

19

20 int save_the_pandas() static_memory {

21 while (!pandas_are_saved()) {

22 int indirect_dynamic_memory (*strat)() =

23 get_random_strategy()

24 strat();

25 }

26 return 0;

27 }

28

29 int main(void) {

30 return save_the_pandas();

31 }

Listing 4.3: Same example program as Listing 4.2 but with function pointer
type annotations inserted
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main save_the_pandas pandas_are_saved

strat

stop_deforestation

stop_huntingbreed_and_release_pandas

release_panda malloc

Figure 4.2: Color-coded Call Graph for Listing 4.3. Functions tagged
static_memory are highlighted green and functions tagged dynamic_memory

are highlighted red. Indirect types are represented as horizontal line pat-
terns on a node. Clouds represent function pointers.
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Thanks to the graph based representation of this program, it is clear to see where

the error is. save_the_pandas calls strat and it is possible that a call to strat could

result in a call to malloc. The indirect type of strat (notated in Figure 4.2 as red

horizontal lines) is how we keep track of this possibility.

4.2.1. Rules of Assignment

To properly enforce call graph constraints, funqual checks function pointers in two

places: first when the function pointer is assigned, and second when the function

pointer is called. The rules described in this section are crafted specifically to maintain

call graph correctness. For the purpose of this discussion, we will let L stand for some

function pointer and we will let R stand for some function value (the names L and R

are a reference to the lvalue and rvalue in a typical assignment statement).

When assigning a function pointer L to point to a function R, there are two rules

that funqual checks: the direct type of L must match exactly the direct type of R,

and the indirect type of L must be a superset of the indirect type of R. For function

pointers, both the direct and indirect types must be explicitly annotated in code. For

functions, only the direct type must be explicitly annotated as the indirect type can

be inferred.

These rules are necessary to maintain the soundness of the system. In order to

correctly enforce require direct call(X, Y ), the direct type of L must be contained

in R — otherwise a call to L might be considered valid even if R does not have Y

in its type. In order to correctly enforce restrict direct call(X, Y ), the direct type

of R must be contained in L — otherwise a call to L might be considered valid even

if R does not have Y in its type. Combining both of these requirements means that

the direct types of L and R must match exactly. Lastly, in order to properly enforce

restrict indirect call(X, Y ), we need to know all the funqual types that are possibly
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Table 4.1: Examples of valid and invalid assignments in funqual. The left
two columns show the direct and indirect type of the lvalue respectively.
The next two columns show the direct and indirect type of the rvalue
respectively. The rightmost column shows whether or not that assignment
is valid.

lvalue lvalue rvalue rvalue Valid?

direct indirect direct indirect

(none) (none) (none) (none) Valid

static memory (none) (none) (none) Not Valid

(none) (none) static memory (none) Not Valid

static memory (none) static memory (none) Valid

static memory blocking static memory (none) Valid

static memory (none) static memory blocking Not Valid

static memory blocking static memory blocking Valid

static memory blocking static memory nonblocking Not Valid

static memory blocking static memory nonblocking Valid

nonblocking

(none) blocking (none) (none) Valid

static memory

nonblocking

reachable by calling L.

Table 4.1 shows a few examples of valid and invalid assignments.

4.3. Call Graph Rules

Each subsection here describes one of the call graph rules supported by funqual. For

each rule, we explain the meaning, provide an algorithm that could enforce it, and

present an argument for the algorithm’s correctness with respect to the rest of the
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type system. The algorithms presented here only return true or false depending

on whether the graph in question is valid. The algorithms actually implemented in

funqual are slightly more complicated because they print helpful diagnostic messages

to the user. Both sets of algorithms enforce the same rules, though.

4.3.1. Restrict Direct Call

restrict direct call(X, Y )

A restrict direct call rule creates a constraint that disallows functions with di-

rect type X from calling functions with direct type Y . This constraint is relatively

permissive because it still allows indirect calls from functions with direct type X to

functions with direct type Y but is nonetheless checkable by this type system.

Listing 4.4 shows pseudocode for an algorithm that can check a call graph for

violations of this rule. Assume that edges is a list of objects representing all the calls

in the call graph.

1 function enforce_restrict_direct_call(X, Y, edges):

2 for edge in edges:

3 callee = edge.to

4 caller = edge.from

5

6 if X in caller.direct_type and Y in callee.direct_type:

7 return false

8 return true

Listing 4.4: Pseudocode for an algorithm that can check a restrict direct call
constraint. This algorithm returns true if the call graph respects the
constraint and false if the call graph violates it.

This algorithm runs once per rule and terminates in linear time with respect to

the number of edges in the call graph. To assert the correctness of this algorithm we
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will categorize each function call in this graph as one of two possibilities: a call to a

standard function, or a call to a function pointer.

In the case of a standard function call, the correctness is trivial. The user must

have annotated the direct type of both the caller and the callee2. If a function with

direct type X calls a function with direct type Y , then edges will contain such an

edge and in checking each edge we will detect it.

In the case of the function pointer call, we need to also examine all possible

assignments of that function pointer. It is of course possible that the function pointer

is null at runtime, but we will consider this type of error to be out of the scope of

funqual. For the sake of this argument, let P stand for any function pointer and F

stand for any function. For an assignment of F into P to be valid, F and P must

have the same direct type. If they do not have the same direct type, then funqual

will inform the user of an assignment type violation. If they do have the same direct

type, then edges will contain an edge into P wherever P is called and that edge will

be checked in the same way as a standard function call.

4.3.2. Restrict Indirect Call

restrict indirect call(X, Y )

A restrict indirect call rule creates a constraint that functions with direct type X

cannot call functions with direct or indirect type Y . This has the effect of restricting

functions with direct type X from calling functions with direct type Y , whether that

call is direct or indirect. The need to enforce indirect calls in the presence of function

pointers requires us to examine the indirect type of the callee for each edge.

2Funqual will check whatever was declared by the programmer — whether the programmer
declared their intent correctly is outside the scope of this research.
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1 function enforce_restrict_indirect_call(X, Y, edges):

2 for edge in edges:

3 callee = edge.to

4 caller = edge.from

5

6 if X in caller.direct_type and Y in callee.indirect_type:

7 return false

8 return true

Listing 4.5: Pseudocode for an algorithm that can check a
restrict indirect call constraint. This algorithm returns true if the call graph
respects the constraint and false if the call graph violates it.

Listing 4.5 shows pseudocode for an algorithm that can check a call graph for

violations of this rule. Assume that edges is a list of objects representing all the calls

in the call graph.

In order to simplify this algorithm, we will assume for the time being that indirect

function types are inferred correctly. For an explanation of the indirect type inference

algorithm and for an argument for its correctness, refer to Subsection 4.3.4. To assert

the correctness of enforce_restrict_indirect_call, we will again consider each

function call in the graph as a member of one of two categories: a call to a standard

function, or an invocation of a function pointer.

In the case of a standard function call, the correctness is trivial. Assume function

A with direct type X calls function B with indirect type Y . Since A directly calls B,

we know that there will be an edge from A to B in the edges and when the algorithm

visits it, the algorithm will terminate with the claim that there is a violation.

In the case of a function pointer invocation, the rules of function pointer assign-

ment come into play. If, via an invocation of B, a function of type Y could eventually

be called, then the function pointer must necessarily have Y in its indirect type oth-

erwise there would be an assignment error (for an in-depth argument of this refer to
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Subsection 4.3.4). As a result, when visiting the edge from A to B (where A is the

function invoking function pointer B), the algorithm will detect that B has indirect

type Y and will terminate with the claim that there is a violation.

4.3.3. Require Direct Call

require direct call(X, Y )

A require direct call rule creates a constraint that functions with direct type X

can only call functions with direct type Y . Much like the restrict direct call rule, this

rule is relatively easy to check and can be checked in time linear with respect to the

number of edges in the call graph.

Listing 4.6 shows pseudocode for an algorithm that can check a call graph for

violations of this rule. Assume that edges is a list of objects representing all the calls

in the call graph.

1 function enforce_require_direct_call(X, Y, edges):

2 for edge in edges:

3 callee = edge.to

4 caller = edge.from

5

6 if X in caller.direct_type and Y not in callee.direct_type:

7 return false

8 return true

Listing 4.6: Pseudocode for an algorithm that can check a require direct call
constraint. This algorithm returns true if the call graph respects the
constraint and false if the call graph violates it.

To assert the correctness of this algorithm, we will categorize every function call

as one of two possibilities: a call to a standard function, or a call to a function pointer.

In the case of a call to a standard function, the correctness is trivial. The user
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must have annotated the direct type of both the caller and the callee and we take

these annotations to be correct. If a function with direct type X calls any function,

then edges will contain an edge from the caller to the callee. Checking the direct

types of caller and callee exhaustively for every edge in the graph will eventually find

any violations.

In the case of a function pointer call, we need to also examine all the possible

assignments to that function pointer. Thankfully the assignment checker already

checked the type safety of every function pointer assignment so we will assume that

those are correct. In this case specifically, we can assume that, if the function which

is actually called does not have direct type Y , then the function pointer which is

called in code will also not have direct type Y . This call creates an edge which will

certainly be visited by enforce_restrict_direct_call and so we can be certain that

any function pointer invocation will be correctly checked in this regard.

4.3.4. Indirect Type Inference

While the user does not invoke indirect type inference in the same way that the user

invokes the other rules, indirect type inference is still an important part of the type

safety of funqual. This subsection explains indirect type inference and argues for the

correctness of the algorithm.

Listing 4.7 shows pseudocode for an algorithm that can infer the indirect function

type for any function in the call graph. For the purpose of this function, we will

let function be the function being checked. We will let edges be the list of edges

in our graph and we will assume that it contains edges to function pointers where

those function pointers are called. We also assume that callee.indirect_type is

populated for function pointers but that it is an empty set for regular functions.
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1 function infer_indirect_type(function, edges):

2 indirect_types = empty set

3 visited = empty set

4 to_visit = empty set

5 to_visit.add(function)

6

7 while to_visit is not empty:

8 curr = to_visit.pop()

9 visited.add(curr)

10

11 indirect_types.add_all(curr.direct_type)

12 indirect_types.add_all(curr.indirect_type)

13

14 for edge in edges:

15 callee = edge.to

16 caller = edge.from

17 if caller == curr and callee not in visited:

18 to_visit.add(callee)

19 return indirect_types

Listing 4.7: Pseudocode for an algorithm to infer the indirect type of a
function.

To assert the correctness of this algorithm imagine a function, F , from which

evaluation eventually (either directly or indirectly) reaches a function, C, with type

Y . We propose that because of the rules of this type system, it is necessary that Y is

in the type of F . To demonstrate this we will break down the type pipeline into its

multiple cases.

The first case is that F calls C (either directly or indirectly) but that none of the

calls from F to C are function pointer invocations. In this case, there will be a path

in edges from F to C and because infer_indirect_type is a breadth first graph

traversal starting at F , we know that the algorithm will eventually visit C. When
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the algorithm does visit C, it will grab the direct type of C (which contains Y ) and

add it to the indirect type of F . When the algorithm terminates, it will necessarily

contain Y . In other words, if there is a path from F to C, the indirect type of F will

contain the direct and indirect types of C.

The second case is that F invokes a function pointer P from which evaluation

eventually results in a call to C. In this case, there may or may not be a path in

edges from F to C. However, there will be a path in edges from F to P and an

assignment of C into P . Recall that for an assignment of C into P to typecheck, the

direct types of C and P must match and the indirect type of P must contain the

indirect type of C. If Y is in the direct type of C, then Y must be in the direct type

of P . Also if Y is in the indirect type of C, then Y must be in the indirect type

of P . Since either the direct type or the indirect type of P must contain Y , we can

reference case one and claim that because there is a path from F to P , and because

the type of P contains Y , then Y will be in the indirect type of F .

The third case is an inductive step. Assume that F calls C but indirectly through

some arbitrary number of function pointer invocations between. Let P0 be a function

pointer through which a call is made to C, let P1 be a function pointer through which

a call is made to P0, let Pn be a function pointer through which a call is made to

Pn−1, and let F call Pn. According to the logic in case two, if Y is in the direct type

of C, then it must be in the direct type of P0 or else the assignment will have failed.

In the same way, if Y is in the direct or indirect type of Pn−1, then it must be in the

direct or indirect type of Pn. Inductively, Y must be in the direct or indirect type of

Pn and because there is a path in edges from F to Pn, Y must end up in the indirect

type of F . Lastly, as in case one, any of these calls (either from F to Pn, from Pn

to Pn−1, or from P0 to C) can be direct or indirect calls and Y will still be in the

indirect type of F .
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This algorithm terminates even in the presence of cycles because it tracks previ-

ously visited vertices in visited and does not visit them again. Even though these

cyclic edges are not followed, the output is still correct because every vertex is visited

once. Assume that F calls C and that C calls F . The algorithm first visits F , then

visits C, but does not visit F again because F was added to visited when it was

first examined. When F was added to visited, its direct and indirect type were

added to the return value and the edges out of F were added to to_visit. All the

necessary information was extracted from F on the first visit so visiting it again is

not necessary.

4.4. Special Considerations when Creating a Call Graph

4.4.1. Dealing with Inheritance

When calling a virtual method in C++, it is impossible to know at compile time

exactly which function is going to be run at run-time. This is very similar to the

problem of function pointers (and in fact dynamic dispatch is usually implemented

as a table of function pointers [16]) except that in the case of virtual functions we

actually know statically the set of possible functions that could be called3. To account

for this, we need to add extra edges to our call graph to represent all the possible

places that a virtual method call could go.

Let C be some function that calls T.M where T is some class and M is a virtual

method of T . When creating the call graph, we must surely add an edge from C to

T.M . In addition to that, though, for any class S that is a subclass of T , we must

also add an edge from C to S.M . This accounts for any possible overloads of M that

might be called at run-time.

3Funqual assumes that it has access to the full source code for call graph creation.
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Listing 4.8 demonstrates this concept. It is a piece of C++ source code that calls

a virtual function. Figure 4.3 shows the call graph for this code sample.

1 class Panda {

2 protected:

3 int m_hunger;

4 public:

5 virtual int Feed() {

6 m_hunger--;

7 }

8 };

9

10 class RedPanda : public Panda{

11 public:

12 int Feed() override {

13 Stomach *stomach = malloc(sizeof(Stomach));

14 memset(stomach, 0xFF, sizeof(Stomach));

15 }

16 };

17

18 void feedPanda(Panda *panda) static_memory {

19 panda->Feed();

20 }

21

22 int main(void) {

23 feedPanda(new RedPanda());

24 }

Listing 4.8: Example C++ program demonstrating inheritance. In
feedPanda, it is impossible to know statically which instance of the Feed

function will be called. Figure 4.3 shows the call graph for this program.

For this example we will continue to assume that there is a rule restricting indirect

calls from static_memory functions to dynamic_memory functions. In feedPanda we
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main feedPanda

Panda::Feed RedPanda::Feed

memset

malloc

Figure 4.3: Call graph for Listing 4.8. Because Panda::Feed is a virtual
function, we must draw an edge from feedPanda to every instance of Feed.

can see that we call Panda::Feed. This is somewhat misleading: Panda::Feed is a

virtual function and it is overridden by a child class called RedPanda. This means

that any time feedPanda is called, it is impossible to know whether it is Panda::Feed

being called or whether it is actually RedPanda::Feed being called. The only safe

way to handle this scenario is to assume that feedPanda calls both of them. This

is reflected in Figure 4.3 which is a call graph showing feedPanda pointing to both

versions of the Feed function.

4.4.2. Overriding Methods with Annotations

Just like with the standard C++17 type qualifiers, if a virtual function T.M is overrid-

den by S.M , then the qualified types of T.M and S.M must match exactly. Listing 4.9

contains an example of an override that is invalid according to the C++17 standard.

In this example, Panda::Feed has a const qualifier, but RedPanda::Feed does not.
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As such, the two functions have different types and the compiler will generate an

error.

1 class Panda {

2 public:

3 virtual void Feed() const;

4 };

5

6 class RedPanda: public Panda {

7 virtual void Feed() override;

8 };

Listing 4.9: Example C++ containing an error. Panda::Feed and
RedPanda::Feed have different types and so the override is invalid.

Funqual treats funqual direct type in the same way. For T.M to be overridden by

S.M , the two functions must have the same direct type. If they do not, funqual will

display an error. The Listing 4.10 shows a similar example of an invalid override but

where the direct type is the type in conflict.

1 class Panda {

2 public:

3 virtual void Feed() QTAG(static_memory);

4 };

5

6 class RedPanda: public Panda {

7 virtual void Feed() override;

8 };

Listing 4.10: Example C++ containing a funqual type error. Panda::Feed

and RedPanda::Feed have different types and so the override is invalid.
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4.4.3. Operator Overloading

C++ allows for operator overloading. As a result, an expression such as a = b + c;

could result in a function call depending on the types of a and b.

Compensating for this is relatively straightforward. When funqual comes across a

binary or unary operator that can be overloaded, it checks the type of the operand(s)

and checks for an operator overload. If there is an operator overload, then the call

graph will contain an edge from the calling context to the overload function. If the

overload is virtual, funqual checks for operator overloads in child classes as described

in Section 4.4.1.

4.4.4. Bridging the Divide between Translation Units

The compilation of C++ code is driven by translation units. Translation units are

the files which are provided to the C compiler to be translated into object files. In

general, translation units are singular .c or .cpp files including any source files that

may be #include-ed. During this process, many symbols are said to have external

linkage meaning that their type is specified in this translation unit but that their

value is not (this is the case with extern variables, function prototypes, and class

forward declarations). In these cases, examining the call graph of a single translation

unit is not sufficient to enforcing global call graph constraints because we would not

be able to see the calls made in other translation units which may be of interest for

enforcing indirect call restrictions.

To solve this problem we need to examine every translation unit in the source and

build a call graph that represents the entire codebase. In order to test this, we create

several test cases where functions are defined in multiple translation units and where

a function call graph constraint is violated between translation units.
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Chapter 5

IMPLEMENTATION

This section contains information about the funqual tool including a discussion of

how to use it, how it works, and what its limitations are.

5.1. Operation

Funqual is a tool that takes in C++ source code and a set of call graph rules and

outputs a list of rule violations, if any exist. Section 5.1.1 demonstrates how to anno-

tate C++ source code with funqual type qualifiers. Section 5.1.2 explains the syntax

for writing down rules in the rules file. Section 5.1.3 shows the syntax for running

funqual from the command line. Finally, Section 5.1.4 contains a few examples of

programs, rules files, and the output from funqual.

5.1.1. Function Qualifier Annotations with QTAG and QTAG IND

One of the goals of funqual was that it be entirely compatible with the C++17 stan-

dard. As such, funqual does not add any syntax to the language that would prevent

annotated programs from being used by other tools (such as gcc or cppchecker).

Additionally, any C++17 code that exists “in the wild” should be compatible with

funqual with no modification. To this end, we use the existing C++17 annotation

syntax to insert funqual type qualifiers.

For clarity and convenience we assume the following macros are in scope. These

macros abbreviate the syntax for inserting the direct and indirect type qualifiers into

program source. In practice, this macro can be inserted into the code alongside the

annotations or can be placed in a utility library:
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1 #ifndef FUNQUAL

2 #define FUNQUAL

3 // For direct type:

4 #define QTAG(TAG) \

5 __attribute__((annotate("funqual::" #TAG)))

6 // For indirect type:

7 #define QTAG_IND(TAG) \

8 __attribute__((annotate("funqual_indirect::" #TAG)))

9 #endif

Note that the attribute ((annotate(foobar))) syntax is generally used for compiler-

specific directives (like packed, align(8), noreturn, etc) and that attributes unknown

by the compiler are simply ignored. This allows us to insert information into the AST

that is available after parsing but which will not affect compilation.

Below is an example of the syntax for adding type qualifiers to a function. The

function below has two qualified types: static_memory and no_io.

1 int main() QTAG(static_memory) QTAG(no_io) {

2 return 0;

3 }

Below is an example of the syntax for adding type qualifiers to a method prototype

within a class. The function below has qualified type static_memory.

1 class Panda {

2 Panda() QTAG(static_memory);

3 };

Below is an example of the syntax for adding a type qualifier to a function pointer.

The function pointer below has qualified type static_memory.
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1 int QTAG(static_memory) (*func)(int, int);

Functions in the standard library can be annotated by simply repeating their

prototype and adding a type qualifier annotation. During the first phase of type

checking, funqual will scrape the entire codebase and determine the union of all type

annotations for each function symbol. In the example below, malloc has two type

qualifiers: dynamic_memory and blocking. Lines 1 and 3 could appear in the same

file or in different files. There is no limit to the number of type qualifiers that can be

applied to a function.

1 void *malloc(size_t size) QTAG(dynamic_memory);

2

3 void *malloc(size_t size) QTAG(blocking);

Function pointers must also be annotated with their indirect type. For a primer

on the rules regarding indirect type and function pointer assignment, refer to Section

4.2. Below is an example of a function pointer with the indirect type blocking.

1 int QTAG_IND(blocking) (*func)(int, int);

5.1.2. Constrain the World! Writing a Rules File

Call graph rules are inserted into special files called rules files. By convention, rules

files have the file extension .qtag but this convention is optional. Below is an example

of a rules file that shows a few examples of each rule type:

1 rule restrict_indirect_call static_memory dynamic_memory

2 rule restrict_direct_call nonblocking blocking

3 rule require_direct_call nonblocking nonblocking

This rules file contains three rules: restrict indirect call(static memory,
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dynamic memory), restrict direct call(nonblocking, blocking), and

require direct call(nonblocking, nonblocking). As shown in this file, there is

no process of declaring a type qualifier. They are brought into existence simply by

referencing them.

In addition to specifying rules in a rules file, funqual also allows the user to specify

additional function qualifiers in this file. In order to do this, the user must deter-

mine the clang Unified Symbol Resolution for the given symbol. This is a string

that uniquely identifies the symbol across all translation units - it contains more

information than the fully qualified name of the symbol because it needs to differen-

tiate between static symbols in different translation units and it needs to differentiate

between overloaded identifiers within the same translation unit. The Listing below

demonstrates the syntax for adding the dynamic_memory qualifier to the stdlib malloc:

1 tag c:@F@malloc dynamic_memory

5.1.3. Running Funqual

Funqual can be run from the command line. There are two kinds of arguments:

translation units and rules files. Arguments preceded by -t or --tags-file will be

interpreted as a rules file. All other arguments will be interpreted as translation

units. Funqual needs to be passed every translation unit in a project in order for it to

create a representative call graph for the codebase. Below is an example command for

running funqual. This command will pass in every .cpp file in the current directory

and any subdirectories and will also pass in a rules file called rules.qtag in the

current directory.

1 funqual *.cpp -t rules.qtag
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5.1.4. Example Output

Below is the output of running funqual on Listing 4.8. Not only does funqual detect

the presence of a rule violation, it also shows the exact sequence of calls that represent

the violation. This information helps the user know that their code contains a type

error and also helps the user to correct the error.

1 Rule violation: ‘dynamic_memory‘ function indirectly called from

‘static_memory‘ context

2 Path: main.cpp::main() (38,5)

3 -calls: main.cpp::RedPanda::Feed(int) (31,18)

4 -calls: main.cpp::(#include)::malloc(size_t) (466,14)

Funqual will, by default, output every illegal path in a program. This has the

potential to generate a lot of output for larger programs with many violations.

5.2. Practical Limitations

Because of complexities in parsing C++, certain applications of function pointers are

not currently checkable by funqual. Specifically, any expression where the lvalue or

rvalue in a function pointer assignment is anything other than a raw variable can not

be checked. Listing 5.1 shows a few examples of assignment expressions that funqual

cannot check correctly.
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1 void *(**array)(size_t size) QTAG(dynamic_memory);

2

3 //assignment not checkable because the array dereference in lvalue

4 array[0] = malloc;

5

6 struct {

7 void *(*field)(size_t size);

8 } structure;

9

10 struct structure s;

11

12 //assignment not checkable because of field dereference in lvalue

13 s.field = malloc;

14

15 void *(**arr)(size_t);

16

17 //assignment not checkable because of array dereference in rvalue

18 arr = array[0];

Listing 5.1: Examples of function pointer assignment expressions that are
not checked correctly by funqual

The difficulty here arises from determining the type of an expression using the

libClang API. Types containing function pointers can be annotated by inserting QTAG

and QTAG_IND annotations. Additionally, the type of any expression in the libClang

AST can be queried. However, the type returned by libClang when querying for the

type of an expression will not contain type qualifier annotations. In order to get

the type annotations for lvalues and rvalues in an assignment, funqual needs to look

up the declaration of the identifier and parse it. Types in C++ can be arbitrarily

nested and function pointers can be hidden within complicated types. In order to

limit complexity of the funqual tool, a decision was made that funqual would only

support assignments to and from raw identifiers.
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For the same reason, funqual does not support casting function types to coerce

them into having certain type qualifiers. When determining the type of the result

of a cast expression, libClang ignores the type qualifier annotations and so the cast

expression loses that information after parsing.
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Chapter 6

APPLICATION

This chapter demonstrates three real use-cases for funqual. In each section below, we

outline the application of funqual to a project, the constraint that funqual was used

to enforce, and the outcome of using funqual to check that constraint. Section 6.1 de-

scribes using funqual to prevent reentrancy errors in a class assignment for Operating

Systems at Cal Poly (CSC453). Section 6.2 describes using funqual to prevent use of

malloc and printf during boot-up of a custom kernel written in a class assignment

for Operating Systems 2 at Cal Poly (CSC454). Lastly, Section 6.3 describes using

funqual to prevent the use of potentially blocking calls in high frequency loops in a

robotics application.

All of these projects were developed before funqual existed, so funqual was not

used during the development cycle. The goal of this chapter is to demonstrate that

funqual can scale beyond small test cases and to demonstrate how funqual can be

used to address a variety of real-world issues.

6.1. Glibc Nonreentrant Functions

The GNU C Library Reference Manual warns against calling nonreentrant functions

from signal handlers [10]. A function which only accesses memory within its stack

frame is reentrant because it cannot be affected by external state. A function which

accesses heap, global, or static memory may be nonreentrant if that memory can be

modified by other execution environments. This includes functions which reference a

global datastructure (e.g. malloc) or grab a global lock (e.g. printf). Reentrancy is

a separate but similar concept to thread-safety; a reentrant function is thread-safe but
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a thread-safe function may not necessarily be reentrant. As an example, printf could

be considered thread safe because it locks the stream while writing to it. However,

if a call to printf is interrupted while it holds the lock and the interrupt handler

makes its own call to printf, then the interrupt handler will wait for the lock. Since

the code holding the lock cannot run until the interrupt handler finishes, the system

is in deadlock. This is bad — we would like to prevent this error as well as errors like

it.

Funqual can find and report this type of error. To demonstrate this, we take a

class assignment written for an Operating Systems class (CSC453) that uses signal

handlers, insert function type qualifiers, and create a rules file. The assignment was

to simulate a set of snakes crawling around the screen. Each time the user presses

control-C (creating a SIGINT signal), one of the snakes disappears. When the user

tries to kill the process (creating a SIGQUIT signal), the program makes each snake

disappear and then terminates. If a signal is sent during a call to a nonreentrant

function, that function is preempted by the signal handler; if the signal handler calls

that same nonreentrant function, this can result in undefined behavior.

To make funqual detect this issue, we use two type qualifiers: preemptive which

applies to signal handlers, and non_reentrant which applies to nonreentrant func-

tions. We also create one rule: restrict indirect call(preemptive, non reentrant).

Since many of the nonreentrant functions we are concerned about are in the C stan-

dard library, these functions are annotated as non_reentrant in the rules file. Listing

6.1 shows the rules file used. The list of functions tagged as nonreentrant is incom-

plete but represents the ones used in this program. In addition to tagging nonreen-

trant library functions in the rules file, the signal handlers in the code are tagged as

preemptive. Listing 6.2 shows the two lines that were added to the program source

to tag signal handlers.
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1 rule restrict_indirect_call preemptive non_reentrant

2

3 tag c:@F@malloc non_reentrant

4 tag c:@F@free non_reentrant

5 tag c:@F@printf non_reentrant

6 tag c:@F@fprintf non_reentrant

7 tag c:@F@sprintf non_reentrant

8 tag c:@F@rand non_reentrant

Listing 6.1: Rules file for preventing preemptive functions from calling
non reentrant functions. Since this rules file contains no references to
project-specific functions, the file could conceivably be re-used by several
projects.

1 void kill_snake() QTAG(preemptive);

2 void lwp_stop() QTAG(preemptive);

Listing 6.2: Lines inserted into C file to mark signal handlers as
preemptive.

The size of this project was 458 lines of code1 contained in five .c files with 40 edges

in the call graph. Funqual analyzed the source in about 0.9 seconds2 — 0.1 seconds

were spent in libClang parsing the source, 0.8 seconds were spent traversing the

AST to generate the call graph, 0.001 seconds were spent performing type inference,

0.000,01 seconds were spent checking the call graph, and 0.000,01 seconds were spent

checking assignments.

On the first run, funqual did not detect any call graph violations. In order to test

that the tool does actually detect errors, several illicit calls to printf were inserted.

After doing so, funqual correctly detected and reported these errors. Listing 6.3 shows

the output from funqual when run on this modified codebase.

1Line count achieved using the cloc utility not including comments or blank lines.
2Data collected on a T460 Lenovo Thinkpad with Quad Intel Core i5-6300U CPU at 2.4GHz.
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1 Rule violation: ‘non_reentrant‘ function indirectly called from

‘preemptive‘ context

2 Path: snakemain.c::lwp_stop(int) (68,14)

3 -calls: libLWP.c::get_init_context() (193,6)

4 -calls: libLWP.c::printf(const char *, ...) (362,12)

Listing 6.3: Output from funqual when run on a project that had manually-
inserted call graph violations

As seen in Listing 6.3, funqual successfully found a call graph violation that was

manually inserted into the program source. Additionally, funqual listed the loca-

tions in code where each call occurred between the preemptive and non_reentrant

functions.

6.2. Restricting API available during kernel initialization

Kernel development is complicated for a variety of reasons. One reason that makes

it particularly complicated is that not all of the standard libraries are available from

certain contexts in the kernel. Just like in Section 6.1, it would be a serious issue if

we were to call malloc or printf from within an interrupt handler. In addition to

that, we also need to ensure that these functions are not called before their associated

interfaces are initialized. As an example, the use of malloc depends on the page table

having been initialized, and so there are contexts within kernel initialization where a

call to malloc would be inappropriate. We would like to prevent this error as well as

errors like it.

To demonstrate how funqual can be applied to this problem, we take an assignment

for Operating Systems II (CSC454) where students develop their own simple x86 64

kernel, and augment it with function type qualifiers and a rules file. The kernel

consists of several subsystems that are each initialized in sequence. These subsystems,

in order, are: a VGA subsystem to display text on the screen, a PC2 subsystem
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to poll the keyboard and mouse for input, a subsystem to schedule interrupts and

register interrupt handlers, an interface to send and receive text over the system’s

serial interface, a memory manager to allocate physical pages and add them to the

page table, a scheduler to run multiple processes, and lastly a set of processes which

each draw a snake crawling around the screen like in Section 6.1. These subsystems

all depend on things in the previous subsystems. The keyboard subsystem depends

on the VGA subsystem to display the keys the user pressed, the physical memory

manager depends on the interrupt subsystem to listen for page faults, malloc depends

on the memory manager, and so on. It is very easy in the early stages of boot-up to

accidentally call a function in a subsystem that has not been initialized. Sometimes

these calls are hidden by a few edges in the call graph, making it hard for a human

to detect them.

To solve this problem, we use several type qualifiers: pre_vga, vga, pre_pc2, pc2,

pre_irq, irq, pre_ser, ser, pre_mmu, mmu, pre_proc, and proc. We also create rules

for each subsystem that prevent functions tagged pre_XXX from calling functions in

any of the subsystems that involve XXX. Listing 6.4 shows the rules file used to support

this.

The subsystems are initialized in the following order: VGA, PC2, Interrupt Re-

quest (IRQ), Serial, Memory Management Unit (MMU), and process manager (proc).

For each subsystem, there is an _init function which is called to set the subsystem up.

The _init function for each subsystem is annotated with pre_XXX for each subsystem

that it precedes. Listing 6.5 shows the annotations that were added to accomplish

this.
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1 rule restrict_indirect_call pre_vga vga

2 rule restrict_indirect_call pre_vga pc2

3 rule restrict_indirect_call pre_vga irq

4 rule restrict_indirect_call pre_vga ser

5 rule restrict_indirect_call pre_vga mmu

6 rule restrict_indirect_call pre_vga proc

7

8 rule restrict_indirect_call pre_pc2 pc2

9 rule restrict_indirect_call pre_pc2 irq

10 rule restrict_indirect_call pre_pc2 ser

11 rule restrict_indirect_call pre_pc2 mmu

12 rule restrict_indirect_call pre_pc2 proc

13

14 rule restrict_indirect_call pre_irq irq

15 rule restrict_indirect_call pre_irq ser

16 rule restrict_indirect_call pre_irq mmu

17 rule restrict_indirect_call pre_irq proc

18

19 rule restrict_indirect_call pre_ser ser

20 rule restrict_indirect_call pre_ser mmu

21 rule restrict_indirect_call pre_ser proc

22

23 rule restrict_indirect_call pre_mmu mmu

24 rule restrict_indirect_call pre_mmu proc

25

26 rule restrict_indirect_call pre_proc proc

Listing 6.4: Rules file for a simple kernel written for CSC454. The rules
written here are intended to prevent code which runs before a subsystem
is initialized from calling any function that depend on the subsystem.
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1 // for VGA subsystem

2 bool VGA_init() QTAG(pre_pc2);

3 void set_char_at(int row, int col, char character, char attributes)

4 QTAG(vga) QTAG(pre_pc2);

5

6 // for PC2 subsystem

7 void PC2_init() QTAG(pre_irq);

8 bool get_char(char *ret) QTAG(pc2) QTAG(pre_irq);

9

10 // for interrupt request subsystem

11 void IRQ_init() QTAG(pre_ser);

12 void IRQ_set_handler(int irq, irq_handler_t handler, void *args)

13 QTAG(irq) QTAG(pre_ser);

14

15 // for serial subsystem

16 void SER_init() QTAG(pre_mmu);

17 int SER_write(const char *buff, int len) QTAG(ser) QTAG(pre_mmu);

18

19 // for memory management unit subsystem

20 void MMU_pt_init() QTAG(pre_proc);

21 void *MMU_alloc_page() QTAG(mmu) QTAG(pre_proc);

22 void MMU_free_page(void *page) QTAG(mmu) QTAG(pre_proc);

23

24 // for multiprocessing subsystem

25 void PROC_init();

26 Process_t *PROC_create_kthread(kproc_t entry_point, void *arg)

27 QTAG(proc);

28 void PROC_run() QTAG(proc);

Listing 6.5: Lines inserted into C source for a simple kernel in order to
prevent subsystems from depending on interfaces not yet initialized.
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This project contained 6034 lines of C code spread over 36 files with 291 edges

in the call graph3. Funqual analyzed this source in about 2.2 seconds — 0.3 seconds

were spend in libClang parsing source files, 1.9 seconds were spent building the call

graph, 0.005 seconds were spent performing type inference, less than 0.000,05 seconds

were spent checking the call graph, and less than 0.000,05 seconds were spent checking

function pointer assignments.

Funqual did detect errors in this source. Listing 6.6 shows the output from running

funqual. According to this output, funqual detected several cases where a pre_ser

function called a ser function. Specifically, IRQ_init called printk which eventually

calls SER_write. printk in this project operates just like printf. The only difference

is that printk outputs to both VGA and to serial. This rule violation represents an

actual error that existed in the project which was not detected until funqual found it.

Ideally, SER_write just fills a buffer; this buffer is emptied when the serial port sends

an interrupt requesting data. However, if the serial interface isn’t operating, that

buffer might fill up causing the caller to block until space becomes available in the

buffer. If we had filled the entire 1024 character buffer before initializing the serial

interface, the kernel would have blocked permanently.

3Line count achieved using the cloc utility not including comments or blank lines. Many of
these lines were machine-generated.
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1 Rule violation: ‘ser‘ function indirectly called from ‘pre_ser‘ context

2 Path: src/IRQ.c::IRQ_init() (12,6)

3 -calls: src/io.c::printk(const char *, ...) (7,5)

4 -calls: src/io.c::print_char(char) (9,6)

5 -calls: src/main.c::SER_write(const char *, int) (7,5)

6

7 Rule violation: ‘ser‘ function indirectly called from ‘pre_ser‘ context

8 Path: src/IRQ.c::IRQ_init() (12,6)

9 -calls: src/io.c::printk(const char *, ...) (7,5)

10 -calls: src/io.c::print_str(const char *) (10,6)

11 -calls: src/main.c::SER_write(const char *, int) (7,5)

12

13 Rule violation: ‘ser‘ function indirectly called from ‘pre_ser‘ context

14 Path: src/IRQ.c::IRQ_init() (12,6)

15 -calls: src/io.c::printk(const char *, ...) (7,5)

16 -calls: src/io.c::print_long_hex(uint64_t, bool) (13,6)

17 -calls: src/io.c::print_str(const char *) (10,6)

18 -calls: src/main.c::SER_write(const char *, int) (7,5)

19

20 Rule violation: ‘ser‘ function indirectly called from ‘pre_ser‘ context

21 Path: src/IRQ.c::IRQ_init() (12,6)

22 -calls: src/io.c::printk(const char *, ...) (7,5)

23 -calls: src/io.c::print_decimal(int64_t) (14,6)

24 -calls: src/io.c::print_str(const char *) (10,6)

25 -calls: src/main.c::SER_write(const char *, int) (7,5)

Listing 6.6: Output from funqual when run on simple OS kernel

Observing the version history of this codebase tells the full story of how this bug

occurred. Initially, printk only printed to VGA. At that point in time, it was okay

to call printk from IRQ_init because printk only depended on VGA. However, at

some point a decision was made that printk should print to both VGA and serial.
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At this point, a simple modification was made to print_str without considering all

the ways that printk was used.

This sort of mistake is probably very familiar to many programmers and it might

exist for quite a while before presenting as an error. Imagine what the symptoms

would have been: the programmer would have added an extra printk to IRQ_init

and the programmer would have observed that the program hanged. Why did it

hang, though? In kernel development, there are a lot of things that could cause a

hang, but a simple call to printk might not be the first thing one would check. It

would take quite a lot of digging to go from printk to print_char to SER_write to

then see that the issue was there.

This situation really demonstrates the strength of funqual. The programmer can-

not possibly be cognizant of every location from which a function is called. What’s

more, the programmer is usually unaware of paths between functions, especially when

there are several levels of indirection in-between them. Letting the programmer ex-

press their intuition as hard-coded rules and using a tool to check those rules auto-

matically enables the programmer to be confident that errors like this don’t occur in

practice.

6.3. Detecting slow function calls in high frequency contexts

In robotic motion control, proper timing is paramount to good performance. In

industrial automation, control loops4 often run on special hardware with real-time

guarantees at several thousand cycles per second. Specialized hardware like this is out

of reach for robotics hobbyists, so we use general purpose hardware and GNU/Linux

4A control loop is an algorithm that measures some aspect of a system, calculates an output
vector, and applies that output vector in a continuous loop until the system reaches a desired state.
For example, a car’s cruise-control will measure the current speed, calculate how much gas to apply,
and apply that much gas in a tight loop. For each iteration, the process of taking input, calculating
output, and applying output is called one cycle.
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to achieve similar results.

Without the real-time guarantees of a specialized environment, it is very difficult

to maintain consistent control loops even at 100Hz. Part of the problem is that the

GNU/Linux “real-time” scheduler is subject to some minor jitter [2], but a lot of the

problem stems from the fact that some standard library functions are just too slow

to run in these high frequency contexts. Over years of troubleshooting slow control

loops, the software team at the Atascadero Education Foundation has created a list of

functions which are sometimes slow and should never be called in these high frequency

contexts. We would like a tool to statically check that these high frequency contexts

never call into functions in this list of slow functions.

We use funqual to find and report these issues. To do this, we use two type quali-

fiers: hi_freq to represent these high-frequency control loops, and slow to represent

those functions which should not be called from within a control loop. We also cre-

ate one rule: restrict indirect call(hi freq, slow) which tells funqual that hi_freq

functions should never call slow functions whether directly or indirectly.

An alternative approach which we abandoned because of increased burden on the

programmer is to use just one function qualifier, fast, and one rule, require direct call(

fast, fast), to require that each function marked fast only call other functions

marked fast. The issue with this approach is that functions would be guilty until

proven innocent — there are hundreds of library functions that we do use in control

loops without issue and each of these would need to be marked as fast before funqual

would accept them. This increases the adoption cost for this approach and requires

a lot of annotation. If we were more serious about guaranteeing close to real-time

performance, this approach would have been more appealing.

Listing 6.7 shows the rules file that was written to accomplish this. Several func-

tions from various libraries are tagged in the rules file as slow and there is one rule
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restricting hi_freq functions from calling slow functions. This is not an exhaustive

list of slow functions, but it is a representative subset of them.

1 rule restrict_indirect_call hi_freq slow

2

3 tag c:@F@malloc slow

4 tag c:@F@printf slow

5 tag c:@F@fprintf slow

6 tag c:@F@sprintf slow

7 tag c:@N@frc@S@CameraServer@F@GetInstance#S slow

8 tag c:@N@frc@S@DriverStation@F@GetInstance#S slow

9 tag c:@N@frc@S@Scheduler@F@GetInstance#S slow

10 tag c:@N@nt@S@NetworkTableEntry@F@GetInstance#1 slow

11 tag c:@N@nt@S@NetworkTable@F@GetInstance#1 slow

Listing 6.7: Rules file for preventing high frequency functions from calling
slow functions. Several functions from standard libraries are marked in
the rules file as slow.

In addition to creating the rules file which contains the rule and which marks

several functions as slow, we also modified several lines in the source to mark certain

functions as hi_freq. Listing 6.8 shows the lines that were added to the C++ source

file in order to achieve this. This is not an exhaustive list of high frequency functions,

but it is a representative subset of them.
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1 void CoopMTRobot::DisabledPeriodic() QTAG(hi_freq) override;

2 void CoopMTRobot::AutonomousPeriodic() QTAG(hi_freq) override;

3 void CoopMTRobot::TeleopPeriodic() QTAG(hi_freq) override;

4 void CoopMTRobot::TestPeriodic() QTAG(hi_freq) override;

5

6 static void *SPIGyro::Run() QTAG(hi_freq);

7

8 bool SmartPixy::getStart() QTAG(hi_freq);

Listing 6.8: Lines inserted into C++ source file to mark certain functions
as hi_freq.

This codebase is big, in large part because of all the libraries we depend on for

interfacing with sensors and actuators on the robot. In the interest of time we could

not check the entire codebase but rather we focused on the core libraries and the

subsystems containing control loops. The portion of the library that we checked

consists of 6959 lines of C++ code spread out over 42 files. The header files we

include from other libraries consists of 12,506 lines of code spread out over 145 files.

As such, analyzing these files takes a long time. Funqual analyzed the source in about

4 minutes — 24 seconds were spent in libClang parsing the source, 209 seconds were

spent traversing the AST building a call graph, 0.04 seconds were spent performing

type inference, 0.000,02 seconds were spend checking the call graph, and less than

0.000,005 seconds were spent checking function pointer assignments. The call graph

contains 11635 vertices and 5103 edges. Obviously due to the size of this project, it

takes a long time for funqual to traverse it all. Usually, projects using clang alleviate

this by doing incremental compilation — only the files which changed need to be

examined. Funqual does not currently support incremental linting (implementing it

is certainly possible but would take significant development time). If funqual did

support incremental linting, then the time to run funqual on the codebase would be

significantly reduced for most runs.
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Funqual found many errors in this codebase. Because the funqual output is so

large, the entire listing is not included here, but a representative portion of the output

is shown in Listing 6.9. Most of these errors relate to stray debug printfs inserted

into the code.

These calls were inserted for temporary debugging purposes and should definitely

be removed. Calls to printf sometimes block for up to a few milliseconds when the

output buffer gets filled and data needs to be copied somewhere else. When a loop

runs at 100Hz (10ms per cycle), a delay of a few milliseconds can slow the loop and

degrade performance. As such, these rule violations represent actual errors in the

source code which were found using funqual.
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1 Rule violation: ‘slow‘ function indirectly called from ‘hi_freq‘ context

2 Path: lib/sensors/SPIGyro.cpp::frc973::SPIGyro::Run(void *)

(60,18)

3 -calls: lib/sensors/SPIGyro.cpp::frc973::SPIGyro::ReadPartID()

(134,14)

4 -calls:

lib/sensors/SPIGyro.cpp::frc973::SPIGyro::DoRead(uint8_t) (92,14)

5 -calls:

lib/sensors/SPIGyro.cpp::frc973::SPIGyro::DoTransaction(uint32_t,

uint32_t *) (128,10)

6 -calls: stdio.h::printf(const char *__restrict, ...) (362,12)

7

8 Rule violation: ‘slow‘ function indirectly called from ‘hi_freq‘ context

9 Path: lib/sensors/SPIGyro.cpp::frc973::SPIGyro::Run(void *)

(60,18)

10 -calls:

lib/sensors/SPIGyro.cpp::frc973::SPIGyro::InitializeGyro() (67,10)

11 -calls: stdio.h)::printf(const char *__restrict, ...) (362,12)

12

13 Rule violation: ‘slow‘ function indirectly called from ‘hi_freq‘ context

14 Path: lib/sensors/SPIGyro.cpp::frc973::SPIGyro::Run(void *)

(60,18)

15 -calls:

lib/sensors/SPIGyro.cpp::frc973::SPIGyro::InitializeGyro() (67,10)

16 -calls:

lib/sensors/SPIGyro.cpp::frc973::SPIGyro::DoTransaction(uint32_t,

uint32_t *) (128,10)

17 -calls: stdio.h::printf(const char *__restrict, ...) (362,12)

Listing 6.9: Output of running funqual on robotics library. This is not the
entire output, but rather a small snippet of it
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Chapter 7

FUTURE WORK

Funqual is only a proof-of-concept and an exploration of user-defined call graph con-

straints. As such, it leaves a lot of work open for further exploration. This future

work generally falls into three categories: expanding the abilities of the funqual tool,

researching the impact that a tool like funqual could have during the development

cycle, and expanding the type system discussed in this thesis.

Funqual is unable to correctly check every program. The most striking issue

is the ability to check typedefs, array members, or struct members whose types are

annotated function pointers. Given the current libClang api, type checking these more

complicated expressions is difficult. At the moment, when querying an expression

in the clang AST to determine the expression’s type, attributes that were in the

declaration are not included. If these attributes were included, it would make querying

the funqual type of any arbitrary expression trivial since the funqual type is encoded

as an attribute. Future work could go into improving the implementation of funqual

as well as the libClang api.

This research lacks any form of usability testing. Funqual as a tool exists, and it

can check programs against arbitrary constraints, but we currently have no idea how

useful it is. How often do developers need to check constraints like these? How easy

is funqual for developers to use? Does a tool like funqual actually help developers

while they are developing software? How do we teach developers to think about

the call graph and about how to restrict it? Static Analysis tools exist to assist the

developer, so in order to apply funqual to real world projects, all these questions must

be answered. A good deal of future work could go into answering these questions and

into determining how we measure the value of a tool like this.
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The type system described in this thesis supports three types of constraints:

require direct call, restrict direct call, and restrict indirect call. There are with-

out a doubt many other rules that could be implemented. For example, we might

want to restrict the maximum stack depth reachable from a function (i.e. limit the

depth of the call graph that is reachable from a function as well as prevent recursion)

for situations where we need to limit how much stack space is used (e.g., when writing

an interrupt service routine that runs on a fixed 1Kb interrupt stack). Additionally,

funqual is set up to accept whatever input it is given from the user. It might be pos-

sible to infer certain things about the direct type of functions based on their content

or usage. For example, a function which references global, static, or heap memory

may be inferred to be nonreentrant; or a function that is registered as an interrupt

handler may be inferred to be preemptive. This would significantly reduce the load

on the programmer to insert these annotations manually. Any and all additions to

this type system just makes funqual and the concept of call graph constraint more

useful.

Clearly there is a lot of work that could be done on funqual. The idea that is

brought to life in this thesis is in its early infancy and needs to mature before it

is ready to compete with other methods of static analysis. More features need to

be added to the tool, metrics need to be created so that funqual can be properly

compared to other tools in its class, and the type system could be expanded to make

it more usable. A rich body of research could easily find its foundation herein.
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Chapter 8

CONCLUSION

In the beginning of this thesis, we demonstrated a certain type of error in C++ code.

The specific example was of printf, a non-reentrant function, being called from inside

a signal handler. This one simple problem was expanded to represent a whole class of

issues which were easy to describe but difficult to check using existing methods. To

solve this problem, we created a type system and a tool to enforce that type system.

Funqual turns program source into a directed call graph and gives the user a

syntax with which to encode their own constraints into this call graph. In this call

graph, functions are represented as vertices and function calls are represented as edges.

The constraints describe which functions are allowed to call which other functions, or

more abstractly, which vertices in the call graph are allowed to have paths to which

other vertices. Given this description of the problem, determining whether a program

follows these type constraints is algorithmically simple.

Chapter 4 formalizes these concepts. Section 4.2 describes rules for how func-

tion pointers are represented in this graph. Section 4.4 describes how special cases

like inheritance and operator overloading are represented in this graph. Finally Sec-

tion 4.3 formally describes the rules of the type system and provides some semi-formal

arguments that the type system described here is sound.

Chapter 6 takes funqual and applies it to three actual C++ projects to enforce

realistic constraints. The first application was a small program which demonstrates

funqual’s ability to detect re-entrancy errors in code that contains signal handlers.

This project did not originally contain any issues but funqual was able to detect

errors that were manually inserted. The second application was a small operating
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system kernel written for a class at Cal Poly which demonstrates funqual’s ability to

detect calls to functions before their associated subsystems were initialized. Funqual

found actual errors in this project that the author did not know about before analysis.

The third application was a robotics library with soft real-time requirements which

demonstrates funqual’s ability to detect inappropriate calls to slow functions. Funqual

again found actual errors in this project that the authors did not know about before

analysis. All three of these projects had different domain constraints that funqual

was used to enforce — the fact that funqual can correctly analyze and detect a variety

of issues shows the versatility of this tool.

Finally, Chapter 7 describes all the future research topics that could be pursued via

call graph constraint checking. Some of this future work revolves around improving

the tool funqual itself, some of this future work revolves around expanding the scope of

the type system, and some of this future work revolves around measuring the impact

that call graph constraints have on the development process. There are a lot of open

questions in this area. Funqual has been demonstrated to detect realistic bugs in

non-trivial projects; several of these bugs were unknown to the project authors before

analysis. This shows that the methods described here have considerable potential,

and that incorporating a tool like funqual into the project development cycle might

significantly reduce the occurrence of these types of errors. Measuring this impact

should be a focal point of future work.

Static analysis is a fun and interesting topic for research but it is not a purely

academic pursuit. The goal of funqual, and tools like it, is to help people write high

quality software. No single tool can possibly achieve this on its own, but with new

tools and new techniques more and more issues can be detected. Funqual on its own

may not have a huge impact on the development cycle, but at this moment the ideas

behind funqual are ready to be incorporated into the existing pantheon of C++ static

analysis tools.
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