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Open Data Standards for Administrative Data Processing

Abstract
Adoption of non-traditional data sources to augment or replace traditional survey vehicles can reduce
respondent burden, provide more timely information for policy makers, and gain insights into the society that
may otherwise be hidden or missed through traditional survey vehicles. The use of non-traditional data
sources imposes several technological challenges due to the volume, velocity and quality of the data. The lack
of applied industry-standard data format is a limiting factor which affects the reception, processing and
analysis of these data sources. The adoption of a standardized, cross-language, in-memory data format that is
organized for efficient analytic operations on modern hardware as a system of record for all administrative
data sources has several implications:

• Enables the efficient use of computational resources related to I/O, processing and storage.

• Improves data sharing, management and governance capabilities.

• Increases analyst accessibility to tools, technologies and methods.

Statistics Canada developed a framework for selecting computing architecture models for efficient data
processing based on benchmark data pipelines representative of common administrative data processes. The
data pipelines demonstrate the benefits of a standardized data format for data management, and the efficient
use of computational resources. The data pipelines define the preprocessing requirements, data ingestion, data
conversion, and metadata modeling, for integration into a common computing architecture. The integration
of a standardized data format into a distributed data processing framework based on container technologies is
discussed as a general technique to process large volumes of administrative data.
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• Preservation of the raw state of the data is essential to 
extract relevant and accurate statistics

• External data sources with lack of common data standard 
or format

• Analytical workloads and data access patterns differ from 
traditional survey data

Features & Challenges
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Administrative Data Analytical Workloads
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• Administrative data can be represented as a table
• Preserves the raw state with a rich data format

• Standard tabular data format common to all systems
• Common data interface!
• Zero-copy data exchange between systems, processes, libraries

• Systems are modular

What if?
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IO / Deserialization

In-memory storage

Metadata

Computing



• Open standards enables systems to directly communicate
• Simplifies system architecture
• Reduces ecosystem fragmentation
• Improves interoperability across processes
• Reduces dependencies on proprietary systems and data formats

• Common data formats encourage and facilitate collaboration
• Facilitates code-reuse supported by large communities
• Simplifies data management, data sharing and data access

Open Data Standards

5



• Examples of data standards in computing today:
• Human-readable semi-structured: XML, JSON
• Structure data query language: SQL has various flavors 

(MySQL, PostgreSQL, etc...)
• Binary data (with metadata) (BigData & scientific community): 

NetCDF, HDF5, Apache Parquet, ORC, ROOT
• Binary blobs Serialization / RPC protocols: Apache Avro, 

Protocol buffers (Google)
• Non-open data formats

• CSV, Excel, SAS bdat

Common Data Formats
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• Scientific community converged around strided ndarray (NumPy)

• Fortran compatible (column-major)

• C compatible (row-major)

• Benefits
• Contiguous in-memory (i.e., single-segment, memory layouts, access any part of memory block via indices)
• Zero-overhead memory sharing between libraries in-memory and processes via shared memory
• Algorithm re-use – scientific libraries developed in Fortran
• Reuse IO and storage

Standard in-memory data
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• Tabular data ubiquitous in Data and Social Sciences.
• Notoriously not based on open standards

• DataFrame (table) concept and semantics are nearly identical across various 
systems.
• In-memory representation varies dramatically.
• Supported data types / structures varies.
• Algorithmic code across languages cannot be shared/re-used.

• Examples of DataFrames
• Tabular Data is common in SQL 
• Big data systems developed Spark and Hive
• Popular data science languages all have a DataFrame (R, python, Julia)

Tabular data already exists! 
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Apache Arrow
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• Cross-language development platform for in-memory data
• Solves the non-portable DataFrame problem

• Standard
• Specifies language-independent columnar memory format for flat and hierarchal data
• Backed by key developers in major open-source projects

• Fast
• Data locality
• Zero-copy 

• Flexible
• Common data structure
• Interface across systems and languages

• Sustainable
• Algorithms, tools and libraries can be re-used
• Modular, deconstructed data architecture



Apache Arrow – Common Data Layer
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• Prototype framework for processing Administrative Data powered by 
Apache Arrow.

• Assumptions to test
• Data converted, stored and analyzed in a tabular data format.
• Data partitioned (datums/batches), processed independently.
• Multiple business processes represented as Directed Graphs (DAGs) 

applied to each partition in-memory.

StatCan Artemis
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• Metadata management - separation of algorithmic code and configuration
• Performance - separation of I/O and data pipelining
• Reliability – job-level control flow and global steering algorithm for data pipelines
• Reproducibility - in-memory provenance of data transformations
• Flexibility 

• Modular code design to facilitate code re-use, testing and development
• User-defined algorithms, tools, histograms and data tables
• Data access provides Arrow tables to user-defined components

• Real-time data monitoring, validation and statistical analysis
• Histogram-based monitoring, cost analysis and data profiling

Artemis Prototype Design Features
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• Directed Graph of all Business Process known 
at configuration.
• Define inputs, algorithms and output

• Topological sort of DAG is a linear ordering of 
the vertices 
• Execution order which ensures data dependencies are 

met. 

• DAG data structure in memory
• Create anchors at each vertex, retains references to 

intermediate data produced during processing.
• Data access (references) of Arrow Tables (object store) 

to user-defined algorithms 
• Collection of objects and serialization can be managed 

by framework (collections to serialize from objet store)

In-memory Data Provenance and Data Access
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StatCan Artemis Control 
Flow & Metadata

Process Configuration
• Execution graph
• DAG structure
• Algorithm configuration
Job Configuration
• Data input
• Glob pattern
• Data Chunking 
Job process
• Payload information
• Data provenance
• Data schema
• Histograms
• Timers

Metadata Model



• Open data standards well-established in scientific community 
• Preserve, share and re-use knowledge from a large community

• NSOs, social and data scientists analyze tabular data
• Our systems do not communicate effectively

• Apache ArrowTM is a cross-language development platform
• Single data format and standard will allow for data exchange
• Simplifies system architecture and data management
• Deconstruct the typical data architecture stack
• Facilitate collaboration
• Drive growth and innovation

• StatCan Artemis project powered by Apache ArrowTM

• Experimental data processing and analysis framework for the efficient use of 
Administrative Data.

Summary

15



THANK YOU! MERCI!
For more information 
please visit, 
www.statcan.gc.ca

#StatCan100



• The NumPy array: a structure for efficient numerical computation, 
Van Der Walt, Stefan; Colbert, S. Chris; Varoquaux, Gaël, 
Computing in Science and Engineering 13, 2 (2011) 22-30, 
2011arXiv1102.1523V

• Why Python is Slow, https://jakevdp.github.io/blog/2014/05/09/why-
python-is-slow/

• Apache ArrowTM, https://arrow.apache.org/
• Google Protocol Buffers, https://developers.google.com/protocol-

buffers/

References
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Artemis Conceptual 
Architecture
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Artemis Core Data Flow
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Input data
(Raw bytes) Define offset and 

length in bytes 
for each 
processing block.

Block (offset, length)
Block (offset, length)
Block (offset, length)
Block (offset, length)

Scan, Seek.

Sequential load 
blocks into memory. 
(Raw bytes data 
management)

Input File
Input File

Input File
Input File

Input File

Artemis parallelized 
processes on input files

RecordBatch (nrecords)

RecordBatch (nrecords)

RecordBatch (nrecords)

RecordBatch (nrecords

Header (payload)
Arrow Table

• Each Node in Graph produces RecordBatches with common 
schema.

• RecordBatches are organized to have equivalent number of 
records (configurable).

• RecordBatches are combined to form Arrow Tables.
• Arrow Tables are serialized and written to disk.
• Data provenance is retained in metadata (Protobufs).
• Tables are flushed to disk to have optimal data file size.



Apache Arrow Cross-Platform
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Additional contributions for cross-platform support

Rust

MatLab

R

.NET

Rapid adoption of Arrow for 
expanding interoperability.
Democratizing system 
development and data access.

CUDA Pyarrow/Numba CUDA Interop!



• Maximize CPU throughput
• SIMD (Single instruction 

multiple data)
• Cache locality

• Vectorized operations
• Minimal structure overhead (only 

up-front cost)
• Efficient, lightweight compression 

schema per column

Arrow Focus on CPU Efficiency
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• Scalars – supports fixed-width and variable-width
• Boolean
• [u]int[8,16,32,64], Decimal, Float, Double
• Date, Time, Timestamp
• UTF8 String, Binary

• Complex 
• Struct, List, Union

• Validity buffer bit-map retaining null value position in column
• https://cwiki.apache.org/confluence/display/ARROW/Column

ar+Format+1.0+Milestone

Arrow Data Format
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• Arrow Flight RPC and Messaging Framework.
• gRPC Arrow-based messaging.
• Avoid expensive parsing when receiving data over the wire.

• Parquet and Arrow C++ converge to single repo / dev cycle.
• C++ CSV Reader Object (early performance studies with Artemis)
• R Library development
• CUDA-based GPUs in Python. Interop with Numba and GPU Open Analytics 

Initiative.

Notable Developments
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