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ABSTRACT

Differential Power Analysis Resistance In-Practice for Hardware Implementations of

the Keccak Sponge Function

Nathaniel Graff

The Keccak Sponge Function is the winner of the National Institute of Standards

and Technology (NIST) competition to develop the Secure Hash Algorithm-3 Stan-

dard (SHA-3). Prior work has developed reference implementations of the algorithm

and described the structures necessary to harden the algorithm against power anal-

ysis attacks which can weaken the cryptographic properties of the hash algorithm.

This work demonstrates the architectural changes to the reference implementation

necessary to achieve the theoretical side channel-resistant structures, compare their

efficiency and performance characteristics after synthesis and place-and-route when

implementing them on Field Programmable Gate Arrays (FPGAs), publish the re-

sulting implementations under the Massachusetts Institute of Technology (MIT) open

source license, and show that the resulting implementations demonstrably harden the

sponge function against power analysis attacks.
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Chapter 1

INTRODUCTION

Sponge functions are a recently popularized class of algorithm with many applica-

tions to hash function and cipher construction [8]. Keccak-f[b] is a family of sponge

functions created by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van

Assche [9], and its largest permutation, Keccak-f[1600], is the winner of the NIST

SHA-3 competition to develop the Secure Hash Algorithm-3 (SHA-3) Standard [14].

The design of the Keccak Sponge Function function departs from prior hash function

standards like MD5, SHA-1, and SHA-2 through its sponge function construction

[9]. This construction also allows for the hash function to implement new modes like

extendable output [14].

The Keccak sponge function has been subjected to significant scrutiny to verify

or disprove the algorithm’s suitability as a cryptographically-secure hash function

[7, 6, 19]. This thesis does not seek to analyze the algorithm’s information-theoretic

security. However, a major concern for the design of systems implementing crypto-

graphic computation is the threat of side-channel attacks (SCAs) [21]. This thesis

chiefly concerns itself with Keccak’s vulnerability to power-channel SCAs, wherein the

power consumption of the algorithm can be correlated with input to the algorithm,

breaking certain guarantees of cryptographic security [21].

Bertoni et. al. have published reference implementations of the algorithm in the

public domain and described techniques to harden the algorithm against power anal-

ysis attacks [11, 10, 12]. However, no implementation of these hardening techniques

have been made public, and published analysis of the efficacy of these techniques has

been limited to software simulation.
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This work starts by describing the published techniques necessary to harden a

Keccak Sponge Function hardware accelerator implementation against power analysis

attack. I then describe how an unprotected hardware implementation of the Keccak

Sponge Function is modified to implement these power-channel hardening techniques.

Using a commercial Xilinx FPGA-based test platform [3], I demonstrate that the

modified algorithm yields the correct result, measure the design resource consumption

of the modifications, and enable the collection of power traces. Finally, I employ a

validation test procedure published by Rambus [15] to show that the power-channel

hardening techniques decrease the correlation between input data and power channel

by an order of magnitude after implementation on a commercial Xilinx FPGA.
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Chapter 2

THEORY OF OPERATION

2.1 The Keccak Sponge Function

The Keccak Sponge Function is the primitive used in the construction of the SHA-

3 cryptographically-secure hash algorithm (CSHA) family. Cryptographically-secure

hash functions are defined as functions which accept a variable-length input string

and produce a fixed-length output string such that the input string can not be easily

computed given the output string [20]. Additionally, two input strings cannot easily

be found which produce the same output string. The SHA-3 family of CSHAs also

specifies a class of function called extendable-output functions (XOFs) which preserve

the properties of a CSHA except that the output string of the XOF can be dynamically

extended to an arbitrary length.

The versions of the Keccak-f[b] Sponge Function are notated Keccak-f[r+c], where

r is referred to as the rate and c is referred to as the capacity. The rate is the

number of bits processed or output per invocation of the permutation function [14].

b represents the number of bits in the internal state matrix of the sponge function,

and the rate represents the number of bits absorbed into or squeezed out of the state

matrix between permutation operations. For any rate and capacity, Keccak-f[1600]

operates over a 5-by-5-by-64-bit (1600-bit) internal state matrix referred to as the

sponge. When indexing the bits of the state matrix, the short axes are indexed as a

“row” or “column” and the long axis is indexed as a “lane” [14].

During computation, the sponge function undergoes three steps: absorption, per-

mutation, and squeezing, as shown in Figure 2.1. The input to the function is first

padded using the pad10*1 padding scheme and then broken into rate-sized blocks
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[14]. Each block is then “absorbed” into the sponge in turn by exclusive or-ing it

into the sponge, and the sponge permutation function is applied to the sponge after

every absorption [14]. After the last block is absorbed and permuted, the hash result

is “squeezed” out of the sponge in rate-sized blocks, with a permutation step again

in between each squeezing [14].

Figure 2.1: Sponge Function Construction of a Hash Function [14]

The sponge permutation function consists of 24 rounds. Each round of the per-

mutation consists of five steps named θ, ρ, π, χ, and ι (theta, rho, pi, chi, and iota)

[14]. Each step takes a state matrix as input and produces a state matrix as out-

put. Of these, this work primarily concerns itself with χ, because it is the only step

which must be greatly modified to build a power analysis-resistant implementation

of Keccak [10].

This work will focus on the Keccak-f[r=1024,c=576] version, which is chosen as the

permutation in use for arbitrary-length output and is the sponge function primitive

used in the SHAKE128 extendable output function (XOF) [14] which behaves like

a traditional hash function but is capable of producing an arbitrary length output.

This permutation was chosen exclusively because the published reference hardware

implementation of the hash function implements the same rate and capacity.
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2.2 Power Analysis Attacks

Power analysis attacks are a subclass of Side Channel Attack (SCA) in which the at-

tacker has knowledge of the power consumption of the device under attack [21]. When

cryptographic algorithms are implemented näıvely, variations in power consumption

between operations can leak information. A subclass of these attacks, differential

power analysis, can be used to attack algorithms which run repeatedly with a con-

stant secret input or intermediate state by extracting the secret from thousands of

runs for which those values remained constant [17].

2.3 Vulnerability of Keccak to Power Analysis Attacks

Power analysis attacks “do not exploit an inherent weakness of an algorithm,” but

rather characteristics of their implementation [10]. Prior work by Bertoni et. al.

has shown that an unprotected implementation of the Keccak Sponge Function the-

oretically demonstrates distinguishability of power channel trace distributions with

respect to input data [10]. Bertoni et. al. go on to show that a secret sharing algo-

rithm can reduce and remove this distinguishability, and the algorithm they describe

is the protection technique tested by this thesis.

2.4 Additivity and Secret Sharing

The hardening techniques to construct a power analysis-resistant implementation

of the Keccak Sponge Function make use of a number of mathematical properties.

First among these is the property of additivity (Definition 2.4.1), which is used to

implement a technique called “secret sharing”.
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Definition 2.4.1. Property of Additivity [13]

Given a linear function H and two values A and B in the domain of H:

H(A+B) = H(A) +H(B)

The Keccak Sponge Function is linear for all operations except the permutation

step χ [10]. If it is possible to create an implementation of Keccak which satisfies the

properties of linearity, referred to hereafter as K ′, then Proposition 2.4.1 will hold.

Proposition 2.4.1. Application of a Linear Sponge Function K ′ [10]

Given a message M and a random bitstream N of length(M):

Keccak(M) = K ′(M ⊕N)⊕K ′(N)

The ⊕ symbol represents bitwise exclusive or.

Definition 2.4.1 can be repeatedly applied to extend Proposition 2.4.1 to an arbi-

trary number of random bitstreams. In order to protect the algorithm against power

analysis attacks, the computation of any one output share must be independent of

at least one input share [10]. Bertoni et. al. showed that hardware implementations

of Keccak require three shares (generating using two random bitstreams) to provide

resistance to power analysis attacks [10]. The arguments to each instance of K ′ are

then defined as “shares” as in Definition 2.4.2.

Definition 2.4.2. Input Shares [10]

Given a message M and two random bitstreams of length(M) N1 and N2:

A = M ⊕N1 ⊕N2

B = N1

C = N2
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The sponge state for each share will be notated a, b, and c, corresponding to

that share. The resulting message hash Keccak(M) can be calculated by taking

the bitwise exclusive or K ′(A)⊕K ′(B)⊕K ′(C). The power analysis attack-resistant

sponge function created by this 3-share implementation is referred to as the Threshold

Three-Share Implementation.

2.5 Threshold Three-Share Implementation of Keccak

Of the steps that make up the Keccak-f permutation function, χ is the only step which

does not satisfy the property of additivity. To remedy this, Bertoni et. al. proposed

a replacement for χ called χ′ which is logically equivalent to χ when computed over

the full set of sponge states {a, b, c} [10].

In the unprotected, single-share implementation of Keccak, χ is defined by Bertoni

et. al. [10] as Definition 2.5.1.

Definition 2.5.1. Single-Share Implementation of χ [10]

Given sponge state a and row index x ∈ [0 . . . 4]:

aχ out = χ(a) = ax ⊕ (ax+1 ⊕ 1)ax+2

This operation is modified by Bertoni et. al. [10] to result in χ′, shown in Defini-

tion 2.5.2.

Definition 2.5.2. Threshold Implementation of χ′ [10]

Given sponge states {a, b, c} and row index x ∈ [0 . . . 4]:

aχ out = χ′(b, c) = bx ⊕ (bx+1 ⊕ 1)bx+2 ⊕ bx+1cx+2 ⊕ bx+2cx+1

bχ out = χ′(c, a) = cx ⊕ (cx+1 ⊕ 1)cx+2 ⊕ cx+1ax+2 ⊕ cx+2ax+1

cχ out = χ′(a, b) = ax ⊕ (ax+1 ⊕ 1)ax+2 ⊕ ax+1bx+2 ⊕ ax+2bx+1

7



When χ′ is substituted for χ in a three-share linearization of the Keccak sponge

function, there is only one additional modification necessary to make the resulting

computation result identical to a single-share non-linearized Keccak implementation.

The ι step must be applied to only one of the three shares of the sponge function [10].

Definition 2.5.3. Three-Share Implementation of ι [10]

Given sponge states {a, b, c} and without loss of generality:

aι out = ι(a)

bι out = b

cι out = c

2.6 Preserving Uniformity

Bilgin et. al. have shown that the threshold implementation of χ′ is not sufficient for

securing the Keccak Sponge Function against first-order differential power analysis

[12]. They state that for a function f to be resistant to first-order DPA, it must be

both non-complete, and uniform. Here, non-complete states that the output of f must

be independent of at least one input share. This property is true of the threshold χ′,

as we see in Definition 2.5.2, where anext = χ′(b, c). However, the threshold χ′ does

not preserve a uniform random distribution of input shares over the 24 rounds of the

Keccak permutation function because it is not invertible (the step is not one-to-one,

but takes multiple inputs to the same output) [12].

Bilgin et. al. preserve uniformity across the three shares through the injection of

additional randomness during the χ step [12]. The scheme followed by this work is

the one proposed in [12], where P and S are each 2-bit random vectors unique to each

round of the permutation. χ′ is as defined in Definition 2.5.2 and Bertoni et. al.’s

prior work [10].
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A uniformity-preserving implementation of χ′ is shown in Definitions 2.6.1, 2.6.2,

and 2.6.3 as defined by Bilgin et. al. [12].

Definition 2.6.1. Uniform χ′ for row x ∈ [0 . . . 2] and column y ∈ [0 . . . 4] [12]

Given the threshold implementation of χ′ as in Definition 2.5.2:

aχ out = χ′(b, c)

bχ out = χ′(c, a)

cχ out = χ′(a, b)

Definition 2.6.2. Uniform χ′ for row x ∈ [3 . . . 4] and column y = 0 [12]

Given the threshold implementation of χ′ as in Definition 2.5.2:

aχ out = χ′(b, c)⊕ Px−2 ⊕ Sx−2

bχ out = χ′(c, a)⊕ Px−2

cχ out = χ′(a, b)⊕ Sx−2

Definition 2.6.3. Uniform χ′ for row x ∈ [3 . . . 4] and column y ∈ [1 . . . 4] [12]

Given the threshold implementation of χ′ as in Definition 2.5.2:

aχ out = χ′(b, c)⊕ ax,y−1 ⊕ bx,y−1

bχ out = χ′(c, a)⊕ ax,y−1

cχ out = χ′(a, b)⊕ bx,y−1

When this uniform implementation is substituted for χ in a three-share implemen-

tation of Keccak and ι is only applied to a single share, the result is again identical

to the single-share, non-linearized implementation and the implementation is referred

to as the Uniformity-Preserving Three-Share Implementation.
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Chapter 3

IMPLEMENTATION IN-PRACTICE

The theory of protecting the Keccak Sponge Function against power analysis attack

has been discussed and simulated by prior work [10, 12]. This work extends the

analysis of these techniques to provide an independent verification of the correctness

and resistance of the resulting algorithm. To accomplish this, a synthesizable VHDL

implementation of the modified algorithm was created, starting with a public domain

reference implementation of the algorithm.

3.1 Reference Implementation

With the theory of protecting the Keccak Sponge Function from power analysis attack

established, the task of implementing and validating the behavior of the protection

techniques can be discussed. This work bases the development of a protected hardware

implementation on version 3.1 of the VHDL reference implementation published by

Bertoni et. al. [11].

The published reference implementation implements the Keccak-f[r=1024,c=575]

permutation, the sponge function used in the SHAKE128 XOF [14]. The reference

offers the choice of a few different hardware accelerator designs. For this work, the

“high speed core” design was chosen because it was suited to application of the pro-

tection techniques with minimal modifications to the structure of the implementation.

The other design choices consume less chip area and power by serializing computa-

tion. For validating the protection techniques, optimizing for minimal chip area was

not the highest priority. The FPGA test platform is not significantly constrained

by design area or power consumption, and the modifications to the χ step are made

10



simpler by choosing the design with the least control signal overhead.

The reference implementation omits two steps of the full SHAKE128 XOF al-

gorithm: input padding and output truncation. The input to the device must be

delivered pre-padded using the pad10*1 scheme [14] in exactly rate-sized chunks, and

the output of the function is delivered in exactly rate-sized chunks such that any out-

put truncation must be performed by the consumer of the hardware implementation.

For this work, the padding scheme was applied during input vector generation and

a single 1024-bit output was taken as output, eliminating the need for the omitted

steps in hardware.

The high speed core contains three main components: a finite state machine for

driving the computation, a block which implements a single round of the permutation

function, and a buffer of the sponge state.

3.2 Threshold Implementation

The Threshold Implementation of the Keccak Sponge Function is resistant to sim-

ple power analysis attacks (see Section 2.2 for a discussion of power analysis attack

types). The first step of creating the threshold implementation is to implement the

secret-sharing algorithm (Definition 2.4.2). A wrapper module, keccak three share,

manages the random bit mixing in the secret sharing algorithm, the synchronization

of control signals, and the configuration of the separate Keccak algorithm shares.

The wrapper module provides the same interface as the original unprotected Keccak

module, allowing for drop-in replacement of the unprotected algorithm.

11



Code. Three-Share Secret Sharing in VHDL

−− Input Share Computation

sha r e 1 <= rand 1 ;

sha r e 2 <= rand 2 ;

sha r e 3 <= ( rand 1 xor rand 2 xor din ) ;

−− Output Share Recombination

dout <= ( sha r e 1 ou t xor s h a r e 2 ou t xor s h a r e 3 ou t ) ;

For the purposes of test framework development, the “random” bitstream gener-

ation is performed by a 64-bit constant-seeded linear feedback shift register (LFSR).

Such a generator is insufficient for resisting power analysis attack because the out-

put is deterministic. However, this choice has a number of advantages for testing

and validation. The simplicity of the LFSR allows for it to be instantiated multiple

times with minimal effect on the consumption of FPGA area or power, resulting in

efficiency and performance data which is minimally affected by the choice of random

number generator. Also, though the bitstream is deterministic, the input vectors

generated for the validation step of this work were created using random bytes from

/dev/urandom on Unix. The result is that the deterministic bitstream generated by

the LFSR is uncorrelated with the input bitstream, so our validation methodology

followed is not affected by the choice of pseudo-random number generator (PRNG).

Within the secret sharing algorithm, three copies of the single share permutation

function are instantiated and modified. For each share of the threshold implementa-

tion, χ′ is a function of the output of the π step of the other two shares (Definition

2.5.2). Therefore, the instantiated single-share block was modified to output the re-

sult of the π step step from its permutation function and accept the input to the χ

step of the other two shares. The single-share block was also modified with a boolean

12



iota-enable to allow the wrapper to selectively enable the ι step in only one instance

of the algorithm as in Definition 2.5.3. The three instances were then interconnected

as shown in Figure 3.1.

Modified
Single Share

A 

Modified
Single Share

C 

Modified
Single Share

B 

� out a

� out c

� out b� in c 

� in b

� in a 

� in c 

� in a 

� in b 

Figure 3.1: Interconnection of modified single-share blocks

The modified VHDL threshold implementation of the Keccak permutation round

module can be seen in-full in the Appendix section A.1.

3.3 Achieving Uniformity

Definition 2.6.3 demonstrates that the uniform χ′ is not symmetric with respect to

the input shares because bits from shares A and B are re-injected to preserve unifor-

mity. The uniform χ step is placed as its own submodule in the three-share wrapper,

resulting is an interconnection scheme as shown in Figure 3.2.

The VHDL implementation of the three-share uniform χ′ can be seen in-full in
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Modified
Single Share

A 

Modified
Single Share

C 

Modified
Single Share

B 

� out a

� out c

� out b

� in a 

� in b 

� in c 

Uniform 
 

�' 

� in a 

� in b

� in c 

� out a 

� out b

� out c 

Figure 3.2: Interconnection of uniformity-preserving implementation

the Appendix section A.2.

3.4 Test Framework

The reference implementation of the Keccak Sponge Function is a hardware acceler-

ator and must be driven by a top-level block which handles the accelerator’s control

signals, inputs, and outputs. These tasks were accomplished by the development of

a top-level block which incorporated the following elements:

• A clock frequency resampler to adjust the clock frequency, allowing the design

to meet power trace measurement bandwidth requirements
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• A block memory for storing input test vectors

• A USB UART so that the device could be controlled by a PC over USB.

The resulting platform was synthesized using Xilinx Vivado WebPACK 2015.2 [5]

for a Digilent Nexys 4 DDR FPGA Development Board [3], featuring a Xilinx Artix-7

FPGA [1].
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Chapter 4

EFFICIENCY AND PERFORMANCE

4.1 Synthesis Results for FPGA

The test platform was synthesized for a Digilent Nexys 4 DDR FPGA Development

Board, featuring a Xilinx Artix-7 FPGA using Xilinx Vivado 2015.2. To estimate

the FPGA resource consumption of the designs, measurements of the area and power

characteristics were collected from the Vivado design report after bitstream genera-

tion. The unprotected single-share, threshold three-share, and uniform three-share

implementations were synthesized using various optimization settings. The optimiza-

tion strategies for each design are referred to in shorthand as described in Table 4.1.

Utilization of the Artix-7 FPGA is measured in flip-flop and look-up table slices as

reported by Vivado after the Implementation step. Figure 4.1 displays the utilization

of each implementation, normalized to the total number of slices used by the single-

share defaults-optimized implementation.

Power consumption is as reported by Vivado after the Implementation step. Sim-

ilarly as in Figure 4.1, the reported values in Figure 4.2 are normalized to the on-chip

power consumption of the single-share defaults-optimized implementation.

Table 4.1: Optimization Strategies

Optimization Strategy Shorthand Synthesis Setting Implementation Setting

Defaults Defaults Defaults

Optimize Area Flow AreaOptimized High Area Explore

Optimize Performance Flow PerfOptimized High Performance Explore

Optimize Power Flow AreaOptimized High Power DefaultOpt

16
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Figure 4.1: Comparing chip area utilization for different implementations
and optimization strategies of the Keccak Sponge Function

4.2 Analysis of Synthesis Results

Though the techniques described to implement the three-share logic represent three

parallel implementations of the Keccak sponge function, the design only consumes

approximately double the chip area of the baseline implementation. However, the

three-share design does consume up to three times the power of the single-share

algorithm.

Important to note is that the data presented here does not fully represent the

additional resource consumption required for the implementation of a protected im-

plementation of Keccak. The additional demand of high-entropy random bitstream

generation will increase the demand on area and power. For this work, the random

number generation is approximated by a LFSR as discussed in Section 3.2. For the
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Figure 4.2: Comparing on-chip power consumption for different imple-
mentations and optimization strategies of the Keccak Sponge Function

protection mechanisms to withstand an actuall attack, the LFSR must be replaced

by a CSPRNG, because if the random bitstream can be predicted by an attacker then

then input masking is no longer effective [10].

Because the power consumption roughly triples while the area roughly doubles,

it’s more likely that the inclusion of a protected hardware implementation will be

constrained by the available power supply or by chip heat dissipation before chip

area is exhausted. Regardless, the architecture presented in this paper is structured

specifically for throughput, not for efficiency, and the data presented here shows

that the cost of protecting a high-speed hardware accelerator for the Keccak Sponge

Function against power analysis attack is considerable.

Future work on implementation of the protected Keccak Sponge Function has

room to expand in this domain. Work by Bertoni et. al. does describe a serial ar-
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chitecture instead of the parallel design implemented in this work [10]. This would

potentially allow for a single instance of the modified single-share algorithm to com-

pute the result without leaking information through the power channel at the cost of

taking three times as many cycles to complete the computation.
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Chapter 5

VALIDATION OF POWER ANALYSIS ATTACK RESISTANCE

5.1 Testing Methodology

To validate the techniques to harden the Keccak sponge function against power anal-

ysis attacks, I used the testing methodology described by Goodwill et. al [15]. In

this section, I’ll provide an overview of how I adapted the methodology to test my

implementation of the Keccak Sponge Function.

The original methodology seeks to provide a pass/fail criterion for determining

whether a device under test (DUT) exhibits a maximum allowed correlation between

intermediate state during computation and fluctuations in the DUT’s power con-

sumption. This threshold, if exceeded, indicates that the DUT is vulnerable to power

analysis attack. There are three steps to the validation methodology:

1. DUT power trace measurement

2. DUT input selection and partitioning

3. T-statistic calculation and analysis

5.1.1 DUT Set-Up and Power Trace Measurement

The unprotected, protected three-share, and protected three-share uniformity-preserving

implementations of the Keccak Sponge Function were synthesized for the Xilinx Artix-

7 FPGA on the Digilent Nexys 4 DDR FPGA Development Board as discussed in

Chapter 4. This platform was chosen because of the availability and low cost of proto-

typing digital logic on FPGA platforms and because the development board supplied
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a USB UART for communication with a host computer for driving the validation test

data collection.

In the original methodology, the power trace is measured differentially across

a shunt resistor in series with the device under test. The Digilent Nexys 4 DDR

Development Board was powered over the USB connection with the host computer,

and the FPGA, behaving as the DUT, was powered by a collection of LDO DC-DC

power regulators on the development board.

The design of the development board did not readily facilitate the addition of a

series shunt resistor to allow for the methodology-suggested power trace measurement.

However, the development board did provide a broken-out test point for the FPGA’s

primary 3.3V supply voltage (VCCO) at pad J11. I measured the voltage relative

to ground at test point J11. The collected power traces from this test measure the

voltage drop across the DUT in series with the LDO power regulator.

To maximize the voltage fluctuation relative to the power consumption of the

FPGA at test point J11, I used a hot air rework station to remove all filter caps with

nominal value equal to or greater than 1µF connected across VCCO and ground. On

the Digilent Nexys 4 DDR, this included the following capacitors [4]:

• C86, C87, C88

• C98, C99, C100

• C122, C123, C124

• C127

• C147

• C180
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The capacitors are located on the underside of the Digilent Nexys 4 DDR. A

picture of the board after capacitor removal is included in Figure 5.1.

Figure 5.1: Underside of the Nexys 4 DDR after capacitor removal

The original methodology specifies that the power traces be measured by an os-

cilloscope or other A/D measurement apparatus with the following properties [15]:

1. Bandwidth of at least 50% of the device clock rate for software implementations

and at least 80% of the clock rate for hardware implementations

2. Capability to capture samples at 5x the bandwidth

3. A minimum of 8bits of sampling resolution

4. Enough storage to capture the entire signal required for the test and analysis
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To meet these requirements I measured the power traces using a Keysight Infini-

iVision MSO-X 2022A Mixed Signal Oscilloscope with a 200 MHz maximum band-

width and 2 GSa/s maximum sample rate [2]. Channel 1 was connected to test point

J11 and the external trigger was connected to PMOD JA Pin 1 on the development

board. The native clock speed of the Digilent Nexys 4 Development Board is 100

MHz. To increase the fidelity of the measured power traces relative to the sponge

function clock rate, the Xilinx Artix-7 FPGA was internally clocked down to 10 MHz

using the Xilinx Clock Wizard IP [23].

A finite state machine encapsulated the Keccak Sponge Function on the FPGA

and coordinated communication with the host computer over the USB UART inter-

face. The DUT emits a pulse on a GPIO output to provide a trigger signal to the

oscilloscope, resulting in synchronized power traces. The following algorithm rep-

resents the power trace collection procedure in pseudocode. The complete Python

script for driving the trace collection can be found in Appendix A.3.
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Result: A set of power traces

openFpga();

openScope();

openDatabase();

configureOscilloscope();

numTraces = 0;

while numTraces < desiredNumberOfTraces do

if !fixedInput then

input = getRandomBytes(126);

else

input = SELECTED FIXED INPUT;

end

paddedInput = pad101(input);

expectedOutput = SHAKE128(input);

startScopeCapture();

fpgaOutput = sendReceive(paddedInput);

trace = getScopeTrace();

if expectedOutput == fpgaOutput then

writeToDatabase(input, trace);

numTraces += 1;

end

end

Algorithm 1: Power Trace Collection Procedure

To facilitate synchronization and alignment of power traces, the finite state ma-

chine outputs a trigger edge at the beginning and end of the sponge function permu-

tation on PMOD JA Pin 1.
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5.1.2 DUT Input Selection and Partitioning

In the testing methodology, the input to the DUT is partitioned into two data sets.

Data set A consists of the power traces collected for at least 5000 randomly generated

inputs, and data set B consists of the power traces for at least 5000 runs of a single,

fixed input. For the fixed-input I selected, at random, the value (in hex):

5c2c 43fe c6a3 87d8 763b 79af 7ca2 d038

441b ac29 5074 9df2 3a4c 1ee6 7ccb a9a7

0019 5a70 864a 557f cc82 9bde 0762 3218

946f 243f b96f 9478 d840 689a 8462 12e5

1296 76ac 64c0 91de b523 1c17 ec92 b4ef

84f1 a242 e26f 50ce 11e6 5b34 ced4 5034

3fdf 2ee6 97d6 f2f1 c05e 4e16 b816 a21c

97eb 152c 4625 aed2 62ed 59b6 ee58

An arbitrary fixed input is appropriate for this test, because the ability to distin-

guish different inputs to the function based on the power trace of the DUT represents

a vulnerability of the DUT to power analysis attacks. For each data partition, for

each implementation, I collected at least 100, 000 traces.

25



Figure 5.2: Experimental set-up for power trace collection

5.1.3 T-Statistic Calculation and Analysis

According to the testing methodology, the resulting power traces are combined into

a trace called the “T-statistic” using the following algorithm point-wise [15]:

Data:

Symbol Description

XA The point-average of all traces in data set A

XB The point-average of all traces in data set B

SA The point-standard deviation of all traces in data set A

SB The point-standard deviation of all traces in data set B

NA The number of traces in data set A

NB The number of traces in data set B

Result: T, The T-Statistic Trace for a DUT

T = XA−XB√
S2
A

NA
+

S2
B

NB

Algorithm 2: T-Statistic Calculation
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The pass/fail criteria for a DUT is whether the T-statistic trace exceeds a thresh-

old of±C at any point along the trace. The higher the value of C, the more correlation

is permitted between the power trace and the input data for the device to pass the

validation criteria.

For the purposes of validating the power analysis resistance of the protected im-

plementations of the Keccak Sponge Function, I compared the maximum absolute

values for the T-statistics corresponding to each of the Keccak implementations. To

show that the protected implementations significantly limit the correlation between

input data and power trace, I show that the maximum excursion of the T-statistic for

each of the protected implementations is much lower than the maximum excursion of

the T-statistic for the unprotected implementation.
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5.2 Validation Results
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Figure 5.3: T-statistics over 5000 collected power traces

Table 5.1: T-Statistic Maximum Excursions

Implementation Unprotected Three-Share Uniformity-Preserving

Maximum |T | 197.209 13.766 15.939

Normalized to Unprotected 1 0.0698 0.0808
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The T-statistics for each of the implementations of the Keccak Sponge Function are

shown in Figure 5.3 and their respective maximum excursions in Table 5.1. The result

clearly shows that the protected implementations meet a much more strict criteria

for power analysis validation. The unprotected implementation will fail validation

under these conditions for any maximum threshold |C| <= 197.209, whereas the pro-

tected implementations reduce the maximum |C| validation criterion to 15.939. This

represents more than a 12-fold decrease in maximum tolerable |C| for power analysis

validation of the sponge function, showing that the protected implementations do

significantly improve the resistance of the sponge function to power analysis-based

side-channel attack.
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Chapter 6

CONCLUSION

This work demonstrates that post-synthesis implementation of the power channel

protection techniques described by Bertoni. et. al and Bilgin et. al. for the Keccak

Sponge Function measurably decrease the correlation between the data input to the

function and the power consumption of the algorithm. This extends the results of

prior work to show that the techniques do not only work in simulation, but in practice

on a Xilinx Artix-7 FPGA. Additionally, this represents an open-source publication

of a functional HDL implementation of the Keccak Sponge Function which is resis-

tant to simple and differential power analysis attack, combined with measurements

demonstrating the effect of the protection techniques on design resources including

chip area and power consumption as well as the Rambus validation methodology test

results which show that the published implementation is protected against power

analysis attack.
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APPENDICES

Appendix A

CODE LISTINGS

A.1 Threshold Round Permutation Module

−− The Keccak sponge func t i on , d e s i gned by Guido Bertoni , Joan Daemen ,

−− Mi c h a l Pee t e r s and G i l l e s Van Assche . For more in format ion , f e e d b a c k or

−− qu e s t i on s , p l e a s e r e f e r to our w e b s i t e : h t t p :// keccak . noekeon . org /

−− Imp lementa t ion by t h e d e s i gn e r s ,

−− hereby denoted as ” t h e implementer ” .

−− To the e x t e n t p o s s i b l e under law , t h e implementer has waived a l l c o p y r i g h t

−− and r e l a t e d or n e i g h b o r i n g r i g h t s to t h e source code in t h i s f i l e .

−− h t t p :// creat ivecommons . org / pub l i cdomain / ze ro /1 .0/

l ibrary work ;

use work . k e c cak g l oba l s . a l l ;

l ibrary i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

use i e e e . s t d l o g i c a r i t h . a l l ;

entity keccak round mul t i share i s

port (

round in : in k s t a t e ;

r ound con s tan t s i gna l : in s t d l o g i c v e c t o r (63 downto 0 ) ;

p i s t a t e o u t : out k s t a t e ;

i o t a s t a t e i n : in k s t a t e ;

i o t a en : in s t d l o g i c ;

round out : out k s t a t e ) ;

end keccak round mul t i share ;

architecture r t l of keccak round mul t i share i s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− I n t e r n a l s i g n a l d e c l a r a t i o n s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

signal the ta in , theta out , p i i n , p i out , rho in , rho out , i o t a i n , i o t a ou t : k s t a t e ;

signal sum sheet : k p lane ;

begin −− Rt l

−−connec i t on s
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−−order the ta , pi , rho , chi , i o t a

t h e t a i n <= round in ;

rho in <= theta out ;

p i i n <= rho out ;

−− rou t e c h i out o f t h e share f o r un i f o rm i t y

p i s t a t e o u t <= pi out ; −− i npu t to c h i

i o t a i n <= i o t a s t a t e i n ; −− ou tpu t from ch i

round out <= io t a ou t ;

−−t h e t a

−−compute sum o f columns

i 0101 : for x in 0 to 4 generate

i 0102 : for i in 0 to 63 generate

sum sheet (x ) ( i )<=the t a i n ( 0 ) ( x ) ( i ) xor t h e t a i n ( 1 ) ( x ) ( i ) xor t h e t a i n ( 2 ) ( x ) ( i ) xor t h e t a i n ( 3 ) ( x ) ( i ) xor t h e t a i n ( 4 ) ( x ) ( i ) ;

end generate ;

end generate ;

i 0200 : for y in 0 to 4 generate

i 0201 : for x in 1 to 3 generate

the ta out (y ) ( x)(0)<= the t a i n (y ) ( x ) ( 0 ) xor sum sheet (x−1)(0) xor sum sheet (x+1)(63) ;

i0202 : for i in 1 to 63 generate

the ta out (y ) ( x ) ( i )<=the t a i n (y ) ( x ) ( i ) xor sum sheet (x−1)( i ) xor sum sheet (x+1)( i −1);

end generate ;

end generate ;

end generate ;

i 2001 : for y in 0 to 4 generate

the ta out (y)(0)(0)<= the t a i n (y ) ( 0 ) ( 0 ) xor sum sheet ( 4 ) ( 0 ) xor sum sheet ( 1 ) ( 6 3 ) ;

i2021 : for i in 1 to 63 generate

the ta out (y ) ( 0 ) ( i )<=the t a i n (y ) ( 0 ) ( i ) xor sum sheet ( 4 ) ( i ) xor sum sheet ( 1 ) ( i −1);

end generate ;

end generate ;

i 2002 : for y in 0 to 4 generate

the ta out (y)(4)(0)<= the t a i n (y ) ( 4 ) ( 0 ) xor sum sheet ( 3 ) ( 0 ) xor sum sheet ( 0 ) ( 6 3 ) ;

i2022 : for i in 1 to 63 generate

the ta out (y ) ( 4 ) ( i )<=the t a i n (y ) ( 4 ) ( i ) xor sum sheet ( 3 ) ( i ) xor sum sheet ( 0 ) ( i −1);

end generate ;

end generate ;

−− p i

i 3001 : for y in 0 to 4 generate

i 3002 : for x in 0 to 4 generate

i 3003 : for i in 0 to 63 generate

−−p i o u t ( y ) ( x ) ( i )<=p i i n ( ( y +2∗x ) mod 5 ) ( ( ( 4∗ y)+x ) mod 5) ( i ) ;

p i ou t ((2∗x+3∗y ) mod 5)(0∗x+1∗y ) ( i )<=p i i n (y ) (x ) ( i ) ;

end generate ;

end generate ;
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end generate ;

−−rho

i 4001 : for i in 0 to 63 generate

rho out ( 0 ) ( 0 ) ( i )<=rho in ( 0 ) ( 0 ) ( i ) ;

end generate ;

i 4002 : for i in 0 to 63 generate

rho out ( 0 ) ( 1 ) ( i )<=rho in ( 0 ) ( 1 ) ( ( i −1)mod 64 ) ;

end generate ;

i 4003 : for i in 0 to 63 generate

rho out ( 0 ) ( 2 ) ( i )<=rho in ( 0 ) ( 2 ) ( ( i −62)mod 64 ) ;

end generate ;

i 4004 : for i in 0 to 63 generate

rho out ( 0 ) ( 3 ) ( i )<=rho in ( 0 ) ( 3 ) ( ( i −28)mod 64 ) ;

end generate ;

i 4005 : for i in 0 to 63 generate

rho out ( 0 ) ( 4 ) ( i )<=rho in ( 0 ) ( 4 ) ( ( i −27)mod 64 ) ;

end generate ;

i 4011 : for i in 0 to 63 generate

rho out ( 1 ) ( 0 ) ( i )<=rho in ( 1 ) ( 0 ) ( ( i −36)mod 64 ) ;

end generate ;

i 4012 : for i in 0 to 63 generate

rho out ( 1 ) ( 1 ) ( i )<=rho in ( 1 ) ( 1 ) ( ( i −44)mod 64 ) ;

end generate ;

i 4013 : for i in 0 to 63 generate

rho out ( 1 ) ( 2 ) ( i )<=rho in ( 1 ) ( 2 ) ( ( i −6)mod 64 ) ;

end generate ;

i 4014 : for i in 0 to 63 generate

rho out ( 1 ) ( 3 ) ( i )<=rho in ( 1 ) ( 3 ) ( ( i −55)mod 64 ) ;

end generate ;

i 4015 : for i in 0 to 63 generate

rho out ( 1 ) ( 4 ) ( i )<=rho in ( 1 ) ( 4 ) ( ( i −20)mod 64 ) ;

end generate ;

i 4021 : for i in 0 to 63 generate

rho out ( 2 ) ( 0 ) ( i )<=rho in ( 2 ) ( 0 ) ( ( i −3)mod 64 ) ;

end generate ;

i 4022 : for i in 0 to 63 generate

rho out ( 2 ) ( 1 ) ( i )<=rho in ( 2 ) ( 1 ) ( ( i −10)mod 64 ) ;

end generate ;

i 4023 : for i in 0 to 63 generate

rho out ( 2 ) ( 2 ) ( i )<=rho in ( 2 ) ( 2 ) ( ( i −43)mod 64 ) ;

end generate ;

i 4024 : for i in 0 to 63 generate

rho out ( 2 ) ( 3 ) ( i )<=rho in ( 2 ) ( 3 ) ( ( i −25)mod 64 ) ;

end generate ;

i 4025 : for i in 0 to 63 generate

rho out ( 2 ) ( 4 ) ( i )<=rho in ( 2 ) ( 4 ) ( ( i −39)mod 64 ) ;

end generate ;

i 4031 : for i in 0 to 63 generate

rho out ( 3 ) ( 0 ) ( i )<=rho in ( 3 ) ( 0 ) ( ( i −41)mod 64 ) ;
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end generate ;

i 4032 : for i in 0 to 63 generate

rho out ( 3 ) ( 1 ) ( i )<=rho in ( 3 ) ( 1 ) ( ( i −45)mod 64 ) ;

end generate ;

i 4033 : for i in 0 to 63 generate

rho out ( 3 ) ( 2 ) ( i )<=rho in ( 3 ) ( 2 ) ( ( i −15)mod 64 ) ;

end generate ;

i 4034 : for i in 0 to 63 generate

rho out ( 3 ) ( 3 ) ( i )<=rho in ( 3 ) ( 3 ) ( ( i −21)mod 64 ) ;

end generate ;

i 4035 : for i in 0 to 63 generate

rho out ( 3 ) ( 4 ) ( i )<=rho in ( 3 ) ( 4 ) ( ( i −8)mod 64 ) ;

end generate ;

i 4041 : for i in 0 to 63 generate

rho out ( 4 ) ( 0 ) ( i )<=rho in ( 4 ) ( 0 ) ( ( i −18)mod 64 ) ;

end generate ;

i 4042 : for i in 0 to 63 generate

rho out ( 4 ) ( 1 ) ( i )<=rho in ( 4 ) ( 1 ) ( ( i −2)mod 64 ) ;

end generate ;

i 4043 : for i in 0 to 63 generate

rho out ( 4 ) ( 2 ) ( i )<=rho in ( 4 ) ( 2 ) ( ( i −61)mod 64 ) ;

end generate ;

i 4044 : for i in 0 to 63 generate

rho out ( 4 ) ( 3 ) ( i )<=rho in ( 4 ) ( 3 ) ( ( i −56)mod 64 ) ;

end generate ;

i 4045 : for i in 0 to 63 generate

rho out ( 4 ) ( 4 ) ( i )<=rho in ( 4 ) ( 4 ) ( ( i −14)mod 64 ) ;

end generate ;

−−i o t a

i 5001 : for y in 1 to 4 generate

i 5002 : for x in 0 to 4 generate

i 5003 : for i in 0 to 63 generate

i o t a ou t (y ) ( x ) ( i )<=i o t a i n (y ) ( x ) ( i ) ;

end generate ;

end generate ;

end generate ;

i 5012 : for x in 1 to 4 generate

i 5013 : for i in 0 to 63 generate

i o t a ou t ( 0 ) ( x ) ( i )<=i o t a i n ( 0 ) ( x ) ( i ) ;

end generate ;

end generate ;

i 5103 : for i in 0 to 63 generate

i o t a ou t ( 0 ) ( 0 ) ( i )<=i o t a i n ( 0 ) ( 0 ) ( i ) xor ( r ound con s tan t s i gna l ( i ) and i o t a en ) ;

end generate ;

end r t l ;
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A.2 Uniform Chi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Group : Cal Poly CPE SHA−3 Research Team

−− Engineer : Na than i e l Gra f f

−−

−− Create Date : 12/06/2016 03 : 38 : 12 PM

−− Design Name : ch i un i f o rm

−− Module Name : ch i un i f o rm − Behav i o ra l

−− Pro j e c t Name : Keccak Research

−− Des c r i p t i on : Uniform three−share ch i s t e p imp lementa t ion

−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary work ;

use work . k e c cak g l oba l s . a l l ;

l ibrary i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

use i e e e . s t d l o g i c a r i t h . a l l ;

entity ch i un i fo rm i s

port (

c h i r a nd b i t s : in s t d l o g i c v e c t o r (3 downto 0 ) ;

c h i i n a : in k s t a t e ;

c h i i n b : in k s t a t e ;

c h i i n c : in k s t a t e ;

c h i ou t a : out k s t a t e ;

ch i ou t b : out k s t a t e ;

c h i o u t c : out k s t a t e ) ;

end ch i un i fo rm ;

architecture Behaviora l of ch i un i fo rm i s

−− I n t e rmed i a t e v a l u e s to s t o r e t h e ou tpu t o f c h i prime

signal ch i pr ime a , ch i pr ime b , ch i p r ime c : k s t a t e ;

−− Random b i t s

signal p , s : s t d l o g i c v e c t o r (1 downto 0 ) ;

begin

−− Map random b i t s i n t o p and s f o r easy consumption

p <= ch i r a nd b i t s (1 downto 0 ) ;

s <= ch i r a nd b i t s (3 downto 2 ) ;

−− Chi prime

i 0000 : for y in 0 to 4 generate

i 0001 : for x in 0 to 4 generate

i 0002 : for i in 0 to 63 generate

ch i p r ime a (y ) ( x ) ( i ) <= ch i i n b (y ) ( x ) ( i ) xor

( (not c h i i n b (y ) ( ( x+1) mod 5) ( i ) ) and c h i i n b (y ) ( ( x+2) mod 5) ( i ) ) xor

( c h i i n b (y ) ( ( x+1) mod 5) ( i ) and c h i i n c (y ) ( ( x+2) mod 5) ( i ) ) xor

( c h i i n b (y ) ( ( x+2) mod 5) ( i ) and c h i i n c (y ) ( ( x+1) mod 5) ( i ) ) ;
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ch i pr ime b (y ) ( x ) ( i ) <= ch i i n c (y ) ( x ) ( i ) xor

( (not c h i i n c (y ) ( ( x+1) mod 5) ( i ) ) and c h i i n c (y ) ( ( x+2) mod 5) ( i ) ) xor

( c h i i n c (y ) ( ( x+1) mod 5) ( i ) and c h i i n a (y ) ( ( x+2) mod 5) ( i ) ) xor

( c h i i n c (y ) ( ( x+2) mod 5) ( i ) and c h i i n a (y ) ( ( x+1) mod 5) ( i ) ) ;

ch i p r ime c (y ) ( x ) ( i ) <= ch i i n a (y ) ( x ) ( i ) xor

( (not c h i i n a (y ) ( ( x+1) mod 5) ( i ) ) and c h i i n a (y ) ( ( x+2) mod 5) ( i ) ) xor

( c h i i n a (y ) ( ( x+1) mod 5) ( i ) and c h i i n b (y ) ( ( x+2) mod 5) ( i ) ) xor

( c h i i n a (y ) ( ( x+2) mod 5) ( i ) and c h i i n b (y ) ( ( x+1) mod 5) ( i ) ) ;

end generate ;

end generate ;

end generate ;

−− Propoga t ing rows not i n c l u d e d in f u r t h e r s t e p s

i 0010 : for y in 0 to 4 generate

i 0011 : for x in 0 to 2 generate

i 0012 : for i in 0 to 63 generate

ch i ou t a (y ) ( x ) ( i ) <= ch i pr ime a (y ) ( x ) ( i ) ;

ch i ou t b (y ) ( x ) ( i ) <= chi pr ime b (y ) ( x ) ( i ) ;

c h i o u t c (y ) ( x ) ( i ) <= ch i p r ime c (y ) ( x ) ( i ) ;

end generate ;

end generate ;

end generate ;

−− I n j e c t i o n o f random b i t s

i 0021 : for x in 3 to 4 generate

i 0022 : for i in 0 to 63 generate

ch i ou t a ( 0 ) ( x ) ( i ) <= ch i pr ime a ( 0 ) ( x ) ( i ) xor p(x−3) xor s (x−3);

ch i ou t b ( 0 ) ( x ) ( i ) <= chi pr ime b (0 ) ( x ) ( i ) xor p(x−3);

c h i o u t c ( 0 ) ( x ) ( i ) <= ch i p r ime c ( 0 ) ( x ) ( i ) xor s (x−3);

end generate ;

end generate ;

−− Mixing to j o i n t l y s a t i s f y un i f o rm i t y

i 0030 : for y in 1 to 4 generate

i 0031 : for x in 3 to 4 generate

i 0032 : for i in 0 to 63 generate

ch i ou t a (y ) ( x ) ( i ) <= ch i pr ime a (y ) ( x ) ( i ) xor c h i i n a (y−1)(x ) ( i ) xor c h i i n b (y−1)(x ) ( i ) ;

ch i ou t b (y ) ( x ) ( i ) <= chi pr ime b (y ) ( x ) ( i ) xor c h i i n a (y−1)(x ) ( i ) ;

c h i o u t c (y ) ( x ) ( i ) <= ch i p r ime c (y ) ( x ) ( i ) xor c h i i n b (y−1)(x ) ( i ) ;

end generate ;

end generate ;

end generate ;

end Behaviora l ;
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A.3 Power Trace Capture Script

#!/ usr / b in / env python3

import s e r i a l

import v i s a

import psycopg2

import sys

import os

import codecs

import lzma

import matp lo t l ib . pyplot as pyplot

from time import s l e ep

from tabu la te import tabu la te

import keccak

FPGA PORT = ””

DBHOST = ””

DBNAME = ””

DBUSER = ””

DBPASS = ””

CAPTURE TRACE COUNT = 100000

CONFIG NUMBER = 0

ENABLE STATIC = False

STATIC INPUT = b ’ \\ ,C\ x fe \xc6\xa3\x87\xd8v ; y\xaf |\ xa2\xd08D\x1b\xac )Pt\x9d ’ + \

b ’\xf2 :L\x1e\xe6 |\ xcb\xa9\xa7\x00\x19Zp\x86JU\x7f\xcc\x82 ’ + \

b ’\x9b\xde\x07b2\x18\x94o$ ?\xb9o\x94x\xd8@h\x9a\x84b\x12\xe5 ’ + \

b ’\x12\x96v\xacd\xc0\x91\xde\xb5#\x1c\x17\xec\x92\xb4\ xe f ’ + \

b ’\x84\xf1\xa2B\xe2oP\xce\x11\xe6 [4\ xce\xd4P4?\ xdf .\ xe6\x97 ’ + \

b ’\xd6\xf2\xf1\xc0ˆN\x16\xb8\x16\xa2\x1c\x97\xeb\x15 ,F%\xae ’ + \

b ’\xd2b\xedY\xb6\xeeX ’

def getScope ( ) :

rm = v i sa . ResourceManager ( )

instruments = rm . l i s t r e s o u r c e s ( )

i f ( len ( instruments ) == 0 ) :

print ( ”No instruments connected ” )

e x i t ( )

e l i f ( len ( instruments ) == 1 ) :

scope = rm . open re source ( instruments [ 0 ] )

print ( ”Connected to instrument : ” + instruments [ 0 ] )

else :

print ( ” Please s e l e c t an instrument : ” )

for (num, instrument ) in zip ( range (0 , len ( instruments ) ) , instruments ) :

print ( str (num) + ” − ” + instruments [num] )

sys . stdout . wr i t e ( ” Instrument number : ” )

num = int ( sys . s td in . read ( 1 ) )

scope = rm . open re source ( instruments [num] )

scope . timeout = 10000

scope . r ead te rminat i on = ’\n ’
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scope . wr i t e t e rm ina t i on = ’\n ’

scope . c l e a r ( )

print ( ”Querying scope i d en t i t y . . . ” )

instrumentdata = scope . query ( ”∗IDN?” ) . s p l i t ( ’ , ’ )

print ( tabu la te ( [ instrumentdata ] , [ ”Manufacturer ” , ”Model” , ” S e r i a l #” , ” Software Vers ion ” ] , tab le fmt=” psq l ” ) )

scope . wr i t e ( ”∗RST” )

scope . query ( ”∗OPC?” )

return scope

def scopeCommand( scope , command ) :

scope . wr i t e (command)

scope . query ( ”∗OPC?” )

def getFPGA ( ) :

return s e r i a l . S e r i a l (FPGA PORT, timeout=1)

def rearrangeHex (bin ) :

# re v e r s e b y t e order w i t h i n each word

bout = b ’ ’

for word in [ bin [16∗n :16∗ ( n+1)] for n in range ( len (bin ) // 1 6 ) ] :

b y t e l i s t = [ word [2∗n : 2∗ ( n+1)] for n in range ( len (word ) // 2 ) ]

b y t e l i s t . r e v e r s e ( )

bout += b ’ ’ . j o i n ( b y t e l i s t )

return bout

def rearrangeBytes (bin ) :

return codecs . decode ( rearrangeHex ( codecs . encode (bin , ’ hex codec ’ ) ) , ’ hex codec ’ )

def getTrace ( scope ) :

scope . query ( ”∗OPC?” )

t ra c e = b ’ ’

scopeCommand( scope , ” :WAVeform :SOURce CHANnel1” )

scopeCommand( scope , ” :WAVeform :FORMat BYTE” )

scopeCommand( scope , ” :WAVeform : UNSigned ON” )

scopeCommand( scope , ” :WAVeform : BYTeorder MSBFirst” )

scopeCommand( scope , ” :WAVeform : POINts MAXimum” )

length = int ( scope . query ( ” :WAVeform : POINts?” ) )

print ( ”Downloading ” + str ( l ength ) + ”−point t r a c e from o s c i l l o s c o p e . ” )

scope . wr i t e ( ” :WAVeform :DATA?” )

t ra c e += scope . read raw ( )

return t r a c e [10 :−1]

def conf igCapture ( scope ) :

scope . query ( ”∗OPC?” )

# turn on bo th channe l s

scopeCommand( scope , ” : CHANnel1 : DISPlay ON” )
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# t r i g g e r on the p o s i t i v e edge o f t h e e x t e r n a l t r i g g e r i npu t

scopeCommand( scope , ” : TRIGger :EDGE:SOURce EXTernal” )

scopeCommand( scope , ” : TRIGger :EDGE:SLOPe POSitive ” )

scopeCommand( scope , ” : TRIGger :EDGE: LEVel 1” )

# con f i g u r e axes

scopeCommand( scope , ” : CHANnel1 : COUPling AC” )

scopeCommand( scope , ” : CHANnel1 : SCALe 0 .1 ” )

scopeCommand( scope , ” : TIMebase : SCALe 0.00000056 ” )

scopeCommand( scope , ” : TIMebase : POSition 0.0000025 ” )

i f name == ” main ” :

print ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )

print ( ” | SHA−3 Power Trace Capture | ” )

print ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )

# open s e r i a l po r t t o FPGA

print ( ”Opening connect ion to FPGA” )

fpga = getFPGA()

# open connec t i on to da ta ba s e

print ( ”Opening connect ion to database ” )

conn = psycopg2 . connect (dbname=DBNAME, user=DBUSER, password=DBPASS, host=DBHOST)

cur = conn . cur so r ( )

# open and r e s e t o s c i l l o s c o p e

print ( ”Opening connect ion to o s c i l l o s c o p e ” )

scope = getScope ( )

# con f i g u r e o s c i l l o s c o p e

print ( ”Conf igur ing scope ” )

conf igCapture ( scope )

t r a c e s = 0

# main l oop

while True :

# gene ra t e i npu t v e c t o r

i npu t ve c to r = b ’ ’

i f ENABLE STATIC:

input ve c to r = STATIC INPUT

else :

i npu t ve c to r = os . urandom (126)

print ( ”Generated input vector : ” )

print ( i npu t ve c to r )

# compute v a l i d hash ou tpu t

expected output = codecs . encode ( keccak .hash ( i npu t ve c to r ) , ’ hex codec ’ )

print ( ”Expected hash output : ” )

print ( expected output )

print ( ” Se t t ing S ing l e Trace Capture” )

42



scope . wr i t e ( ” : SINGle” )

s l e ep ( 0 . 5 )

# pad inpu t v e c t o r

i npu t ve c to r += b ’\x01\x80 ’

# send inpu t v e c t o r to FPGA

print ( ”Sending input vector to FPGA” )

fpga . wr i t e (b ’\x00\x01 ’ ) # s i n g l e t e s t v e c t o r

fpga . wr i t e ( rearrangeBytes ( i nput ve c to r ) )

# wai t f o r FPGA

while ( fpga . i n wa i t i ng == 0 ) :

s l e ep ( 0 . 1 )

# r e c e i v e FPGA hash ou tpu t

fpga output = rearrangeHex ( codecs . encode ( fpga . read (32) , ’ hex codec ’ ) )

print ( ”Received FPGA hash output : ” )

print ( fpga output )

# compare hashes

i f ( expected output == fpga output ) :

print ( ”SUCCESS: FPGA hash matches expected value ” )

# p u l l t r a c e from o s c i l l o s c o p e

t r a c e = getTrace ( scope )

# compress t r a c e

print ( ”Compressing power t ra c e f o r s to rage ” )

l z = lzma . LZMACompressor ( )

comp trace = l z . compress ( t r a c e )

comp trace += l z . f l u s h ( )

print ( ”Trace compressed with r a t i o : ” + str ( len ( t r a c e ) / len ( comp trace ) ) )

# wr i t e row to da ta ba s e

print ( ”Writing power t ra c e to database ” )

cur . execute ( ’ ’ ’ INSERT INTO t r a c e s ( c o n f i g i d , cap tu r e t ime , i n p u t v e c t o r , c ompre s s ed t r a c e )

VALUES (%( c o n f i g i d ) s , now ( ) , %( i n p u t v e c t o r ) s , %(comp trace ) s ) ’ ’ ’ ,

{ ’ c o n f i g i d ’ : CONFIG NUMBER,

’ i nput ve c to r ’ : input vector ,

’ comp trace ’ : comp trace })

conn . commit ( )

t r a c e s += 1

print ( ”Captured ” + str ( t r a c e s ) + ” t r a c e s ” )

else :

print ( ”FAILURE: FPGA hash does not match expected value ” )

i f t r a c e s == CAPTURE TRACE COUNT:

break
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# c l o s e da tabase , s e r i a l port , and o s c i l l o s c o p e connec t i on s

cur . c l o s e ( )

conn . c l o s e ( )

fpga . c l o s e ( )

scope . c l o s e ( )
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