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ABSTRACT

An Empirical Study of CSS Code Smells in Web Frameworks

Tobias Bleisch

Cascading Style Sheets (CSS) has become essential to front-end web development for

the specification of style. But despite its simple syntax and the theoretical advantages

attained through the separation of style from content and behavior, CSS authoring

today is regarded as a complex task. As a result, developers are increasingly turning

to CSS preprocessor languages and web frameworks to aid in development. How-

ever, previous studies show that even highly popular websites which are known to

be developed with web frameworks contain CSS code smells such as duplicated rules

and hard-coded values. Such code smells have the potential to cause adverse effects

on websites and complicate maintenance. It is therefore important to investigate

whether web frameworks may be encouraging the introduction of CSS code smells

into websites.

In this thesis, we investigate the prevalence of CSS code smells in websites built

with different web frameworks and attempt to recognize a pattern of CSS behavior

in these frameworks. We collect a dataset of several hundred websites produced

by each of 19 different frameworks, collect code smells and other metrics present

in the CSS code of each website, train a classifier to predict which framework the

website was built with, and perform various clustering tasks to gain insight into the

correlations between code smells. Our results show that CSS code smells are highly

prevalent in websites built with web frameworks, we achieve an accuracy of 39% in

correctly classifying the frameworks based on CSS code smells and metrics, and we

find interesting correlations between code smells.
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Chapter 1

INTRODUCTION

1.1 Overview

Modern front-end web development consists of the specification of content, behav-

ior, and style. These separate concerns are addressed respectively by the Hyper-

text Markup Language (HTML), JavaScript, and Cascading Style Sheets (CSS) and

together along with XML/JSON comprise the Asynchronous JavaScript and XML

(AJAX) web development paradigm. CSS in particular has a relatively simple syntax

and was adopted by the World Wide Web Consortium (WC3) as a way to separate

presentation from HTML [49]. This separation of concerns led to reduced effort in

content-authoring [37], the ability for designers to work independently from develop-

ers, and, most importantly, code reuse on the file level.

However, despite the theoretical advantages that the separation of presentation

from content provides, CSS is not easily understood or maintained [30] [37] [48] [55].

Features of CSS such as inheritance, cascading, and selector specificity all contribute

to the challenging task of understanding how style properties are applied to the docu-

ment object model (DOM) at runtime [48]. The result is that presentation authoring

has become a complex and time-consuming task in which more time is often spent on

coding decisions than on graphic design [37]. This is evidenced by the large body of

books, articles, and blog posts presenting a variety of CSS frameworks, development

methodologies, tips and tricks, best practices, etc [37]. CSS has also historically not

received much attention from the research community [13] [20] [30] [32] [42] [48] [55].

The complexity of CSS development has led developers to pursue alternative tools

[20] in the form of CSS preprocessor languages, CSS frameworks, and web frameworks,
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many of which typically allow one to specify style abstractly and simply generate CSS

code for interpretation by the browser. While these tools have their advantages and

attempt to solve some identified problems in CSS, they often do so at the cost of

quality in the actual generated CSS code. Some examples of this are style sheets

with duplicated CSS rules, highly specific selectors, hard-coded property values, etc.

Important to note, however, is that these and other code smells in CSS aren’t simply

bad for maintenance [32] (should the CSS still be authored by hand) but can also have

other adverse affects on websites, including increased load on the network and server

in transferring website files to the browser [48], increased browser rendering time

of the page layout [20], and negatively impacted accessibility, device independence,

ubiquity, and mobility [55].

The likely prevailing school of thought allowing for the introduction of these code

smells is that the codebase being actively manipulated and maintained by the de-

veloper is of sole importance, such that the quality and maintainability of generat-

ed/transpiled code need not be considered. The result is that many front-end web

frameworks and development tools such as preprocessors introduce unnecessary code

smells into the generated CSS code being served to the browser, inviting the negative

effects mentioned earlier. In one study, Gharachorlu found that 99.8% of the web-

sites studied contain at least one type of CSS code smell [32]. Nguyen et al. found

that, for six PHP-based web applications, 89-100% of a certain set of six code smells

that violate various software engineering principles on the client side can be mapped

back to code smells embedded in PHP string literals [50]. Mazinanian et al. found

that an average of 66% of style declarations are repeated at least once in a CSS file

[46]. Keller and Nussbaumer found that CSS generated by Adobe Fireworks CS4 and

WuarkXPress 8 are much less abstract than those authored by hand [37].

Nevertheless, millions of websites written today are built using content manage-

ment systems, web frameworks, and preprocessor languages. This is because, al-
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though developers have the most control when designing a website “from scratch” -

writing custom HTML, CSS, and JavaScript code paired with some server-side lan-

guage such as PHP or JavaScript - they are willing to sacrifice control for the sake of

speed, scalability, and ease of maintenance. These frameworks make certain design

decisions on their behalf in order to build websites in a semi-automated way - of-

ten using scripts that are following a design template to generate the resulting site’s

files. Even though a web framework may not enforce style decisions on the devel-

oper, they may encourage the introduction of code smells through their development

process. It’s important, then, that developers have as much information as possible

when making the decision to adopt a framework over a custom solution in order to

combat any hidden consequences in the selection, such as the quality of the resulting

CSS code. We attempt to provide some of this information to developers through

descriptive statistics and, more importantly, pave the road for future investigations

into the development practices of web frameworks.

Recognizing a pattern of CSS behavior applied by certain web frameworks would

allow us to ask the question: which design decisions led to the pattern of CSS behavior

being predictable? Following that are questions such as (1) based on this pattern,

which frameworks have problems and to what extent, (2) are CSS code smells the

result of generated CSS code or the encouragement of bad practice in CSS through the

development process, and (3) which frameworks should we begin to fix, and in what

ways? Before these questions can be addressed, however, we must first determine

whether web frameworks appear to have an influence on the presence of code smells

or not. While there have been efforts in this domain to improve the CSS language

and its development process [20] [48] [54] [55] [57], there haven’t been any efforts thus

far to characterize the types and prevalence of smells introduced into websites by

popular web frameworks. Perhaps the closest works to this thesis are those by Keller

and Nussbaumer [37] and Nguyen et al. [50].
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Establishing a correlation between individual CSS code smells and metrics could

provide insight into which smells tend to follow each other and how the introduction

of smells can be influenced by some practices in CSS. This would allow for the de-

velopment of analysis tools that suggest possible problems in development practices

and help framework developers and website developers fix code smell issues.

In order to gain insight into the types and prevalence of code smells generated by

certain web frameworks, we pose the following research questions:

RQ1 How prevalent are code smells in websites built with different web frameworks?

RQ2 Can we recognize a pattern of CSS behavior in certain web frameworks? Can a

set of CSS code smells and metrics collected from a website be used as a unique

identifier for the web framework used to develop the website?

RQ3 Does there exist a correlation between CSS code smells and metrics collected

from a website?

To answer these research questions, we collect a dataset of thousands of websites

produced from 19 different web frameworks, utilize the CSS code smell detection tool

CSSNose [32] to extract code smells and other CSS metrics, and train a classifier to

predict the framework of a website based on its code smells, as well as perform a

clustering analysis on the extracted code smells. Our results show that code smells

are highly prevalent in websites produced with web frameworks, CSS code smells and

metrics can be used to predict one of 19 frameworks with up to 39% accuracy, and a

useful correlation does appear to exist between code smells.

In addition to the empirical study setup to answer these research questions, this

thesis presents new terminology for three types of coupling that exist between CSS

and HTML documents. These ideas of coupling can be considered the application of

the Software Engineering principle Separation of Concerns to modern front-end web

4



development and they’re intended to provide a mental model and terms for discussion

to developers within the community.

1.2 Chapter Outline

The rest of this thesis is structured as follows:

• In Chapter 2, Background, we provide background information on web tech-

nologies, Software Engineering principles, and machine learning and analysis

techniques.

• In Chapter 3, Cascading Style Sheets & Code Smells, we present an

overview of the CSS language and introduce the code smells and metrics relevant

to the empirical study.

• In Chapter 4, Separation of Concerns in Cascading Stylesheets, we ex-

pand the notion of Separation of Concerns in CSS by formally defining three

types of coupling between HTML and CSS and identify the code smells and

metrics which have tracked Separation of Concerns in CSS thus far.

• In Chapter 5, Related Work, we introduce work in the field relevant to web

crawling, CSS metrics, CSS code smells and defects, and CSS refactoring and

tool support.

• In Chapter 6, Empirical Study, we introduce the setup and approach of the

study including the software architecture and tools, the data collection process,

and the models used for analysis of the data.

• In Chapter 7, Results & Discussion, we present the results from the study

and discuss their relevance in answering the posed research questions.
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• In Chapter 8, Threats to Validity, we discuss issues which may affect the

validity of the findings.

• In Chapter 9, Conclusion & Future Work, we summarize the findings and

contributions of this work as well as outline possible avenues for future work.
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Chapter 2

BACKGROUND

This chapter details some web technologies, software engineering principles, and ma-

chine learning and analysis techniques that are important for understanding the con-

cepts presented in following chapters.

2.1 Web Technologies

Before introducing the specifics of code smells and metrics in Cascading Style Sheets,

it is important that the reader has an understanding of the basics of the technologies

used in modern front-end web development.

2.1.1 HTML and XML

The Hypertext Markup Language (HTML) and Extensible Markup Language (XML)

are markup languages 1 that allow for the human- and machine-readable specification

of structured content. HTML is considered to be the original language of the World

Wide Web, providing a standard which allows web browsers to interpret and compose

text, images, and other material into visual or audible web pages. It addresses the

concern of content specification in web applications. HTML was developed by Tim

Berners-Lee at the European Organization for Nuclear Research (CERN) in 1990 as

an application of the Standard Generalized Markup Language (SGML) [5], a meta-

language standard for producing generalized markup languages. XML is another

application of SGML developed by the XML Working Group in 1996 to allow the use

of more than just the fixed vocabulary of HTML on the web and enforce strict syntax
1a markup language is a syntax and grammar for annotating a document in a way that indicates

its logical structure
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adherence lacking in most web browsers [12].

2.1.2 The Document Object Model

The document object model (DOM) is a logical representation of the structure of doc-

uments that specifies how a document may be accessed and manipulated - essentially,

a programming API for HTML and XML documents. Documents are broken down

into ’objects’ which are organized into a tree-like structure and given functions and

identity. In the context of web development, the HTML file represents the specific

instance of a document, the browser constructs the DOM after parsing the HTML

tags (turning them into objects), and the JavaScript file contains functionality to

locate and manipulate the structure and content of the DOM objects. Thus, the

DOM identifies: (1) the interfaces and objects used to represent and manipulate a

document, (2) the semantics of these interfaces and objects - including both behavior

and attributes, and (3) the relationships and collaborations among these interfaces

and objects [1].

2.1.3 Cascading Style Sheets

Cascading Style Sheets (CSS) is a style sheet language 2 primarily used for describing

the presentation of HTML documents on the web. CSS was created by Lie in 1994 [41]

and adopted as an official standard by the W3C in 1996 [49]. CSS allows developers

to specify style in the form of rule blocks containing style properties which are applied

to a certain subset of DOM elements determined by a selector.
2a style sheet language is a computer language used to specify the presentation of a structured

document
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2.1.4 JavaScript

JavaScript (JS) is a general-purpose programming language primarily used for speci-

fying dynamic behavior in web applications through client-side interactions with the

DOM. It was originally developed in 1995 by computer scientist Brendan Eich at

Netscape and taken to the European Computer Manufacturers Association (ECMA)

in 1996 for standardization in the form of ECMAScript [6]. The EMCAScript stan-

dard allows web browsers to implement JavaScript engines3 for the local execution of

JavaScript code. Thanks to JavaScript engines such as V8 and Rhino, JavaScript has

applications outside of the web browser such as for client-side scripting, video-game

development, and desktop/mobile application development.

2.1.5 Uniform Resource Locators & Website Domains

A Uniform Resource Locator (URL) is a string reference to a web resource that

specifies its location on a computer network and a mechanism for retrieving it (usually

HTTP) [11]. A URL is a specific type of Uniform Resource Identifier (URI) which is

simply any string reference to a resource. The host component of the URL specifies the

type of service being requested and the host computer of the resource on the internet.

Domain names are most often used as the identifier of that host to preclude the need to

memorize IP addresses. For example, in the URL http://www.tobiasbleisch.com,

HTTP is the protocol for accessing the internet resource, www is the type of service

(web server), and tobiasbleisch and com are the second and top level domain names

respectively which together can be called the domain of the website being accessed.

Domain names are used in this study when communicating which websites are to be

downloaded and analyzed.
3a JavaScript engine is a program or interpreter which executes JavaScript code
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2.1.6 AJAX - Static vs Dynamic Websites

Asynchronous JavaScript and XML (AJAX) is a collection of technologies and tech-

niques for the development of highly interactive websites. HTML is used for specify-

ing the content, CSS for the presentation, JavaScript in combination with the DOM

for dynamically altering the website content and layout, and the XMLHttpRequest

(XHR) object in JavaScript for transferring data between a web browser and a web

server to avoid full page reloads. The invention of these technologies allowed for a shift

from the development of static websites to the development of dynamic web applica-

tions [47]. Traditional static websites are based on a multi-page interface paradigm

consisting of multiple unique web pages, each having a unique URL and hypertext

link. Dynamic web applications using AJAX are able to alter the state of the DOM

in real-time through the execution of JavaScript code, and it’s therefore possible to

represent unique web pages without a corresponding hypertext link [47].

2.1.7 Web Frameworks & Content Management Systems (CMS)

A web framework is a software environment and/or collection of development tools

which provide generic functionality and utilities for the development of web appli-

cations and services [24]. They typically provide a standard way to automate the

redundant tasks involved in web development such as authentication, database com-

munications, style templating, etc., and may include functionality for building up

both server-side and front-end components. Content management systems are sim-

ilar but typically cater to consumers without technical experience, further offering

tools for management of digital content and website serving. In the rest of this thesis,

we refer to both web frameworks and content management systems as simply “web

frameworks”. Web frameworks such as ASP.NET, React, and Django are built for

use with various general-purpose programming languages. The frameworks under
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consideration in this study were selected based primarily on popularity and language

distribution [29]. See Table 6.1 for a complete list of the frameworks under consider-

ation.

2.2 Software Engineering Principles

The following terms are important ideas in Software Engineering which are applied

to front-end web development in both the empirical study and the presentation of

ideas related to coupling between CSS and HTML.

2.2.1 Code Smells

Code smells are structures in software that indicate the violation of fundamental

design principles and negatively impact design quality. Though these structures may

produce functionally correct results in the software and are not themselves bugs, they

often contribute to bugs later in development as the size or complexity of the software

grows [53].

2.2.2 Coupling & Cohesion

Coupling and cohesion are two general principles of Software Engineering that are

concerned respectively with the level of dependency and the level of semantic or log-

ical consistency between two software modules [59]. Coupling is usually contrasted

with cohesion - that is, low coupling often correlates with high cohesion and vice

versa. Coupling is considered to be high when, given two software modules A and

B, a change to module A necessitates a change to module B. Cohesion is considered

to be high when module A and module B both have unique, well-defined responsibil-

ities and simultaneously contribute to a higher-level semantic responsibility [53]. A
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maintainable software project tends to demonstrate low coupling and high cohesion.

Stevens et al. invented these notions of coupling and cohesion [59].

2.2.3 Separation of Concerns

Separation of concerns is a general principle of Software Engineering that seeks to

control complexity in software projects by separating a program into distinct sec-

tions, such that each section addresses a separate concern [62]. In a broader sense,

a program is simply the implementation of a solution to a complex problem. Thus,

separation of concerns can be defined more intuitively as the decomposition of a com-

plex problem into manageable “concerns”, solving these concerns individually without

detailed knowledge of the other parts, and then combining them into one result. The

result of applying separation of concerns to a program is modular code that also

demonstrates low coupling and high cohesion. The term was originally introduced by

Dijkstra [25]. One very typical example that demonstrates the concepts of the Sepa-

ration of Concerns is the Model-View-Controller (MVC) design pattern. A software

application which has a need for a user interface, internal data representation in the

form of data models, and logic for the presentation of that data is best organized in

such a way that these three distinct concerns are separated.

2.3 Machine Learning & Analysis Techniques

The following concepts are important for understanding the analysis methods used

in the empirical study.
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2.3.1 Supervised Learning - Classification

Supervised learning is the process of approximating a mathematical function that

maps some set of inputs (independent variables) to some set of outputs (dependent

variables) in a dataset [39]. These outputs are called labels and are typically manually

collected and associated with the set of inputs called features. Each set of features

and its corresponding label is referred to as an example. Once a mapping between

features and labels has been established through a process called training, the devel-

oped model can be used for classification, the task of deriving labels on new (unseen)

data points. There are a variety of supervised learning algorithms which all differ in

their approach to the function approximation and which may perform better or worse

on a dataset depending on the properties of the dataset they are trying to exploit and

the assumptions they are making about the dataset. Supervised learning can be seen

as having two main uses: (1) building a model for decision-making which depends

on the accurate derivation of a data point’s label and (2) establishing correlations

between variables of interest within the dataset.

2.3.2 Unsupervised Learning - Clustering

Unsupervised learning is the process of approximating a mathematical function which

maps some set of inputs to some set of inferred outputs in a dataset [31]. These in-

ferred outputs are usually the result of some discovery of hidden structure in the

dataset which can be achieved through various methods. One such method is clus-

tering, in which the discovery of hidden structure is based on a notion of similarity

between data points. Clustering is the task of dividing each data point (commonly

referred to as an object) in a dataset into two or more groupings called clusters. There

are a variety of unsupervised learning algorithms which all differ in their approach to

the function approximation and which may produce different results depending on the
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properties of the dataset they are trying to exploit and the assumptions they are mak-

ing about the dataset. There is typically no notion of performance in unsupervised

algorithms due to the lack of knowledge about the outputs. Unsupervised learning is

mostly used for exploratory data mining and discovering interesting relationships in

a dataset.

2.3.3 Neural Network

An (artificial) neural network is a learning algorithm which leverages a unique struc-

ture in its function approximation that is inspired by the structure of neurons and

synapses in biological systems [51]. The function to be approximated is implicitly

stored in the weights of the network. There are applications of neural networks for

both supervised and unsupervised tasks, though supervised learning is more common.

2.3.4 Euclidean Space & Distance

Euclidean space is a finite-dimension real vector space RN described by the axioms

of Euclidean geometry and usually represented by Cartesian coordinates [34]. In

essence, it’s a system which facilitates the notion of points and provides methods

for expressing the relationships between them such as lines, angles, and distances.

Euclidean distance is the straight-line distance between two points in this space.

2.3.5 K-Means Clustering

K-Means is a clustering algorithm which aims to partition n observations into k

clusters by minimizing the within-cluster variance (sum of squares) using Euclidean

distance [23]. There are a variety of metrics to determine which value of k will result in

the “best” clustering, but ultimately it’s dependent on the user to choose the number

of clusters the algorithm should output.
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2.3.6 Hierarchical & Agglomerative Clustering

Hierarchical clustering is a method of cluster analysis which attempts to build a hier-

archy of clusters such that they’re successively formed. Agglomerative clustering is a

“bottom up” hierarchical clustering approach which initially considers each object to

be its own cluster and then successively forms clusters by merging neighboring objects.

A common algorithm used to perform agglomerative clustering is the single-linkage

clustering algorithm using the Euclidean distance as a metric of object similarity.
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Chapter 3

CASCADING STYLE SHEETS & CODE SMELLS

This chapter presents an overview of the CSS language and its features as well as

describes the code smells and metrics collected and used in the empirical study.

3.1 Overview of CSS

This section presents an overview of the CSS language and its features.

3.1.1 CSS Rules

A rule is a block of CSS code which specifies the style to be applied to specific parts of

the document object model (DOM). A rule is composed of a selector and a declaration

block in which a list of style declarations is placed. The selector specifies the locations

in the DOM to which the rule block will apply. A single style declaration is composed

of a style property to be altered and the value that the property should hold. Examples

of common style properties are color, font, width, height, etc. The collection of

declaration blocks specified in a style sheet will determine the appearance and layout

of a page once rendered by the browser. The following snippet shows the typical

structure of a CSS rule:

selector {

property : value;

...

}
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3.1.2 CSS Selectors

A selector is a collection of identifiers which correspond to locations in the tree struc-

ture composing the DOM. Selectors which share styling can even be grouped together

so that the style properties only need be specified once. There are five types of basic

selectors [10]:

Type Selector - A type selector (referred to in this thesis as an element selector)

targets the nodes in the DOM that correspond to HTML elements sharing the same

name. For example, the h1 selector will target all <h1></h1> tags.

Class Selector - A class selector targets DOM nodes associated with a class at-

tribute in the HTML document. Class selectors are preceded with a dot ‘.’ and mirror

the name of the class value that should be selected. For example, the .intro selec-

tor will target all nodes corresponding to HTML elements containing the attribute

class="intro".

ID Selector - An id selector targets all DOM nodes associated with an ID at-

tribute in the HTML document. ID selectors are preceded with a pound symbol ‘#’

and mirror the name of the ID that should be selected. For example, the #launch se-

lector will target all nodes corresponding to HTML elements containing the attribute

id="launch".

Attribute Selector An attribute selector targets all DOM nodes either (1)

containing a certain attribute, (2) containing an attribute with a certain value,

(3) and containing an attribute with a certain substring within a value. For ex-

ample, a[title] will select link elements containing a title attribute, a[href=

"https://example.org"] will select link elements containing an href attribute with

the value https://example.org, and a[href*="example"] will select link elements

containing an href attribute with the value containing the substring example.
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Universal Selector - The universal selector ‘*’ will select all nodes in the DOM,

or all remaining nodes if used in combination with other selectors that have narrowed

down the searchable space of the DOM.

Combinators - Combinators are symbols placed between selectors that narrow

the search space of the remaining nodes of the DOM. They allow for simple selectors

to be joined into combined selectors (referred to in this thesis as complex selectors)

that target more specific parts of the DOM. Mesbah and Mirshokraie define them best

[48]:

• A B - Descendent Combinator - A space ‘ ’ between selectors A and B targets

all elements selected by B which are descendents of A on the DOM.

• A > B - Child Combinator - A ‘>’ between selectors A and B targets all elements

selected by B which are direct children of the elements selected by A on the

DOM.

• A ˜ B - General Sibling Combinator - A ‘˜’ between selectors A and B targets

all elements selected by B which have an element selected by A as a sibling on

the DOM.

• A + B - Adjacent Sibling Combinator - A ‘+’ between selectors A and B targets

all elements selected by B which are directly preceded by a sibling eleemnt

selected by A.

3.1.3 Pseudo-Classes & Pseudo-Elements

Pseudo-classes are class selectors which correspond to a DOM element’s attributes,

relative position, or state in the browser rather than to a class attribute specified in the

HTML [8]. For example, the pseudo-class a:hover applies style to a link only when

user’s mouse currently hovers over it. Pseudo-elements are element selectors which
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correspond to a specific part of a DOM element’s content rather than to the entire

content of a DOM element [9]. For example, the pseudo-element p::first-line adds

style to the first line of a selected paragraph’s text. Pseduo-classes are specified with

a keyword preceded by a single colon ‘:’ while pseudo-elements are specified with a

keyword preceded with two colons ‘::’, and they are each appended to the element

selector to which they are intended to apply.

3.1.4 Code Location

There are three main ways for developers to include CSS:

• external stylesheets linked to an HTML document via the <link> element

or @import rule

• inlined in HTML elements using the style attribute

• embedded in HTML using the <style> element

See Figure 3.1 for a visual of the various ways to include CSS in HTML. External

stylesheets allow style code to be applied to multiple document instances. Although

there are some valid uses for inlined and embedded CSS code, they are generally

considered bad practice because they apply CSS to a specific document instance,

therefore inhibiting code reuse and complicating maintenance.

3.1.5 Specificity

Specificity is a CSS language mechanism that provides a relevance measure for style

rules. It can help serve as a tie-breaker if two rules are meant to be applied to the

same set of DOM nodes. Selectors that target more specific subsets of the DOM
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Figure 3.1: An example of (1) CSS linked via an external stylesheet using
the HTML link tag, (2) CSS inlined in an HTML p tag using the style
attribute, and (3) CSS embedded in the HTML using the HTML style
tag.

are considered more relevant and therefore hold more weight over others in being ap-

plied. Specificity is measured as the concatenated counts of simple selectors contained

in a complex selector in the following order: inlined, ID, class/attribute/pseudo-

class, element/psuedo-element. For example, the complex selector .intro [title]

p would have specificity 0,0,2,1 and the selector #launch would have specificity

0,1,0,0. In this case, the latter has a higher specificity than the former.

3.1.6 Importance

Importance is a CSS language feature that marks certain style properties as more

relevant than others, even those with rules of higher specificity. Specificity can be

used as a tie-breaker among style properties claiming importance. Importance is used

by specifying the term !important immediately following a value declaration but be-

fore the semicolon. For example, a property declaration color:green !important;

contained in a rule with selector h1 will take precedence over a property declaration

color:blue; with selector div h1.coolTitle.
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3.1.7 Inheritance

Inheritance is a CSS language feature that applies style properties to descendent nodes

of a styled DOM node until overridden by another rule. The DOM is hierarchical in

nature and inheritance takes advantage of this, the result being that the developer

need not specify style for every node and all its children - only those which differ. Not

all properties are inherited - only those which reasonably should be applied will be.

For example, a style rule containing properties border:solid; color:pink; with

selector p will also be applied to a <span></span> should it be present in the text of

the paragraph selected by p. However, border would not be applied to <em></em>

inside the same <p></p> because it’s unreasonable to expect emphasized words in a

paragraph to have a border [49].

3.1.8 Cascading

Cascading is a CSS language mechanism that determines which style rules are applied

to the DOM. When a node has no style rules targeting it, it will simply inherit its

style properties. When a node has a single rule targeting it, it will adopt that rule’s

style properties and inherit any leftover properties not specified in that rule. When a

node has multiple rules targeting it, the characteristics of those rules are considered

and resolved based on the importance (presence of the importance attribute on the

style property), the origin of the CSS code, the specificity, and, lastly, the location of

the CSS code. Important to note is that cascading only comes into effect when more

than one of the same type of property is specified for a DOM element. This means

that when multiple different properties are specified for a DOM element at varying

levels of importance, origin, specificity, location, or through inheritance, such that

there is no conflict, they will all be applied.

The cascade in CSS is specified in the following order:
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• Importance - the presence of the important attribute on the style property

• Origin - the origin of the CSS code:

1. author - style specified by the developer

2. user - style specified by the user, given to the browser

3. user-agent - style specified by the browser (defaults)

• Specificity - the specificity of the style property’s selector

• Location - the closeness of the style code to the HTML elements. Rules at

the same level of closeness to the HTML but which are specified later in the

document are prioritized: inlined, embedded, then external.

• Inheritance - style properties specified for parent elements which inherit by

default. Note that properties with the inherit value would not fall into this

category.

3.1.9 @Rules

The “at” rules are those embedded or external rules which are preceded with an ’@’

symbol and provide instructions to the browser rather than directly specify styling

[2]. The syntax of @Rules varies, but they can roughly grouped into three categories:

(1) strictly standalone rules, (2) rules that can be standalone or nested in condi-

tional group rules, and (3) conditional group rules which can contain non-@Rules

and nestable @Rules. Some examples of @Rules are the @media rule which applies

style based on a device’s characteristics and environment (retrieved through media

queries in the browser) and the @import rule which allows for the inclusion of an

external stylesheet in the current HTML or CSS document.
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3.2 CSS Code Smells

This section introduces CSS code smells collected in the empirical study, gives a brief

explanation of why they’re classified as smells, and provides short code snippets to

demonstrate. Figure 7.4 lists and gives a brief summary of these code smells. The

smells in this list are those collected by the tool CSSNose [32].

3.2.1 Inlined Rules

Inlined Rules are those contained in the style attributes of HTML elements. See

Figure 3.1 for a visual example. Inlined style rules apply only to the HTML docu-

ment in which they are included, which limits code reuse, and they can increase the

complexity of CSS development by overriding styles defined in external stylesheets.

3.2.2 Embedded Rules

Embedded Rules are those contained between the <style> tags in an HTML docu-

ment. See Figure 3.1 for a visual example. Embedded style rules apply only to the

HTML document in which they are included, which limits code reuse, and they can

increase the complexity of CSS development by overriding styles defined in external

stylesheets.

3.2.3 Too Long Rules

Too Long Rules are those in which the number of style declarations is high enough

that it starts to affect maintainability. Gharachorlu conducted a small-scale study on

20 websites and computed averages to conclude that rules containing more than five

style property declarations should be considered too long.
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body {

font: 1em/150\% Helvetica, Arial, sans-serif;

padding: 1em;

margin: 0 auto;

max-width: 33em;

background-color: blue;

color: red;

}

3.2.4 Empty Catch Rules

An Empty Catch Rule is simply a CSS rule which contains a selector but no properties.

Empty rules add bloat to CSS code in terms of file size and maintenance without any

style benefit.

.button {

}

3.2.5 Too Specific Selectors Type I (Too Much Cascading)

Too Much Cascading occurs when a complex selector has a high number of simple

selector units and therefore targets a highly specific part of the DOM. In this way,

it relies too heavily on the structure of the DOM and becomes inflexible to changes

in DOM structure. Gharachorlu conducted a small-scale study on 20 websites and

computed averages to conclude that rules containing more than four simple selectors

is considered too specific.

body div > span .boat h3 {
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color: red;

}

3.2.6 Too Specific Selectors Type II (High Specificity Values)

Similar to Too Much Cascading, selectors with high specificity values indicate a high

reliance on the structure of the DOM but from the point of view of the types of

simple selectors used rather than simply the number of units. Gharachorlu analyzed

the impact levels of different selector types on the specificity number (a,b,c,d)

(ignoring inlined rules) and concluded that a complex selector is too specific if the

number of id selectors is greater than one, number of class selectors is greater than

two, or the number of element units is greater than three.

#listA #listB {

border-style: dotted;

}

.example1 .example2 .example3 {

font-size: large;

}

html body span div {

color: pink;

}

3.2.7 Universal Selectors

Use of the universal selector ’*’ slows down rendering because it selects the entire

document. It can also short-circuit inheritance because it has specificity of 0 whereas
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inherited values have no inheritance [49].

* .desktop {

display: block

}

3.2.8 Selectors with ID and at Least One Class or Element

Selectors containing an ID already reference a single unique HTML element, so adding

a class or element to the selector adds unnecessarily to cognitive load and to rendering

time. If HTML elements below a certain element needs to be selected on the DOM,

classes alone or in conjunction with element selectors should be used, or an ID should

be placed directly on the element to be targeted.

span #block {

top: 50\%;

margin-top: -5.5px;

}

3.2.9 Selectors with Erroneous Adjoining Pattern

Two selectors are considered to be erroneously adjoined when the white space between

two simple selectors is removed. The result is that these selectors are not parsed

correctly by the browser and constitute bloat in the code without any style properties

being applied.

spandiv {

margin-right: 0.3em;

}
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3.2.10 Too General Selectors

Selectors are too general when they target too much of the DOM to be of any real

use, often resulting in undoing style (essentially changing a style attribute back to its

original or default value after its been changed once already). Gharachorlu proposed

the following simple selectors to be too general when used as standalone selectors:

html, head, body, div, header, aside.

html {

border: none;

padding: 0px;

}

3.2.11 Properties with Hard-Coded Values

Properties with Hard-Coded values are those which use constants (“magic numbers”)

to specify values. Property values are better specified relatively using CSS functions

like calc() or units like ems or percentages.

body h4 {

font-size: 16px;

padding: 3px 20px;

}

3.2.12 Properties with Value Equal to None or Zero (Undoing Style)

Undoing Style as defined by Gharachorlu are properties with values equal to 0 or none.

However, as mentioned by Punt et al., this definition isn’t quite appropriate because

it doesn’t cover the truly broad set of cases that could lead to undoing style. Undoing
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Style as defined by Punt et al. are properties applying to an HTML element that have

been set or defaulted to some initial value, overridden any number of times to different

values (as expected), and then subsequently changed back to the initial value [54].

This is harmful because more CSS is written to effectively reduce the styling and it

works against the cascade because properties only need to be overridden when they

should be adopting some new value, not reverting back to the original.

The definition used by CSSNose produces false positives because a none value

for property displays is a standard way for web developers to hide an element and

reset styles are used to remove inconsistencies in the presentation defaults used by

browsers. It also produces false negatives because a style can also be undone by any

valid value for a property, whereas CSSNose only looks at 0 or none values. The

definition used by CSSNose was kept in the analysis, however, because it still serves

its purpose in providing information as a feature in differentiating CSS behavior.

.chart {

border: none;

margin : 0;

text-shadow : none;

}

3.3 CSS Metrics

This section introduces and describes the CSS metrics collected in the empirical study.

Figure 7.4 lists and gives a summary of these metrics. The smells in this list are those

collected by the tool CSSNose.
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3.3.1 External Rules

External Rules is the number of rules contained in an external stylesheet and linked

to from an HTML document. See Figure 3.1 for a visual example.

3.3.2 Total Defined CSS Rules

Total Defined CSS Rules is the number of all defined CSS Rules including inlined,

embedded, and external. The inlined style properties extracted from a single DOM

element counts as a single rule.

3.3.3 Total Defined CSS Selectors

Total Defined CSS Selectors is the number of all CSS selectors defined in all CSS

external or embedded rules. Inlined CSS rules do not contain selectors and aren’t

counted here.

3.3.4 Ignored CSS Selectors

Ignored CSS Selectors is the number of selectors that were ignored when extracting

code smells and metrics from CSS code due to errors in parsing the selector.

3.3.5 Undefined Classes

Undefined Classes are the number of classes used in selectors which do not successfully

target a corresponding class included in a DOM node.

3.3.6 Matched Selectors

Matched Selectors is the number of selectors that target existing DOM nodes.
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3.3.7 Unmatched Selectors

Unmatched Selectors is the number of selectors that do not target any DOM elements.

Note that unmatched selectors are not considered code smells because it’s perfectly

reasonable for selectors to become matched in successive DOM state changes. It’s

simply the rules with selectors that never become matched that should be removed

for being unnecessary.

3.3.8 Effective Selectors

Effective Selectors is the number of selectors that target existing DOM nodes and

have style properties that are successfully applied.

3.3.9 Ineffective Selectors

Ineffective Selectors are those which do apply to a target DOM element but which

are overridden by other rules in the cascade. Note that ineffective selectors are not

considered code smells because it’s perfectly reasonable for selectors to become effec-

tive in successive DOM state changes. It’s simply the rules with selectors that never

become effective that should be removed for being unnecessary.

3.3.10 Total Defined CSS Properties

Total Defined CSS properties is simply the number of properties defined in all CSS

rules, whether external, embedded, or inlined.

3.3.11 Unused Properties

Unused properties are those which do not get applied to the targeted DOM elements

specified by the selector of the rule in which they reside. Unused properties are a
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natural result of the cascade as property values override each other.

3.3.12 Ignored Properties

Ignored Properties is the number of properties that were ignored when extracting

code smells and metrics from CSS code due to errors in parsing the property.

3.3.13 Files with CSS Code

Files with CSS code is the total number of files containing CSS code, either from

external style sheets or HTML containing embedded CSS code (but not inlined).

3.3.14 Lines of Code (LOC)

Lines of code are the number of lines contained in the CSS source code including

inlined, embedded, and external.
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Chapter 4

SEPARATION OF CONCERNS IN CASCADING STYLESHEETS

This chapter introduces three types of coupling between HTML and CSS and identifies

the relevant code smells and metrics which have tracked Separation of Concerns in

CSS thus far. The ideas presented in this chapter can be considered the result of

applying Separation of Concerns as a software engineering principle to CSS.

4.1 Overview

CSS was originally designed to remove the responsibility of style authoring from

HTML [41] [49]. Ideally, one or more separate style sheets in a web project are linked

to from an HTML file to specify style. The original line of thinking was that both

HTML and CSS documents could utilize the semantic, standardized HTML elements

1 (such as <p> for paragraph, <ul> for an unordered list, etc.) as an agreed-upon

interface between content and style and thus have CSS documents be interchangeable

with any other HTML documents. The major benefit from this approach is that

individual style sheets can be reused to supply style for a variety of different HTML

documents.

However, the reality is that content authoring is actually quite complex, to the

point that the semantic HTML elements aren’t sufficient enough to differentiate all

content structures that require different styling [37]. This led to the introduction

of more style-motivated HTML elements such as <span> and <div>. This practice,

however, is not consistent with the original motivating principle of CSS: separation

of content authoring from style authoring. Even further, the combination of client-
1Standardized HTML elements are those which are specified and maintained by the World

Wide Web Consortium (w3c)
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side language features and leniency practiced by browsers enables the violation of

well-established software engineering principles [50]. For example, the <style> and

<script> elements in HTML are capable of supporting embedded CSS and JavaScript

code snippets respectively which violates Separation of Concerns. Another example

is that CSS and HTML are not always strictly required to conform to the current

language standards maintained by W3C, which sometimes results in HTML code with

missing closing tags or CSS code with unmatched selectors [32].

The result is that many web developers can and do violate software engineering

principles such as Separation of Concerns and it has very real consequences on main-

tainability [20] [32]. Critical to note, however, is that Separation of Concerns is much

more than simply the mixing of CSS code with HTML code. Separation of Concerns

as a principle seeks to control complexity in software projects by regulating the degree

of coupling and cohesion between software components. Code mixing is only one facet

of coupling, and so Separation of Concerns as it relates to CSS can be more rigorously

applied to derive a broader scope of the relationship between CSS and HTML beyond

the mixing of code. Keller and Nussbaumer’s notion of abstractness [37] in CSS is

what comes closest to defining this broader scope and what serves as an inspiration

for the classifications of coupling between CSS and HTML presented in this chap-

ter (see section 5.2 in Related Work). Although Keller and Nussbaumer’s defined

Average Scope and Universality metrics are used in the context of the abstractness

of CSS and are also very important for that vein of analysis, these metrics can also

be re-framed to be more consistent with Separation of Concerns. These metrics are

detailed further in the following sections.
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4.2 Motivation

Given that CSS was designed to separate style authoring from HTML and given that

there are features and common practices in modern front-end web development which

currently facilitate the violation of well-established Software Engineering principles

such as Separation of Concerns, solutions concerning these language features or devel-

oper practices must be investigated. However, although there exist code smells and

metrics which track various facets of Separation of Concerns, they aren’t sufficient in

providing a holistic view of the principal applied to CSS.

In order to promote the active awareness of Separation of Concerns as a Software

Engineering principle and encourage discussions on the topic in the web development

community, it’s important to give developers the proper mental model and terminol-

ogy to discuss Separation of Concerns as it applies to front-end web development and,

more specifically, to CSS. We attempt to provide this mental model and terminology

by classifying and formally defining three types of coupling between CSS and HTML

that can be present in a web project. An excessive amount of any of these three

types of coupling can be considered violations of Separation of Concerns. Although

cohesion is also an important element of separation of concerns, expressing the viola-

tions purely in terms of coupling is much more convenient and leads to a more easily

understood classification.

4.3 Separation of Concerns & Coupling

Separation of Concerns is a general principle of Software Engineering that seeks to

control complexity in software projects by separating a program into distinct sections,

such that each section addresses a separate concern. The result of applying Separa-

tion of Concerns to a program is modular code that also demonstrates low coupling
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and high cohesion. Coupling and cohesion are two general principles of Software En-

gineering that are concerned respectively with the level of dependency and the level

of semantic or logical consistency between two software modules. Coupling is usually

contrasted with cohesion - that is, low coupling often correlates with high cohesion

and vice versa. Coupling is considered to be high when, given two software modules

A and B, a change to module A necessitates a change to module B. (See Chapter 2,

Background, for more information).

4.4 Co-occurence Coupling

Co-occurence coupling can be defined as the dependency of two or more software

components on each other due to the interchanging of code between components.

Ideally, code used to define a particular software component is allocated its own file

or section of a file and therefore not mixed with code that is used to define other

software components. However, some software paradigms allow or even encourage

the mixing of code from different software components, thus breaking separation of

concerns.

In modern front-end web development, HTML allows co-occurence coupling with

CSS in two forms: inlined and embedded CSS. Inlined CSS utilizes the style property

of an HTML element to specify the style of that particular element (and, due to

inheritance in CSS, of all descendent elements) within a particular HTML document.

Embedded CSS, also called an Internal Style Sheet, utilizes the <style> HTML tag

and CSS selectors to specify style of an arbitrary number of HTML elements within

a particular HTML document. Otherwise, CSS is included in an External Style Sheet

and linked to from the HTML file. See Figure 3.1 for a visual explanation of inlined,

embedded, and external CSS rules. In a web project, high co-occurence coupling

occurs when a majority of the style code for a website appears as inlined and embedded
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CSS code in the HTML documents. Low co-occurence coupling occurs when nearly

all of the style code is included in external style sheets and linked to from the HTML.

The above definition of co-occurence coupling is consistent with the earlier def-

inition of coupling in that, given two HTML files A and B which share a block of

inlined/embedded style code C, a change to the style code C necessitates a change to

files A and B for as long as the two are intended to remain stylistically similar. Impor-

tant to note is that the “concern” under consideration here when applying separation

of concerns is content vs style rather than the concern of one page vs another page

within a website. High co-occurence coupling can negatively impact maintainability

in CSS because changes to the style code of one HTML documents requires changes

to the style code of all HTML documents that are intended to remain stylistically

similar.

Co-occurence coupling is currently kept account of through the amount of Inlined

Rules, Emedded Rules, and External Rules included in a web project. These metrics

are sufficient to measure co-occurence coupling especially when they’re represented as

percentages of the total defined number of rules because they show the distribution

of style code co-occurring with HTML code and existing in external stylesheets.

4.5 Structural Coupling

Structural coupling can be defined as the dependency of two or more software

components on each other due to a reliance on the structure or organization of other

components. The knowledge of structure is necessary to a degree if software compo-

nents are to interact with each other - one example being a reliance on the “structure”

of a function via its return value. In this case, the caller is coupled with the callee via

the return value: should the callee change the type of object it’s returning, the caller

must also change its use of that return value. For example, if a function loadData()
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makes the call to a function openFile() under the assumption that it will return a

File object, it can be considered to rely on the structure of the openFile() function.

Should the openFile() function change its return type to instead be a file descrip-

tor, the loadData() function much also be changed to accommodate the new return

type. Although necessary to a degree, a software component ideally relies as little as

possible on the structure of other components, abstracting when possible.

In modern front-end web development, HTML and CSS allow structural coupling

in the form of complex selectors. Complex selectors can be used to select highly

specific sections of the DOM that are not likely to appear in many other content doc-

ument instances. In a web project, high structural coupling occurs when a majority

of the selectors rely on the structure of the DOM through highly specific selectors.

Low structural coupling occurs when a majority of the selectors rely less on structure

by utilizing less specific selectors and class/ID selectors in cases when highly specific

targeting is needed.

The above definition of structural coupling is consistent with the earlier definition

of coupling in that, given an HTML document A and an external style sheet B where

B provides style for A, a change to the structure of file A necessitates a change

to file B. A web project demonstrates a high level of structural coupling when the

CSS selector is highly complex, referring to a deeply nested document tree structure.

High structural coupling can negatively impact the reusability of style sheets because

a style sheet tied too closely to the structure of any one HTML document cannot be

easily applied to other HTML documents. However, low structural coupling creates

another set of problems in the form of an over-reliance on identifiers, which can be

called syntactic coupling (described in the next section).

Structural coupling is currently kept account of through the Too Specific Selectors

Type I, Too Specific Selectors Type II, and Too General Selectors code smells. The

37



former two describe selectors that contain either too many simple selectors or more

than a specified amount of one of the four types of simple selectors. The latter

describes selectors that are one of a set of element selectors with a very wide scope

in the HTML document. (See Section 3.2 for descriptions of these code smells.)

Although they consider the specificity or generality of individual selectors, they fail

to consider coupling at the file-level. However, the Average Scope metric defined by

Keller and Nussbaumer can be used to effectively track structural coupling on the file

level because it measures the average number of DOM nodes that are targeted with

the selectors in a stylesheet [37].

The full definition of Average Scope is defined below:

AverageScope =

∑m
i=1 # of elements in scope of selector i

m · n
(4.1)

where m = # of selectors

and n = # of elements in the document tree

4.6 Syntactic Coupling

Syntactic coupling can be defined as the dependency of two or more software

components on each other due to a reliance on the programmer-defined identifiers

of other components. The knowledge of identifiers is certainly necessary if software

components are to interact, as it’s what forms the basis of the notion of a software

interface or API. For example, the caller of a function must know the identifier of the

callee in order to invoke it. However, if every atomic action in a code block (such as

addition) were decomposed into a function and the corresponding identifier add(x,

y) used, the code block would become too highly saturated with identifiers. In this

way, syntactic coupling highly relates to the idea of the decomposition of code into
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smaller, modular functions in that a higher degree of decomposition results in higher

saturation of identifiers. Ideally, a software component balances the decomposition

of code into function calls (and therefore the use of identifiers) of other components

with explicit code blocks.

In modern front-end web development, CSS and HTML allow syntactic coupling

in form of class and ID attributes/selectors. Class and ID attributes specified in

HTML tags can be used in CSS as selectors to target specific DOM nodes bearing

the corresponding class or ID identifier. In a web project, high syntactic coupling

occurs when selectors are composed entirely of class or ID identifiers, targeting highly

specific DOM nodes. Low syntactic coupling occurs when selectors rely only on DOM

structure and are composed entirely of element selectors joined by combinators.

The above definition of syntactic coupling is consistent with the earlier definition

of coupling in that, given an HTML document A and an external style sheet B where

B provides style for A, change to the class or ID attribute identifier in A necessitates

a change to the corresponding selector identifier in B. High syntactic coupling can

negatively impact maintainability as identifiers must be appropriately synced and

updated for each HTML document to which a style sheet applies.

Syntactic coupling doesn’t currently appear to have many metrics that track it ex-

cept for perhaps the code smell IDs in Selectors captured by CSS Lint which captures

any selectors containing. The use of IDs in CSS in general is somewhat controver-

sial though as good arguments are made within the community both for and against

their use, and this code smell isn’t enough to categorize syntactic coupling on the

file level. However, the Universality metric defined by Keller and Nussbaumer can be

used to effectively track syntactic coupling because it measures the extent to which a

stylesheet relies on non-element selectors to achieve it’s targeting of DOM nodes [37].
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The full definition of Universality is defined below:

Universality =
# element selectors in SSel

# selectors
(4.2)

where SSel is the set containing all osolated simple selectors and the last simple

selector from each combined selector

4.7 Coupling - The Reality

In theory, one would do well to reduce the amount of co-occurence coupling as much

as possible and simply balance the semantic and syntactic coupling. Ultimately, the

concerns of content, style, and behavior specification are connected, and some degree

of semantic and syntactic coupling will always be necessary. Keller and Nussbaumer

put it best when they say, “Although content and presentation can be separated

physically in different files, in a logical way they are closely connected” [37]. This line

of reasoning applies to front-end web development as whole as well: although HTML,

CSS, and JavaScript were designed to separate the concerns of web development,

they must still interact with each other in order to achieve the end goal of creating a

website.

The notions of Average Scope and Universality presented by Keller and Nuss-

baumer provide an excellent basis for thinking about and measuring structural and

syntactic coupling respectively. As [37] mention, “the abstractness-factor can be con-

sidered as an indicator of the degree of the separation of content and presentation”.
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Chapter 5

RELATED WORK

Although CSS has historically not been given much attention in academia [13] [20]

[30] [42] [48] [55], there are some works that explore CSS metrics, code smells, and

refactoring opportunities. The works in these areas admittedly do not fall clean-cut

into these categories, so we place them according to where we feel the priorities of

the papers lie.

5.1 Web Crawling

Mesbah et al. develop a tool called Crawljax for crawling 1 AJAX web applications

[47]. Traditional static websites assign a hypertext link and URL for each unique

state of the user interface. However, the state of the user interface in AJAX applica-

tions is determined dynamically though changes to the DOM as a result of executing

JavaScript code. Thus, Crawljax creates a state-flow graph to represent the various

possible states of a web application, detects a list of clickable elements from the DOM

of the current application state, recursively navigates the website to build the graph

by executing the JavaScript code associated with those clickable elements, and, fi-

nally, generates a static HTML document of each state from a saved snapshot of the

DOM. This website navigation is achieved through the use of Selenium WebDriver

[26], a browser driver 2 used for automated web testing. A case study by the authors

confirms that Crawljax performs well on six sample AJAX web applications. The pri-

mary tool used for data collection in this work, CSSNose, performs dynamic crawling

using Crawljax.
1web crawling is the programmatic accessing of content and functionality on the web
2a browser driver is a program that sends commands to a web browser and retrieves results,

allowing for the automation of tests previously requiring a user interacting with a browser UI
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5.2 CSS Metrics

Software metrics are measures of the extent to which a particular piece of software

possesses some property [27]. Metrics are important for quantifying the quality of

software for maintenance purposes in software engineering. Adewumi et al. define

and implement a tool to collect complexity metrics for CSS such as Rule Length and

Number of Cohesive Rule Blocks and validate them against the Kaner Framework for

Software Engineering Metrics [13] [14]. Mesbah and Mirshokraie build a tool, Cilla,

which detects unmatched and ineffective selectors, overridden declaration properties,

and undefined class values in CSS code, finding that an average of 60% unused CSS se-

lectors in deployed applications [48]. Cilla’s metrics are included in the tool CSSNose

[32], which is used in this study.

Keller and Nussbaumer define an interesting metric for Abstractness based on the

notions of Universality and Average Scope of selector statements [37]. Universality

refers to the ratio of simple selectors that carry high semantic value, namely, element

selectors, to those that do not, regardless of whether a simple selector is standalone

or finishes a complex selector. Average Selector Scope refers to the average of the

number of HTML elements that are included in the scope of a selector per rule block.

They define Abstractness as the result of the floor function between Universality and

Average Selector Scope. Keller and Nussbaumer then use the abstractness metric to

highlight a difference in quality between human-authored and machine-generated CSS

code. They find that for 90% of 100,000 HTML (mostly human-authored) documents,

the abstractness of the corresponding CSS falls between 0.13 and 0.49 and that all

machine-generated documents had an abstractness factor of less than 0.13. They

furthermore find a very weak correlation between a defined CSS complexity metric

and abstractness.
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5.3 CSS Code Smells & Defects

Nguyen et al. detect and analyze embedded server-side code smells in dynamic web

applications [50]. They establish a negative correlation between these code smells

and code maintainability metrics. Gharachorlu defines and aggregates a set of 26

CSS code smells, integrating the tools CSSNose [48], CSS Lint [7], and W3C CSS

Validator [61] into a single smell-detection framework [32]. The framework is used

to dynamically crawl 500 random websites in order to inspect their CSS practices

and analyze the prevalence, the extent, and the correlation between code smells and

various CSS metrics. Gharachorlu’s experimental setup and codebase served as an

inspiration and basis for this work. Gharachorlu finds that 99.8% of the websites

studied contain at least one type of CSS code smell [32]. In order to obtain an

understanding of CSS behavior, the scope of this study is expanded to include 5,525

websites. Serdar Biçer and Diri collect some CSS metrics at the rule level in order

to train multiple machine learning classifiers for defect prediction on CSS code [57].

Geneves et al. implement a static debugging tool that’s able to identify defects in

CSS code without being applied to a specific document instance.

5.4 CSS Refactoring & Tool Support

Quint and Vatton identify the major style issues web authors face and implement

solutions to these issues in a hybrid IDE and web browser named Amaya [55]. They

account for CSS code generation and syntax checking, retrieving elements affected by

a style rule, retrieving rules applied to a given element, visual validation of style on

various document instances, and the loading of remote web resources for use in the

IDE. They additionally extend their support to documents that use (X)HTML, SVG,

MatchML, generic XML, and documents that use several of these languages.
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Bosch et al. develop a tool to detect and delete redundant CSS rules [20]. They

do so by developing equivalence relations via tree logic through the static analysis

of CSS selectors. The result is that masked rules, those that remain inactive due to

the presence of equivalent rules which have preference, and verbose rules, those that

may be active at times but don’t apply any additional styling, are removed from the

style sheet and the size of the file is thereby reduced. They demonstrate an average

size reduction of single CSS files from well-known sites of 7.75% with a maximum of

17.83%, and show that some information about HTML documents that use multiple

style sheets can increase size reduction on any one CSS file up to 30%.

Punt et al. investigate the undoing style code smell in CSS and develop a tool to

detect and automatically refactor varying patterns of undoing style. Undoing style

refers to style properties that are initially set to a value A (either explicitly by the

author or implicitly via a language feature), then overridden to a value B, possibly

multiple times, and then set back to the original value of A. The authors refer to this

as the A?B*A pattern, and they check for this pattern by analyzing the cascade of

the style applied to a single HTML element, observing when a property is overriden

multiple times. They can then guarantee that the style semantics for this element

are preserved on any proposed refactor that fulfills the following two preconditions:

(1) the most specific part of the selector is an ID or class and (2) the elements that

the reset rule (the last undoing rule) applies to are the subset of the elements the

initial rule applies to. On a dataset of 41 well-known websites, they found the ratio of

undoing style detections to the number of style rules to be 25% with 2060 occurrences

of undoing style on average, an average of 11 opportunities for automatic refactoring

per webapp with a high of 62, and only 38 out of 8789 semantic changes caused by

refactoring.

Mazinanian et al. identify three different types of CSS duplication, namely, decla-

rations with lexically identical values for given properties, declarations with seman-
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tically equivalent values for given properties, and a set of individual-property decla-

rations which are equivalent to a single shorthand-property declaration, and develop

a static analysis tool to automatically refactor them [46]. Their approach consists of

parsing and normalizing CSS rules, extracting refactoring opportunities through the

use of association rule mining algorithms, ranking the resulting refatorings by their

computed file reduction potential, and ensuring semantic preservation on refactorings

by preserving the order dependencies of rules through the expression of a constraint

satisfaction problem. An experimental run on 38 web applications finds that on aver-

age 66% of style property declarations are repeated at least once, there are on average

62 refactoring opportunities associated positively with file size reduction, and on av-

erage an 8% reduction in file size of examined CSS files can be achieved by applying

refactorings.

Hague et al. present an abstraction of HTML5 applications based on monotonic

tree-rewriting and proceed to study its "redundancy problem" in order to detect

redundant CSS rules [33]. Unlike dynamic analysis techniques, their technique will

only report rules which are definitely redundant, but as such will not report rules

that may be redundant based on a particular DOM state. In a case study of 8 real

and invented web pages, TreePed correctly identified all definitely redundant rules.

5.5 Contributions of this Work

None of these studies appear to consider frameworks as a perspective in their analyses

of CSS code smells and defects. Furthermore, although [32] establishes a correlation

between some CSS metrics and the number and types of smell instances, no other

work has studied the correlation between code smells themselves and between smells

and metrics. In this study, we investigate the prevalence of CSS code smells in

websites built with various web frameworks, attempt to identify a pattern of CSS
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pattern in web frameworks, and study the correlation between and among CSS code

smells and metrics. This study has the potential to enhance the tools presented in

this chapter with the feature to detect the framework a website was built with and

either recommend solutions for CSS maintenance based on the observed correlations

between CSS code smells and metrics or perform an automatic refactoring.
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Chapter 6

EMPIRICAL STUDY

This chapter details the empirical study setup in order to answer the proposed research

questions. The following research questions are under consideration:

RQ1 How prevalent are code smells in websites built with different web frameworks?

RQ2 Can we recognize a pattern of CSS behavior in certain web frameworks? Can a

set of CSS code smells and metrics collected from a website be used as a unique

identifier for the web framework used to develop the website?

RQ3 Does there exist a correlation between CSS code smells and metrics collected

from a website?

In order to investigate the CSS behavior patterns of various frameworks and ob-

serve correlations between code smells and metrics, we collect a sample of websites

from various frameworks, collect code smells and metrics from the CSS code of each

website (see Table 7.4), train a model to predict the framework from a feature set

of CSS code smells from a website, and perform various clustering tasks on the code

smells and metrics.

6.1 Overview

The empirical study consists of two main phases: (1) data collection and (2) data

analysis. Section 6.2 details the process of data collection and Section 6.3 discusses the

analysis methods. A collection of scripts and various software tools were developed

and integrated to setup a software pipeline for running the experiment. Figure 6.1
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Figure 6.1: The software architecture setup for the experiment.

gives an overview of the software architecture. The pipeline can be explained as

followed:

First, lists of website domains built with 19 different web frameworks are obtained

from the web platform analysis tool Wappalyzer [16]. These lists of domains are fed

to a Website Downloader script which downloads local copies of several hundreds

of websites from each web framework. The downloaded websites are passed to a

CSSNose Driver script, which for each website instructs a Web Server to serve the

website on localhost and passes the domain of the website to an instance of CSSNose

[32]. CSSNose dynamically crawls the website, aggregates CSS code from each new

DOM state it encounters, and outputs a set of CSS code smells and metrics collected

for that website in the form of a report. The code smell reports for all websites

across all frameworks are then parsed and analyzed by a Code Smell Analyzer script

which outputs descriptive statistics (RQ1), a classification model (RQ2), and several

clustering models (RQ3).

6.2 Data Collection

This section describes the process of collecting websites for analysis along with the

extraction of code smells and the tool used to accomplish this, CSSNose.
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Table 6.1: The frameworks under consideration in this study as well as the
language of development and the number of code smell samples collected
for each. “CMS” stands for Content Management System.

# Language Framework # Samples

1 .NET ASP.NET 212

2 CMS Drupal 331

3 CMS Adobe Experience Manager 240

4 CMS Wordpress 272

5 CMS Joomla 285

6 HTML/CSS Bootstrap 415

7 Java Apache Wicket 210

8 Java Google Web Toolkit 238

9 JavaScript AngularJS 375

10 JavaScript React 242

11 JavaScript Meteor 753

12 Perl Mojolicious 97

13 Perl Dancer 507

14 PHP CakePHP 203

15 PHP Laravel 250

16 Python Django 206

17 Ruby Ruby on Rails 206

18 Scala Play 257

19 Scala Lift 226

5,525
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6.2.1 Collecting Websites

Local copies of hundreds of websites from each of the 19 frameworks were collected.

Lists of website domains that were built using different frameworks were acquired

from the web analytics platform Wappalyzer [16]. Frameworks were selected primar-

ily based on popularity and language distribution [29]. See Table 6.1 for the full list

of frameworks. Collecting local copies of websites was important to ensure reproduca-

bility of the experiment, as the live version of a website can change. A recursive crawl

was restricted to a depth of 3, as that should be enough to provide a representative

sample of the CSS used on the website. A random wait between 20-40 seconds was

introduced between the download of each resource to show mercy to web servers and

to attempt to avoid throttling from websites detecting high download frequency. Most

files deemed unnecessary for crawling were rejected, including images, pdfs, archives,

etc. Robots.txt was obeyed in these calls for the ethical collection of data. For

further explanation of technical details and problems encountered during collection,

see the repository released for this study.

6.2.2 CSSNose

CSS code smells and metrics are collected using the tool CSSNose implemented by

Gharachorlu [32]. CSSNose is a code smell detector built in Java using Cilla [48],

which is an open source tool for supporting style code maintenance [48]. Cilla utilizes

a dynamic web crawler, Crawljax [47], to detect and navigate DOM state changes in

a website - parsing and aggregating CSS rules along the way before analyzing them.

CSSNose is reported to define and aggregate a set of 26 CSS code smells, integrating

the analysis tools CSS Lint [7] and W3C CSS Validator [61] into a single smell-

detection framework [32]. It was additionally reported to have been evaluated on 20

websites with 100% recall and a 99.6% precision rate, demonstrating high accuracy.
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Although some of the smells described in [32] may be considered “controversial” in

the web development community, as mentioned briefly by Mazinanian [43], they are

still useful to this study because they still help to characterize CSS behavior, which

is the ultimate goal.

CSSNose required some adjustment initially to get running, however. We invested

some effort in bringing the tool to a state in which it could be used to collect the

eight code smells proposed in the CSSNose paper as well as an additional four code

smells and 14 descriptive statistics included in the resulting tool from Cilla. Most

code smell collections were left as they were originally implemented and some bugs

and errors were corrected. See Appendix A for a list of code smells that were renamed

from CSSNose’s original paper [32]. However, the code smells and metrics obtained

from W3C Validator and CSS Lint were not used in the final study. Aside from initial

refactors to get the tool running, important changes made include:

1. altering the “Lines of Code” (LOC) calculation

2. ensuring that URLs referring to a site’s index.html are not counted twice

3. adding a feature to collect inlined CSS (as previously only embedded

rules were collected from HTML and counted as non-external CSS)

6.2.3 Code Smell Collection

A script is setup to serve the local copies of websites and pass domains to CSSNose.

Only the CSSNose output of successful runs are used for the analysis of data. Im-

portant to note is that even a successful run of CSSNose may encounter exceptions

during website navigation as well as ignore CSS rules as a result of parsing errors.

Ultimately, a successful run is considered to be any run for which a non-zero amount

of code smells or metrics are collected. Another script is setup to then parse the CSS-
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Nose output files from each framework and collect the values of the CSS code smells

and metrics. See Table 7.4 for a list of the code smells and metrics for 2 collected

websites. Table 7.8 shows example values for code smell and metrics. Any CSSNose

output file with 0 lines of CSS code or an invalid address is counted as unsuccessful

and ignored. The code smell and metric values are then aggregated and assigned a

label based on the framework of the website they came from.

6.3 Analysis Methods

This section describes the analysis methods used in the empirical study for answer-

ing the proposed research questions. Statistical and machine learning models from

scikit-learn [56] are used for aggregating and displaying descriptive statistics (RQ1),

predicting framework from CSS code smells and metrics (RQ2), and code smell clus-

tering (RQ3).

6.3.1 Predictive Model

In order to determine whether a set of CSS code smells and metrics collected from

a website could be used as a unique identifier for certain web frameworks, a number

of supervised learning techniques for fitting a predictive model are selected and eval-

uated. In the supervised learning paradigm, a mathematical model is constructed

which can predict which class a particular object belongs to given multiple exam-

ples of objects belonging to various classes. The model is constructed by learning a

mapping between objects and their classes based on the features that describe the

properties of those objects. In this case, a single website is considered to be an object,

the set of 26 code smell and metric values collected from the CSS code of that website

are the features, and the framework used to develop the website is the class to be

predicted. See Table 7.8 for an example of two real feature sets selected from the
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training data along with their predicted and actual frameworks.

Features are normalized by transforming each feature’s value to the z-score (see

Section 7.1). The accuracies of following classifiers were all assessed on the training

data:

• K-Nearest Neighbors (with labels)

• Linear SVM

• RBF SVM

• Decision Tree

• Random Forest

• Neural Network

• Adaboost

• Naive Bayes

• Quadratic Discriminant Analysis

6.3.2 Clustering Model

In order to determine the correlations among code smells and investigate the rela-

tionships between websites, K-Means and agglomerative clustering methods are used.

K-Means is an unsupervised clustering technique that determines similarity by lever-

aging the vector space model to represent features of size n as vectors in n-dimensional

space and then calculating the Euclidean distance between objects, outputting k clus-

ters. Agglomerative clustering similarly leverages the Euclidean distance between
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objects but instead generates successive clusters in a hierarchical fashion - begin-

ning with each object as its own cluster and recursively joining neighboring clusters

together.

Three approaches to clustering using K-Means are investigated. Firstly, each set

of code smells from a website is treated as an individual object in order to investi-

gate what relationships exist between websites developed by various frameworks (see

Figure 7.1). For the next two approaches, the mean of each code smell is computed

for each framework as feature sets for clustering (see Tables 7.2-7.3). The second

clustering approach treats the collection of means of a single code smell across all

frameworks as an individual object in order to investigate the relationship between

various code smells (see Figure 7.2a). The third clustering approach treats the col-

lection of means of all code smells for a single framework as an individual object in

order to investigate the relationship CSS code smell behaviors exhibited by various

web frameworks (see Figure 7.2b). This process is then repeated with agglomerative

clustering for all but the first clustering task (by individual website) (see Figures 7.3

and 7.4).

54



Chapter 7

RESULTS AND DISCUSSION

In this chapter, we introduce some metrics used for aggregating data and proceed

to address each research question and discuss the results of the empirical study. See

Table 7.4 for a quick reference to code smell and metrics definitions.

7.1 Metrics

The following definitions of precision, recall, and F1-score typically apply in the con-

text of binary classification - predicting whether an object either belongs or does not

belong to a class.

• True Positive (TP) - an object correctly identified as belonging to a class.

• False Positive (FP) - an object incorrectly identified as belonging to a class

(when it actually does not belong)

• False Negative (FN) - an object incorrectly identified as not belonging to a

class (when it actually does belong)

However, as we consider a website to be an object and a framework to be a class

(of which we have 19), we must calculate precision, recall, accuracy, and F1-score

for each framework fi which belongs to the set of frameworks F . In the following

equations, wii is the set of websites predicted to belong to framework fi which actually

belong to fi (true positive), wij is the set of websites predicted to belong to framework

fi which actually belongs to fj (false positive), wjj is the set of websites predicted to

belong to framework fj which actually belongs to fj (true negative), and wji is the

set of websites predicted to belong to framework fj which actually belongs to fi (false
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negative), (where i 6= j and |F| is the cardinality of F). Based on this explanation

we can define precision, recall, accuracy, and F1-score of each framework fiεF where

1 ≤ i ≤ |F | as follows:

Precision is a measure of a classifier’s correctness when claiming that an object

belongs to a class.

Precision(fi) =
wii

wii + wij
(7.1)

Recall is a measure of a classifier’s completeness in identifying objects which

belong to a class.

Recall(fi) =
wii

wii + wji
(7.2)

F1-Score is a combined measure of classifier’s precision and recall.

F1(fi) =
2 · precisioni · recalli
precisioni + recalli

(7.3)

Accuracy is a measure of a classifier’s overall ability to correctly identify belong-

ing and non-belonging objects.

Accuracy =

|F |∑
i=1

wii + wjj
wii + wjj + wij + wji

(7.4)

Support is simply the number of positive objects included in the test. For exam-

ple, in a binary classification task containing 100 objects, if 25 objects are actually

positive and 75 are actually negative, then the support is 25.

Population Standard Deviation is a measure of the amount of variation in

a dataset. It’s either zero, in which case all points carry the same value, or it’s an

unbounded positive value. [{x1, x2, ..., xN} are the values of the population items, x is the

mean value of these items, N is the size of the population.]f

StandardDeviation = σ =

√∑N
i=1(xi − x)2

N
(7.5)
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Standard (Z) Score is the signed, unbounded number of standard deviations

that a single value is away from the mean of that value’s population. Positive indicates

that the value falls above the population mean while negative indicates it falls below

the population mean. [µ is the mean of the population, σ is the standard deviation of

the population.] zi = xi−µ
σ

zi =
xi − µ
σ

(7.6)

7.2 RQ1 - Code Smell Prevalence in Web Frameworks

The results reveal that code smells are highly prevalent in websites built with web

frameworks. Table 7.1 shows the percentages of websites built with a certain frame-

work that contain at least one instance of each code smell or metric. These percent-

ages are thus strictly a measure of the prevalence of each smell/metric and do not

consider the extent or severity. To illustrate, the CSS code smell Embedded Rules for

the framework Google Web Toolkit has a value of 39.5%. This means that 39.5% of

the collected websites built with Google Web Toolkit contain at least one Embedded

Style Rule in their HTML.

The high prevalence of CSS code smells is evidenced by the consistently high

percentages for smells across all 19 frameworks in Table 7.1. Percentages seldom

dip below 70%, and the majority of the values appear to be in the nineties. These

results are consistent with Gharachorlu’s finding that 99.8% of the websites studied

contain at least one type of CSS code smell [32], also demonstrating high prevalence.

One interesting observation from this table is that the code smell with the most

variability is the Embedded Rule smell which has a low of 39.50% in Google Web

Toolkit and a high of 90.07% in Wordpress. By contrast, the code smell with least

amount of variability is the Properties with Hard-Coded Values smell with a

low of 96.91% in Mojolicious and a high of 99.58% in Adobe Experience Manager.
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One reason for this may be that it simply takes more effort to reduce the amount

of Hard-Coded properties than it does to reduce the amount of Embedded Rules.

Another reason may be that the web development community cares more avoiding

Embedded Rules than Hard-Coded properties.

In addition to high prevalence, the results in Tables 7.2-7.3 show a high degree of

variance in the code smell and metric values. A mean measurement on the table is

the average value of the specified code smell/metric for all of the websites from the

specified framework. A standard deviation measurement represents the variance of

the specified smell/metric when compared to the mean value for that smell/metric

from the specified framework. Important to note is that both the mean and the

standard deviation are expressed in the units of the smell/metric that they represent,

which can be found in Table 7.4. A consequence of this is that the mean and standard

deviations of different smells/metrics can’t be directly compared. To resolve this, the

z-score measurement is included, which represents the z-score of the mean relative

to the means of that smell/metric in other frameworks. Note that the “population”

under consideration with the mean and standard deviation was the values of the code

smell/metric in the set of websites for a specific framework, but the population under

consideration for the z-score mean is the set of means for the code smell/metric across

all frameworks. To illustrate, in Tables 7.2 and 7.3, the CSS code smell Embedded

Rules for the framework Google Web Toolkit has a mean of 30.79, a standard deviation

of 103.2, and a z-score mean of -1.63. This means that websites built with Google

Web Toolkit have on average 30.79 Embedded Rules which varies on average by 103.2

rules, and this is 1.63 standard deviations below the average numbers of Embedded

Rules found in other frameworks.

The high standard deviations could suggest that most frameworks don’t highly

restrict or control developers’ specification of style in websites, such that much of the

style in websites is still mostly authored by the developer. Still, it’s possible that
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frameworks in some way encourage certain CSS practices on the part of developers,

or module creators, and therefore introduce the code smells that we see in Table 7.1.

Despite the high variance, it’s worth investigating whether it’s possible to recognize

a pattern of CSS behavior in frameworks based only on the code smells and metrics.

A predictive model is needed to explore the more subtle patterns in the dataset not

revealed to us in the descriptive statistics from Tables 7.1 and 7.2-7.3.

Another interesting observation from Tables 7.2-7.3 is that the frameworkGoogle

Web Toolkit actually has nearly all negative values for its z-score means. This sug-

gests that websites built with Google Web Toolkit tend to have better CSS practices

compared to the other frameworks because the smell and metric values are on aver-

age lower. By contrast, the framework Laravel has nearly all positive values for its

z-score means. This suggests that websites built with Laravel tend to have worse CSS

practices compared to the other frameworks because the smell and metric values are

on average higher.

7.3 RQ2 - Identifying Web Framework from CSS Code Smells

The results show that smells and metrics extracted from the CSS code of a website

can indeed be used to identify the framework that was used to build it, up to an

accuracy of 39%. A number of classifiers were tested on the training data to explore

their compatibility with the dataset before selecting a standard neural network, which

had the highest accuracy. Table 7.5 shows the classifiers along with their accuracies.

Between 200-700 CSSNose outputs were collected for each of 19 frameworks, resulting

in 5,525 total training examples with 26 features each. 10-fold cross validation was

performed on the classifier to ensure that the accuracy was truly representative of the

data and not dependent on any random initialization of the model or bias in any one

test/train dataset split. In each fold, 67% of the data was used for training and 33%
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Table 7.1: The percentages of the websites for a specific framework that
contain at least one instance of the specified code smell.
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Table 7.2: The mean, standard deviation, and z-score mean for each code
smell/metric across frameworks 1-9.
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Table 7.3: The mean, standard deviation, and z-score mean for each code
smell/metric across frameworks 10-19.
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Table 7.4: The full set of CSS code smells and metrics collected from
websites using CSSNose along with their descriptions and the functional
group they belong to (rule-based, selector-based, property-based, or file-
based).

# Type Group Name Description

CS1 Code Smell Rule-Based Inlined Rules Number of rules inlined in the HTML with the style attribute.

CS2 Code Smell Rule-Based Embedded Rules Number of rules embedded in the HTML with the style tag.

CS3 Code Smell Rule-Based Too Long Rules Number of rules containing more than five style property declara-

tions.

CS4 Code Smell Rule-Based Empty Catch Rules Number of rules containing no style property declarations.

CS5 Code Smell Selector-Based Too Specific Selectors Type I Number of rules containing more than four simple selectors.

CS6 Code Smell Selector-Based Too Specific Selectors Type II Number of rules containing more than one ID selector, more than

two class selectors, or more than three element selectors.

CS7 Code Smell Selector-Based Universal Selectors Number of selectors containing an instance of the universal selector

*.

CS8 Code Smell Selector-Based Selectors with ID and at Least One Class or Element Number of selectors containing an ID along with at least one class

or element selector.

CS9 Code Smell Selector-Based Selectors with Erroneous Adjoining Pattern Number of selectors without white space between classes or IDs.

CS10 Code Smell Selector-Based Too General Selectors Number of selectors targeting a large percentage of the DOM: html,

head, body, div, header, aside.

CS11 Code Smell Property-Based Properties with Hard-Coded Values Number of style property declarations containing constants.

CS12 Code Smell Property-Based Properties with Value Equal to None or Zero Number of style property declarations with the value 0 or none.

M1 Metric Rule-Based External Rules Number of rules contained in external style sheets.

M2 Metric Rule-Based Total Defined CSS Rules The total number of rules.

M3 Metric Selector-Based Total Defined CSS Selectors The total number of selectors.

M4 Metric Selector-Based Ignored CSS Selectors Number of selectors ignored during smell collection.

M5 Metric Selector-Based Undefined Classes Number of rules containing a class selector which does not target

any existing DOM nodes.

M6 Metric Selector-Based Matched Selectors Number of selectors which target existing DOM nodes.

M7 Metric Selector-Based Unmatched Selectors Number of selectors which do not target any existing DOM nodes.

M8 Metric Selector-Based Effective Selectors Number of selectors which target existing DOM nodes and have

style properties that are successfully applied.

M9 Metric Selector-Based Ineffective Selectors Number of selectors which target existing DOM nodes but have no

properties applied due to being overridden by other rules in the

cascade.

M10 Metric Property-Based Total Defined CSS Properties The total number of style property declarations.

M11 Metric Property-Based Unused Properties Number of properties that are not applied to the DOM.

M12 Metric Property-Based Ignored Properties Number of ignored style property declarations.

M13 Metric File-Based Files with CSS Code The total number of files containing CSS Code, either from external

style sheets or HTML.

M14 Metric File-Based Lines of Code The total number of lines of style code collected.
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was used for testing. Furthermore, the per-class precision, recall, and f1 scores were

calculated to determine the reliability of the model. See Table 7.6 for the results and

Section 7.1 for an explanation of these metrics. The average precision, recall, and

f1-score values were 0.34, 0.38, 0.32 respectively, showing good reliability.

An accuracy of 39% in prediction is significant given that the random chance of

guessing a website’s framework is 1 / 19 = 5.26%. This suggests that there exists

a pattern of CSS behavior in the data not easily recognized by humans through

descriptive statistics. Important to note is that not much effort was invested in

raising the accuracy beyond what could be achieved with the default parameters

of the machine learning library used for training. Presumably with more training

data and model parameter tuning, an even higher accuracy could be achieved. Now

that a correlation has been established between web frameworks and a pattern of

CSS behavior derived from CSS code smells and metrics, we can begin to question

why this behavior is predictable at all. Is it the result of design decisions made by

frameworks? The result of some process of development they impose on framework

users? Or perhaps it has less to do with any action on the part of the framework

and more to do with the choices of developers? For example, perhaps lightweight

frameworks tend to attract developers who are more likely to write compact CSS code

with little duplication, whereas more feature-complete frameworks attract developers

who are more likely to include duplicated CSS rules. These ideas can be explored in

further studies.

Code Smell Groups - In order to capture which sets of features were most

important for prediction, the code smells and metrics were separated into various

groups and each used to train a neural network classifier. See Table 7.7 for the groups

and their accuracies and Table 7.4 to reference smell/metric belongs to which group.

10-fold cross validation was also used on the classifiers trained on these groupings to

ensure a representative accuracy. One division simply grouped all code smells (12
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Table 7.5: The accuracies of various classifiers tested during framework
prediction.

Classifier % Accuracy

Naive Bayes 18.92

Quadratic Discriminant Analysis 27.10

Decision Tree 28.55

Adaboost 31.30

Random Forest 32.70

Radial Basis Function SVM 32.70

Linear SVM 36.84

K-Nearest Neighbors (with labels) 37.60

Neural Network 39.08

features) and grouped all metrics (14 features), which achieved accuracies of 30.82%

and 33.48% respectively. This demonstrates that metrics provide more information

for prediction but not much more than code smells, (most likely due to the fact

that the feature count is higher for metrics). A second division created functional

groups of file-based (2 features), rule-based (6 features), selector-based (13 features),

and property-based (5 features) smells and metrics, achieving accuracies of 21.95%,

24.53%, 32.11%, and 22.12% respectively. Code smells and metrics dealing exclusively

with the CSS selectors appear to provide the most information in prediction. The

result of 32.11% for selector-based smells is somewhat close to the full feature set

accuracy of 39% and indicates that the composition of a selector when specifying

style is an important indicator of CSS behavior. It further indicates that websites

built with differing frameworks tend to write their selectors in fairly different ways.

Also important to note is that the file-based features, of which there are only 2, are

approximately as successful as feature sets of size 5 and 6, meaning file-based features

are also quite informative.
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Table 7.6: The precision, recall, F1-score, and support on a neural network
classifier.

Framework Precision Recall F1-score Support

a.e.m. 0.35 0.25 0.29 76

angularjs 0.41 0.17 0.24 129

apache-wicket 0.35 0.11 0.16 56

bootstrap 0.24 0.46 0.31 131

cakephp 0.25 0.01 0.02 79

dancer 0.42 0.71 0.53 154

django 0.15 0.03 0.06 59

drupal 0.32 0.52 0.39 116

g.w.t. 0.42 0.56 0.48 75

joomla 0.34 0.49 0.40 80

laravel 0.33 0.03 0.05 75

lift 0.56 0.51 0.53 73

meteor 0.43 0.84 0.57 282

m.a.n. 0.38 0.08 0.13 77

mojolicious 0.00 0.00 0.00 35

play 0.38 0.23 0.28 93

react 0.35 0.28 0.31 69

ruby-on-rails 0.00 0.00 0.00 70

wordpress 0.33 0.07 0.12 98

Average / Total 0.34 0.38 0.32 1827
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Table 7.7: The number of features and accuracies for each functional group
of smells and metrics trained on a classifier with 10-fold cross validation.

Division Smell Grouping # Features Accuracy

1
Smell-Based 12 31.26%

Metric-Based 14 35.51%

2

Property-Based 6 21.23%

Rule-Based 13 23.94%

Selector-Based 5 34.30%

File-Based 2 23.26%

7.4 RQ3 - Correlation Between Code Smells

The results from three different clustering tasks using K-Means and two clustering

tasks using Agglomerative clustering show that there are indeed correlations between

code smells and metrics, that there are interesting relationships between frameworks,

and they support the finding in RQ1 of high smell and metric value variance across

websites. Clustering as a task groups objects based on a notion of similarity between

the objects. In this case, the notion of similarity is the Euclidean distance between

feature sets of the objects as computed by the clustering algorithm K-Means. Looking

at the resulting object clusters, we can attempt to derive interesting observations that

inform us of correlations or relationships between objects.

The first K-Means clustering task treats websites as individual objects. Specifi-

cally, the full set of smells/metrics for each website form a feature set (an example

of which can be seen in Table 7.8). See Figure 7.1 for a plot of the website clusters.

A majority of the websites bunch together without many distinct divisions between

clusters. The frameworks used to build the websites also appear to be fairly well-

distributed over the clusters produced by K-Means, with the exception that Adobe

Experience Manager primarily composes the fringe data points identified as cluster

67



Table 7.8: Example feature sets of two websites along with the actual and
predicted framework from the classifier.

Smell / Metric jide.com escuela20.com

UndefinedClasses 37 4

Too General Selectors 8 3

Effective 13 174

EmbeddedRules 5 0

EmptyCatchRules 3 0

ExternalRules 61 823

FileswithCSScode 5 5

Ignored 7 89

IgnoredProperties 14 107

Ineffective 0 15

InlinedRules 0 8

LOC(CSS) 953 5010

Matched 13 189

Properties with Hard-Coded Values 50 673

Properties with Value Equal to None or Zero 22 546

Selectors with ID and at least one classor element 0 259

Selectors with Invalid Syntax 2 19

TooLongRules 6 266

TooSpecificSelectorsTypeI 7 43

TooSpecificSelectorsTypeII 5 19

TotalDefinedCSSProperties 218 3267

TotalDefinedCSSrules 66 831

TotalDefinedCSSselectors 111 836

UniversalSelectors 8 158

Unmatched 91 558

UnusedProperties 139 2330

Predicted ASP.NET ASP.NET

Actual Play ASP.NET
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Figure 7.1: The website clusters produced by K-Means. The units of
the axes represent a linear combination of the feature set produced by
Principle Component Analysis (PCA).

two on the plot. This result is consistent with the high code smell and metric values

found in Tables 7.2-7.3, supporting the idea that frameworks do not highly restrict

developers’ specification of style in websites.

The second K-Means clustering task treats frameworks as individual objects.

Specifically, the mean values for all smells/metrics of a specific framework form a

single feature set (see Plot 7.2b). Clustering by framework reveals that there are

indeed some relationships in CSS behavior between various frameworks, though it’s

not immediately obvious what factors may be affecting this. CakePHP, Mojolicious,

ASP.net, and React all appear to form a fairly distinct cluster (1, blue), as do Lift,

Laravel, Play, Ruby on Rails, Wordpress, and Django (2, orange). Joomla, Drupal,

and Apache-Wicket also form a distinct cluster (2, yellow). Bootstrap (2, yellow),

Dancer (1, blue), and Google Web Toolkit (1, blue) all appear on the fringes of the

these clusters which indicates that they are unique somehow in their CSS behavior.

There don’t appear to be any strong similarities between frameworks based on the
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Figure 7.2: Clusters based on (a) code smell/metric and (b) framework.
Each color/number represents a unique cluster. The units of the axes
represent a linear combination of the feature set produced by Principle
Component Analysis (PCA).

language of development, though two JavaScript frameworks, AngularJS and Meteor

(3, orange), appear very close to each other and somewhat removed from the other

frameworks in their cluster. One highly interesting observation is that Google Web

Toolkit, which is found in RQ1 to have on average lower code smell/metric values,

appears close to the framework Dancer. Revisiting the z-scores on Tables 7.2-7.3, we

observe that Dancer also has lower than average smell/metric values. Similarly, Me-

teor and AngularJS have a high amount of negative z-scores and appear next to each

other. Ultimately, clustering by framework provides good insight into which frame-

works have similar patterns of CSS behavior and can be a good starting point for

investigating and comparing development features that lead to certain CSS practices.

The third K-Means clustering task treats code smells and metrics as individual

objects. Specifically, the mean values for a specific smell/metric for all frameworks

form a single feature set (see Plot 7.2a). There appear to be two fairly distinct clusters

that are each a mix of various smells and metrics. Specifically, Total Defined CSS

Selectors, Properties with Hard-Coded Values, Total Defined CSS Rules, External
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Rules, and Universal Selectors form a cluster together (2, red), Total Defined CSS

Properties and Unused properties are found together (orange), Lines of Code is found

on its own far removed from all over clusters (yellow), and the remaining smells/-

metrics are found together (blue). The high concentration of smells and metrics in

the blue and red clusters indicate that those smells and metrics are highly correlated

which each other, meaning that the presence and/or extent of those smells strongly

affect each other.

Interesting to note is that Total Defined CSS Selectors isn’t as closely correlated

with a majority of the selector-based smells and metrics as we might have expected.

Lines of Code appears on its own far removed from the other smells and metrics, in-

dicating that it doesn’t have a very strong relationship with them which is surprising.

Total Defined CSS Properties is found together with Unused Properties, which we

might expect to see, but the fact that they’re rather far away from other property-

based smells and metrics is also surprising. Ultimately, clustering by smells and

metrics is useful in exploring the correlations and relationships between code smells

and metrics and can be highly useful in directing developer maintenance efforts as

well as recommendation of development practices. For example, because we find that

Total Defined CSS Selectors does not have a very strong correlation with selector-

based smells and metrics, we know that reducing the number of CSS Selectors may

not necessarily be an effective way to combat high selector-based smell values.

Lastly, the code smells/metrics and frameworks are clustered with an Agglom-

erative clustering method. Figures 7.3 and 7.4 show the resulting dendrograms for

smells/metrics for frameworks respectively. Dendrograms are useful in showing a

more comparative view of the features while the clustering plots shown earlier show

a more relative view of the features. Each leaf node represents one of the 26 code

smells or metrics and each non-leaf node represents the joining of two sub-groupings

as more clusters are successively discovered. The values on these non-leaf nodes repre-
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sent the distance in Euclidean space between the left and right groupings, indicating

their similarity. The higher up on the tree a non-leaf node is, the farther away and

therefore less similar two subgroups are to each other.

For example, in Figure 7.3, Total Defined CSS Properties and Unused Properties

are found to be correlated and are therefore grouped (clustered) together at a distance

of 63.6. They are then together grouped with the set of all other features (except

for Lines of Code) at a distance of 430 as the next cluster is discovered at that step

in the clustering process. The smaller the distance measure, the more similar or

correlated the two features or two sets of features are deemed to be. Important to

note is that because K-Means and agglomerative clustering use the same metric for

similarity and simply differ in their approach to the actual notion of a cluster, the

dendrogram diagrams are consistent with the cluster plots shown earlier in terms of

correlations between features.

For the first agglomerative clustering task, code smells/metrics are treated as

individual objects. Figure 7.3 shows the resulting dendrogram. The dendrogram

reiterates for us that Lines of Code appears to have little influence over any of the

code smells and metrics as it appears in an outer group at a very high distance from the

others. Some relationships indicated by the dendrogram make sense, such as Total

Defined Properties being highly correlated with the number of Unused Properties.

However one interesting relationship discovered through the dendrogram is the very

high correlation observed between Dangerous Selectors (Too General Selectors) and

Files with CSS Code. One reason for this correlation might be that the more CSS files

a developer tends to add to and use in a web project, the more specific (and therefore

less general) they have to make their selectors so that styles rules apply as intended.

Another interesting relationship is the one between Selectors with ID and at Least

One Class or Element and Undefined Classes because it suggests that developers who

tend to abuse IDs by combining them with other simple selectors also typically abuse
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classes by providing style to classes that don’t exist in the HTML. Ultimately the

relationships between code smells in metrics as displayed in the dendrogram are useful

in forming hypotheses about how CSS is developed and the difficulties developers

might encounter.

For the second agglomerative clustering task, frameworks are treated as individual

objects. Figure 7.4 shows the resulting dendrogram. The dendrogram reiterates for

us that there doesn’t seem to be much similarity in CSS behavior between frameworks

based on language of implementation nor based on whether the framework is a content

management system or not. It additionally provides an excellent starting point for

hypotheses concerning this similarity. For example, we observe that Adobe Experience

Managers appears quite separated from the other frameworks and that CakePHP and

Microsoft ASP.net appear very close to one another, so we can begin investigating the

feature sets and developer communities of these frameworks in order to gain insight

into what may make them so similar or different to one another in the CSS behavior

found in the resulting websites.
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Figure 7.3: The dendrogram produced by agglomerative clustering of code
smells and metrics.
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Figure 7.4: The dendrogram produced by agglomerative clustering of
frameworks.
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Chapter 8

THREATS TO VALIDITY

The main threat to validity facing this work is the accuracy of the tool used for the

collection of the CSS code smells and metrics, CSSNose. CSSNose and the tool upon

which it’s based, Cilla, have both been manually verified in previous works and shown

to have a high level of accuracy, but CSSNose required some adaption to be used in

the empirical study. It’s possible that the code smells and metrics collected aren’t

entirely accurate for all websites. Other threats include the analysis of sites with

a restrictive attitude towards automatic web crawlers as defined by the robots.txt,

resulting in the retrieval of a limited amount of pages that may not give a truly

representative sample of a website.
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Chapter 9

CONCLUSION & FUTURE WORK

9.1 Conclusion

In this thesis, we attempt to recognize a pattern of CSS behavior in web frameworks.

We collect a dataset of several hundred websites produced by each of 19 different

frameworks, collect code smells and other metrics from the CSS code of each website

using the tool CSSNose, train a classifier to predict which framework the website was

built with, and perform various clustering tasks to gain insight into the correlations

between code smells. Our results show that CSS code smells are highly prevalent

in websites built with web frameworks, we achieve an accuracy of 39% in correctly

classifying the frameworks based on CSS code smells and metrics, and we find inter-

esting correlations between code smells and metrics. In addition to these results, the

contributions of this paper include descriptive statistics of the CSS practices of web

frameworks, a feature added to the tool CSSNose to analyze inlined CSS code, the

dataset of CSS metrics and code smells from 5,525 websites built with 19 different

web frameworks, and three ideas of coupling that provide a holistic view of Separa-

tion of Concerns between CSS and HTML and provide web developers with a mental

model and terminology. Most importantly, the findings in this work will allow for

an investigation of the characteristics and design decisions in web frameworks that

allow for the introduction of CSS code smells. All software artifacts and datasets are

publicly available at https://github.com/bleischt/.
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9.2 Future Work

This thesis constitutes a first step in the attempt to better understand CSS behavior

in websites built with web frameworks and can be expanded upon in several ways.

First and foremost, improving the strength and scope of the analysis can be achieved

by adding more CSS code smells and metrics to the analysis, such as the smells and

syntax errors captured by W3C Validator [61] and CSS Lint [7], duplicated CSS code

captured by Mazinanian’s tool [43], Keller and Nussbaumer’s notion of abstractness

[37], and Adewumi et al.’s complexity metrics [13] [14]. The scope could be further

expanded by accounting for CSS code embedded in JavaScript and server-side code

(perhaps using techniques explored by Nguyen et al. in [50]) and by extending the

code smell, metrics, and syntax error analysis to HTML and JavaScript in order to

analyze the practices of frameworks more holistically.

Secondly, because this work has established a correlation between CSS code smells

and web frameworks, further studies can investigate the characteristics and design de-

cisions of web frameworks that account for the introduction of these code smells in

websites. In this regard, it would be interesting to analyze the differences in practices

between various frameworks, the developer communities surrounding these frame-

works, and the typical applications of these frameworks (the types of websites typi-

cally built with certain frameworks). The clustering plots and dendrograms may serve

as a good starting point for hypothesizing about the various characteristics of frame-

works that may affect CSS development with an ultimate goal of understanding and

improving the development processes of frameworks that are considered problematic.

Lastly, the correlations discovered between various CSS code smells and metrics

can serve as the basis for further investigation into CSS development and maintenance

techniques. The clustering plots and dendrograms may serve as a good starting point

for hypothesizing about the interactions between certain code smells and metrics and
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what factors of development may cause a developer to introduce code smells into CSS

code, inhibit their maintenance efforts, or inhibit their understanding of the language

features. Future work in this direction combined with a predictor for the framework

a website was built with could contribute to the creation of a robust tool for CSS

maintenance which can provide CSS code smell refactorings and code recommenda-

tions to the developer based on the observed difficulties with the framework being

used in creation of the website.
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A CSSNose Code Smell Name Mapping

The following code smells were defined by Gharachorlu in [32] but renamed by Ghara-

chorlu in the CSSNose tool output:

1. Non-External Rule —> Embedded Rules

2. Too Long Rules —> Too Long Rules

3. Too Much Cascading —> Too Specific Selectors Type I

4. High Specificity Values —> Too Specific Selectors Type II

5. Selectors with Erroneous Adjoining Pattern —> Selectors with Invalid

Syntax

6. Too General Selectors —> Dangerous Selectors

7. Properties with Hard-Coded Values—> Properties with Hard-Coded Val-

ues

8. Undoing Style —> Properties with Value Equal to None or Zero
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