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ABSTRACT

Strategic Selection of Training Data for Domain-Specific Speech Recognition

Daniel Girerd

Speech recognition is now a key topic in computer science with the proliferation of

voice-activated assistants, and voice-enabled devices. Many companies offer a speech

recognition service for developers to use to enable smart devices and services. These

speech-to-text systems, however, have significant room for improvement, especially

in domain specific speech. IBM’s Watson speech-to-text service attempts to support

domain specific uses by allowing users to upload their own training data for making

custom models that augment Watson’s general model. This requires deciding a strat-

egy for picking the training model. This thesis experiments with different training

choices for custom language models that augment Watson’s speech to text service.

The results show that using recent utterances is the best choice of training data in our

use case of Digital Democracy. We are able to improve speech recognition accuracy

by 2.3% percent over the control with no custom model. However, choosing training

utterances most specific to the use case is better when large enough volumes of such

training data is available.
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Chapter 1

INTRODUCTION

1.1 Importance of Speech Recognition

Speech recognition is gaining increased focus as voice-activated assistants and devices

become commonplace. It has become a highly-competitive market with many com-

panies offer a speech recognition service, especially for developers to use to enable

smart devices and services. Highly accurate speech recognition is essential for voice

interfaces.

Speech recognition is important for captioning. While mainstream TV and movies

have captions, most video content does not. Lack of captions means content is inac-

cessible to the deaf or use in no-sound conditions. With speech recognition able to

automatically transcribe most talking, it will make this content accessible.

Speech recognition has two clear use cases for many companies, even if they don’t

manufacture speech related devices or offer such services. First, it’s used in call

centers to generate transcripts and enable some automation. Second, it can transcribe

meetings and other conversations to reduce the need to take notes and enable better

record-keeping and collaboration.

1.2 Speech Recognition Difficulty

Speech recognition is a difficult, but valuable, task to automate. Researchers have

been working on automated speech recognition for decades. Speech recognition suffers

the problem that increasing accuracy doesn’t linearly scale with usefulness. Systems

that aren’t close to the high level of accuracy humans can perform don’t have much

value. This low value is because even one wrong word in a sentence can completely

change the meaning. Thus, if the average sentence length is 20 words, even 95%

accuracy would average an error in every sentence.
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1.2.1 Easier Tasks

Early research in speech recognition mainly focused on transcribing speech consisting

of people reading text passages aloud. This is considered the easiest type of speech for

speech recognition. After speech recognition systems started being able to perform

well on that task, research shifted to telephone conversations. Telephone speech is

fairly easy for speech recognition because only two people are talking, and rarely

at the same time. Also, there usually isn’t much background noise and people put

additional effort into speaking clearly on the telephone because they don’t have body

language to clarify misunderstandings. In recent years speech recognition systems

have approached human performance for these tasks [27].

1.2.2 More Difficult Tasks

However, the vast majority of human speech is not reading aloud or over telephones.

There is still significant improvement needed for the remaining, more difficult, tasks.

For many of these tasks there is domain-specific language used. Speech recognition

systems are based on having a vocabulary that they try to fit their transcription

to. Domain-specific language is unlikely to have been part of that vocabulary. Thus

speech recognition systems will have worse accuracy on domain-specific speech due

to missed words. Simply adding words from every domain isn’t feasible for speech

recognition systems because every vocabulary word added means another possible

result. The more possible results there are, the harder the speech recognition system’s

choice is.

1.2.3 Domain-specific Systems

There is an implicit assumption in the previous section. It assumes that a speech

recognition system can only have a single vocabulary. However, that assumption is

no longer limiting. While speech recognition systems used to take significant effort

by linguists and other human specialists to tune, state of the art systems now use

machine learning. Machine learning systems have the huge advantage of being able to

adapt to different tasks with minimal human effort. This is because machine learning

2



based speech recognition systems can perform all steps, from taking in training data,

to being ready for use, automatically.

This new flexibility enabled by machine learning automation is most valuable

for creating speech recognition systems for domain-specific speech. Being able to

dynamically create a speech recognition system for specific domains has the potential

to improve accuracy to the point where such systems become practical for standard

use. For a dynamic speech recognition system, the only manual role is picking what

training data to give the speech recognition system, which you don’t have to be a

linguist to do.

Thus, with the aim of improving accuracy in a domain with specific language, this

thesis examines legislative domain speech recognition. We experiment using a custom

language models trained on legislative speech with the Watson speech to text system.

Watson provided an excellent environment to test domain specific language models

by pairing them with a constant general model. We evaluated several hypotheses

about training data: training data most recent to the intended use, most specific to

the intended use, and randomly gathered across the total possible training data.

1.3 Contribution

This thesis evaluates choices of training data for use in training a speech recognition

system in a specific domain. First, we demonstrate if domain-specific training can

improve accuracy for that domain. If that is established, then we suggest strategy

to people choosing training data. We know that training data choice affects speech

recognition system accuracy. So, for optimal accuracy, an optimal choice of training

data is required. By evaluating the choices, we can recommend the best strategy for

choosing training data. Helping people make better choices in training data means

they should be able to achieve higher accuracy with their speech recognition systems.

3



Chapter 2

RELATED WORK

2.1 Judicial Domain

The most closely related work to this thesis is a project done in Europe to use auto-

mated transcription in the judicial domain. Part of the European Project, “Judicial

Management by Digital Libraries Semantics” aims to collect, enrich and share mul-

timedia documents, annotated with embedded semantic, minimizing manual tran-

scription activities [18]. They used a set of audio recordings which were taken in

the courtrooms of Naples and Wroclaw, during several trial sessions, and made avail-

able for ASR experiments. The project focused primarily on acoustic modeling, but

also included a language model. For the Naples courtroom the authors trained three

4-gram based language models. An out of domain model was trained on a corpus

mainly formed by newswire and newspaper articles and was 606 million words in

length. An in domain corpus was mainly formed by judicial proceedings of 25 mil-

lion words. Lastly, an adapted language model which weighs and mixes the 4-gram

counts of both the out of domain and in domain corpora was created. The authors

found that both the in domain and adapted language models gave similar results and

outperformed the out of domain model [18].

2.2 Transfer Learning

Machine learning typically uses training and test data from the same domain. How-

ever, in some cases gathering training data that matches the use case can be difficult

and expensive. Therefore gaining the ability to train from a related domain and then

be able to run on the target domain is valuable. This is considered a transfer of

using knowledge from one domain to a related one. For example, there might be an

abundance of training data on text sentiment for digital cameras, but what we want

is to classify sentiment for are food reviews. Transfer learning would allow training

in the domain with digital cameras for use in food review classification.

4



Transfer learning is a very active field having produced hundreds of academic

papers in recent years [26]. It is a developing field with new techniques continually

being tested. There are homogeneous techniques for instance-based, feature-based,

parameter-based, and relational-based information transfer. Also, there are heteroge-

neous transfer techniques with asymmetric and symmetric transformations. Transfer

learning systems can either do a one-stage process of simultaneously performing do-

main adaptation while creating the final classifier, or have two separate steps [26].

Transfer learning relates to this thesis in that the experiment baseline is only

using the general model without domain specific language. By adding domain-specific

language as a custom model to augment the general model this is in effect attempting

to transfer the general language understanding to the domain. However, this isn’t

considered transfer learning in a classic sense, because of the extensive overlap between

the general model and the custom model.

2.3 Machine Translation

Speech recognition is sometimes used with speech translation. Machine translation is

a major field and researchers are applying many similar machine learning techniques

as speech recognition to it. Machine translation is different from speech recognition in

that high quality domain specific machine translation systems are in higher demand

than general machine translation systems [4].

State of the art machine translation systems use neural nets to perform end-

to-end training of a translation system without dealing with word alignments or

translation rules (neural machine translation). There is significant research being

done into domain adaptation for neural machine translation. It can be done in a data

centric way using monolingual corpora, synthetic parallel corpora generation, and

out-of-domain parallel corpora [4]. It can also be done via model-centric approaches

which adjust the training object, system architecture, or decoding algorithm. This is

shown in Figure 2.1.

5



Figure 2.1: Options for domain adaption in neural machine translation [4].
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Chapter 3

BACKGROUND

3.1 Speech Recognition

In recent years, automated systems have reached or surpassed human performance

in certain speech recognition tasks. The tasks set for speech recognition tasks have

grown progressively more difficult, from limited tasks with a small vocabulary and

carefully controlled grammar, to carefully read newspaper speech [2], to Broadcast

News [11].

3.1.1 Conversational Telephone Speech

For the last 5 years, most focus has been on the latest standard of conversational

telephone speech. Conversational telephone speech “is especially difficult due to the

spontaneous (neither read nor planned) nature of the speech, its informality, and the

self-corrections, hesitations and other disfluencies that are pervasive [27].”

The largest and best studied conversation corpora are the Switchboard [10] and

Fisher [6] data collections. Transcription quality is typically scored by word error rate.

Human performance was rated at 4% word error rate on the task [17]. However, that

error rate did not include an actual source for this numbers. So a more recent paper by

Microsoft Research had professional transcribers do the Switchboard and CallHome

(CallHome is part of Fisher [5]) portions of the NIST eval 2000 test set, and got

results for Switchboard of 5.9% and CallHome of 11.3% [27]. This got IBM Research

to run their own human transcription test which returned 5.1% on Switchboard and

6.8% on CallHome [22]. These tests means it is currently up for debate if automated

systems have reached human performance. The best automated system as of March

2018, is CAPIO’s Conversation Speech Recognition System which achieved 5.0% on

Switchboard and 9.1% on Call Home [12]. These scores are shown in Table 3.1.

7



Table 3.1: Speech Recognition Word Error Rates for Conversational
Telephone Speech

Switchboard WER% CallHome WER% Type Paper

5.0 9.1 Automated [12]

5.1 6.8 Human [22]

5.1 9.9 Automated [16]

5.5 10.3 Automated [22]

5.8 11.0 Automated [27]

5.9 11.3 Human [27]

IBM speculated that the significant difference between the two sets, even though

both were conversational telephone speech, are due number of speakers and speaker

formality. Switchboard had fewer speakers, and speakers were strangers that spoke

in a more formal style compared to CallHome’s higher number of speakers, who were

family and spoke informally [22]. This demonstrates that not only does the type

of speech, such as earlier mentioned newspaper or Broadcast News, compared to

conversational telephone make a significant difference in recognition accuracy, but

also differences in the speakers themselves and the relationships between them.

3.1.2 IBM Speech Recognition

In 2016 IBM published a paper describing its English conversational telephone speech

recognition system [21]. This paper is referenced in Watson speech to text science

background section [15] and is likely similar to Watson’s system which has not been

published. The system is divided into acoustic and language sides.

On the acoustic side they use a score fusion of three models: recurrent nets with

maxout activations, very deep convolutional nets with 3x3 kernels, and bidirectional

long-short term memory nets which operate on bottleneck features. Recurrent neu-

ral networks have connections between nodes be a directed graph along a sequence,

which enables them to use their internal state for sequences of inputs. Using maxout

activations means that nodes are reduced by half by taking the higher of the pair.
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Convolutional neural networks use layers of neurons that feed forward, but are only

influenced by nearby neurons, such as in a 3 by 3 box. Classic convolutional networks

only have 2 layers, but very deep with 6-10 layers have been found to have better

performance. A long short-term memory neural network is where neurons have the

option to remember their value for an arbitrarily long period of time. This makes

them good for time sequence usage, such as how IBM uses them with subsequences in

an utterance. They use a small bottleneck regardless of the number of layers for the

utterances to help processing speed. IBM noted the long short-term memory neural

network did not provide additional gains beyonds the recurrent neural network and

very deep convolutional network, but they are continuing to experiment with it.

On the language side they use a 4-gram model with Kneser-Ney smoothing.

Kneser-Ney smoothing is a method that tries to eliminate noise by subtracting a

fixed value from less common terms to omit n-grams with lower frequencies. This

is done to each of the 4 corpora they are training with. The 4 component language

models are linearly interpolated and then entropy pruning is applied. Entropy prun-

ing removes n-grams that won’t affect the model’s results to reduce model size. This

resulted in a 4-gram language model consisting of 36 million n-grams, which was

combined with their acoustic model for use in their system.

3.2 Legislative Domain

Given time domains develop some of their own terminology and style. Whether it be

a subfield of chemistry or a category of video games. Sometimes they borrow from

adjacent domains. New terms are not necessarily new words, but new uses of existing

words. Speech in the legislative domain has many terms from law, as would be

expected due to the circular relationship of legislatures creating laws which lawyers

pick terms to use when talking about. The current difference is the legal domain

tends to use more terms from philosophers and political theorists, while legislatures

use more terms from sociology. One clear source of terms is the Supreme Court

since their word usage is carefully examined and matters for the legal and legislative

domains.

For example, legislatures use terms such as COLA (Cost of Living Adjustment),
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especially in states like California. Another example is engrossment: “The process of

comparing the printed bill to ensure it is identical to the original and to verify that

any amendments have been correctly inserted [3].”

3.2.1 California Legislature

California has a bicameral legislature with 80 members in the Assembly, and 40 mem-

bers in the Senate. It has two-year sessions. The majority of legislative discussions

take place in committee hearings where the testimony for and against bills are heard

before the appropriate policy committee. There are committees in each chamber, and

the most important are standing committees which meet on a regular basis through-

out the year.

3.3 Digital Democracy

Digital Democracy provides a free online platform which offers a searchable database

of state legislative floor sessions and committee hearings. Hearings have complete

and professional-level transcripts time tagged with their video. Users can search by

keyword, topic, speaker, committee, organization or date to find information they are

interested in [8]. As of June 2018, Digital Democracy covers the state legislatures in

California, New York, Florida, and Texas.

The primary unique work Digital Democracy does is the transcript creation using

a mix of automated and manual systems. These transcripts provide a large amount

of legislative speech suitable for use in training speech recognition systems. They also

are a use case of speech recognition because they try to create these transcripts at

minimal cost while maintaining quality. As speech recognition systems can do more

of the work, expensive human completion and quality checking is needed less.

Digital Democracy granted access to their MySQL database which provides the

data for this thesis. Appendix B gives details about working with that data. It

describes the tables accessed, and lists queries used to retrieve data.
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3.4 Tools

This thesis relies on several tools for conducting its experiment. The primary tool is

the Watson Speech to Text system [13]. To prepare audio before speech recognition

ffmpeg [9] is used, and after speech recognition for scoring results Sclite [19] is used.

3.4.1 Watson

Part of IBM Cloud, Watson Speech to Text is a service that takes audio input and

returns text output [13]. Watson can transcribe Ogg or Web Media (WebM) audio

with the Opus or Vorbis codec, MP3 or MPEG, Waveform Audio File Format (WAV),

Free Lossless Audio Codec (FLAC), Linear 16-bit Pulse-Code Modulation (PCM),

mu-law (or u-law) audio, and basic audio. Watson has broadband and narrowband

models for audio that is sampled at a minimum rate of 16kHz or 8kHz respectively.

Watson can take as input up to 100 MB of audio to the service as a continuous stream

of data chunks or as a one-shot delivery, passing all of the data at one time. Watson’s

100MB limit is roughly 45 minutes of audio in the input format of mono, 16KHz,

FLAC.

The service was developed with a broad, general audience in mind. The service’s

base vocabulary contains words that are used in everyday conversation. The general

model provides sufficiently accurate recognition for a variety of applications, but it

can lack knowledge of specific terms that are associated with particular domains.

Watson has a language model customization interface which lets the user improve

the accuracy of speech recognition for domains such as medicine, law, information

technology, and others. This is done by allowing the user to create a custom language

model to expand and tailor the vocabulary of the base model to add domain-specific

terminology, such as legislative terms [3].

A custom language model is created by adding corpora. These are plain text

documents that use terminology from one’s domain. Watson building vocabulary

for a custom model by extracting terms that do not exist in its base vocabulary.

The service’s accuracy is improved by using corpora to provide as many examples as

possible of how domain-specific words, which they call out of vocab words, are used in
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the domain. The more sentences added that represent the context in which speakers

use words from the domain, the better the service’s recognition accuracy. Watson

processes words including information about n-grams, so it is useful for the corpora

to use words repeatedly in different contexts.

3.4.2 HTTP REST API

For utilizing Watson it provides a websocket interface, HTTP REST interface, and

asynchronous HTTP interface. This thesis uses the HTTP REST interface. The

interface is used by sending HTTP requests that provide commands to the service.

In their documentation and this thesis, cURL is used for sending the requests [14].

Commands use the appropriate HTTP Verb such as GET for updates, POST to tell

instructions and upload files, and DELETE to delete components.

3.4.3 FFmpeg

FFmpeg is “a complete, cross-platform solution to record, convert and stream audio

and video [9].” It provides extensive options to manipulate audio and video files. It

can be run in a shell on the command line. For this thesis it is used to extract audio

from videos and convert its format.

3.4.4 NIST Sclite

Sclite is part of the National Institute of Standards and Technology’s Speech Recog-

nition Scoring Toolkit (SCTK) [19]. It is a tool for scoring and evaluating the output

of speech recognition systems. The program compares the hypothesis text output by

the speech recognizer to the correct reference text. After aligning the texts and com-

paring, statistics are generated during the scoring process. Several types of reports

can be output which summarize the performance of the recognition system.
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Chapter 4

EXPERIMENT PROCESS

What training data is best for a Watson custom language model? The training data

that causes the most accurate transcription results is best. This thesis’s experiment

evaluates hypotheses of training data choice.

4.1 Selecting Hypotheses

First, we must come up with testable hypotheses. We can consider a hypothesis

testable if we can gather training data for it.

4.1.1 Available Information

For a hypothesis to be useful for a dynamic speech recognition system, it must be

able to be used to create a model with only information available at the time it will

be used. For our use case, what do we know the night before a hearing, so that a

model can be trained and ready to transcribe.

The main piece of information known is what committee is hosting the hearing,

unless it is a floor session. There is sometimes an agenda for a hearing listing bills to

be discussed, but not always and they may not stick to the agenda. From knowing

the committee we also know which members are on that committee.

4.1.2 Recent Hypothesis

Another angle to think about is what prior discussion will be similar to what will be

discussed. When training Watson in this legislative style it should be trained with

data that closely matches what it will be used to transcribe. Without reliable agendas

a good predictor of what will be discussed may be what was recently discussed. There

tends to be trends in the legislature about what is popular, often in keeping with what

has public attention at the moment. This might be issues such as health care or gun
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control. There are also periods of time before deadlines when topics are frequently

discussed such as the budget. This suggests the hypothesis of recent discussion as

being good training data.

4.1.3 Specific Hypothesis

Since we know what committee is hosting the hearing we can look at its older discus-

sion which might be similar. Since committees have a specific topic, there might be

the most similarity by training on what that committee has said previously.

4.1.4 Random Hypothesis

However, what if these two hypotheses are too focused? Maybe training data should

be broadly gathered to make it more representative. By selecting data at random

we can avoid biases or assumptions.

4.1.5 Training Data Sizes

One assumption beyond those choices that we should test is if more training data

is always better. Larger training data set sizes means longer to gather, upload, and

train. While the general trend in machine learning is more data is better, that might

not be the case here. What if a certain subset of the training data is more helpful than

the rest, which is just diluting its value? For example, with the recent hypothesis,

maybe only the last week is of high value and older than that is no different than

random. To test this we can add 3 hypotheses, with each being the same as described

above, except with a smaller training data size. Since Watson’s training data size

limit is 10 million words, a smaller size of 10%, so 1 million words, seems reasonable.

This brings us up to 6 models.
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Table 4.1: Hypotheses and Models

Hypothesis Model

Recent Recent 1

Recent Recent 10

Specific Specific 1

Specific Specific 10

Random Random 1

Random Random 10

Control No Model

Finally, there is the option of not having training data and only using Watson’s

general model. Each of the above models can be compared against this control. We

expect this to quantify how much better they are. In contrast, the experiment’s

null hypothesis is, models perform the same or worse when compared to the con-

trol. Though we expect models to perform better than the control, not worse. All

hypotheses and their corresponding small and large models are listed in Table 4.1.

4.2 Choosing the Test Set

To choose the test set, the first decision is how large the test set should be. Longer

is better for more data and due to the automated nature of the experiment adding

length doesn’t add much work. However, this is experiment isn’t funded so the length

is bound by the limits of the Watson trial. To fit the 6 hypotheses and baseline into

the 15 hours of the trial the test set could be 2 hours which would still leave a 1 hour

margin for an initial test video to check for bugs in the process.

With a two hour duration decided, the next question is what content should be

in the test. The selection should be representative of the data set and useful for

testing the hypotheses. Committee hearings make up the vast majority of audio, in

California in 2016 the breakdown was approximately 84% of committee hearing audio

and 16% of floor session audio. Therefore the test should be of committee audio.
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4.2.1 Choosing the Committee

There are hundreds of committees and we can choose one or more for the test set.

While including many different committees in the test set would make it more rep-

resentative, it would make it more difficult to choose training data for the specificity

hypothesis. By choosing one committee then it is clear to gather training data from

that committee for the specificity hypothesis. However, individual committees may

not have much data, so the one chosen should be the one with the most data.

Before querying two limits were decided on. First, only California committees

would be considered since while Digital Democracy also has many hours of New York

committees, their audio quality is significantly worse, which would mean poorer re-

sults that reduce distinction between models. Second, a recent date was picked which

had finished transcripts and all data must come from before then. Since California

legislature was in session during the experiment if a date had not been picked then

the code wouldn’t have been reproducible since different videos would be picked after

each update.

For each California committee the sum of the duration of its hearings before May

1st 2018 was calculated. The SQL queries for gathering information on committees

are listed in Appendix B.2.

Once we get the total duration of each committee we put them in a table and

sorted by duration. Since the Digital Democracy database considers floor sessions as

a committee they topped the list. Then we look for which committee has the most

hours when its hours for both sessions were combined. This was the Senate Standing

Committee on Education which had 91 hours in the 2015 session and 83 hours so far

in the 2017 session, totaling 174 hours.
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Table 4.2: Top California Committees by Hours Recorded

Name Session Hours

Senate Floor 2015 295

Assembly Floor 2015 260

Senate Floor 2017 204

Assembly Floor 2017 198

Senate Budget Subcommittee No. 3 on Health and Human Services 2015 107

Assembly Budget Subcommittee No. 1 on Health and Human Ser-

vices

2017 101

Senate Budget and Fiscal Review Subcommittee No. 3 on Health

and Human Services

2017 99

Senate Standing Committee on Education 2015 91

Senate Standing Committee on Transportation and Housing 2015 90

Assembly Budget Subcommittee No. 2 on Education Finance 2017 87

Senate Standing Committee on Education 2017 83

Senate Standing Committee on Health 2015 81

Assembly Standing Committee on Health 2015 80

Senate Standing Committee on Public Safety 2015 73

4.2.2 Gathering the Test Set

The most recent two hours of audio from the committee need to be gathered. The

committee id from the 2017 session is used to to get the file ids of videos from its

hearings before the date. To have a consistent result the query must be sorted by

both date and duration since multiple videos can happen on the same day. The SQL

query for gathering the test set is in Appendix B.3.

By sorting by date descending we know the top of the results list is the most

recent. So we can work down the list downloading each file and tallying its duration.
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To get the duration we use FFmpeg which outputs the video duration.

Once we know we have reached the two hour duration it’s time to extract the

audio from the videos. For the last video we only want to extract up to the 2 hour

limit so we set a duration limit for that file when extracting. While extracting the

audio it is convenient to also convert to the format Watson wants. This means making

the audio mono with the -ac 1 option and setting it to 16kHz with -ar 16000. We

choose the flac audio format due to its use in the Watson documentation example,

and its small size while being lossless.

We now have the test set audio ready for use. The two hours ended up being 4

files with the final one cut to about 5 and a half minutes. For the remainder of this

thesis when an individual file is referenced the first two letters of the file id will be

used for identification (af, 1c, cb, 9d).

Table 4.3: Files in Test Set

File File Id Duration (min:sec) Words

af af6990e06fcef1c49ddbb58c24deb632 21:35 3275

1c 1ce019dc5834fae16a802e38c65523b7 43:28 6388

cb cb0d87aa2cfeaab3acf4b636e9d5153c 49:17 5240

9d 9d2358ce73664c6276617042556e8e29 5:37 740

You can watch and listen to these files by using the following url. Replace both

{file id} with a File Id from Table 4.3. https://videostorage-us-west.s3.amazonaws

.com/videos/{file id}/{file id}.mp4

4.3 Gathering the Training Data

Gathering the training data is done by querying the Digital Democracy database

for a set of appropriate utterances. They are ordered according to the hypothesis

and written to that hypothesis’s training data file. Each utterance is written on its

own line, as the Watson documentation recommends. At the point when writing an

utterance would push the word count over the limit the writing stops. Python’s re
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package is used with regex word matching to count the number of words in each

utterance. All utterance texts are converted to ASCII when pulled from the database

because Watson can’t handle some special characters that are in the database.

4.3.1 Random Training Data

To get random utterances we gather all utterances from CA before the date and then

shuffle then. By ordering by utterance id and using a set seed this can be reproducible

consistently. The SQL query for gathering the random training data is in Appendix

B.5.2.

4.3.2 Recent Training Data

To get recent utterances we gather all utterances from CA before the date and order

them by date descending so the most recent ones are first. The SQL query for

gathering the recent training data is in Appendix B.5.1.

4.3.3 Specific Training Data

To get utterances specific to the Senate Standing Committee on Education we use

its committee ids of 50 and 583 for the 2015 and 2017 sessions, respectively. Since

the Hearing table doesn’t identify the committee, the CommitteeHearings table must

also be joined. The utterances are limited by being before the date and ordered by

date descending so the most recent ones are first. That ordering matters for the

smaller specific training data set, and while it could be random rather than by date,

we picked by date for the same reasoning as the recent hypothesis. The SQL query

for gathering the specific training data is in Appendix B.5.3.

4.3.4 Training Data Size

While Watson’s training data limit of 10 million words was reached by recent and

random hypotheses, the specific hypothesis’s total words was only 1.5 million. This

means it won’t be able to be conclusively compared against the recent and random
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hypotheses at the large training data set size level. All training data sizes are in Table

4.4.

Table 4.4: Training Data Sizes

Hypothesis Words in Small Set Words in Large Set

Random 999,941 9,999,999

Recent 999,976 9,999,961

Specific 999,979 1,585,324

4.4 Using Watson

Once the test audio and training data are gathered, then Watson Speech to Text

service is used. We use it through the sessionless HTTP REST interface by sending

cURL commands. The cURL commands are listed in Appendix C. Watson customiza-

tion steps are creating, filling, and training the models. This is done 6 times, which

is the number of models being tested. The final Watson step of transcription is done

7 times because it is done with each model as well as without any custom model.

4.4.1 Creating the Models

First, a request is sent to Watson to create a model, with the model name and de-

scription passed to it. It is implied that we’re using the default Watson general model,

en-US-BroadbandModel. When successful, Watson replies with the customization id of

the newly created model, which we store in a file for safekeeping. The cURL command

for creating a model is in Appendix C.1.

4.4.2 Filling the Models

Then the training data is sent to Watson for each model. Watson takes several

minutes to process the file, and notes all of the words not in its general dictionary.

These are called out of vocab words, and are typically domain-specific. In this case
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that means legislative language, such as ‘AB’ or ‘SB’ bill designations. The cURL

command for filling a model is in Appendix C.2.

4.4.3 Training the Models

Once the filled models have finished being analyzed by Watson then they can be

trained. The training command is sent to Watson for each model which takes from a

few minutes to half an hour to train. The cURL command for training a model is in

Appendix C.3.

4.4.4 Transcribing with the Models

After the custom models are trained then transcription can begin. Variations of

this command will be sent to Watson 28 times since there are 4 test files and the 6

models plus no model. The first argument for this command is the customization id to

indicate which custom language model to use, or this can be left out to use no custom

language model. Smart formatting tells Watson to convert strings of dates, times,

and numbers into their conventional representation. Inactivity timeout set to -1 tells

Watson to never timeout if there are periods of silence. The profanity filter is set to

false because Digital Democracy transcripts include profanity, though it is extremely

rare due to the legislative setting. Finally, timestamps are set to be included. The

cURL command for transcription is in Appendix C.4.

The transcription results are set to be put into a json file for later processing. For

each request, per audio file and model, Watson takes roughly double the duration of

the audio file to process. Thus, the transcribing totaled over 50 hours to run.

4.5 Evaluation by Word Error Rate

Evaluation is done by comparing the transcripts generated by each model, called

hypothesis files, against the verified correct transcript, called the reference file. The

standard comparison measurement for speech recognition tasks is word error rate.

Word error rate is the sum of insertions, deletions, and substitutions divided by
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the total number of words in the reference file, times 100. Calculating word error

rate is difficult because it relies on the lowest number of insertions, deletions, and

substitutions.

4.5.1 Sclite and Trn Format

We use the NIST Sclite tool which calculates insertions, deletions, substitutions using

a dynamic programming approach. Sclite can compare several formats, and we picked

the simplest one, trn, to use. Trn format has each utterance on its own line with the

utterance’s id at the end of the line in parentheses. Trn can also handle speaker

identification in the parentheses with the utterance id, but that isn’t used.

4.5.2 Creating the Reference Transcript

To create the reference transcript, utterance text, start time, end time, and id were

queried from the Digital Democracy database for each file in the test set. The text

was converted to ASCII match the text sent to Watson because of some non-ASCII

characters Watson can’t handle. Only utterances in the files whose start time was

less than the length of the file were collected. This limit only mattered for File 9d

which was cut in order to have the two hour total test set. The result was ordered by

time to make alignment with Watson results easier. The results from the query were

written to a file, for each file in the test set, in trn format.

Listing 4.1: Utterances from reference transcript file cb in trn format

Casey Elliot on behalf of the City of Santa Ana in support. (32919351)

Erika Hoffman on behalf of the California School Board’s Association also

in support. (32919352)

Thank you. (32919353)
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4.5.3 Creating the Hypothesis Transcripts

The 7 hypothesis transcripts were created from the json file outputted by Watson.

The json was walked through one word at a time.

Each word was written to the file until the word’s start time was after the end

of an utterance. In that case the utterance id was written in parentheses and then

the word was written on a new line. Also, the utterance counter was incremented to

know the next utterance was reached.

Listing 4.2: Utterances from Specific 10 hypothesis transcript file cb in
trn format

1 up on behalf of the city of Santa Ana (32919351)

2 and support Erika Hoffman on behalf of the California school boards

association also in (32919352)

3 support thank (32919353)

Unfortunately the Digital Democracy data only has accuracy to the second, which

causes alignment errors most commonly when a word is said during the last second

of an utterance. Watson returns word timestamps to hundredths of a second, and

most words are said in less than a second. In line two above, “and support” which is

actually “in support” got aligned to the following utterance because they were said

during the last second.

uid, time, endTime, CONVERT(text USING ASCII)

32919351, 1014, 1017, Casey Elliot on behalf of the City of Santa Ana in

support.

32919352, 1020, 1023, Erika Hoffman on behalf of the California School

Board’s Association also in support.

32919353, 1023, 1024, Thank you.

["and", 1017.01, 1017.14], ["support", 1017.14, 1017.55]

["in", 1023.0, 1023.09], ["support",1023.09,1023.53], ["thank

",1023.93,1024.14]
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Making alignment greater than or equal to utterance end time would help in

that situation, but cause more problems. Often Digital Democracy utterances end

and have the next one start on the same second. In that case the first word or

two in the utterance would likely be put in the previous utterance. In the example

above, utterance 32919352 ends at 1023 and utterance 32919353 starts at 1023. While

“support” starts at 1023.09 and would be moved up correctly, so would “thank” which

starts also in 1023 at 1023.93 and is in the correct utterance this way.

4.6 Running Sclite

Once the trn files for each model are created, all that’s left is to run Sclite for the

results. Sclite is run for each model with its result file (hypothesis file) compared to

the Digital Democracy reference file. This means Sclite is run 28 times, due to the 6

models plus no model and 4 files. Sclite outputs raw and percentage summary results

to the screen. Details on running Sclite are in Appendix A.1.
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Chapter 5

RESULTS

5.1 Characterizing our Files

Before looking at model word error rates, we check our files for unexpected data.

Since outliers here might affect the word error rates. Some of these will be mention

them in Section 5.4.1 when looking for correlation with word error rates.

5.1.1 Utterance Length Averages

We calculated average words per utterance for each file. Two files have a lower ratio

at about 32 words per utterance, while the other two files have a higher ratio at about

42 words per utterance.

Table 5.1: Average Number of Words per Utterance for each File

File Average Words

9d 32

1c 42

af 43

cb 33

5.1.2 Parts of Speech

The Natural Language Toolkit (NLTK [20]) is used to count tokens and ratios of

interesting parts of speech. Note tokens include not only words, but also punctuation

and other symbols. The ratios are displayed in Table 5.2. Two outliers stood out. In

1c there are fewer proper nouns. From reading the transcript and comparing against

the others we notice that this transcript has a higher ratio of committee members

speaking over members of the public. Members of the public tend to frequently ref-
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erence organizations, which are proper nouns, to enhance their perceived influence.

The other outlier is in cb are far fewer plural nouns. This transcript includes sig-

nificant testimony by Vietnamese-Americans using simple or grammatically incorrect

English. Also, they are mainly testifying for themselves rather than on behalf of an

organization.

Table 5.2: Part of Speech Frequencies per File

File Tokens Singular Nouns Plural Nouns Proper Nouns Numbers Verbs

1c 7522 10.4% 4.6% 4.3% 0.9% 18.0%

9d 888 10.9% 5.2% 10.5% 1.1% 14.5%

af 3871 12.4% 5.2% 9.7% 2.1% 14.5%

cb 6218 10.1% 2.6% 12.0% 1.5% 14.2%

5.1.3 Unique Words

We would expect more unique words per file for longer files. However, as the word

count increases, we would expect a slower increase in unique words. Our files matched

this expectation, and you can see in Table 5.3 that longer files have more unique words,

but lower percentage of unique words. This is percentage is sometimes referred to as

token to type ratio.

Table 5.3: Unique Words per File

File Words Unique Words Percentage Unique

9d 792 340 42.9%

af 3378 957 28.3%

cb 5405 1140 21.1%

1c 6644 1190 17.9%
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5.2 Out of Vocab Words

In the introduction we discussed adding words to speech recognition systems’ vocab-

ulary. While IBM does not publish the vocabulary Watson uses, we can find out what

words our training data adds for each model. Watson calls these new words added

“out of vocab words.”

Both the large and small models followed a similar pattern per hypothesis. Models

using the random hypothesis found the most out of vocab word words. Recent didn’t

find as many. Specific found significantly fewer.

Table 5.4: Out of Vocab Word Counts per Model

Model Out of Vocab Words

Random 10 15441

Recent 10 13297

Specific 10 2556

Random 1 2428

Recent 1 2151

Specific 1 1634

5.3 Sclite Results

Sclite outputs results on a per file basis. An example Sclite results output in shown

in Figure A.1. Appendix A has tables of Sclite output for all files.

To get a total word error rate for each model we summed the word errors in each

test set file and divided it by the total words of the test set. This gave the results

shown in Figure 5.4. In addition to word error rate, Sclite gives utterance error rate.

This was identical for all files at 100%. No file had a single perfect utterance. Which

we suspect is due to relatively few short utterances in the test set, and errors along

utterance boundaries.
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5.4 Hypothesis Scores

Since a lower word error rate is better, no model performed the worst at 54.4%.

Small recent and random models made the least improvement with scores of 52.9%.

The small specific model did better than the other small models with a score of

52.4%. For the larger models recent did best at 52.1%, beating random which scored

52.2%. Large specific was last at the large level at 52.3%, but remember that it was

significantly smaller. This suggests that if there were more specific training data it

might have performed best.
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5.4.1 Scores by File

It is worth noting that there was large variance in word error rate between files in

the test set. When using a custom model file 9d averaged only 36.2% error rate, file

af was close at 37.5%, whiles file 1c and cb were much worse at 49.8% and 67.5%,

respectively.

At first glance file size might seem significant since the smallest file scored best.

However, the second smallest file, which is several times larger, scored nearly as well,

and the largest file wasn’t worst.

When going through the transcripts what is notable is that the worst two files,

1c and cb, both have some foreign language utterances as Spanish speakers testified

at the hearings. This likely has some significance since Watson uses an English-only

model, and future work should try filtering foreign language out. It was left in for

this experiment to be representative of speech in the California legislature.

Non-native speakers could have influenced the error rate in file cb. We found in

Section 5.1.2 simpler or grammatically incorrect English testimony by Vietnamese-

Americans.

Another factor to consider is utterances verses words. It was noted earlier that the

lack of precision in Digital Democracy’s utterance boundary times can cause errors.

Therefore if a file has more short utterances it might have a higher error rate. The

files’ average words per utterance is about 32 for 9d and cb, while about 42 for 1c

and af. These pairings don’t match the lower and higher word error rate pairings, so

this was likely not a significant factor in error rates.

Similarly, when we look at the particular characteristics of the texts in terms of

parts of speech per file, no clear correlation is seen.
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Table 5.5: Scores on Individual Files for Each Model

File Words None Rand 1 Rand 10 Rec 1 Rec 10 Spec 1 Spec 10 Avg

9d 740 38.4 36.4 37.2 37 35.4 36.1 35.1 36.2

1c 6388 50.9 50.2 49.7 50.3 49.5 49.5 49.4 49.8

af 3275 41 37.8 37.4 37.4 36.9 37.6 37.4 37.5

cb 5240 69.2 68 66.7 67.9 67.1 67.7 67.6 67.5

5.5 Statistical Significance

An experiment has statistical significance when it is very unlikely to have occurred

given the null hypothesis. Statistical significance is used when an experiment draws

samples from a population. Our null hypothesis is that models will perform the same

or worse than the control. Our population is the word error scores of possible tran-

scriptions for the test set using no model. Our samples are the word error scores of

transcriptions on our test set using our models. For our samples to be statistically

significant, they must be very unlikely to have resulted from the control. However,

to get a distribution of possible results from the control we would have to run more

experiments. Without doing that we cannot state our results are statistically signifi-

cant.

Without stating statistical significance, we can still look at our data to see how

much of a gap there is between the control and our models. Our samples had 15,643

words in them. The control had 8,502 word errors while the samples ranged from

8,272 to 8,144 word errors, shown in Table 5.6. That 230 word errors gap is about

2.7% of the control errors. So, if it is likely that number of word errors from a control

could vary as much as 2.7% then our experiment wouldnt be statistically significant.

However, since none of our models varied from the control by more than 2.3%, we

think 2.7% variance is very unlikely, and thus our results are worth considering.
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Table 5.6: Word Errors per Model

Model Word Errors

Control 8502

Random 1 8272

Recent 1 8270

Specific 1 8203

Specific 10 8181

Random 10 8171

Recent 10 8144
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Chapter 6

CONCLUSION

As speech recognition is integrated into an increasing number of products and services

it is only going to become more important. As it spreads there are many newly feasible

tasks, such as for transcribing legislative hearing. Tasks like this have a rare language

style specific to their domain. In order to maximize speech recognition systems’ use

in these areas they must have high accuracy which means understanding domain-

specific language. Recent machine-learning based speech recognition systems make

feasible creating speech recognition systems for each domain. Such a dynamic speech

recognition system only needs domain-specific training data before it can be used.

To contribute towards creating dynamic system with high accuracy we looking

at the legislative domain using a custom language model with the Watson speech to

text system. Watson provided an excellent environment to test only domain-specific

training data due to allowing a separate custom language model from a constant

general model. We evaluated hypotheses about training data that is most recent to

the intended use, that is most specific to the intended use, and that is randomly

gathered across the total possible training data.

Our experiment found that using a custom language model to augment the general

model reduced word error rate by at least 1.5%. At a smaller training data size, using

training data most specific to the use case performed best with a word error rate of

52.4%, which is 2% better than the control with no model. For the larger models

we found using training data that was most recent to the test set performed best at

52.1% word error rate, though this was only a 0.1% improvement over the random

training data model which scored 52.2%. Large specific was last at the large level,

but it was still fairly close at 52.3%. Since it was this close despite it not being the

full training data size, this suggests that if there were more specific training data it

might have performed best.

Researchers and developers can take from this that it is worth gathering domain-

specific training data for non-general speech recognition uses. They should try to
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gather information that is specific and recent to the intended use for better accuracy.

6.1 Future Work

Several choices were made during this experiment, and each of those are grounds for

future experiments. For example, the random model was made from randomization

at the utterance level, it could also be done at the video or hearing level. We’d like to

see more done with the specific model, hopefully with enough training data to reach

the full 10 million words. Watson’s custom acoustic models are a clear next step and

would have been included in this thesis if they didn’t have a bug at the time. Finally,

Watson recently got a new feature to adjust the weight between the general model

and custom models. We suspect higher weighting of custom models would improve

accuracy in this case.
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APPENDICES

Appendix A

ALL RESULTS

A.1 Sclite Command

Sclite is run for each model with that model’s results file (hypothesis file) compared

to the Digital Democracy reference file. Sclite is first told the reference file and its

format. Then Sclite is told the hypothesis file and its format. Because the reference

file is in trn format Sclite requires the utterance id format be specified. We use the

swb format where utterance id is made up of a speaker code, followed by a hyphen or

underscore, followed by an utterance number. However, we don’t specify speaker ids.

Error messages for missing speaker ids will be generated, but can be ignored. Sclite

will still calculate results without speakers identified. Sclite results are specified to be

-o rsum sum stdout which outputs raw and percentage summary results to the screen.

We are not interested in the detailed non-summary results. Non-sumary results show

the insertions, deletions, and substitutions for every utterance. An example Sclite

output is in Figure A.1.

sclite -r reffile [ fmt ] -h hypfile [ fmt ] OPTIONS

sctk-2.4.10/bin/sclite -r {ref_file} trn -h {hyp_file} trn -i swb -o rsum

sum stdout
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Figure A.1: The results from Sclite for file af comparing the 10m recent
hypothesis against the Digital Democracy reference transcription.

A.2 Result Tables

For each model, these tables show the Sclite summary results for each file. An all

row was calculated for each table. The all row sums the results in each column for all

of the files. For the percentage tables, the all row percentages were calculated with

each file’s results weighted according to that file’s word count.
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A.3 No Model Results

Word Error Rate of 54.4%.

Table A.1: No Model Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 72.7 22.8 4.5 11.1 38.4 100

1c 153 6388 72.0 22.8 5.2 22.9 50.9 100

af 76 3275 68.5 25.8 5.6 9.5 41.0 100

cb 161 5240 66.7 28.6 4.7 35.9 69.2 100

all 413 15643 69.5 25.4 5.1 23.9 54.4 100

Table A.2: No Model Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 538 169 33 82 284 23

1c 153 6388 4600 1456 332 1463 3251 153

af 76 3275 2245 846 184 312 1342 76

cb 161 5240 3495 1501 244 1880 3625 161

all 413 15643 10878 3972 793 3737 8502 413

A.4 Random 1 Results

Word Error Rate of 52.9%. This is 1.5% better than No Model.
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Table A.3: Random 1 Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 74.5 21.4 4.2 10.8 36.4 100

1c 153 6388 72.8 21.8 5.4 23.0 50.2 100

af 76 3275 71.2 23.4 5.4 9.0 37.8 100

cb 161 5240 68.0 27.7 4.4 35.9 68.0 100

all 413 15643 70.9 24.1 5.0 23.8 52.9 100

Table A.4: Random 1 Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 551 158 31 80 269 23

1c 153 6388 4653 1392 343 1469 3204 153

af 76 3275 2332 766 177 295 1238 76

cb 161 5240 3561 1449 230 1882 3561 161

all 413 15643 11097 3765 781 3726 8272 413

A.5 Random 10 Results

Word Error Rate of 52.2%. This is 2.2% better than No Model.

Table A.5: Random 10 Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 73.8 21.9 4.3 10.9 37.2 100

1c 153 6388 73.2 21.7 5.1 22.9 49.7 100

af 76 3275 71.6 22.8 5.6 9.0 37.4 100

cb 161 5240 68.9 26.6 4.5 35.7 66.7 100

all 413 15643 71.5 23.6 5.0 23.7 52.2 100
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Table A.6: Random 10 Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 546 162 32 81 275 23

1c 153 6388 4676 1386 326 1462 3174 153

af 76 3275 2346 746 183 296 1225 76

cb 161 5240 3612 1394 234 1869 3497 161

all 413 15643 11180 3688 775 3708 8171 413

A.6 Recent 1 Results

Word Error Rate of 52.9%. This is 1.5% better than No Model.

Table A.7: Recent 1 Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 73.9 22.3 3.8 10.9 37.0 100

1c 153 6388 72.6 22.2 5.2 22.9 50.3 100

af 76 3275 71.6 23.1 5.3 9.0 37.4 100

cb 161 5240 67.9 27.6 4.6 35.8 67.9 100

all 413 15643 70.9 24.2 4.9 23.7 52.9 100

Table A.8: Recent 1 Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 547 165 28 81 274 23

1c 153 6388 4637 1418 333 1462 3213 153

af 76 3275 2346 757 172 295 1224 76

cb 161 5240 3557 1444 239 1876 3559 161

all 413 15643 11087 3784 772 3714 8270 413
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A.7 Recent 10 Results

Word Error Rate of 52.1%. This is 2.3% better than No Model. The Recent 10 results

have one less utterance than other results because it did not transcribe anything

during the final short utterance.

Table A.9: Recent 10 Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 75.3 21.1 3.6 10.7 35.4 100

1c 153 6388 73.0 21.9 5.1 22.5 49.5 100

af 75 3272 71.7 22.6 5.7 8.5 36.9 100

cb 161 5240 68.1 27.3 4.6 35.2 67.1 100

all 412 15640 71.2 23.8 5.0 23.3 52.1 100

Table A.10: Recent 10 Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 557 156 27 79 262 23

1c 153 6388 4664 1396 328 1436 3160 153

af 75 3272 2345 740 187 279 1206 75

cb 161 5240 3567 1433 240 1843 3516 161

all 412 15640 11133 3725 782 3637 8144 412

A.8 Specific 1 Results

Word Error Rate of 52.4%. This is 2.0% better than No Model.
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Table A.11: Specific 1 Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 75.3 21.1 3.6 11.4 36.1 100

1c 153 6388 73.4 21.4 5.2 22.9 49.5 100

af 76 3275 71.5 23.0 5.4 9.1 37.6 100

cb 161 5240 68.5 27.1 4.4 36.2 67.7 100

all 413 15643 71.5 23.6 4.9 23.9 52.4 100

Table A.12: Specific 1 Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 557 156 27 84 267 23

1c 153 6388 4689 1364 335 1461 3160 153

af 76 3275 2343 754 178 298 1230 76

cb 161 5240 3589 1421 230 1898 3549 161

all 413 15643 11178 3695 770 3741 8203 413

A.9 Specific 10 Results

Word Error Rate of 52.3%. This is 2.1% better than No Model.

Table A.13: Specific 10 Percentage Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 75.8 20.5 3.6 10.9 35.1 100

1c 153 6388 73.4 21.4 5.2 22.8 49.4 100

af 76 3275 71.6 23.0 5.4 9.0 37.4 100

cb 161 5240 68.5 27.1 4.4 36.0 67.6 100

all 413 15643 71.5 23.6 4.9 23.8 52.3 100
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Table A.14: Specific 1 Raw Results

File Utts Words Correct Sub Del Ins Word Errors Utt Errors

9d 23 740 561 152 27 81 260 23

1c 153 6388 4689 1366 333 1457 3156 153

af 76 3275 2345 753 177 295 1225 76

cb 161 5240 3589 1418 233 1889 3540 161

all 413 15643 11184 3689 770 3722 8181 413
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Appendix B

WORKING WITH DIGITAL DEMOCRACY DATA

B.1 Database Tables Used

The currentUtterance table contains all the text being used for training data. It

also contains the timestamps for utterance boundaries. These utterance boundary

times are used for aligning the hypothesis text with the reference text. The Com-

mittee table contains information about committees. This information was used

for deciding which committee should be used for testing. The Video table contains

the video ids and file ids of video files. Video ids are used for linking utterances to

hearings. File ids are used for creating the url to download videos. The Hearing

table contains the state and date of hearings. This is used when gathering utter-

ances for training data and testing. The CommitteeHearings table is used to link

committees with hearings they host.

B.2 Queries for Committee Information

SELECT cid, house, name, session_year

FROM Committee

WHERE state = ’CA’

SELECT SUM(Video.duration)

FROM Video JOIN CommitteeHearings ON Video.hid = CommitteeHearings.

hid

JOIN Hearing ON Hearing.hid = CommitteeHearings.hid

WHERE cid = {Committee Id}

AND date < {May 1st 2018}

B.3 Query for Test Set File Ids
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SELECT fileId

FROM Video JOIN CommitteeHearings ON Video.hid = CommitteeHearings.

hid

JOIN Hearing ON Hearing.hid = CommitteeHearings.hid

WHERE cid = {Committee Id}

AND date < {May 1st 2018}

ORDER BY date DESC, duration DESC

B.4 Converting the Test Set

Digital Democracy stores videos in mp4 format. FFmpeg is used to extract the audio

and convert it to be suitable for Watson.

ffmpeg -hide_banner -i {video name} -ac 1 -ar 16000 -t {duration limit} {

audio output name(.flac)}

B.5 Queries for Training Data

All queries are set to get utterances before the earliest date of a video in the test

set. This ensures there is no overlap between the training and testing sets. The same

queries are used for both the large and small versions of each hypothesis. The limiting

of training data according to model size is handled by Python code.

B.5.1 Recent Hypothesis Training Data

SELECT CONVERT(text USING ASCII)

FROM currentUtterance

JOIN Video ON currentUtterance.vid = Video.vid

JOIN Hearing ON Hearing.hid = Video.hid

WHERE date < ’{earliest date}’ AND Hearing.state = ’CA’

ORDER BY date desc
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B.5.2 Random Hypothesis Training Data

Random hypothesis training data gathering uses the same query as for gathering

Recent hypothesis training data, except for the order. The randomization is handled

by Python code.

SELECT CONVERT(text USING ASCII)

FROM currentUtterance

JOIN Video ON currentUtterance.vid = Video.vid

JOIN Hearing ON Hearing.hid = Video.hid

WHERE date < ’{earliest date}’ AND Hearing.state = ’CA’

ORDER BY uid

B.5.3 Specific Hypothesis Training Data

Cid 50 is the committee id of the 2015 session Senate Standing Committee on Edu-

cation. Cid 583 is the committee id of the same committee for the 2017 session.

SELECT CONVERT(text USING ASCII)

FROM currentUtterance

JOIN Video ON currentUtterance.vid = Video.vid

JOIN Hearing ON Hearing.hid = Video.hid

JOIN CommitteeHearings ON CommitteeHearings.hid = Hearing.hid

WHERE date < ’{earliest date}’ AND (cid = 50 or cid = 583)

ORDER BY date desc

B.6 Querying for the Reference Transcript

Utterance end times are not used to create the reference transcript, but are used when

creating model transcripts.

SELECT uid, time, endTime, CONVERT(text USING ASCII)
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FROM currentUtterance

JOIN Video ON Video.vid = currentUtterance.vid

WHERE fileId = ’{}’ AND time < {}

ORDER BY time
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Appendix C

WATSON CURL COMMANDS

Watson can be used via an HTTP REST interface. We use cURL commands to

interact with it. Despite cURL being a command line tool, we called it from Python

using the subprocess module. Calling cURL from Python allows for automation by

looping through the list of models and calling cURL with each model’s id substituted

into the command.

C.1 Command to Create a Model

curl -X POST -u {account} --header "Content-Type: application/json" --data

"{{\\"name\\": \\"{model_name+model_size}\\", \\"base_model_name\\":

\\"en-US_BroadbandModel\\", \\"description\\": \\"{model_name+

model_size}\\"}}" "https://stream.watsonplatform.net/speech-to-text/api

/v1/customizations"

C.2 Command to Fill a Model

curl -X POST -u {account} --data-binary @{training_file} "https://stream.

watsonplatform.net/speech-to-text/api/v1/customizations/{

customization_id}/corpora/{corpus_name}"

C.3 Command to Train a Model

curl -X POST -u {account} "https://stream.watsonplatform.net/speech-to-text

/api/v1/customizations/{customization_id}/train"
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C.4 Command to Transcribe Using a Model

To transcribe without a custom language model leave out customization_id={customization_id

}&.

curl -X POST -u {account} --header "Content-Type: audio/flac" --data-binary

@{audio_file} "https://stream.watsonplatform.net/speech-to-text/api/v1

/recognize?customization_id={customization_id}&smart_formatting=true&

inactivity_timeout=-1&profanity_filter=false&timestamps=true" > {

results_json_file}
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