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ABSTRACT

Vehicle Pseudonym Association Attack Model

Pierson Yieh

With recent advances in technology, Vehicular ad hoc Networks (VANETs) have

grown in application. One of these areas of application is Vehicle Safety Commu-

nication (VSC) technology. VSC technology allows for vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) communications that enhance vehicle safety and driv-

ing experience. However, these newly developing technologies bring with them a

concern for the vehicular privacy of drivers. Vehicles already employ the use of

pseudonyms, unique identifiers used with signal messages for a limited period of

time, to prevent long term tracking. But can attackers still attack vehicular privacy

even when vehicles employ a pseudonym change strategy? The major contribution

of this paper is a new attack model that uses long-distance pseudonym changing

and short-distance non-changing protocols to associate vehicles with their respective

pseudonyms.
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Chapter 1

INTRODUCTION

With recent technological advances in intelligent transportation systems (ITS), Ve-

hicular Ad-Hoc Networks (VANETs) have seen expanded applications. VANETs are

systems of vehicles communicating with each other and roadside infrastructures. One

application for VANETs is Vehicle Safety Communication (VSC), which aim to en-

hance vehicle safety and the driving experience. VSC can be further broken down into

vehicle-to-vehicle (V2V) communications and vehicle-to-infrastructure (V2I) commu-

nications. An example of V2V communication is platooning, where vehicles closely

follow other vehicles aided by wirelessly exchanging steering and acceleration infor-

mation. Examples of V2I communication are automatic tollbooth payments, where

vehicles can automatically send their occupants’ payment information to tollbooths

without having to stop, and emergency roadside warnings, where roadside infrastruc-

tures can broadcast to vehicles information about upcoming dangerous weather and

road conditions [22]. Because VANETs use wireless technology for communication,

an attacker, an agent outside of the network, can easily pick up signal packets with

proper equipment [4, 13]. This brings into question whether a malicious attacker can

track users for an extended period of time using these messages, in what we refer to

as a tracking attack. A tracking attack would undermine vehicular security and be

an infringement upon user privacy.

One means of mitigating a tracking attack is using pseudonyms in VANET mes-

sages [12]. Pseudonyms are temporary unique identifiers used by vehicles when send-

ing VSC messages that are switched regularly to prevent tracking over long peri-

ods of time. Pseudonyms are distributed to vehicles by a trusted third-party Cer-

tificate Authority (CA), with vehicles’ owners being associated with their vehicles’
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pseudonyms, for liability reasons [20]. Requiring a CA instead of simply allowing

vehicles to generate their own pseudonyms ensures authenticity, prevents pseudonym

spoofing, and mitigates pseudonym collisions. Pseudonym spoofing is when a node

alters its pseudonym to pose as another user. Pseudonym collisions are when two ve-

hicles have the same pseudonym. While a simple strategy for protecting user privacy

in VANETS is to frequently switch pseudonyms, this is not an ideal solution because

pseudonym changes are expensive [16]. The cost for changing pseudonyms comes

from the limited number of pseudonyms a vehicle can store and the expense, or im-

possibility, of downloading new pseudonyms. To most effectively change pseudonyms,

research has been done into pseudonym change strategies, or algorithms that deter-

mine when to best change pseudonyms. I discuss a number of pseudonym change

strategies in Chapter 2. While pseudonym change strategies aim to maximize the

utility of each pseudonym change, they do not guarantee preserving user privacy.

While previous attacks have been devised to test the effectiveness of user privacy

enhancing technologies, they have focused only on single radio systems, systems that

assume the usage of or are only concerned with a single radio protocol. I propose

that a malicious attacker can develop a more effective attack by combining multiple

attack vectors leveraging available information that current attacks do not consider.

Previous works have all assumed a single radio, but with modern technology, many

vehicles are equipped with many radios that are used for different purposes. There-

fore, in this work, I develop a generalizable privacy attack that targets two common

radio protocols used by vehicles in VANETs, long-distance pseudonym changing pro-

tocol and short-distance non-changing protocol. This attack can be used by a passive

adversary to attack vehicular privacy. In my attack, I deanonymize vehicles by as-

sociating signals’ pseudonyms to each other, that is to accurately predict when two

signals originate from the same vehicle. This information is then used to recreate a

vehicle’s path, thus tracking the vehicle over an extended period of time.
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I use the general long-distance pseudonym changing and short-distance non-changing

protocol types because of their common analogies in commodity systems. Exam-

ples of long-distance pseudonym changing radio protocols are Dedicated Short Range

Communication (DSRC) and 5G, and examples of short-distance non-changing signal

protocols are WiFi, Bluetooth, Zigbee, and tire-pressure monitoring systems. I use

DSRC and WiFi in my experiments due to their widespread usage in modern vehi-

cles, but the attack can be altered to use any signals of the two types. Using both

radio protocols allows me to uniquely identify vehicles as well as expand my area of

knowledge of the identified vehicles. I use the short-distance non-changing signal pro-

tocol to uniquely identify vehicles within my attack area, and I use the long-distance

pseudonym changing protocol due to its greater range and area of effect to expand

my knowledge of vehicles’ locations once I have associated signals to each other.

I use SUMO (Simulation of Urban Mobility) [2], an open source simulation package

commonly used to simulate realistic road traffic for academic purposes, to simulate

vehicle traffic in three real-world maps. I then place listeners throughout the maps to

simulate an attacker placing real listeners to eavesdrop on signal packets. My listeners

gather signal packets based on the SUMO vehicle simulations, from which I attack

vehicular privacy by associating identifiers and pseudonyms seen by my listeners.

I attack a number of realistic vehicle traffic simulations and present my findings

in Chapter 5. For WiFi-to-DSRC associations, my attack model achieved around

an 80% average precision and 20% average recall per vehicle. For DSRC-to-DSRC

associations, my attack model consistently achieved at least a 96% precision and

between 18% to 38% recall depending on the map.
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1.1 Social and Ethical Implications

The social implications of vehicle tracking is a debate of weighing economical benefits

and safety versus privacy. One application of vehicle tracking is as evidence in court

cases and insurance claims. With vehicle tracking, law enforcement can more accu-

rately track suspicious vehicles without having to spend the extensive resources that

are required in previously conventional means of tracking such as stakeouts, collecting

traffic camera footage, and tailing vehicles. Tracking vehicles can also help resolve

insurance claims. If there is a log of a vehicle’s exact location at any given time,

one can figure out definitively which party is at fault in what would otherwise be an

ambiguous car accident.

While VANET messages can be used to help law enforcement in criminal cases

and insurance liability claims, a malicious adversary with the proper equipment can

attempt the same tracking. These forms of tracking violate the contextual integrity

of VANET messages. Contextual integrity is a theory of privacy proposed by Helen

Nissenbaum that defines privacy as the appropriate flow of information based on

contextual norms [14, 15]. In contextual integrity, norms of appropriateness dictate

what information about a person is appropriate, or fitting, to reveal in a particular

context. Norms of distribution dictate how that information is shared based on

particular context. While it can be argued that the ability to track vehicles is already

available through the use of publicly available cameras, the majority of people are not

actively concerned with the cameras’ presence due to the services they provide [25]

and the belief that they, the individual, is not of enough particular interest to be

tracked [14]. However, the ability of a malicious attacker to track a vehicle and its

passengers over an extended period of time is a violation of the norms of distribution

and appropriateness, as most people do not expect to be tracked. It can also be

argued that, when users willingly participate in and use VANET technology, they
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are entrusting their information to those that develop the technology. Not effectively

safeguarding this information or defending against attacks that undermine their users’

privacy would be a breach of this trust by the developers with their users.

Even with regards of legal monitoring, there is what is known as the “chilling

effect.” The chilling effect is when people do less of something, even if it is a normal,

legal activity, due to the fear of being monitored, regardless of if they are actually

being monitored or not. Simply the potential for a tracking attack can be an infringe-

ment upon the freedom of people to openly travel and partake in activities.

1.2 Basic Attack Model

For my attack, I assume the role of a passive attacker, as opposed to an online or

real-time attacker. Passive attackers collect data, then attack the system afterwards.

Online or real-time attackers are able to attack the system as they are collecting data.

I gather signal packets from listeners that have been placed throughout the area of

observation, working under the assumption that the only information I can gather is

the identifier or pseudonym associated with a signal message, not any of the message

content or location data. I then try to associate the identifiers and pseudonyms that I

have seen to those that originate from the same vehicle by constructing two association

matrices. I assume easy access to the message pseudonyms due to safety messages

being unencrypted because they do not contain any sensitive information[19]. Safety

messages also often contain vital information that can prevent immediate threats

such as collision avoidance. Therefore, the overhead of establishing a secure protocol

between communicating vehicles is often considered too expensive.

The first matrix associates pseudonyms to other pseudonyms. I conclude that for

any pair of pseudonyms they are disassociated, associated, possibly associated, or that

I do not have enough information to draw a conclusion about the relationship between

5



Figure 1.1: Initial D2D Matrix

the pair. If two pseudonyms are seen in different locations at the same point in time,

then I conclude that they are disassociated. If a pseudonym appears immediately after

another pseudonym disappears, I hypothesize that a vehicle changed its pseudonym

while in my area of observation, and therefore the two pseudonyms are associated.

Next, I try to match enter events to their corresponding exit events, where enter and

exit events are vehicles entering or exiting my area of observation, respectively, to try

and associate pseudonyms. Finally, I apply the transitive property across the matrix,

extending disassociations and associations, but not possible associations. Figure 1.1

illustrates the initialization of the D2D matrix.

The second matrix contains the probabilities between identifiers to pseudonyms

associations. The matrix is a stochastic matrix where each element contains the

6



Figure 1.2: Initial W2D Matrix

probability that the identifier and the pseudonym that its row and column correspond

to, respectively, are associated. The matrix is also a left stochastic matrix, meaning

that each column sums to one because they represent pseudonyms. Since identifiers

are non-changing, and each vehicle can only have one identifier and pseudonyms are

changing, an identifier can be associated with many pseudonyms, while a pseudonym

can only be associated with a single identifier. That is why columns, which represent

pseudonyms, sum to one. I initialize each element to be 1
N+1

where N is the number of

identifiers observed, that is each pseudonym is initially equally likely to be associated

to any identifier. Figure 1.2 illustrates the initialization of the W2D matrix.

I then find disassociation using the same method of finding disassociations that

is used in the first matrix construction. An identifier and a pseudonym are found to

7



Figure 1.3: Example Disassociation

be disassociated if they are seen by different listeners at the same point in time. An

example of this is illustrated in Figure 1.3. I set the probability of the disassociated

identifier-pseudonym pair, that is, the element in the matrix representing the pair,

to be zero, and distributing its original value among the other elements in that row,

thus increasing those probabilities and maintaining the column sum of one.

Figure 1.4: Example Known Association

Next, I find known associations, that is, associations that are so likely to be

correct, that I consider them to be correct. If an identifier and a pseudonym are seen
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together at the same listener, at the same time, and no other pseudonyms are around,

then the pair is considered to be associated. I set their probability to one, as well as

all other probabilities in that column to be zero. If an identifier and a pseudonym

are seen by the same listener and at the same time, then I say that they are seen

together or that one is seen with the other.

Figure 1.5: Example Possible Associations

I then find possible associations, that is, associations that are not guaranteed to

be correct as known associations, but still likely. There are three levels of possible

associations, with the first level being the most likely associations, and subsequent

levels being less likely. The first level of possible associations is between pairs of

identifiers and pseudonyms where the identifier is seen with the pseudonym, but

other pseudonyms are also present at that listener; an example of this is illustrated

in Figure 1.5. The second level of possible association between an identifier and a

pseudonym is when the identifier is seen with a pseudonym that is associated with the

pseudonym in question. The third level of possible association between an identifier

and a pseudonym is when the identifier is seen with a pseudonym that is possibly as-

sociated with the pseudonym in question. The second and third level associations use

pseudonym-to-pseudonym associations from the previously constructed pseudonym-

to-pseudonym matrix.

9



I also try to find pseudonyms originating from vehicles that do not support the

short-distance non-changing protocol. I do this on the proposition that a pseudonym

seen without any overlapping identifier is more likely to originate from a vehicle

without a short-distance non-changing protocol than a pseudonym that is seen with

an overlapping identifier.

Finally, I use a confidence threshold value to determine which associations I am

considering to be actual associations. Association with a probability greater than

the confidence threshold I deem to be actual associations. The found associations

are then used to recreate vehicles’ paths by drawing a Euclidian path between the

listeners where the vehicle was seen at.

1.3 Contributions

To summarize, I make the following contributions in this thesis:

• An attack model that leverages two radio protocols to deanonmiyze vehicles

by associating unique identifiers with temporaroy pseudonyms and temporary

pseudonyms with other temporary pseudonyms, regardless of radio market pen-

etration rates.

• A Euclidian path reconstruction method using associations found by the attack

model.

• Tunable and configurable parameters that allow the attack model to be appli-

cable across different scenarios.

• A more effective weight calculation than previous research when constructing

the weighted bipartite graph in the Exit-to-Enter Attack, as well as addition of

a maximum weight threshold to filter out less likely associations.

10



Chapter 2

RELATED WORKS

This project expands on previous works that investigated the possibility and effective-

ness of tracking wireless devices and vehicles using the beacon messages transmitted

periodically by the tracking targets. Recent works showed that an attacker can track

many mobile devices with accuracy comparable to GPS and provide high-accuracy

trajectory information by simply using inexpensive off-the-shelf equipment [4, 13].

Furthermore, it has been suggested that vehicles’ tire pressure monitoring systems

(TPMS) contain vulnerabilities that would allow an attacker to perform similar track-

ing attacks on vehicles [8]. This is of particular interest to me because my project

involves using existing built-in vehicle technology protocols to perform tracking at-

tacks.

2.1 Pseudonym Change Strategies

Because of the concern of vehicle tracking through the use of V2X protocols, there

have been a number of works exploring effective means of defending against such at-

tacks. A key means of defending against vehicle tracking is the use of pseudonyms [17].

A pseudonym is a unique identifier associated with a signal emitted by a vehicle to

allow unique identification for a period of time, as some signal usages require iden-

tification, but also changed periodically to prevent long-term tracking. The simple

strategy for protecting privacy in VANETs by frequently changing pseudonym is not

ideal because pseudonym changes are expensive due to limited vehicle pseudonym

storage capacities, limited download capabilities for new pseudonyms, and increased

costs on various applications [17, 20]. Vehicles are equipped with a set of pseudonyms

11



distributed by a trusted Certificate Authority, and either cycle through and re-use

pseudonyms or have to acquire new pseudonyms from the CA [11]. Therefore, ef-

fective pseudonym change strategies, algorithms that dictate when a vehicle changes

pseudonyms, have been developed to maximize the effectiveness of each pseudonym

change, while minimizing the number of changes required.

My experiments use traffic simulations where vehicles employ a periodic change

strategy, in which the signal protocols dictate how often a vehicle broadcasts a mes-

sage (heart-rate) and changes its pseudonym (change-rate), with all vehicles having

the same heart-rate and change-rate if they are using the same protocol. This change

strategy is simple and does not require cooperation among neighboring vehicles to

coordinate pseudonym changes, which prevents malicious adversaries to disrupt pri-

vacy gains of pseudonym changes by vehicles within the VANET, a topic which has

been investigated in graduate student Nicholas Plewtong’s thesis paper [18].

Another pseudonym change strategy is a synchronous change strategy [12]. The

synchronous change strategy can be classified as a type of a position change strategy,

where vehicles change pseudonyms when a minimum threshold of vehicle density

within their proximity is met. The synchronous change strategy requires coordination

among the vehicles in the VANET to maximize effectiveness of pseudonym changes.

Vehicles that change pseudonyms together would prove to be more difficult for an

attacker to associate their new pseudonyms to their respective old pseudonyms due

to the lack of distinguishing features and increased number of possible association

pairs. The synchronous change strategy has vehicles ready to change pseudonyms cmin

seconds after their last change. Vehicles indicate their readiness to change by setting a

change flag within their broadcast messages. A change is triggered when there are k –

1 other vehicles with their change flag set within the transmission range. This allows

for a synchronous pseudonym change by all vehicles ready to change pseudonyms

within that given area. If the threshold of k – 1 vehicles is not met within cmax
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seconds after the last change, then the vehicle changes pseudonyms anyways. This is

to prevent vehicles from perpetually waiting for the number of vehicles threshold to

be met in sparse areas or in areas where this strategy has not been adopted [12]. On

its own without the necessary modifications, the synchronous change strategy would

be susceptible to malicious adversaries posing as compliant vehicles nodes that aim

to disrupt the vehicular privacy of nodes within the VANET [18]. A similar change

strategy called the density-based location privacy scheme has also been proposed that

uses the same concept of changing pseudonyms when enough other vehicles are within

proximity to make old-new pseudonym associations more difficult [23].

Another type of position change algorithm is a similar status algorithm. In a

similar status algorithm, vehicles coordinate pseudonym changes by looking for other

vehicles with a similar status as their own, with a pseudonym change occurring when

a given number of vehicles with a similar status are within proximity of a respective

vehicle. This strategy allows for many different things to be considered features of a

vehicle’s status such as speed, direction, and number of neighbors [7]. However, this

strategy requires the broadcasting of additional descriptive information about the

vehicle, which can be used by adversaries to further distinguish vehicles from each

other [5].

AMOEBA is another means of defending user privacy that takes advantage of

the clustering nature VANETs to prevent malicious attackers [21]. While not a

pseudonym change strategy, AMOEBA is a privacy scheme that employs the use of

pseudonyms, namely a single group pseudonym representative of all vehicles within

a given cluster. Groups are formed by vehicles that move with a similar velocity and

relative to each other, and have a fully connected network graph within them to allow

for communication among their respective members. A leader of the group is elected

at random and broadcasts on behalf of the group members, while other members

can remain silent. AMOEBA also defines the use of silent periods to prevent linka-
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bility between two locatable broadcasts. Random silent periods are used to prevent

trackability. An example would be if a vehicle changes its pseudonym from A to A’.

Initially entering a network and broadcasting as A, after having changed and waited

a random silent period, it begins broadcasting as A’. If another vehicle had changed

pseudonyms from B to B’ within that silent period, an attacker may be misled to

tracking the neighboring vehicle.

2.2 Previous Attack Models

A common attack used to quantitatively compare pseudonym and tracking related

defenses is trying to match enter events with their respective exit events [6, 3]. Enter

and exit events represent when a vehicle enters or exits a mix zone, respectively. A

mix zone is an area outside of an attacker’s area of observation, where vehicles can

become mixed together without an attacker’s knowledge.

The premise of this attack is to match corresponding enter and exit events using

previously learned data. The attack is broken into two phases, a learning phase and an

attack phase. During the learning phase, the attacker records the number of vehicles

that travel between two areas of observation and the average time each vehicle took

to make that respective trip. The data learned is limited to what can be learned from

observing pseudonyms for the pseudonym’s given lifespan, that is, the time before the

vehicle changes pseudonyms. This means that due to vehicles changing pseudonyms,

the number of vehicles recorded to have traveled between two locations can be greater

than the actual number of vehicles. During the attack phase, the attack first actively

attempts an online attack to match each newly observed exit event to a previously

observed enter event. This step simply matches events if they broadcast the same

pseudonyms and removes the events from the set of events that are used later. After,

all unmatched events are used to create a bipartite graph, with the two distinct sets
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being exit and enter events. Edges are assigned between an exit and an enter event

with a weight equal to the number of vehicles that traveled between the two points

where the events were observed divided by the average time each vehicle took. A

penalty is added the farther the actual trip time was from the average trip time. If

during the learning phase, no trip was recorded between the two locations, then a

small weight of 0.1 is given. When the bipartite graph is complete, the solution is a

matter of solving the linear sum problem and getting a minimal cost perfect match of

the graph. The success of the attack is measured by how many pairs of events were

correctly matched.

I use this attack as the basis for one source of information gathering when con-

structing my pseudonym-to-pseudonym association matrix. Note that their defini-

tions of exit and enter events are the reverse of my usage of the terms in later chapters

when discussing my attack model. I define enter and exit events as when a vehicle

enters or exits my area of observation (i.e., exits or enters the mix zone), as opposed

to when a vehicle enters or exits the mix zone. I go into more detail about the im-

provements I add to this attack and how I use the gathered information in Chapter 3

and Chapter 4.

Attacks have also been developed that take advantage of specific message pro-

tocol features. In Examining Privacy in Vehicular Ad-Hoc Networks, the authors

break down the privacy vulnerabilities of the DSRC protocol stack [5]. Within SAE

J2735, the standard message structure for DSRC messages, a vehicle is identified by a

4-byte temporary identifier pseudonym, while also broadcasting information such as

the vehicle’s GPS coordinates, motion information, and vehicle size that can be seen

by anyone. The authors argue that DSRC messages leak enough information that an

attacker can circumvent the temporary nature of the pseudonym and track vehicles

despite switching pseudonyms, as well as linking pseudonyms to the actual vehicle

or owner. The authors claim that attackers can use statistical methods, similar to
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my attack, to track vehicles regardless of pseudonym switches. The main means of

doing so is when a vehicle switches pseudonyms, an attacker will see a pseudonym

no longer transmitting, and a new pseudonym begins transmitting within close prox-

imity. The effectiveness of this attack increases with greater coverage and can also

take advantage of the descriptive information contained in DSRC messages to bet-

ter associate pseudonyms in the case of multiple vehicles simultaneously switching

pseudonyms. I use a similar method in one of my matrix constructions, but I am

limited to the pseudonym information of a new pseudonym appearing shortly after

an old pseudonym disappears. The authors then claim that by using this location

information, attackers can link pseudonyms back to the vehicle owners. Aside from

the direct linkage of pseudonyms to their owners by gaining access to the pseudonym

database, an attacker can use the location information to build a profile for certain

vehicles. Knowing where vehicles stop and go at what times, an attacker can correlate

points of interest to buildings and times visited to possibly discover where the user

works and lives. After narrowing down buildings, an attacker can further pinpoint the

user by performing a lookup of owners and occupants of the buildings for residency

and employee directories for businesses in that area.

The authors describe a more general version of the previously mentioned syn-

chronous pseudonym strategy [12] as an effective pseudonym change strategy to pre-

vent tracking, although the use of a similar status algorithm [7] would likely be even

more effective, as DSRC messages already contain descriptive information about a

vehicle. They also cite the use of a group pseudonym as a means of defending pri-

vacy [21], though they do note that an attacker can attack the point when a vehicle

leaves a cluster and enters a new one to learn information.

An attack developed by the authors of [24] aims to associate a large set of collected

anonymous location samples to anonymous location profiles using the established

Multiple Hypothesis Tracking (MHT) algorithm to track vehicles’ locations over an
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extended period of time. MHT addresses the data association problem by generating

a set of data associations hypotheses every time a new set of measurements arrives,

with each hypothesis being a possible association of a measurement with a target. The

probability for each hypothesis to be correct is calculated and the highest probability

is chosen to be the solution. MHT relies on Kalman filters [9] to estimate the state

variables of each target: position and velocity. This attack assumes the role of a

passive attacker with perfect eavesdropping capabilities, where an attacker receives

all beacon messages sent over the network. They assume that vehicles broadcast their

location and velocity at regular intervals, but with pseudonyms that change for every

packet to completely anonymize the transmissions. Their experiments showed that

at high beaconing rates of a beacon a second or faster and less than 100 vehicles,

they were able to track vehicles for on average 800 out of the 1000 seconds in their

simulations. Increasing the vehicle density to be between 100 and 250 vehicles saw

the average tracking time drop to 700 seconds. A beaconing rate of a beacon every

two seconds sees an average of less than 400 seconds of tracking when there are even

50 vehicles, and a drop to 150 seconds when there are 100 vehicles. Beaconing rates

slower than a beacon every two seconds only saw tracking of 100 seconds when there

were less than 25 vehicles in the system, and there was no substantial tracking after

50 vehicles. Their attack is also dependent on accurate position information. When

they introduce random noise into the gathered position information, a random offset

anywhere between one to five meters decreased tracking by 200 down to 700 seconds.

They also explore the effectiveness of their tracking with varying equipment rates.

They actually see an increase in average tracking time, up to nearly 900 seconds

when the equipment rate is between 10 and 20%. This is due the much smaller

number of vehicles being tracked, as they can only track equipped vehicles, and lower

equipment rates mean the likelihood of equipped vehicles crossing paths is less likely.
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While I also assume the role of a passive attacker, my attack does not assume

perfect eavesdropping capabilities, only receiving packets within the range of listen-

ers placed, nor do I assume the ability to gather location and velocity information

from signal packets, simply the pseudonyms associated with the packets. In my sim-

ulation, I also use a periodic change strategy that changes pseudonyms periodically,

as opposed to per packet, as pseudonym changes can be expensive, thus this is a

more likely employed strategy. I also explore the effects of varying equipment rates

(called penetration rates in my scenarios) in my experiments, but because I am gath-

ering multiple protocols information (long-distance pseudonym changing and short-

distance non-changing), vehicles not equipped with the short-distance non-changing

equipment continue to emit long-distance pseudonym changing protocol signals in-

troducing noise into the information gathered when trying to associate signals. The

results of my experiments with varying penetration rates can be found in Chapter 5.
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Chapter 3

DESIGN

In this chapter, I describe the design of the attack model I use to deanomyize vehicles

and undermine their privacy by associating DSRC pseudonyms with their correspond-

ing WiFi identifiers. This chapter outlines overall goals of the attack, requirements

of the model, the traffic simulations used, and a brief design overview of the attack

model. In Chapter 4, I go into more detail about the attack model implementation.

3.1 Goals

The primary goal of my attack is to correctly associate identifiers with their respective

pseudonyms. This information will ultimately be used to attack users’ privacy by

allowing attackers to track users over an extended period of time by recreating users’

paths based on the locations where signals with their identifiers or pseudonyms were

seen.

3.2 Requirements

In this section, I detail the necessary system requirements for the attack model. The

following are formal requirements the attack model maintains:

• The model is module and can be generalized to any long-distance pseudonym

changing signal and short-distance non-changing signal configurations, and lis-

tener placement configuration.

• The model can be used on a system with varying identifier penetration rates.

• The model can quantitatively evaluate the success of its attack.
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The attack model attacks vehicular privacy of nodes within a VANET system us-

ing a long-distance pseudonym changing protocol and a short-distance non-changing

protocol. The model must not be constrained to specific signal types for either pro-

tocol. Thus, the range, heart rate, and change rate of the signals can be adjusted

within the attack model to accommodate different signal types. The model must also

be able to perform with varying listener placement configurations. I also design the

attack model to perform with varying listener placement configurations to make it ap-

plicable to multiple scenarios. While the attack model benefits greatly from a greater

number of listeners and a listener placement combination that maximizes the number

of signal packets gathered, I show that it does not require the optimal listener place-

ment configuration to produce substantial results. This is applicable in a real-world

situation where attackers may not be able to place listeners in optimal locations nor

know the optimal locations, or if attackers are interested in vehicles traveling to a spe-

cific location. Note that my attack assumes non-overlapping listener coverage. That

is, listeners do not overlap in their listening range, thus a broadcast only be picked

up by at most one listener. While this is not required, I chose this assumption to

lower the complexity of my model. Although some areas of the attack model require

knowing if vehicles were at different listeners at a given time, this information can

be determined by keeping track of which listeners overlap in coverage. Furthermore,

overlapping listener coverage could potentially provide more useful information, such

as a basic form of triangulation by using the overlapping coverage area to further

narrow down the exact location of a vehicle as opposed to using an entire listener’s

range, or using the overlapping coverage area as another region in conjunction with

the corresponding listeners’ non-overlapping areas.

Another requirement is that the attack model must still be relatively successful

regardless of radio market penetration rate, that is, the percentage of vehicles within

the VANET system that support a given signal type. This is important because
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there are some real-world scenarios where not all vehicles in the area of observation

will support all signal types. Therefore, not requiring all vehicles within the VANET

system to have both signal types makes my attack more broadly applicable to a

realistic scenario.

The final requirement is that I must be able to quantitatively measure the success

of my attack to allow for input parameter tuning and to conclude whether my attack

was successful. This also allows us to compare my attack results against other known

attacks [6, 3, 5, 24].

3.3 Vehicle Simulation Model

For my experiments, I use a DSRC signal for the long-distance pseudonym changing

signal and a WiFi protocol signal for the short-distance non-changing signal. The

DSRC protocol signal has a range of 100 meters, a heart rate of 0.1 seconds, and

change frequency of 30 seconds. The WiFi protocol has a range of 25 meters and a

heart rate of 30 seconds. While I use DSRC and WiFi, the range, heart rates, and

change frequency of either protocol can be configured to emulate other signal types.

For listener placement, I use a handpicked approach where I manually select and

place listeners at locations with a large amount of vehicle traffic to increase the

number of radio packets gathered [5]. I also ensure that listeners do not overlap in

coverage, as my attack methods work under the assumption that listeners’ coverages

are disjoint. While listener placement can be optimized using techniques such as a

genetic algorithm to find the optimal listener placement combination that maximizes

the number of packets gathered, and there is a separate Cal Poly student project

that explores this option, maximum packet gathering is not the goal of this attack.

Therefore, a handpicked listener placement technique is adequate for my attack. This

also provides a realistic scenario, where an attacker can simply set up listeners at lo-
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cations where they know to have the most traffic or locations that they are specifically

interested in.

I use SUMO [2] to simulate realistic traffic on a number of real-world maps, as

opposed to research that uses grids in their experiments [6]. Using the DSRC and

WiFi protocols as my two signal types, I then run simulations using the vehicles

paths generated by SUMO with varying degrees of WiFi penetration rates, that is

a percentage of my vehicles will support both WiFi and DSRC protocols, while the

rest will only support DSRC; my simulations maintain a 100% DSRC penetration

rate. I choose a 100% DSRC penetration rate because of its many VSC usages.

Therefore, it is likely to be federally mandated in the future. Furthermore, while my

simulation maintains a 100% DSRC penetration rate, it is not required, as WiFi is the

unique identifier of vehicles and DSRC pseudonyms simply help to expand our area of

knowledge from created associations. Results of my experiments running the attack

without any DSRC-to-DSRC associations illustrate this idea in Chapter 5. Varying

WiFi penetration rates serve to illustrate the effectiveness of the attack, regardless

of penetration rate and is representative of a real-world scenario, as some vehicles

may not support all protocols. Lower WiFi penetration rates are theoretically more

difficult to attack, as I leverage the WiFi identifiers to uniquely identify vehicles

and determine the number of vehicles. DSRC packets received from vehicles without

WiFi capability are essentially noise in the system, as I have no way of identifying

the vehicle they originated from, but the attack model still tries to associate them to

WiFi identifiers, as I do not know if a DSRC packet originated from a vehicle with

or without WiFi capability. Using the SUMO generated traffic simulations, I step

through each vehicle’s path, stopping at intervals in accordance to the two signal

protocol heart rates and simulate a signal broadcast. A broadcast is simulated by

checking if any listener is within the broadcast range of a vehicle when it broadcasts

22



a signal and recording that the listener, if within range, received a packet tagged with

the respective signal’s pseudonym or identifier at the given time.

3.4 Brief Overview of Attack Model

Figure 3.1: Attack Model
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The attack is divided into the construction of two association matrices: DSRC-to-

DSRC (D2D) and WiFi-to-DSRC (W2D). The D2D matrix is an MxM matrix, where

M is the number of DSRC pseudonyms observed by listeners and is used in a transitive

property manner when creating WiFi-to-DSRC associations and disassociations in

the W2D matrix construction. The W2D matrix is an (N + 1)xM matrix, where

N is the number of WiFi identifiers observed by listeners. I add an extra row to

the W2D matrix that represents all vehicles without WiFi capability, dubbed WiFi

Null. Figures 1.1 and 1.2 show the initialization of the D2D matrix and W2D matrix,

respectively. When making WiFi-to-DSRC associations, note that WiFi identifiers

have a one-to-many relationship with DSRC pseudonyms, where a WiFi identifier can

be associated with many DSRC pseudonyms, but a DSRC pseudonym can only be

associated with a single WiFi identifier. DSRC pseudonyms have a many-to-many

relationship with other DSRC pseudony, where a DSRC pseudonym can be associated

with many other DSRC pseudonyms. Furthermore, if the WiFi penetration rate is

lower than 100%, then some DSRC pseudonyms cannot be correctly associated to

any WiFi identifier, as some pseudonyms will originate from a vehicle without WiFi

capability. In the remainder of this section, I explain the different steps involved in

the construction of each matrix. I design the attack model to be modular such that

steps can be added to or removed from either matrix constructions if new research

conceives new attacks that can be incorporated into the attack model. Results of my

experiments using different configurations of the D2D matrix construction illustrates

this idea and can be found in Chapter 5.

3.4.1 D2D

Within the D2D matrix, for any pair of DSRC pseudonyms my attack will conclude

that the two pseudonyms are: disassociated, associated, possibly associated, or that

there was not enough information to make a conclusion. The D2D matrix construction
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is broken into four steps: finding disassociations, the Same Listener Attack, the Exit-

to-Enter (X2E) Attack, and applying the transitive property to disassociations and

associations. These steps are illustrated in Figure 3.1.

The first method that I use labels a pair of DSRC pseudonyms to be disassociated.

A pair of pseudonyms are labeled as disassociated when the pseudonyms are seen at

different listeners in an overlapping time interval. Because pseudonyms are assumed

to be unique across all vehicles, a vehicle can only use one pseudonym at a time,

and listeners do not have overlapping coverage, two pseudonyms can be labeled as

disassociated if they are observed at different locations at the same point in time.

An example of this is illustrated in Figure 1.3, where d1 and d2 are seen at different

locations at the same time, therefore d1 and d2 are disassociated.

The next method, dubbed the Same Listener Attack, finds DSRC-to-DSRC as-

sociations. In the Same Listener Attack, I look for a pseudonym that is first seen

immediately after another pseudonym is last seen. If both observations occur at the

same listener, then there is a high probability these observations can be explained as

the originating vehicle changing pseudonyms while still in the range of the listener.

Therefore, I am able to, with high precision, associate the two observed pseudonyms

to each other. This type of attack was previously described in [5].

The next method, dubbed the Exit-to-Enter (X2E ) Attack, finds DSRC-to-DSRC

associations and possible associations. This attack is an extension of the method

used in [6, 3]. Enter and exit events are defined as when a vehicle enters or exits my

area of observation, respectively. Examples of enter and exit events are illustrated

in Figure 3.2. This method is broken up into two phases: a learning phase and an

attack phase. During the learning phase, I observe the number of vehicles that go

between any two pairs of listeners, and the average time each vehicle took to make

that trip. The attack phase then tries to match enter events to their respective
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Figure 3.2: Enter and Exit Events of Example Vehicle Path

preceding exit events by constructing a bipartite graph with exit events in one set

and enter events in the other. Edges are assigned from an exit event to an enter

events with a weight determined by the previously learned information. Note that I

use negatively weighted edges, that is, the edges that are more likely to be correct

connections between an exit and an enter event have lower valued weights than edges

corresponding to less likely correct connections. An example bipartite graph is shown

in Figure 3.3. I then solve the minimum weight matching or linear assignment problem

on the graph. The linear sum problem is a combinatorial optimization problem that

finds the minimum weighted perfect matching of a weighted bipartite graph. That is,

the goal is to find the minimum sum of weights of edges while having each item on

one side of the bipartite graph assigned to only a single item on the other side of the

graph. I use negative weights due to Python’s NumPy package having a function that
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solves minimum weight matching, but not maximum weight matching. Then I take

each in the solved graph, and if its weight is a percentage of the maximum weight

recorded within the graph, then I set the edge’s corresponding enter and exit events’

pseudonyms to be associated. If the edge’s weight does not meet this criterion, then

I set the two pseudonyms as a possible association. The effectiveness of this method

is affected by listener placements. I saw that when listeners are placed near each

other in high traffic locations and not spread throughout the area of attack, this

method yields little to no data, most likely due to all edges being of equal weights

(i.e., vehicles are equally likely to travel from any one listener to any other listener).

Therefore, solving the minimum weight sum of the bipartite graph has extremely low

precision. The relationship between this attack method and listener placements is not

the focus of this project, therefore I do not look into what sorts of listener placement

configurations maximize the efficacy of this attack method.

Figure 3.3: Weight Bipartite Graph constructed in X2E Attack
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Finally, the transitive property is applied across the D2D matrix. That is, if d1

is associated to d2, and d2 is associated to d3, then all three pseudonyms are said

to be associated to each other. I apply the transitive property only on disassocia-

tions and associations and not possible associations because through my experiments

the high uncertainty of possible associations caused a cascading number of incorrect

associations when a single incorrect association bridged two association groups.

The D2D matrix is then used in the W2D matrix construction. It is used in a tran-

sitive property manner in creating WiFi-to-DSRC disassociations and associations.

For example, if DSRC pseudonyms d1 and d2 are associated, and WiFi identifier w1

is associated to d1, then w1 is also associated to d2.

3.4.2 W2D

Within the W2D matrix, the element at row i and column j (denoted as elementij)

contains the probability that WiFi identifier wi is associated to DSRC pseudonym dj.

Note that, since DSRC pseudonyms can only be associated to a single WiFi identifier,

each column within the matrix sums to one and are mathematically independent

of each other. Also, since a WiFi identifier can be associated with many DSRC

pseudonyms, rows can sum to any arbitrary value. When wi and dj are said to be

seen together, or that wi is seen with dj, it means that they were seen by the same

listener with an overlapping time interval.

When updating W2D probabilities, I employ a method I have dubbed boosting

multiple times. Boosting is a method done in terms of a given DSRC pseudonym,

where I take a portion of some elements in the pseudonym’s corresponding column

and redistribute them among elements in the same column due to having information

that implies that the boosted elements should have a higher value, that is the WiFi-

DSRC pairs that the boosted elements represent are more likely to be associated than
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the pairs represented by elements not being boosted. Boosting is done within each

DSRC column independently. Thus, a single boosting event for a pseudonym only

affects elements in the corresponding matrix column. Therefore, I say that for a given

DSRC pseudonym dj, I boost all WiFi signifiers wi in set W , where W is the set of

WiFi signifiers that I have concluded to be likely associated to dj, and take the boost

from WiFi signifiers wk in set W ′, where W is the set of WiFi signifiers that are less

likely to be associated to dj. Note that W ′ is not necessarily simply Wall −W where

Wall is the set of all WiFi signifiers that I have observed. I define the total sum of the

values for W ′ to be Σ, and ∆ to be the redistribution factor, that is the percentage

taken from Σ to be redistributed to the boosted values. When boosting, for each

column, each element corresponding to identifiers in W ′ will be reduced by (1- ∆)

(multiplication) and each element corresponding to identifiers in W will be increased

by ∆ ∗ Σ (addition). An example illustration of boosting can be found in Figure 4.2

where for d1 I boost w1, w2, and w3, while taking the boost from w4 and w5. Tuning

the redistribution factor using methods, such as machine learning, can increase the

effectiveness of the attack model, but it is outside of the scope this project.

Each element is initialized to be equal to 1
N+1

, where N is the number of WiFi

identifiers that I have observed, that is, each DSRC pseudonym is initially equally

likely to be associated to any WiFi identifier. I then find WiFi-DSRC disassociations.

The same criteria for disassociation from the D2D matrix creation are used here. A

WiFi identifier and a DSRC pseudonym are found to be disassociated if they are

seen at different listeners while having an overlapping time interval. When a WiFi

identifier wi is found to be disassociated from DSRC dj, then elementij’s value is set

to zero, and its original value is distributed among all other elements within column j

whose current value does not equal zero. This redistribution represents when a DSRC

pseudonym is found to not possibly be associated to a given WiFi identifier. In this
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case, the likelihood that the pseudonym is associated to any other WiFi identifier

increases.

Next, I find known associations between a WiFi identifier wi and a DSRC pseudonym

dj. The criteria for a known association are that wi and dj are seen together and there

are no other pseudonyms seen during that time. While theoretically this method may

associate some pairs that are not actually associated, my experiments have found that

it is a simple approach that yields a fairly large number of true-positive associations

with high precision. When a known association is found between wi and dj, elementij

is set to one and all other elements in column j are set to zero. Each elementij is set

to 0, where dj’ is each pseudonym disassociated to dj. Their original values are redis-

tributed among all other elements in their respective columns that do not currently

equal zero.

I then find possible associations between a WiFi identifier wi and a DSRC pseudonym

dj. Possible associations are incorporated into the W2D matrix through the use of

boosting. There are three levels of possible associations, each with their own boost-

ing phase, where subsequent levels are less likely, and therefore will receive a smaller

boost than preceding layers. In my current attack model, each level uses a different

redistribution factor ∆. As noted before, these redistribution factors can be tuned to

maximize effectiveness, but generally I saw that using a larger ∆ in the second level

and a smaller ∆ in the last level yielded more favorable results than using the same

∆ across all levels.

The first set of possible associations is associations between wi and dj where

wi was seen with dj, but there were other pseudonyms also seen at the same time.

Therefore, if W is the set of all WiFi signifiers seen with a DSRC pseudonym dj, then

dj is equally likely to be associated to any signifiers in W , given that dj is only seen

with each signifier in W once. I also consider the number of times dj is seen with wi.
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That is, if dj is seen with wi twice and wk once, then elementij should get twice the

amount of boost as elementkj. For a given pseudonym dj, I boost all identifiers in

W , where W is the set of all WiFi identifiers seen with dj and take the boost from

W ′, where W ′ is the set of all WiFi signifiers not seen with dj.

The second set of possible associations uses DSRC-to-DSRC associations found in

the D2D matrix construction. These associations are based on signals seen together

by a single degree of separation. That is, wi and dj are possibly associated if wi

was seen with dk, but other pseudonyms were also seen at the same time, where

dk is a DSRC pseudonym associated to dj. Like the previous level of boosting, I

also consider the number of times signals were seen together, giving those that were

seen together multiple times a larger boost than those that were seen fewer times

together. For a given pseudonym dj, I boost all identifiers in W , where W is the set

of all WiFi signifiers seen with a DSRC pseudonym dk, and take the boost from W ′,

where W ′ is the set of all WiFi signifiers not seen with dj or not seen with dk, where

dk is a DSRC pseudonym associated to dj. At this level, I use a different ∆ than

the previous level, called ∆’, which is the minimum between 1.5*∆ and 0.99. This

larger ∆ value is due to boosting’s effectiveness being based on Σ, which is the sum

of all elements corresponding to elements less likely to be associated. Because this is

the second level of boosting, the less likely associated corresponding elements have

already been decreased in the first level of boosting, resulting in a smaller Σ. So, for

the boosting to still be effective, I need to increase ∆ to increase the amount of value

that I “take” from Σ to be redistributed. Note that at this step, when evaluating the

relationship between wi and dj, I also look to see if dj is associated with any other

DSRC pseudonym dk that is known to be associated to wi (i.e. wi and dk were seen

together with no other pseudonyms around). If this is the case, I automatically set wi

and dj to be a known association, ignoring any other identifiers that dj was seen with

and not boosting any identifiers at this level with regards to pseudonym dj. I also
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disassociate wi from any pseudonym that is disassociated from dj and redistribute

the respective probability value among all elements in the corresponding column that

do not currently equal zero.

The final set of possible associations uses DSRC-to-DSRC possible associations

found in the D2D matrix construction. Using the same degree of separation logic as

before but using DSRC pseudonyms that are possibly associated, I consider a pair wi

and dj to be possibly associated if wi was seen with dk, where dk is a DSRC pseudonym

possibly associated to dj. At the previous level, for a given pseudonym dj, boosting

any WiFi identifiers possibly associated to dj is superseded by an automatic known

association between wi and dj if there existed a dk that was the only seen DSRC

pseudonym with wi at a single listener (i.e. wi is associated to dk and dk is associated

to dj, therefore wi is also associated to dj). However, due to the low precision of

possible associations, applying the same transitive automatic associations logic as

the previous level would yield too many false positives. Therefore, because I still

want to give some credence to these conjectures, I treat a WiFi identifier that would

have been automatically associated as simply another identifier that was seen with a

pseudonym that is possibly associated to the given pseudonym, adding it to the set

of identifiers to be boosted. In addition to this, I also use a different ∆” than the

previous levels. ∆′′ is equal to 0.75*∆ due to the low precision and thus confidence

of the D2D possible associations used to extend boosting at this level. Similar to the

previous levels of boosting, I again take into account the number of times a pair of

signals were seen together, giving a larger boost to those seen more times together

than those seen fewer times together. For a given pseudonym dj, I boost all identifiers

in W , where W is the set of all WiFi identifiers seen with dk, and take the boost from

W ′, where W ′ is the set of all WiFi signifiers not seen with dj, or dk or dl, where dk

is a pseudonym associated to dj and dl is a pseudonym possibly associated to dj.
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When the WiFi-to-DSRC association matrix is fully constructed, I look for any

probabilities that meet a certain confidence threshold. Using a minimum confidence

threshold of 50%, because each column sums to one, a probability of at least 50%

means that the element’s corresponding WiFi-DSRC association contains the major-

ity. The results for different levels of confidence thresholds is presented in Chapter 5.

3.4.3 WiFi Null Boosting

A problem arises when an attacker does not know how many vehicles in the area

of observation have WiFi capability, that is an attacker is unable to determine the

number of vehicles with WiFi capability and the number of vehicles without. One

approach that I have explored is a method I dubbed WiFi Null Boosting. WiFi

Null Boosting follows the same boosting principle as aforementioned, where for a

given DSRC pseudonym dj, I increase the value of all elements elementij where WiFi

identifier wi is an identifier more likely to be associated to dj than an identifier that is

not being boosted. In the case of WiFi Null Boosting, the WiFi identifier used is WiFi

Null. Therefore, each time a DSRC pseudonym dj is seen at a listener for an entire

period without any overlapping WiFi signals around, then the probability that dj is

associated to WiFi Null (i.e. dj originated from a vehicle without WiFi capability)

is boosted, where the boost is taken from all other probabilities in the given column.

WiFi Null Boosting uses its own redistribution factor (WiFi Null ∆) that is different

from the main delta value. Unfortunately, my experiments regarding this method

yielded little results. Due to the DSRC protocol’s high frequency heart rate and

WiFi protocol’s low frequency heart rate, many more pseudonyms were seen without

an overlapping WiFi than the number of pseudonyms actually originating from a

vehicle without WiFi. This, in combination with the relatively low change-rate of

the DSRC pseudonym in my simulation, made it extremely difficult to determine the

correct pseudonyms. Thus, boosting with a small redistribution factor yielded no
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positives (true or false), and boosting with a medium or large redistribution factor

yielded too many false positives, and ultimately detracted from the number of correct

WiFi-to-DSRC associations.
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Chapter 4

IMPLEMENTATION

In this chapter, I expand on the design overview detailed in Chapter 3 by providing

pseudocode for the algorithms used in the attack and explaining in more detail the

reasoning behind many of the implementation choices.

4.1 Terminology

I begin with definitions of commonly used terms in my attack. Listeners are the

devices used to pick up radio signals. I assume perfect packet reception, therefore if

a listener is within range of a vehicle when it emits a signal, then the listener picks

up the packet. Listeners record packets and their pseudonym or identifier in terms of

observation intervals. Observation intervals contain the listener it was recorded at, the

pseudonym or identifier the packet used, the protocol used, the time a pseudonym was

first seen at a given listener, and the last time it was seen. The observation interval’s

start and stop times are recored on the basis that the listener receives a continuous

stream of packets with a pseudonym or identifier over a given time. Since packets

are discrete, I allow for a gap between packets. This gap can be adjusted depending

on the protocols that are being used. Therefore, if a vehicle leaves a listener’s range,

then returns some times later still using the same pseudonym, the listener will create

two separate observation intervals for that vehicle.

We define overlapping as the following when used to describe listener coverage,

time intervals, and observation intervals. Overlapping listener coverage and overlap-

ping time interval definitions are straightforward. Overlapping listener coverage is

when an area is in the range of multiple listeners, thus those listeners overlap their
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Figure 4.1: Example of Observation Intervals Having Overlapping Time
Intervals

coverage. Overlapping time intervals is when the time intervals of multiple observa-

tion intervals overlap in time. An example of overlapping time intervals is illustrated

in Figure 4.1, where observation intervals A and B have overlapping time intervals

because B ’s start time t1B is less than A’s end time t2A, meaning B began before A

ended. Overlapping observation inteverals is when observation intervals both overlap

in time and are recorded at the same listener. Therefore, for a given observation inter-

val, any other observation interval is said to be overlapping if they have overlapping

time intervals that occurred at the same listener.

The observation area is the combined coverage area of all listeners. For my work,

I consider mix zones as areas outside of the area of observation, where vehicles can

mix and change pseudonyms without the attacker’s knowledge.

Enter and exit events are used in the Exit-to-Enter Attack as part of the D2D

matrix construction. These terms were previously defined in [6] and [3] as when

vehicles enters or exit a mix zone, respectively. However, in this paper I define enter

and exit events in terms of the area of observations, that is, enter and exit events

are when a vehicle enters or exits the area of observation, respectively. Therefore, an

enter event is when a vehicle exits the mix zone and enters the area of observation.

An exit event is the opposite, when a vehicle enters the mix zone and exits the area

of observation. An illustration of enter and exit events can be found in Figure 3.2. As

per the illustration, the moment a vehicle comes within range of a listener is the enter

event, and when it leaves the range of a listener is the exit event. Therefore, an enter
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event can be recorded as the start of an observation interval, and an exit event as the

end of an observation interval. Note that in the illustration I mark the locations of

the enter and exit events. Due to my assumption that attackers are not able to read

the location data associated with a pseudonym, I cannot actually pinpoint the exact

locations of exit and enter events, simply record the listener’s location at which the

events occurred.

I define association as originating vehicle. Therefore, a pseudonym is associated to

another pseudonym or an identifier if the two signals originate from the same vehicle.

I refer to my two matrices as association matrices. An association matrix is a

matrix where elementij is a value representing the association status between its cor-

responding row and column values. The D2D association matrix contains values that

represent the type of association between two pseudonyms (e.g. -1 = no information,

1 = association). The W2D association matrix contains values that represent the

probability of an identifier and pseudonym being associated.

I define boosting as the act of taking a percentage of elements in the W2D asso-

ciation matrix and redistributing the taken amount to other elements. Boosting is

done in terms of DSRC pseudonyms in the W2D matrix construction, that is boosting

happens independently in each column. When I conclude that WiFi identifier in set

W are more likely to be associated to a given DSRC pseudonym dj than WiFi identi-

fiers in a separate set of WiFi identifiers W’, then I say that for dj, I am boosting the

identifiers in W and taking the boost from identifiers in W’. I boost the identifiers

in W by increasing the value of elements in column j that correspond to those iden-

tifiers, and I take the boost from identifiers in W’ by decreasing the same amount

as the total amount given to the boosted identifiers. The redistribution of values by

increasing the probability that pseudonym dj is associated to an identifier in W and

decreasing the probability that it is associated to an identifier in set W’ is to reflect
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in the matrix the conclusion that some identifiers are more likely to be associated to

dj and others are less likely. Note that the set W’ is not necessarily simply Wall−W ,

where Wall is the set of all WiFi identifiers seen across all listeners. An example of

boosting is shown in Figure 4.2. In this example, d1 is more likely to be associated to

w1, w2, and w3 and less likely to be associated to w4, and w5. Therefore, I will boost

the former set and take the boost from latter set. Σ is defined to be the summation

of elements corresponding to identifiers in W’. ∆ is the redistribution factor, that is

the percentage taken from Σ to be redistributed to the boosted values. The redis-

tribution is not necessarily equal. As seen in Figure 4.2, the portion given to each

boosted value is multiplied by a respective c value and divided by the summation of

all c values. The variable c allows us to boost some identifiers in W more than others,

based on how often each identifier meets the boosting criteria. For example, if I am

boosting identifiers that are seen with pseudonym dj, then an identifier’s c value is

the number of times the identifier was seen with dj. Thereby, identifiers seen more

times with dj will have a larger c value, and get a larger boost than those seen less

often and with a smaller c value.
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Figure 4.2: Example of Boosting

4.2 Attack Model Breakdown

I design the attack model by constructing two association matrices: DSRC-to-DSRC

(D2D) and WiFi-to-DSRC (W2D). I process the information that listeners have gath-

ered to create two hash maps dgroups and wgroups. I use dgroups to map each DSRC

pseudonym to a list of its corresponding observation intervals, and wgroups to map

each WiFi identifier to a list of its corresponding obersvation intervals. These maps

are used when constructing the two matrices.

The following sections detail the construction process of both the D2D association

matrix and the W2D association matrix.
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4.3 DSRC-to-DSRC

The D2D matrix is an M xM matrix where M is the number of unique DSRC

pseudonyms observed across all listeners. Within the matrix, elementij corresponds

to the association status between pseudonyms di and dj. In my model, this status

is represented by four possible values: -1 (no information), 0 (disassociated), 1 (as-

sociated), or 0.5 (possibly associated). Note that 0.5 is simply a constant value that

we have chosen to signify possible associaiton. Future techniques may distinguish

different possible associations by their confidence, and have possible associations be

represented by a number between 0 to 1 (exclusive). But as I currently have only a

single form of making possible DSRC-to-DSRC association, I simply chose 0.5, which

is halfway between 0 and 1. At the start, all elements are initialized to -1, except for

the diagonal which is initialized to 1 (i.e., a pseudonym is associated to itself). After

the initialization, the matrix construction is broken into a series of steps; theses steps

are finding disassociations, the Same Listener Attack, the X2E Attack, and applying

the transitive property across the matrix. I explain each of these steps in more detail

in the following subsections, with pseudocode for the entire D2D matrix construction

algorithm in Algorithm 5. After construction, it is used in a transitive manner when

making W2D disassociations and boosting. For example, if DSRC pseudonyms d1

and d2 are disassociated and w1 is found to be associated to d1, then w1 cannot be as-

sociated to d2 (disassociated). I present the results of my experiments using different

components of the D2D matrix construction in Chapter 5.

4.3.1 Disassociations

I begin by finding disassociations. I conclude that two pseudonyms di and dj are

disassociated if they have overlapping time intervals at different listeners. This im-

plies that they were at two different locations during the overlapping time because I
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assume non-overlapping listener coverage. If they are at the same listener, then they

are either considered associated or possibly associated, which I explain in the fol-

lowing subsections. To find disassociations, I iterate through the set of pseudonyms,

comparing each pseudonym di’s observation intervals with every other pseudonym

dj’s oberservation intervals, looking for the criteria for disassociation. Note that we

assume unique pseudonyms across all vehicles.

Input: dgroups: Dictionary mapping DSRC pseudonym to list of

observation intervals

Result: Updates D2D matrix with associations found

dobis← set of all observation intervals

dobis.sort() group by pseudonyms, then order by ascending time order

foreach DSRC psuedonym di ∈ dobis do

start← first time and location di is seen

end← last time and location di is seen

record start and end for di

end

foreach DSRC psuedonym di ∈ dobis do

foreach DSRC pseudonym dj ∈ dobis that is not equal to di do

if di.location = dj.location and dj.start is DSRC-HEARTRATE

seconds after di.end then

mtx[i, j]← mtx[j, i]← 1

end

end

Algorithm 1: Same Listener Attack finds associated DSRC pairs based on

a DSRC appearing immediately after another DSRC is last seen
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4.3.2 Same Listener Attack

In the Same Listener Attack, I create associations between pseudonyms using the

algorithm found in Algorithm 1. The Same Listener Attack leverages knowledge of

the protocol heart rates and is based on the idea that if a vehicle were within range

of a listener, then when the vehicle uses the new pseudonym for the first time, to the

listener it will appear as if a new vehicle entered its are of observation. Therefore, I

look for pseudonyms that first appear at listeners where pseudonyms were last seen.

I start by taking the set of all observation intervals, grouping them by pseudonyms,

then sorting them by ascending time order. I then record when and where the first and

last time each pseudonym is seen. I then iterate through all pseudonyms, checking to

see if any of them are first seen DSRC heart rate seconds after any other pseudonym

is last seen. Any pair of pseudonyms that meet these criteria are labeled as associated

in the D2D matrix.

4.3.3 X2E Attack

The next attack is dubbed the X2E (Exit-to-Enter) Attack. This algorithm is based

on the attacks used in [6] and [3], where an attack tries to match exit events to their

corresponding enter events. This is done by creating a weighted bipartite graph for

the set of exit events and the set of enter events and solving the linear sum problem to

get a minimal sum cost perfect match of the graph. The attack is broken up into two

phases: a learning phase and an attack phase. I add improvements to both phases,

which I explain in each of their respective subsections.

The following subsections detail the learning phase and attack phase of the X2E

Attack.
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Input: dgroups: Dictionary mapping DSRC pseudonym to list of

observation intervals

Output: Mapping of pair of listeners (A,B) to number of vehicles traveling

from A to B and combined time it took

Extract subject id’s from observations intervals in dgroups and consolidate

by subject id sgroups← mapping subject id to list of respective

observation intervals data← empty hash map

foreach subject id si, list of observation intervals obis ∈ sgroups do

obis.sort() sort by ascending time order

foreach pair of observation intervals (o1, o2) ∈ obis do

if o1.start < o2.start then

key ← (o1.loc, o2.loc)

data[key] add 1 to count of number of vehicles, add (o2.start -

o1.end) to total time

end

end

return data

Algorithm 2: Learning Phase Gathers data needed to create weighted edges

in Attack Phase of X2E Attack

Learning Phase

During the learning phase, I record the number of vehicles that traveled between

two listener locations and their total travel time. I use this information to assign

weights to the edges between exit and enter events. I illustrate my algorithm in

Algorithm 4. Previous implementations of the learning phase realisticly limit their

knowledge by treating each pseudonym as a separate vehicle. This leads to data

skewed towards a greater number of recorded vehicles than there actually are [6]. For
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my implementation. Because it is a simulation, I do a lookup of the pseudonyms to

their corresponding vehicles, eliminating the problem of double-counting pseudonyms

from the same vehicle towards the total vehicle count. I chose this to illustrate the best

case scenario, and I argue that an attacker can simulate traffic on their target area

to get data comparable to ours. Previous attacks have also used this in an online

(real-time) attack, where data collected during the learning phase is not attacked,

but simply used to created the bipartite graph. Because my attack model is targeted

towards a passive attacker, I use my entire attacked simulation for the learning phase.

I then try to attack the same simulation during the attack phase. I chose this, again,

to illustrate the best case scenario for an attacker.

The learning algorithm begins by consolidating all observation intervals belonging

to pseudonyms from the same originating vehicle. For each subject vehicle, I sort its

observation intervals by ascending time order to recreate a vehicle’s path. I create

a hash map mapping a pair of listeners (A,B) to a tuple containing the number of

vehicles that went from A to B and the total time all vehicles took. I do this by going

through every permutation of size two (o1, o2) of every vehicle’s list of observation

intervals. If o1 occurs before o2, then I use their locations as the key into the map,

increase the count of number of vehicles by one, and add the difference between o2’s

start time and o1’s end time (i.e., the travel time of the vehicle leaving o1’s location

and arriving at o2’s location). I then return the hash map to calculate weights between

exit and enter events during the attack phase.

Weights

Weights are assigned to an edge between each exit event and each enter event within

the bipartite graph of the X2E Attack. The weight of an edge connecting an exit

event x and an enter event e represents the likelihood that the vehicle leaving x re-
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entered the observation area at e. In the example illustration in Figure 3.2, enter2

is the corresponding enter event to exit1. My goal is to give the edge connecting

exit1 to enter2 an appropriate weight such that it will be chosen when solving the

linear sum problem on the bipartite graph. Note that I use negative weights to

signify greater likelihood due to Python’s NumPy package having a builtin linear

sum problem solution, and not a maximal sum cost solution. The weight algorithm

I use is based on the research of [6] and [3], but I improve it by using previously

found associations and taking into account the actual travel time between events to

get more accurate results. My improvements increased the association recall, while

maintaining the same precision.

The weight of an edge between exit event x and enter event e are determined

by a set of criteria, for which the pseudocode can be found in Algorithm 3. If e

occurred before x, then I choose a weight such that the edge will not be chosen

(i.e., MAX NUM , where MAX NUM is an extremely large number). If x and e

have the same pseudonyms, then choose a weight such that the edge will be chosen

(i.e., MIN NUM). If the pseudonyms corresponding to x and e have already been

found to be associated, then I choose a weight such that the edge will be chosen (i.e.,

MIN NUM , where MIN NUM is an extremely large negative value); and vice

versa, where if the pseudonyms have already been found to be disassociated, then I

choose a weight such that the edge will not be chosen (i.e., MAX NUM). If during

the learning phase I saw no vehicles travel from x’s location to e’s location, then I

give it a relatively small weight such that the edge may still be chosen, but unlikely

(i.e., −0.1). If none of the previous conditions were met, then I give the edge a weight

using the learned data. Given that n0 is the number of vehicles that went from x’s

location to e’s location, and t0 is the average time they took ( total time vehicles took to travel
n0

), and tdelta is the actual travel time (e’s timestamp substract x’s timestamp), I first

calculate terror as either 2− t delta
t0

if tdelta is less than t0, or as t delta
t0

if t is greater
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Input: x: exit event, e: enter event, learn: map representing learned data

from Learning Phase(), mtx: current D2D matrix

Output: weight inversely relational to likelihood exit and enter events are

associated (smaller number → more likely)

if e occurredbefore x then then

w ←MAX NUM

else if x and e have the same pseudonym then

w ←MIN NUM

else if x.pseudonym and e.pseudonym have already been found to be

disassociated then

w ←MAX NUM

else if x.pseudonym and e.pseudonym have already been found to be

associated then

w ←MIN NUM

else if learn saw no vehicles going from x.location to e.location then

w ← −0.1

else

n0 ← number of vehicles that went from x.location to e.location

t0 ← (total time vehicles took to travel ) / n0

tdelta ← e.time− x.time

if tdelta < t0 then

terror ← 2 - tdelta / t0

else

terror ← tdelta / t0

w ← −

n0

t0
terror

return w

Algorithm 3: weight Returns the weight of an edge connecting an exit event

to an enter event representing likelihood (smaller number → more likely)
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than or equal to t0. The variable terror represents the error rate that the actual

travel time is from the average travel time, penalizing a pair the further away the

actual travel time is from the average. The two separate calculations for terror ensure

equal penalization whether the error is above or below the average. Once I have that

calculated, the weight returned is:

−

n0

t0
terror

This equation correlates the likelihood of an exit and enter event being linked

together to the number of vehicles that previously traveled between the events’ lo-

cations and the time they took. Thereby, the more vehicles that traveled from x’s

location to e’s location, the more likely they are linked. The rational for this is that

higher vehicle counts indicate a main road as opposed to a smaller streets, and if

historically many vehicles traveled from x’s location to e’s location, then it is highly

likely that a vehicle leaving x’s location also traveled to e’s location. Also, the shorter

the average time taken to travel from x’s location to e’s location, the more likely they

are linked. The rational behind this is that a longer travel time equates to more time

spent in the mix zone, areas outside of the area of observation. This time can be

spent changing pseudonyms without the attacker’s knowledge. A longer travel time

also decreases the magnitude of the weight returned because vehicles normally take

the shortest route possible to get from point A to point B. If there are two enter

events e1 and e2 that are both possibly matched to exit event x1, and the travel time

from x1 to e1 is less than the time from x1 to e2, then I know that it is possible to

get between the two locations in the shorter travel time. Therefore, the shorter travel

time is the more likely corresponding enter event and the longer travel time is less

likely.

Previous implementations of this weight function use the difference between tdelta

and t0 combined with a multiplier as a the numerator: n0

|tdelta−t0|+0.000001
. This equation
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makes the actual value of the average travel time less signficant, and makes its value

relative to the actual travel time. I found that my equation, which gives more credence

to the average travel time, while maintaining the penalty of a large difference between

the actual and average travel times, gave us better results both in finding DSRC-to-

DSRC associations, and in turn WiFi-to-DSRC associations.

Attack Phase

Now that I have explained the weight algorithm, I will explain the attack portion of

the attack. This attack was previously used in an online attack [6], but I adapt it to

my passive attack by recreating the exit and enter events as they happen by stepping

through a sorted list of observation of intervals. First, I sort the set of all observation

intervals by ascending time order to recreate the recording of events in the order they

actually happened. For each observation interval obi, I record obi’s start time and

location as enter event e and put it into the set of all enter events. I then search

within the set of all currently recorded exit events for an exit event with a matching

pseudonym to e. If there exists one, then I match them and remove both from their

respective sets. I then record the obi’s end time and location as the exit event and

put it into the set of all exit events.

I then create a matrix to represent the bipartite graph. Elementij represents the

weight of the edge between exit event xi and enter event ej. I initialize all values to

0. Then I calculate the weight value for every pair of enter and exit events, recording

the greatest magnitude weight, excluding magnitudes of MAX NUM (an extremely

large number) which are equivalent to known associations. The maximum weight

is used for differentiating between associations and possible associaitons later on. I

then obtain a minimum sum graph by using NumPy to solve the linear sum problem

on the bipartite graph. Iterating through each edge of the solved graph, I extract
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Input: dgroups: Dictionary mapping DSRC pseudonym to list of

observation intervals, mtx: D2D matrix, mw perc: percentage of

maximum weight

Result: Updates D2D matrix with associations found

learn ← Learning Phase()

enter events ← ∅

exit events ← ∅

Sort observation intervals by ascending time order

foreach observation interval obi do

Record enter event e using (obi.start, obi.pseudonym, obi.location)

if ∃ exit event x ∈ exit events with the same pseudonym as e then

Remove each from their respective set

Record exit event x using (obi.end, obi.pseudonym, obi.location)

end

x2e← (Number of exit events) x (Number of enter events) matrix and

initialize all entries to 0

foreach exit event xi do

foreach enter event ej do

x2e[i, j] ← weight(xi, ej, learn)

Keep track of greatest magnitude weight (excluding MAX NUM i.e.,

known associations)

end

end

Solve minimum sum graph for x2e
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foreach edge ej in solved graph do

if | ej’s weight| is mw perc of the max weight observed then

Set ej’s events’ pseudonyms to associated in mtx;

else

Set ej’s events’ pseudonyms to possibly associated in mtx;

end

Algorithm 4: X2E Attack Matches exit events to enter events to associate

pseudonyms

the pseudonyms from each edge’s exit and enter events. If the weight of the edge

is above some percentage of the maximum weight, then I set the two pseudonyms

to be associated. If not, then I set them to be possibly associated due to the low

precision of attack method. By differentiating between the greater weighted edges

(i.e., the more likely to be correct) and the lower weighted edges (i.e., the less likely

correct), I am able to improve my results while still giving some credence to the

lower weighted edges. For my experiments, I use a percentage of 50%. Therefore,

edges that have a weight greater than 50% of the maximum recorded weight are

considered to be associations, otherwise the edges are labeled as possibly associated.

I then create a matrix to represent the bipartite graph. Elementij represents the

weight of the edge between exit event xi and enter event ej. I initialize all values

to 0. Then I calculate the weight value for every pair of enter and exit events,

recording the greatest magnitude weight, excluding magnitudes of MAX NUM which

are equivalent to known associations. The maximum weight is used for differentiating

between associations and possible associaitons later on. An example of a completed

weighted bipartite graph is shown in Figure 3.3.

I then obtain a minimum sum graph by using NumPy to solve the linear sum

problem on the bipartite graph. Iterating through each edge of the solved graph, I
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extract the pseudonyms from each edge’s exit and enter events. If the weight of the

edge is above some percentage of the maximum weight, then I set the two pseudonyms

to be associated. If not, then I set them to be possibly associated due to the low

precision of the attack method. By differentiating between the greater weighted edges

(i.e., the more likely to be correct) and the lower weighted edges (i.e., the less likely

correct), I am able to improve my results while still giving some credence to the lower

weighted edges. For my experiments, I use a percentage of 50%. Therefore, edges

that have a weight greater than 50% of the maximum recorded weight are considered

to be associations, otherwise the edges are labeled as possibly associated.

4.3.4 Transitive Property

At the end of the D2D matrix construction, I apply the transitive property across the

matrix first for associations, then disassociations. For example, if DSRC pseudonym

d1 and d2 are associated, and d2 and d3 are associated, then by the transitive prop-

erty they are all associated to each other. I do not apply the transitive property for

possible associations due to the low confidence of possible associations. Applying the

transitive property for D2D possible associations caused a cascading number of incor-

rect associations when an incorrect possible association bridged different associated

groups (groups where all member within a group is associated to each other). Because

disassociations are applied after associations, disassociations will take precedence over

an association if there is conflicting data.

4.4 WiFi-to-DSRC

After construction of the D2D matrix, it is used in the construction of the W2D ma-

trix. The W2D matrix construction begins by constructing an N+1 xM matrix where

N and M are the number of unique WiFi identifiers and unique DSRC pseudonyms

51



Input: dgroups: Dictionary mapping DSRC pseudonym to list of

observation intervals

Output: MxM matrix representing DSRC-to-DSRC association information,

where M = number of DSRC pseudonyms seen

mtx←MxM matrix

initialize all values to -1, and diagonal to 1

foreach DSRC di do

foreach DSRC dj where there is no information for mtx[i,j] do

Compare all of di’s observation intervals to all of dj’s observation

intervals

if any overlap in time and are at different listeners then

set di and dj as disassociated

end

Same Listener Attack()

X2E Attack()

Apply transitive property to mtx for associations and disassociations

(NOT possible associations)

return mtx

end

Algorithm 5: build d2d mtx Constructs association matrix of DSRC-to-DSRC

associations, -1:no information, 0:disassociation, 1:association, (0,1):possible asso-

ciation
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observered across all listeners, respectively. An extra row is added to represent all

vehicles in the area of observation that do not have WiFi capbailities, if any exist. Ele-

ments in the matrix range in values between 0 and 1 (inclusive) and are representative

of the probability that their corresponding WiFi identifier and DSRC pseudonym are

associated. Each element is initialized to be 1
N+1

, that is each pseudonym is equally

likely to be associated to any identifier. Because an identifier can be associated with

many pseudonyms, but a pseudonym can only be associated to a single identifier,

each column must sum to 1, while each row can sum to any arbitrary value. After

intialization, the matrix construction consists of finding disassociations, known asso-

ciations, and then possible associations. Possible associations are handled through

the use of boosting. There are three separate phases or levels of boosting, with each

subsequent level holding less authority than the previous. Therefore, the more likely

possible associations are boosted in the first level of boosting, those less likely in the

second, and those least likely in the final. Each step of the W2D matrix construction

will be explained in the following subsections.

4.4.1 Disassociations

I begin by finding disassociations between identifiers and pseudonyms using Algo-

rithm 6. I do this in a similar manner as when finding DSRC-to-DSRC disassocia-

tions, where an identifier and pseudonym are found to be disassociated if they have

overlapping time intervals recorded at different listeners, assuming non-overlapping

listener coverage. Any identifier-pseudonym pair (wi, dj) found to disassociated will

have its corresponding element elementij set to 0, indicating that the two elements

cannot be associated. Elementij’s original value is then evenly distributed among all

elements in column j that do not currently equal 0. This is indicative of dj being

found to not be a possible association to wi. Thus, dj is more likely to be associated
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to any other WiFi identifier that it has not yet been been found to be disassociated

from.

Disassociations found from overlapping time intervals at different listeners are

extended by using known DSRC-to-DSRC associations from the D2D matrix. For a

given WiFi identifier wi and its set of disassociated DSRC pseudonyms not assoc, I

also conclude that wi is disassociated from dk, where dk is associated to at least one

pseudonym in not assoc. For example, if w1 and d1 are found to be disassociated, but

d1 and d2 were previously found to be associated during the D2D matrix construction,

then w1 and d2 are also concluded to be disassociated.
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Input: mtx: Current W2D matrix, wgroups: Dictionary mapping WiFi

identifier to list of observation intervals, ∆: Redistribution factor -

value between (0,1)

Output: W2D matrix with found disassociations applied

foreach WiFi wi ∈ wgroups do

foreach DSRC dj where there is no information for mtx[i,j] do

if wi and dj have observation intervals oi and oj overlapping in time

then

if oi and oj are at different listeners then

Add dj to wi’s list of disassociated

Remove dj from all of wi’s list of possible associations by

location if present

else

if dj wasn’t previously found to be disassociated from wi then

Add dj to wi’s list of possible associations based on location

end

end

foreach WiFi wi and its list of disassociated not assoc do

not assoc ← Union not assoc with set of all DSRCs that are associated to

at least one of the DSRCs in not assoc

foreach DSRC dj in not assoc do

Set wi and dj to be disassociated in mtx

Distribute the original value in mtx equally among all other rows in

column i that don’t currently have a value 0

end

end

Algorithm 6: w2d disassociations Finds and applies W2D disassociations

into the W2D matrix
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4.4.2 Known Associations

I then find known associations between identifiers and pseudonyms. Known associa-

tions are associations with such high confidence that the attack model automatically

concludes that they are actual associations. An identifier and pseudonym pair are

found to be known associated if they have overlapping observation intervals and no

other signals are seen at the same time, that is, during the time the identfier’s ob-

servation interval and pseudonym’s observation interval overlap, there are no other

overlapping observation intervals. An example of this is shown in Figure 1.4, where

w1 and d1 are both seen at a listener at a some point in time with no other signals

around. Any known associated identifier-pseudonym pair (wi, dj) will have its corre-

sponding element elementij set to 1 and all other elements in column j are set to 0

to maintain the summation of 1. Algorithm 7 contains the algorithm for both finding

known associations and applying Level 1 boosting due to their similar criteria.
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Input: mtx: Current W2D matrix, wgroups: Dictionary mapping WiFi

identifier to list of observation intervals, ∆: Redistribution factor -

value between (0,1)

Output: W2D matrix with found associations and Level 1 possible

associations applied

d2w ← emptyhashmap;

foreach WiFi wi and its list of lists of possibly associated DSRCs by location

assocs by loc do

foreach list of possibly associated DSRCS assocs ∈ assoc by loc do

if only 1 DSRC dj ∈ assocs then

Record that dj was seen with wi + 1 using d2w;

mtx[i, j]← 1;

mtx[i′, j]← 0, where i′ corresponds to each WiFi identifiers

excluding wi;

mtx[i, j′]← 0;

where j′ corresponds to all DSRC pseudonyms disassociated to dj;

Redistribute each mtx[i,j’] value evenly among all other rows in

column j′ that don’t equal 0;

end

else

foreach DSRC djin assocs do

Record in d2w that dj was seen with wi + 1;

end

end

end

end
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foreach DSRC dj in d2w do

not rs ← all WiFi identifiers not seen with dj;

Σ ← sum of probabilites of identifiers in not rs;

total ← total number of times dj was seen with any WiFi;

foreach WiFi wi in d2w[dj] do

mult ← number of times dj was seen with wi;

mtx[i,j] += ∆∗Σ
total

* mult;

end

end

Algorithm 7: w2d known associations and level1 boosting Finds and

applies W2D associations and Level 1 possible associations into the W2D matrix

4.4.3 Possible Associations

I then find possible associations between identifiers and pseudonyms. An identifier

and pseudonym pair are found to be possibly associated if they have overlapping

observation intervals, but there are also other overlapping intervals around belonging

to other pseudonyms. An example of this is shown in Figure 1.5, where WiFi identifier

w1 is seen with both DSRC pseudonyms d1 and d2. Because w1 is seen with both d1

and d2 at the same listener at the same point in time, then I say that w1 is possibly

associated to both d1 and d2. Possible associations are incorporated into the matrix

through the use of boosting, and because boosting is done independently in each

column (i.e., boosting is done in terms of DSRC pseudonyms), I need to invert the

mapping of WiFi identifiers to their list of possibly associated DSRC pseudonyms

into DSRC pseudonyms to their list of possibly associated WiFi identifiers. I do this

by iterating through each WiFi identifier wi’s list of DSRC pseudonyms poss assocs.

For each DSRC pseudonym dj in poss assocs, I record that wi was seen with dj,

keeping a count of the number of times each pair is seen together. This mapping is
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used during boosting to figure out which WiFi identifiers are being boosted for each

DSRC pseudonym.

There are three levels of possible associations, each corresponding to a level of

boosting. Because the boosted amount is based on the summation of those less likely

to be associated to a given pseudonym, each subsequent level of boosting is less

magntudinous than preceding levels. I also use different ∆s (redistribution factors)

at each level of boosting. While these ∆ values can be tuned using machine learning

techniques to get the optimal values, I choose my values based on experimentation. I

explain my reasoning for my chosen values in the following subsections, and present

the effects of changing the ∆ values has on my attack results in Chapter 5. Level 1

boosting handles immediate possible associations, where for a given pseudonym dj, I

boost identifiers seen directly with dj. Level 2 boosting handles possible associations

of a single degree of separation, where for a given pseudonym dj, I boost identifiers

seen with a pseudonym that is associated to dj. And Level 3 boosting handles possible

associations with a single “weak” degree of separation, where for a given pseudonym

dj, I boost identifiers seen with a pseudonym that is possibly associated to dj.

Level 1 Boosting

The first level of boosting handles the immediate possible associations. That is, a

DSRC pseudonym dj and WiFi identifier wi are said to be possibly associated if

wi and dj have a pair of overlapping oberservation intervals, but there were other

pseudonyms around at the time. For each DSRC pseudonym dj and its set of WiFi

identifiers it was seen with seen with, I calculate Σ (the total probability of the lesser

likely to be associated identifiers) using the set of identifiers:
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{w | w is an identifier less likely to be associated to dj} =

{w | w is an identifier seen by a listener}

− {w | w is an identifier overlapping with dj with other pseudonyms around}
(4.1)

At Level 1, I use a ∆ of 0.6. From my experiments, I saw that 0.6 gave us a

relatively high number of true positives, without dramatically increasing the number

of false positives. I show the effects of changing the ∆ value on my attack results in

Chapter Chapter 5. For each of the less likely associated identifiers, I multiply their

corresponding elements by (1 − ∆); making the amount to be redistributed among

the possible associations to be Σ ∗ ∆. To begin redistribution for a given DSRC

pseudonym dj, I sum up the total number of times it was seen with any identifier

(total seen with), then for each identifier wi to be boosted, I boost wi by

Σ ∗∆

total seen with
∗multi

where multj is the number of times wi was seen with dj. This allows us to favor

WiFi-DSRC pairs that are seen more often together by giving them a larger boost.

For example, if identifier w1 and pseudonym d1 are seen together twice and w2 and

d1 are seen together only once, then the d1 should be more likely to be associated to

w1 than w2.

Level 2 Boosting

The second level of boosting handles possible associations by a degree of separation

based on known DSRC-to-DSRC associations. That is, a DSRC pseudonym dj and

WiFi identifier wi are said to be possibly associated if wi and dk have a pair of

overlapping oberservation intervals, but there were other pseudonyms around at the
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time, where dk is any pseudonym associated to dj. For Level 2 boosting, the set of

identifiers that I take the boost from is:

{w | w is an identifier less likely to be associated to dj} =

{w | w is an identifier seen by a listener}

− {w | w is an identifier overlapping with dj with other pseudonyms around}

− {w | w is an identifier overlapping with a pseudonym associated to dj with others around}
(4.2)

Note that for a given pseudonym dj, I remove both identifiers seen with a pseudonym

associated to dj and identifiers seen with dj from the set of identifiers that I take the

boost from. This is to prevent penalizing any identifiers that were boosted in Level

1.

At Level 2, I use the same boosting method as Level 1, but a different ∆ value, ∆′,

that is 1.5x the original ∆ value, with a max of 0.99. In my experiments, I use a value

of 0.9 (= 0.6·1.5). I choose a higher ∆′ than ∆ because the possible associations being

boosted at Level 2 are near the same precision as Level 1 possible associations. They

are of a near precision due to being only a single degree of separation and the high

precision of my DSRC-to-DSRC associations. Remember that the boosted amount

is determined by both the redistribution factor ∆′ and Σ, and Σ decreases each

subsequent boosting level due to both the set of identifiers that I take the boost from

growing smaller and their corresponding matrix element probability values decreasing

if previous levels of boosting occurred. Therefore, due to a potentially smaller Σ

value, to maintain a near equal boosting effect at Level 2 as Level 1, I increase the

redistribution factor. For example, let’s say w1 is boosted in Level 1 and w2 is boosted

in Level 2 for a given pseudonym. If Σ = 0.9 during Level 1 boosting and ∆ = 0.6,

then w1 gets a boost of 0.54 (0.6 · 0.9), and afterwards each element that constituted
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the Σ calculation is reduced by the ∆ in terms of percentage. Therefore, during Level

2 boosting, now Σ = 0.36 (= 0.9 · (1− 0.6)). Using the redistribution factor ∆′ = 0.9,

w2 gets a boost of 0.324 (= 0.9 · 0.36). While not the exact same boost, the Level

2 boost was similar to the Level 1 boost, with the difference being argued that the

precision of the D2D associations is not 100%. Therefore, Level 2 boosting has a

proximate level of confidence as Level 1, but not the same. If a lower ∆′ value had

been chosen, then the boosted amount would have been even smaller, which can be

useful if new methods are integrated into the D2D matrix construction that increase

recall, but lower precision.

Aside from boosting possible associations, I also make known associations in this

phase, with associations having higher precedence than boosting. If a pseudonym is

found to have a known association with an identifier, then the association is auto-

matically recorded in the W2D matrix and none of its possible associations at this

level are boosted. I apply the same logic of a single degree of separation when looking

for associations at this step. An identifier-pseudonym pair wi and dk are found to

be associated if wi and dk have overlapping intervals and no other pseudonyms were

around at the time, where dk is any pseudonym associated to dj. In other words, if an

identifier wi was found to be associated to dk, then any pseudonym associated to dj

is also associated to wi. Known associations can be made using the single degree of

separation due to the high precision of the D2D association matrix. If the D2D pre-

cision were to substantially drop, then these known associations using a single degree

of separation would not be as effective and often create incorrect known associations.
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Input: mtx: Current W2D matrix, wgroups: Dictionary mapping WiFi

identifier to list of observation intervals, ∆: Redistribution factor -

value between (0,1)

Output: W2D matrix with found Level 2 possible associations applied

d2w t ← emptyhashmap;

foreach DSRC dj do

foreach DSRC dk that is associated to dj excluding dk = dj do

if dj was ever only seen with 1 WiFi (i.e., automatic association then

mtx[i, k]← 1;

mtx[i′, k]← 0, where i′ corresponds to each WiFi identifiers

excluding wi;

mtx[i, k′]← 0;

where k′ corresponds to all DSRC pseudonyms disassociated to dj;

Redistribute each mtx[i,k’] value evenly among all other rows in

the k′ column that don’t equal 0;

Remove dj from d2w t and break;

else

Record in d2w t that dj is possibly associated with each WiFi

identifiers wi seen with dk for the number of times dk and wi were

seen together;

end

end
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∆′ ← min(1.5 ∗∆, .99);

foreach DSRC dj in d2w t do

not rs ← [all WiFi identifiers] ∩ [WiFi identifiers seen with dj] ∩ [WiFi

identifiers seen with a DSRC associated to dj];

Σ ← sum of probabilites of identifiers in not rs;

total ← total number of times a DSRC associated to dj was seen with any

WiFi;

foreach WiFi wi in d2w t [dj] do

mult ← number of times a DSRC associated to dj was seen with wi;

mtx[i,j] += Σ∗∆′

total
* mult;

end

end

Algorithm 8: w2d level2 boosting Finds and applies W2D Level 2 possible

associations into the W2D matrix

Level 3 Boosting

The third and final level of boosting handles possible associations by a degree of sep-

aration based on possible DSRC-to-DSRC associations. That is, a DSRC pseudonym

dj and WiFi identifier wi are said to be possibly associated if wi and dk have a pair of

overlapping oberservation intervals, but there were other pseudonyms around at the

time, where dk is any pseudonym possibly associated to dj. For Level 3 boosting, the

set of identifiers that I take the boost from is:
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{w | w is an identifier less likely to be associated to dj} =

{w | w is an identifier seen by a listener}

− {w | w is an identifier overlapping with dj with other pseudonyms around}

− {w | w is an identifier overlapping with a pseudonym associated to dj with others around}

− {w | w is an identifier overlapping with a pseudonym possibly associated to dj with

others around}
(4.3)

At Level 3, I use the same boosting method as previous levels, but again a different

∆ value, ∆′′, that is .75x the original ∆ value. In my experimenets, I use a value of

0.45 (= 0.6 · 0.75). I choose a lower ∆′′ value than ∆ due to the high uncertainty

of DSRC-to-DSRC possible associations. I saw from my experiments that if I used

too high of a ∆′′ value, then that created too many false positives, with very few

true positives. Remember that these possible associations are found from exit-enter

event pairs from the X2E Attack with a weighted edge that did not meet a weight

value threshold. While these possible associations have a high undercertainty, I still

wanted to give them some credence, so I use a low value redistribution factor in my

Level 3 boosting. I also do not extend the automatic known associations used in the

previous phase to this phase. Similarly to the low value ∆′′, I do not extend known

associations in this phase due to the high uncertainty of these possible associations,

where if I did extend known associations, then the number of false positives made

would greatly outnumber any true positives made.
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Input: mtx: Current W2D matrix, wgroups: Dictionary mapping WiFi

identifier to list of observation intervals, ∆: Redistribution factor -

value between (0,1)

Output: W2D matrix with found Level 3 possible associations applied

d2w mb getsemptyhashmap;

foreach DSRC dj do

foreach DSRC dk that is possibly associated to dj excluding dk = dj do

Record in d2w mb that dj is possibly associated with each WiFi

identifiers wi seen with dk for the number of times dk and wi were

seen together;

end

end

∆′′ ← .75 ∗∆;

foreach DSRC dj in d2w t do

not rs ← [all WiFi identifiers] ∩ [WiFi identifiers seen with dj] ∩ [WiFi

identifiers seen with a DSRC associated to dj] ∩ [WiFi identifiers seen

with a DSRC possibly associated to dj;

Σ ← sum of probabilites of identifiers in not rs;

total ← total number of times a DSRC possibly associated to dj was seen

with any WiFi;

foreach WiFi wi in d2w mb [dj] do

mult ← number of times a DSRC possibly associated to dj was seen

with wi;

mtx[i,j] += Σ∗∆′′

total
* mult;

end

end

Algorithm 9: w2d level3 boosting Finds and applies W2D Level 3 possible

associations into the W2D matrix
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4.4.4 WiFi Null Boosting

The final step of the W2D matrix construction is WiFi Null Boosting, where I apply

the boosting method to the WiFi Null row for any DSRC pseudonym seen without an

overlapping WiFi identifier. I do this by keeping a count for each DSRC pseudonym

of the number of times it was seen without any overlapping WiFi identifier. Iterating

through each listener’s recorded observation intervals, if a listener l did not see any

WiFi signals, then for each DSRC pseudonym that l recorded an observation interval

for, I increment its count by 1. Once I have calculated each pseudonym’s count, for

each pseudonym dj, I boost WiFi Null the number of times dj was seen without an

overlapping WiFi signal. I use a redistribution factor value of 0.1 for my experiments.

The reasoning for this approach is that DSRC pseudonyms originating from vehi-

cles without WiFi capability would be more likely to be seen without an overlapping

WiFi signal than pseudonyms originating from vehicles with WiFi capability. How-

ever, due to the nature of the signal protocols’ heart rates, many more pseudonyms

are seen without an overlapping WiFi signal than those that actually originate from

a vehicle without WiFi capaiblity. Due to the high uncertainty of this method, I

opted to use a low redistribution factor as I still wanted to factor in pseudonyms

seen without a WiFi signal, but not detract from the findings of other methods in

the W2D matrix construction. The pseudocode for WiFi Null Boosting is found in

Algorithm 10.

The WiFi signal in my experiements is acting as a base station, where it broadcast

to announce its presence. In a real-world scenario, this can be affected by cellular

devices that act as WiFi hotspots. For the purposes of this project, I assume that

vehicles are the only source of WiFi signals within the areas.
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Input: mtx: current (N+1)xM matrix for WiFi-to-DSRC associations,

l2wobis: Dictionary mapping listener to its set of WiFi observation

intervals, l2dobis: Dictionary mapping listener to its set of DSRC

observation intervals, ∆null : Redistribution factor for WiFi null -

value between (0,1)

Result: Boosts DSRC pseudonyms that likely originate from vehicle without

WiFi capabilty with WiFi Null row in matrix for the number of

times they were seen without an overlapping WiFi signal

d count ← emptyhashmap

foreach listener L and its set of DSRC observation intervals dobis do

if L has no WiFi observations then

Increment the count of each DSRC dobis by 1 in d count

else

foreach DSRC observation interval dobi ∈ dobis do

if dobi does not overlap in time with any of L’s WiFi observation

intervals then

Increment the count of dobi’s DSRC pseudonym by 1 in d count

end

end

foreach DSRC pseudonym d j ∈ and its count ∈ d count do

Boost the WiFi Null probability count times in mtx using ∆null as the

redistribution factor, taking the boost from all rows except WiFi Null

end

Algorithm 10: WiFi Null Boost Boosts WiFi Null probability for DSRC

pseudonyms possibly originating from vehicle without WiFi capability
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4.5 Confidence Threshold

Once the W2D matrix construction is completed, I use a confidence threshold to

conclude which of the associations I actually consider to be associations. For my

experiments, I use a confidence threshold of 0.5. That is, if an elementij of the

W2D matrix is greater than 0.5, then I conclude that WiFi identifier wi and DSRC

pseudonym dj are associated. I use a threshold of 0.5 because any probability over

50% indicates a majority. Remember that each column sum to 1 or 100%. Therefore,

if I used a threshold under 50%, then there is a likelihood that a pseudonym is found

to be associated to multiple identifiers. Therefore, 0.5 is the minimum threshold

required to ensure an pseudonym is associated to only a single identifier.

4.6 Path Reconstruction

I then use the W2D associations to reconstruct a vehicle’s path. For each WiFi

identifier wi, I find all DSRC pseudonyms dj in set D such that elementij in the W2D

matrix meets the confidence threshold. All observation intervals with a pseudonym

belonging in D or the identifier wi are ordered in ascending time order, and a Euclidian

distance is drawn between subsequent intervals’ listeners. Because the main concern

of this thesis was pseudonym association and not path reconstruction, I opted for

this simplistic approach. A more accurate path can be reconstructed by using a

Manhattan distance line or the actual target map’s roads to connect subsequent

listeners.
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Chapter 5

EXPERIMENTS AND RESULTS

I use the SUMO traffic simulator [2] to simulate realistic vehicle traffic in three cities:

Eichstätt, Mions, and Melun. I choose these towns, a German town and two French

communes, because they have centralized medium-size downtown districts that would

realistically see a lot of vehicle traffic. The Eichstätt map measures approximately 12

km2 in area and its traffic simulation had 200 vehicles with 1627 pseudonyms across all

vehicles, and average trip length of 4.5 km. The Mions map measures approximately

5.7 km2 in area and its simulation had 300 vehicles with 1515 pseudonyms, and an

average trip length of 1.8 km. The Melun map measures approximately 8.7 km2 in

area and its simulation had 300 vehicles with 2284 pseudonyms, and an average trip

length of 2.4 km.

Because I do not have complete listener coverage, I am unable to receive a packet

from every identifier and pseudonym. Therefore, I evaluate my attack solely based on

the packets received by the listeners. In my simulations, I use simulated DSRC-like

and WiFi-like radios as the long-distance pseudonym changing protocol and short-

distance non-changing protocol, respectively. The different parameters for my radio

protocols are summarized in Table 5.1. For my simulations, the DSRC protocol has

a range of 100 meters, a heart rate of 0.1 seconds, and a change rate of 30 seconds;

the WiFi protocol has a range of 25 meters and a heart rate of 30 seconds. Because

WiFi uses a non-changing identifier, I set its change rate to ∞.

Table 5.1: Radio Protocol Parameters for Simulations
Radio range (m) heart rate (s) change rate (s)

DSRC 1000 0.1 30

WiFi 25 30 ∞

70



To model packet reception at the listeners, I step through each simulated vehicle’s

path, stopping at the given heart rates of the signals to broadcast the respective

signals. I use varying WiFi penetration rates, ranging from 50% to 100% while

maintaining a 100% penetration rate for DSRC capability. The WiFi penetration

rate defines what percentage of vehicles within the network have WiFi capability. I

use varying WiFi penetration rates to test the robustness of the attack when not all

vehicles have WiFi capability. Non WiFi enabled vehicles will continue to emit DSRC

packets. An attack will not know that pseudonyms associated with these packets

originate from a vehicle without WiFi capability, and thus varying WiFi penetration

rates test the ability of the attack to filter out noise pseudonyms. I assume a 100%

DSRC penetration rate due to its many appplications in road safety. Therefore, it

is likely to be federally mandated and required in future modern vehicles. Signal

broadcast data is stored in a MongoDB database; I record the broadcasting vehicle’s

ID, the coordinate of the broadcast, the time of broadcast, the signal protocol, and

the pseudonym or identifier associated to the signal at the time. I use a handpicked

listener placement setup for each map, with a set of 20 listeners and a focus on heavy

traffic areas, such as busy intersections. During listener placement, I also ensure that

listeners do not overlap in coverage, as many of my attack methods assume non-

overlapping listener coverage. Example listener placement configurations for each

map are illustrated in Figures 5.1, 5.2, and 5.3, where a red circle represents the

coverage of a single listener. I implement my attack in Python with the usage of the

NumPy package. Because my attack model is a generalizable model, the following

parameters can be configured to simulate a variety of scenarios:

• Map and listener placements

• Long-distance pseudonym changing protocol

– range

– heart rate
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– change rate

• Short-distance non-changing protocol

– range

– heart rate

– penetration rate

• Maximum Weight percentage for X2E Attack

• D2D Matrix Construction steps

• ∆, ∆′, ∆′′ (Redistribution factors for Boosting in W2D matrix construction)

• Confidence Threshold

Figure 5.1: Example SUMO map with listener placements, Map: Eichstätt
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Figure 5.2: Example SUMO map with listener placements, Map: Mions

Figure 5.3: Example SUMO map with listener placements, Map: Melun

To measure the effectiveness of my results, I measure the number of associations

made, the number of correct associations made, the average W2D (WiFi-to-DSRC)

association precision, the average W2D association recall, the total D2D (DSRC-
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to-DSRC) association precision, and the total D2D association recall. Precision is

a measure of how accurate the average guessed association is. That is, among the

guessed associations, how many of them were correct. Precision is equal to the number

of true-positives divided by the sum of true-positives and false-positives, that is the

number of correct associations made divided by the total number of associations

made. Recall is a measure of how many of the total actual associations we got

correct. Recall is the number of true-positives divided by the sum of true-positives

and true-negatives, that is the number of correct associations made divided by the

total number of actual associations.

Precision =
TruePositive

TruePositive + FalsePositive

=
Correct Associations Made

Total Guessed Associations

(5.1)

Recall =
TruePositive

TruePositive + TrueNegatives

=
Correct Associations Made

Total Actual Associations

(5.2)

D2D association precision and recall allow me to gauge how effective my D2D ma-

trix construction strategies are. To calculate these values, I construct a separate D2D

association matrix containing all the actual D2D associations involving pseudonyms

seen by the listeners. Then I compare my D2D association matrix against the newly

constructed actual association matrix; I record the number of true positives, true

negatives, and false positives to use in the precision and recall calculations. Making

correct D2D associations is fundamentally the goal of previous attacks that are lim-

ited to a single signal protocol [6][3][5][24]. However, D2D precision and recall only

measure a portion of the effectiveness of the D2D associations. Because I use two

signals, the other being the unique identifier of vehicles, the average W2D association

precision and recall are also a measure of how useful the D2D association data is when
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constructing the W2D matrix. Note that I do not use D2D possible associations or

disassociations for any of the precision and recall calculations.

The number of total associations made and number of correct associations is a

simple means of measuring the effectiveness of the attack model. It allows me to

quickly see the effects of tuning a parameter or changing part of my matrices con-

struction strategies. However, because I am measuring W2D associations and the

number of learnable W2D associations changes based on the WiFi penetration rate,

these numbers on their own do not tell me much information without a number to

compare to. Therefore, I need to also take into account the number of actual associ-

ations. The number of learnable W2D associations is based on the WiFi penetration

rate because I leverage WiFi identifiers to uniquely identify vehicles; vehicles without

WiFi capability are unknown to the attack model. Therefore, the model has no means

of associating DSRC pseudonyms to a vehicle without WiFi capaiblity.

The average W2D association precision and recall are the core measurement of

how effective the attack model is. For each uniquely identifiable vehicle (i.e. each

WiFi identifier), I calculate the precision and recall for that vehicle, then average the

calculations across all vehicles to get an average precision and recall.

The following sections detail the results of my experiments running the attack

against different scenarios and configurations.

• General Attack Results

– Measures the overall effectiveness of the attack to create W2D associations

• Attack Across Different Maps

– Measures the effectiveness of the attack across different maps

• D2D Techniques

– Measures the effectiveness of different D2D association techniques and how

those affect W2D associations
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• ∆ Tuning

– Illustrates how different ∆ values affect W2D associations made

• Weight Calculations

– Compares the effectiveness of the attack using my weight calculation in

the X2E attack and using the previous weight calculation

5.1 General Attack Results

To show the general effectiveness of the attack model, I run the attack on a single

map with WiFi penetration rates ranging from 50-100% in 10% increments to get

a measure of the general effectiveness of the attack. For this experiment, I use the

traffic simulation on the Eichstätt map, all steps of the D2D matrix construction,

∆ = 0.6, ∆′ = 0.9, and ∆′′ = 0.45.

I see a D2D association precision of about 96% and a D2D association recall of

18%. Comparitively, in a previous paper [6], using their version of the X2E Attack,

the authors are only able to correctly match about 6% of the exit-enter trips when

the change rate of vehicles is 30 seconds. Their simulation used 250 vehicles with

an average trip duration of 479 seconds and 5 observation nodes. My simulation

used 20 observation nodes and 200 vehicles with trips ranging between a minute to

9 minutes and an average distance of 4.5 km. While their attack does not evaluate

effectiveness in the same measures my attack model does, it does give me a starting

point to compare to. Note that their results include any exit-enter event pairs that

have the same pseudonyms, something that is not considered in my measurements.

In another paper [24], using the contents of the DSRC packets to build anonymous

location profiles and associate vehicles to their respective profiles, the authors were

able to track vehicles for the entire 1000 second trip duration if vehicles kept their

pseudonyms for longer than 3 seconds. However, their techniques required complete
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listener coverage and the ability to gather vehicle location and trajectory data from

the DSRC packets. When they introduce random spatial noise within the data pack-

ets, even a single meter of noise added caused tracking to drop to less than 20% of the

trip when there were 250 vehicles present. When even more noise was added (2 to 5

meters), tracking dropped to less than 10% of the trip when using 250 vehicles. They

also consider penetration rate into their system, but unlike my simulation model,

they consider it as advantageous, as they have less vehicles to track. This second

paper exemplifies the tracking capabilities given perfect data gathering capabilities.

However, my attack model assumes only partial gathering of information. I use 20

handpicked listeners focusing on high traffic areas, such as busy intersections, but

the attack model can be configured to accept any number of listeners and placement

configuration.

I see a general decline in both the number of associations made and the number

of correct associations made as the WiFi penetration rate decrease, as shown in

Figure 5.4. This is to be expected, as the number of actual associations is directly

correlated to the WiFi penetration rate.

The average W2D association precision is fairly consistent across all WiFi penetra-

tion rates, with an average of about 78.7% (low of 74.8% at the 50% WiFi penetration

rate, and a high of 81% at the 70% WiFi penetration rate). The average W2D recall

is also fairly consistent across all WiFi penetration rates, with an average of about

21.7% (low of 20.2% at the 100% WiFi penetration rate, and a high of 23.8% at the

70% WiFi penetration rate). These results are shown in Figure 5.5 and show that my

attack is consistent across different WiFi penetration rates. As the WiFi penetration

rate decreases, the ratio of number of vehicles with WiFi capability and those with-

out begins to skew toward those without. That is, the number of vehicles with WiFi

capability decreases, and the number of vehicles without WiFi capabiity increases.

Less vehicles with WiFi capaiblity means less number of actual associations to cor-
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Figure 5.4: Associations vs. Different Penetration Rates

rectly guess, while more vehicles withouth WiFi capability means more DSRC noise

in the system, as these vehicles continue to emit DSRC packets. DSRC pseudonyms

originating from vehicles withouth WiFi capaiblity do not associate to any identifier

known to my system, but are still picked up by listeners and introduce complexity

to the system. However, my attack model has shown to perform at the same level

of average precision and recall regardless of WiFi penetration rate. This means that,

regardless of the WiFi penetration rate, my attack model is able to, for the average

vehicle, correctly guess an association 78.7% of the time and find about 21.7% of its

total DSRC pseudonyms.

5.2 Attack Across Different Maps

In this section, I test my attack model against different maps to ensure that my

attack is effective across not only my initial test map, but also other maps. The

traffic simulation scenarios differ among all maps to ensure variance in my tests.
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Figure 5.5: Average W2D Precision & Recall vs. Different Penetration
Rates

These differences include number of vehicles and number of DSRC pseudonyms. For

these tests, I use alternating WiFi penetration rates from 50-100% in 10% increments,

all steps of the D2D matrix construction, and ∆ values of ∆ = 0.6, ∆′ = 0.9, and

∆′′ = 0.45.

For Melun, I get a D2D precision of 98% and a D2D recall of 24%. For Mions, I

get a D2D precision of 98% and a recall of 38.7%. For the orginal map of Eichstätt,

I get a D2D precision of 96.7% and a D2D recall of 18.4%. While D2D precision is

consistently high across the different maps, D2D recall is not. This may be explained

by a number of things. One possiblity is the inclusion of the X2E attack, which is

affected by many factors outside of my control. My attack may not have seen every

exit and enter event to construct a perfect bipartite graph. If an exit or enter event

has a corresponding event that was not seen by one of my listeners, then the event still

needs to be paired with another event to construct a minimum sum graph, causing

incorrect edges to be chosen. The different traffic simulations also use different number
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of vehicles and pseudonyms. Melun had 300 vehicles with 2284 total pseudonyms,

averaging around 7 pseudonyms a vehicle. Mions had 300 vehicles with 1515 total

pseudonyms, averaging 5 pseudonyms a vehicle. Eichstätt had 200 vehicles with 1627

total pseudonyms, averaging 8 pseudonyms a vehicle. Note that the listeners are

unable to pick up a signal packet from every pseudonym, therefore my attack model

is only aware of the information received recorded by the listener. In the future, I plan

to research a correlation between number of vehicles, total number of pseudonyms,

number of pseudonyms per vehicle, or a combination of these factors with my attack

results, but this is an area for future research.

Map size also affects the attack model’s effectiveness. Because I maintain a set

of 20 listeners, the percentage of map coverage is significantly different between the

maps. We can see that the Eichstätt simulation, which had the largest map size of

12 km2, saw the smallest D2D recall of 18.4%, while the Mions simulation, which

had the smallest map size of 5.7 km2, saw the largest D2D recall of 38.7%. A greater

listener coverage results in a larger percentage of the radio packets intercepted, that

is, more data to form conclusions from. Future research is to explore the correlation

between map size and listener density to the effectiveness of the attack model.

Figure 5.6 shows the average W2D precision and recall across all three maps.

Across all maps, I get an average precision of about 80% and an average recall of

about 23%. For Melun, I get an average W2D precision of 81% and an average W2D

recall of 23%. For Mions, I get an average W2D precision of 82% and an average W2D

recall of 26%. These are very similar to the results of my initial test on Eichstätt,

which saw an average W2D precision of 78% and an average W2D recall of 21%.
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Figure 5.6: Average W2D Precision & Recall vs. Different Maps

5.3 Delta Tuning

In this section, I detail the results of my ∆ tuning through experimentation and

show the effects of increasing or lowering ∆. While the attack model is not confined

to having the redistribution factors for Level 2 and Level 3 boosting (∆′ and ∆′′,

respectively) be equationally based on ∆, I maintain the use of:

∆′ = 1.5 ∗∆ (5.3)

∆′′ = 0.75 ∗∆ (5.4)

to remain consistent. These relative values were chosen as explained in Section 4.4.3.

These tests were run on the Eichstätt simulation, using all parts of the D2D matrix

construction, and using alternating WiFi penetration rates from 50-100% in 10%

increments. The results of my experiements for monitoring the effects of changing

the initial ∆ value on W2D associations are shown in Figure 5.7 and Figure 5.8.

I see that by increasing ∆ from 0.6 up to 0.8, I greatly increase the number of

W2D associations made, with only a small percentage of them being correct. This

is illustrated in both the raw numbers in Figure 5.7 as well as the relatively similar

81



Figure 5.7: Associations vs Delta Value

Figure 5.8: Average W2D Precision & Recall vs. Delta Value
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average W2D recall values between the two for each WiFi penetration rate, but

lower average W2D precision values when ∆ = 0.8 as shown in Figure 5.8. The

large ∆ caused many probabilities that previously were not great enough to meet the

confidence threshold to be pushed over the edge. While there is a small increase in

average recall (i.e. number of correct associations), the hit to precision caused by

the increased number of false positives outweighed the benefits getting a very slightly

higher recall from a few more correct associations.

Decreasing ∆ from 0.6 to 0.4 results in a large boost to the average W2D pre-

cision (increasing between 6-11%), but also a large hit to the average W2D recall

(decreasing between 4-5%). This change can be explained as a smaller magnitude in

boosting during the handling of W2D possible associations. While the same associa-

tion probabiliies are being boosted, many of them are no longer being boosted enough

to meet the confidence threshold. Therefore only those with multiple supporting data

points will have a probability to meet the confidence threshold, while those that only

have one or a couple supporting data points, even if they are correct, will not meet

the necessary confidence threshold, and will not be concluded as associations by the

attack model.

While the absolute increase in precision is greater than the absolute decrease in

recall in terms of percentage, relative to their existing values, the recall decrease is

greater than the precision increase. That is, precision was already fairly high, around

80%, while recall was fairly low, around 21%, meaning an equal absolute change to

both will affect recall relatively more. For example, using the largest precision in-

crease where the WiFi penetration rate is equal to 80%, the average precision increase

from 78.7% to 89.9% when decreasing ∆, meaning that the average precision saw an

absolute increase of 11.2% and a relative increase of 14% (0.899
0.787

). Using the same

WiFi penetration rate, the average recall decreases from 21.8% to 17.6%. meaning

that the average rcall saw an absolute decrease of 4.2%, but a relative decrease of
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Figure 5.9: D2D Precision & Recall vs. D2D Strategy

19% (1 − 0.176
0.218

). Therefore, the relative change in average recall is greater than that

of the average precision, even though the absolute change in the average precision is

greater than that of the average recall.

5.4 D2D Techniques

In this section, I run my attack model using different configurations for the D2D

matrix construction. I run the tests using all parts of the D2D matrix construction,

just the Same Listener Attack, just the X2E Attack, and once without any D2D

information. Note that the transitive property is applied to all configurations at

the end. These tests were run on the Eichstätt simulation, using alternating WiFi

penetration rates from 50-100% in 10% increments, and ∆ values of ∆ = 0.6, ∆′ = 0.9,

and ∆′′ = 0.45.

I begin by looking at the D2D precision and recall using different D2D strategies;

Figure 5.9 shows my results. Note that even without any D2D matrix construction

strategies, I still include the self-associations, where pseudonyms are associated to
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themselves. This alone gives me a recall of 12.6%, which serves as a baseline for

comparison. Using just the X2E Attack, I get a precision of 98% and a recall of

14.4%, meaning an actual gain of 1.8%. Using just the Same Listener Attack, I

also get a precision of 98%, but a recall of 17.1%, meaning an actual gain of 4.5%.

Therefore, while the X2E attack has the same precision as the Same Listener Attacker,

it has a lower recall. For the X2E attack, I am able to have such a high precision

through the use of the maximum weight to filter out the less likely to be correct edges

when solving the biparitite graph. Without the filter, I would have a large number of

false positives, which would, in conjunction with the cascading effects of the transitive

property application at the end, lead to a much worse precision, with very little, if

any, increase yield in recall. I do not use the possible associations in the D2D matrix

to calculate the D2D precision or recall.

Using both the Same Listener Attack and X2E attack gave me a D2D precision

of 96.7% and a recall of 18.4%. The slight dip in precision is most likely due to the

combined false positives from both the Same Listener Attack and X2E Attack, as

both did not have 100% precision. I also looked into applying the transitive property

after the Same Listener Attack, not just at the end. However, this strategy gave

me slightly poorer performance, most likely due to any false positives in the Same

Listener Attack that may cause further cascading false positives. Therefore I opted to

simply apply the transitive property at the end. I also chose to run the X2E Attack

after the Same Listener Attack because the Same Listener Attack is a standalone

attack, while my X2E Attack had been modified from the original attack [6] to take

advantage of any previously found D2D associations.
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Figure 5.10: Associations vs. D2D Strategy

Figure 5.11: Average W2D Precision vs. D2D Strategy
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Figure 5.12: Average W2D Recall vs. D2D Strategy

The results of my experiments monitoring how different D2D matrix construction

strategies affect W2D assciations are shown in Figure 5.11, Figure 5.12, and Fig-

ure 5.10. The average W2D precision is consistent across all configurations, ranging

between around 79-80%. For the average W2D recall, using both D2D attacks gave

me the best results, followed by the Same Listener Attack, the X2E Attack, and then

no D2D association information. This is similar to the D2D association recall per-

formance comparisons. Because precision stays the same, but recall drops as I use

less effective D2D matrix construction strategies this means that I am making more

guesses as I employ more effective D2D strategies. The new guesses are coming from

my boosting. For example, given that the probability of w1 and d1 being associated

were to be boosted to the point of meeting the confidence threshold, and d1 and d2

were previously found to be associated, then if there was no D2D association infor-

mation or if I did not effectively use the information, then only d1 would be found

to be associated to w1, while d2 is actually associated to w1 as well, but their asso-

ciation probability was not boosted accordingly. This is why I employ the use of the
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Level 2 boosting, to use the D2D association information to expand the number of

associations I can make, even if a small percentage of these are incorrect.

5.5 Weight Calculation

Figure 5.13: Associations vs. Weight Calculation

In this section, I detail the comparison between the previous methodology found

in [6] and my methdology for weight calculations when constructing the bipartite

graph in the X2E Attack. The previous methdology places less of an emphasis on the

average travel time of vehicles than my methdology does, opting to make its signifi-

cance relative to the actual travel time of a vehicle being observed. My methdology

gives greater credence to the average travel time, while still penalizing actual travel

times that greatly differ from the average. For these tests, I use alternating WiFi

penetration rates from 50-100% in 10% increments, all steps of the D2D matrix con-

struction only changing the weight calculations accordingly, and ∆ values of ∆ = 0.6,

∆′ = 0.9, and ∆′′ = 0.45.
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Figure 5.14: Average W2D Precision & Recall vs. Weight Calculation

For D2D association results, both results saw a precision of about 98%, but the

previous method saw a recall of 13.8%, while the new method saw a recall of 14.4%.

Similarly for W2D association results, as shown in Figure 5.13 and Figure 5.14, I see

similar average precisions, with a small increase in the average recall. So while only

a fairly small improvement in both D2D and W2D recall, my new weight calculation

method consistently outperforms the previous method.

I correlate the more informative weight values to the information that I consider

for the weight calculations. The previous method made the difference between actual

travel time and average travel time a large factor in the weight calculations. Con-

trarily, my method places a heavier emphasis on the average travel time of vehicles,

while still factoring in the difference between actual travel time and average travel

time, albeit not to the degree of the previous method. Both methods place a large

emphasis on the number of vehicles that previously traveled between two points.
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5.6 Path Reconstruction

Finally, I reconstruct vehicles’ paths using the technique explained in Chapter 4, then

visualize and compare them to the vehicles’ actual paths. Figure 5.15 shows three

example comparisons between the reconstructed paths and actual paths, one for each

map. The actual path is plotted with alternating colors (red and black) where a color

change indicates a pseudonym change. I include these path reconstruction examples

to illustrate the overall goal and usage of the associations made using the attack

model.
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(a) Reconstructed Path Eichstätt (b) Actual Path Eichstätt

(c) Reconstructed Path Mions (d) Actual Path Mions

(e) Reconstructed Path Melun (f) Actual Path Melun

Figure 5.15: Reconstructed Path vs. Actual Path
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Chapter 6

FUTURE WORKS

This chapter discusses possible future works that could expand upon the effectiveness

of this attack on vehicular privacy in VANETs.

6.1 Expanding to k Signals

Our current attack model uses two generic signal protocols: long-distance pseudonym

changing and short-distance non-changing. A future work is to expand the attack to

take any arbitrary k number of signal protocols. This will allow for an even more

generalizable attack model, one that works on any scenario involving radio signals.

6.2 ∆ Tuning

Because our current ∆ values were chosen through experimentation and trial and

error, they are not necessarily the optimal values. Future work would include tuning

the values using machine learning techniques to see if there are values that result in

optimal effectiveness across many different maps. If there are no universal best values,

then finding how factors such as map size or number of vehicles and pseudonyms affect

the effectiveness of the ∆ values.

6.3 Confidence Threshold and Second Most Likely Candidate

Another area of future research related to ∆ tuning is the confidence threshold. Be-

cause adjusting ∆ affects the amount of boost elements in the matrix get during

matrix construction, adjusting the confidence threshold will also affect how much
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boost is required to actually be considered an association. Furthermore, if for a given

pseudonym the identifier it is concluded to be associated with is incorrect, then is the

second most likely candidate in terms of probability the correct association? Future

research can look into statistical analysis of incorporating secondary association into

path reconstruction in the case of incorrect primary associations.

6.4 Distinguishing Vehicles Without WiFi Capability

Because our attack leverages WiFi identifiers to uniquely distinguish the number

of vehicles in the area of observation, whenever the WiFi penetration rate is below

100%, we do not correctly identify the number of vehicles and have no means of

discovering the number of vehicles without WiFi capability. We previously tried to

solve this problem to an extent through our WiFi Null Boosting method, but due

to the nature of the signal protocols heart rates, too many DSRC pseudonyms were

boosted in their association to WiFi Null, thus yielding too many false positives to

make the method useful. Furthermore, this method only tries to address the issue of

which pseudonyms originated from vehicles without WiFi capability, not actually how

many vehicles without WiFi capability there are. Future work would be to continue

research into methods to distinguish the number of vehicles there are in the area of

observation when not all vehicles share a common unique identifier.

6.5 Optimal Listener Placement

Our current attack model simply uses hand placed listener placement configuration

for its listener placements. However, the attack could greatly benefit from a more

optimal listener placement configuration. A previous Cal Poly Senior Project uses

a genetic algorithm to find the optimal placement for listeners. A genetic algorithm

is an algorithm that begins with a population of candidate solutions, in our case
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the listener placement locations, and iteratively adjusts or mutates the population to

optimize the solution to a problem. The effectiveness of the population is determined

by a fitness function. By using the students algorithm, we can use our attack as

the fitness function, with the average precision and average recall of WiFi-to-DSRC

associations, and precision and recall of DSRC-to-DSRC associations be quantitative

measurements of fitness.
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Chapter 7

CONCLUSION

Maintaining vehicle security when expanding the technological applications of VANETs

is a key component in preserving user privacy and safety. An important step in de-

fending against vehicular privacy attacks is to know what attackers are capable of

accomplishing. This thesis presents the attack model that I have developed and its

effectiveness at associating pseudonyms.

Using previous research into pseudonym change strategies and VANET attacks, I

have developed a passive attack mode that uses a general long-distance pseudonym

changing protocol and a general short-distance non-changing protocol to uniquely

identify vehicles and associate pseudonyms to their respective vehicles. This informa-

tion can then ultimately be used to reconstruct a vehicle’s path, allowing an attacker

to track a numer of vehicles for an extended period of time. My attack model incorpo-

rates previously researched attacks into my new techniques, as well as implementing

a more effective weight calculation in the commonly used Exit-to-Enter Attack.

Testing using different WiFi market penetration rates, that is the percentage of

vehicles in the system that have WiFi capability, and different maps, my attack model

consistently maintains a WiFi-to-DSRC association average precision of around 80%

and an average recall of 23%, results that can be possibly even further improved by

tuning different parameters in the attack model through the use of machine learning

techniques. These results are comparatively better than previous association tech-

niques.
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Overall, this thesis helps outline the capabilities of a malicious attacker. The

attack model can be used in future research to develop effective defense strategies to

combat attackers and preserve user privacy and safety in VANETs.
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