

Senior Project - Roborodentia Robot

Nicholas Ilog
CPE 462 - 14 Spring 2018

Professor Seng
June 13, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219380094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents
1. Introduction …………………………………………………………………………… 2
2. Problem Statement ……………………………………………………………………. 2
3. Software ………………………………………………………………………………. 4

3.1. Software Block Diagram …………………………………………………….... 4
3.2. Software Overview ………………………………………………………….... 4
3.3. Software Functionality ………………………………………………………... 6

4. Hardware …………………………………………………………………………….... 7
4.1. Hardware Block Diagram …………………………………………………….. 7
4.2. Hardware Overview …………………………………………………………... 7
4.3. Hardware Schematic …………………………………………………………. 10

5. Mechanical …………………………………………………………………………… 11
6. Budget and Bill of Materials …………………………………………………………. 17
7. Lessons Learned ……………………………………………………………………… 20
8. Conclusion ……………………………………………………………………………. 21

1

Introduction
Every year Cal Poly hosts a robotics competition known as Roborodentia to showcase student
created robots at Cal Poly Open House. These autonomous robots are assigned a variety of tasks
to score points. In past years, robots collected balls and placed them in a designated location,
located different colored cans, and picked up rings and hooked them on designated pegs to score
points. This year, robots dispensed balls from a dispenser and shot them at targets across the
playing field for points. There was also an optional objective to pick up balls at center court and
dump them in the proper area. This report explores the design choices and implementation of the
robot I created for this competition.

Problem Statement
Design and assemble an autonomous robot capable of traversing the course found in Figure 1 to
complete a set of objectives for points. The robot shall dispense balls from the ball dispensers
pictured in Figure 2. Ball dispensers are mounted 7” above the competition floor on the side
walls. After collecting balls, the robot shall shoot the balls through hoops on the opposite side of
the course. Each hoop corresponds to a different point value that can be found in Figure 3. There
is a bonus for shooting through pairs of hoops as well as shooting through all four hoops.
Additionally, robots may score by picking up “ultra balls” found in the troughs at the course
center wall and dumping them in the “dump zone” found in the upper platform.

There are some limitations on robot design. Robots must start the match with a 12” x 14”
footprint and may not expand past 14” x 17” at any point during the match. Height of the robot
must also be below 14” at the beginning of the match, but there is no height limitation once the
match begins. A robot cannot disassemble into multiple parts or go airborne during the match.
Adhesives may be used by a robot, but they cannot damage the course, balls, or targets. Balls
must also be shot at a speed less than 50 feet per second averaged over three test trials. Wireless
communication with the robot is not allowed during the competition and jamming another
robot’s sensors during competition is also banned. Any wireless communication devices must be
declared before the match begins. Failure to comply with these specifications will result in
disqualification from the tournament.

2

Figure 1 - Roborodentia Course Overview

Figure 2 - Ball Dispenser Close Up

3

Figure 3 - Roborodentia Course Center View

Software
Software Block Diagram

Figure 4 - Software Block Diagram

Software Overview
My code makes use of the Arduino Servo library to control two servos on the robot. One servo
is responsible for moving an arm to dispense balls from dispensers, and the other is responsible
for an arm that catches and feeds balls to the pitching wheel. The attach() function is used during
setup to associate each servo with a specific pin on the Mega board. Then the write() function is
called throughout my code to move the servo arms to the desired positions.

4

The drive shield also uses a library to control the speed and direction of motors. Using this
library, the drive shield can control up to four motors. Each motor is represented in the code by
the AF_DCMotor class. One AF_DCMotor must be declared for each motor that the drive shield
wants to control. There are two functions in the AF_DCMotor class for controlling the motors,
setSpeed() and run(). SetSpeed() is used to set the speed of the motor by taking the desired speed
as a function parameter. Valid values range between 0 and 255 with 0 being off and 255 as full
throttle. The run() function takes one parameter, the direction to spin the motor. Forward,
backward, and release are the options here. Forward and backward are obviously forward and
backward respectively, but release will stop the motor from spinning.

There are four major functions found in my code. These functions are the follow_line(),
shoot_left(), shoot_right(), and dispense_balls() functions. The follow_line() functions polls from
the IR sensors located at the front of the robot once a second and adjusts the motor speeds and
directions appropriately to keep the robot on the black line. There are no adjustments to be made
if the middle sensor is the only sensor to detect the line. If the left sensor detects the line, the
robot must turn slightly to the left to stay on the line. In this case, the left motor is slowed to half
speed while the right motor remains at full throttle. The opposite occurs when the line is sensed
by the right sensor. There is a possibility that the robot does not make adjustments in time and it
veers completely away from the black line. My code keeps track of the last sensor to track the
line so that the robot can be guided back to the line. If the right sensor is the last sensor to track
the line, the robot has veered off to the left of the line. The robot is turned slightly to the right
and makes an attempt to find the line. Again, the opposite is true if the left sensor was the last to
track the line.

Shoot_left() and shoot_right() are similar functions to one another except that the direction the
robot turns is either left or right respectively. This function is called when the robot crosses the
center black line that goes from one courtside to the other courtside. Depending on if the
iteration is an odd or even one, the robot will have to turn left or right. There is a counter in my
code to determine which direction the robot will have to turn to shoot at the correct targets. The
robot will travel across the line, stopping to turn and shoot at each target. This process is rather
time consuming as the robot has to turn to shoot at each target. Each target results in two turns
because the robot must turn to face the target and then turn back to continue following the line.

Finally, the dispense_balls() function simply backs the robot up to the ball dispenser and opens
the dispenser by moving a servo controlled arm. There is no error correction for lining up the
robot funnel, arm, and ball dispenser. If the robot misses the ball dispenser, it misses the ball
dispenser. A full cycle through the code and about 30 seconds of time can potentially be wasted
when the robot misses the ball dispenser.

5

Software Functionality
During setup, the two servos and three dc motors are initialized. Each servo is connected to a pin
on the Mega board and every dc motor is assigned a speed to spin at. After setup, the robot goes
into a cycle of functions.

As mentioned above, there are four major functions in my code. The robot cycles between these
four functions over and over again to score points. First, the robot calls the follow_line() function
to follow the black line to the cross in front of a dispenser. Then the robot calls the
dispense_balls() function to back up to the dispenser and dispense the balls. Next, follow_line()
is called to follow the black line to the cross at the center of the side. Finally, shoot_left() or
shoot_right() is called depending on whether the robot has to turn to the right or the left to shoot
while traversing the middle black line. A counter is kept to make sure the robot turns in the
correct direction. If it is an even iteration, the robot turns to the right. If it is odd, the robot turns
to the left to shoot. This loop is repeated until time runs out. Since the dispense_balls() function
has no error correction, there is potential for a full loop to be a waste of time as no balls will be
dispensed to the robot. The robot will not attempt to dispense balls again until the
dispense_balls() function comes back around the cycle.

6

Hardware
Hardware Block Diagram

Figure 5 - Hardware Block Diagram

Hardware Overview
There are three IR sensors found at the front of the robot. Each sensor has a transmitter and a
receiver LED. When there is no black surface to reflect the transmitter LED light, the output
signal from the sensor is low. In the presence of a black surface, this light from the transmitter
LED will be reflected back towards the sensor, allowing the receiver LED to detect this light.
The signal from the IR sensor will be high in this case, and a green LED lights up indicating that
a black surface has been detected. By using three sensors, the robot’s location relative to the line
can be determined, and the necessary adjustments can be made to keep the robot on the black
line. More sensors could be used to more precisely track the line, but for the scope of this
project, that is not necessary.

7

In addition to the three IR sensors, there are also three dc motors found on the robot. Two of
these motors are used to spin the drive wheels of the robot. The speed and direction of these
motors can be adjusted by changing the voltage applied to each motor. A lower voltage means
the motor spins at a lower speed, and the voltage applied can be positive or negative to spin the
wheel forward or backward respectively. Voltage to the drive wheels is constantly being adjusted
to keep the robot on the black line. On the other hand, the third motor controls the pitching wheel
and is kept at a constant voltage during its operation. This motor is only turned on when it is time
for the robot to shoot balls. It is spun at full throttle to ensure shots have the distance needed to
hit the targets. Even at full throttle, this motor does not spin fast enough to shoot balls faster than
50 feet per second.

Other motors on the robot include two servos controlling two plastic arms. One of these arms is
responsible for opening the ball dispenser. The servo controlling this arm rotates 30° when it is
time to dispense balls. Another servo controls the arm responsible for catching balls that fall
through the robot funnel and feeding the pitching wheel. This servo rotates backwards to allow a
ball to fall and then rotates forward again to push the ball into the pitching wheel.

The Arduino Mega Board acts as the brain of the robot. All code is executed by the Mega board.
Information about the black line is relayed by the three IR sensors at the front of the robot to the
Mega board. Then the Mega board determines what speed and direction the drive motors need to
spin to keep the robot on the black line. Signals are also sent from the Mega board when the
servos need to rotate to dispense balls and feed the pitching wheel. The pitching motor is also
powered on and off at the control of the Mega board.

The drive shield is another board that gets physically inserted right on top of the Mega board. It
acts as the interface between the Mega board and the motor components. Signals are sent through
the drive shield from the Mega board to control the speed and direction of each motor
individually. Protection for the Mega board from load voltages and relays is offered by the drive
shield. Additional power supplies can also be plugged into the drive shield to offer separate
power supplies for the Mega board and motor components.

8

A 9V battery powers the Arduino Mega Board while a AA battery pack powers the drive shield
with four AA batteries wired in series. Since three IR sensors and two servos are all powered by
5V output pins found on the Mega board, power consumption from the 9V battery is very high.
Each 9V battery only powers the Arduino Mega Board for a few hours before it runs out of juice.
All motors are powered by the same battery pack providing power to the drive shield. The
batteries in the battery pack are wired in series to create more voltage for the motors. Although
the battery pack juice is not drained as quickly as the 9V, the batteries must still be changed out
rather regularly. While the 9V powered components always turn on if given enough voltage, the
battery pack powered components must maintain a certain spin velocity to be effective. When
the batteries are too low, the motors spin too slow to move the robot or shoot balls.

9

Hardware Schematic

Figure 6 - Hardware Schematic

10

Mechanical

Figure 7 - Drive Aerial View

Figure 8 - Drive Side View

The robot is driven by two wheels powered by one motor each, and a swivel wheel towards the
front of the robot with 360° range of motion pictured in Figure 7 above. Since the IR sensors are
located at the front of the robot, the drive wheels are located in the back so that the robot has
more control over turns. If the drive wheels were near the front, the robot be limited in its turning
ability.

11

Figure 9 - Dispensing Arm Aerial View

Figure 10 - Dispensing Arm Side View

12

Balls are dispensed from the dispenser with a plastic arm that is controlled by a servo pictured in
Figure 9. The servo is mounted right above the pitching unit at 7” height. On top of the servo is a
1” x 5¼” rectangular plastic arm that is capable of swiping side to side to push the dispenser
holder out of the way. This arm rotates about 30° to push the holder out of the way and allow the
balls to fall through to the funnel found in Figure 11 below. Since the range of motion on this
servo arm is limited to just side to side movement, the robot must be precise in its lining up of
the funnel, servo arm, and dispenser. As mentioned above in the software section, there is no
error correction for this alignment. It is entirely possible for the servo arm to miss the dispenser
or for the balls to fall from the dispenser, but miss the funnel. In these cases, about 30 seconds of
competition time is wasted because the robot will continue its function cycle without balls.

Figure 11 - Pitching Mechanics Side View

13

Figure 12 - Robot Funnel Aerial View

After balls are dispensed by the arm pictured above in Figure 9, they fall into the funnel and
down into a pvc pipe. A servo arm shaped as a propeller catches the balls at the bottom of the
pipe and holds them in place until it is time to shoot. When it is time to shoot, the servo arm
rotates towards the back of the robot to allow one ball to fall and then rotates back to its original
position to push the ball to the pitching wheel and catch the next ball that falls. Balls fall onto a
platform constructed using a pvc bushing pictured in Figure 12. This ensures that balls do not fall
and bounce towards the pitching wheel. By controlling the feeding of the pitching wheel, shots
are more consistent. Once the ball reaches the pitching wheel, it is shot through a pipe towards
the target. The pitching wheel takes a second or two before it gets up to full speed. Because of
this, there must be a small delay between shots to allow the wheel to get back up to speed.

Like the dispensing arm servo, both the dc motor and servo are mounted to the pitching unit. The
servo is mounted near the bottom of the feeding tube to ensure the servo arm is always in the
correct spot to catch and feed balls. By mounting the motor in a fixed position, shots are more
consistent. If the pitching motor were not mounted, the vibrations it generates would cause the
wheel to move around in the pitching slot and shots would be random.

14

Figure 13 - Top: Dispensing Arm Side View. Bottom: Dispensing Arm Aerial View

Each plastic servo arm was manufactured by layering sheets of polycarbonate. The rectangular
arm pictured above in Figure 13 was created by first cutting four rectangles from a larger sheet
of polycarbonate. Then these four rectangular pieces were glued directly on top of each other and
finally glued onto a servo propeller.

Figure 14 - Feeding Propeller Arm Aerial View

Servo propellers are rather small and are not large enough to work as the feeder for the pitching
wheel. Another larger plastic propeller pictured in Figure 14 was made in a similar manner to the
rectangular arm. Four propellers were cut from a larger sheet of polycarbonate and then glued
together and finally glued to a servo propeller.

15

All mounts for the two servos and pitching wheel were also constructed using the same
polycarbonate as the servo arms. The dispensing arm mount was created by first cutting a
rectangular hole into a sheet of polycarbonate the size of the servo. Heat was then applied to the
sheet to bend the sheet at a 90° angle and create an “L” shape. Holes were then drilled in the
appropriate areas. Finally, the “L” piece was screwed onto the chassis, and the servo was inserted
into the hole and screwed into place.

Figure 15 - Motor Mount Head-On View

Two small squares were cut out of a sheet of polycarbonate to make the pitching wheel mount
shown in Figure 15. Both squares were then heated and bent into an “L” shape. These squares
were then mounted to the chassis with the motor between them and screwed together as tight as
possible.

16

Figure 16 - Feeding Servo Mount Before Bend

The last mount was the piece that took the longest to fabricate. First, a rectangular hole the size
of the servo was cut from a sheet of polycarbonate. The sheet was then cut into the shape
pictured in Figure 16, heated and bent like the other pieces. This mount was then screwed into
the chassis with the servo screwed into the mount.

Budget and Bill of Materials
There was no set budget when beginning this project, but the idea was to keep cost at a
minimum. Components were purchased with this idea in mind and that may not have been the
best course of action. A few of the IR sensors purchased simply did not work. Luckily, they were
purchased in a pack of ten and only three were needed for this project. The dc motors that were
purchased are inconsistent in their spin speed. Even when applied a constant voltage over
multiple trials, each motor spins at a considerably different speed from its previous trial. This
resulted in varying results between robot runs.

Other errors include the purchasing of kits when only one or two pieces were used from the kit.
Out of the four wheel chassis kit, the only piece used was a piece of polycarbonate. The four
wheels and motors found in the kit were just thrown to the side. Another kit that was not
necessary was the plastic gear set. Although one of the robot prototypes did use multiple gears
from this set, ultimately, only one small rubber tire was taken and used from this kit in the final
project.

17

Even with these questionable kit purchases, the total cost of the robot is relatively low with a
grand total of $131.76, as shown in the bill of materials below. I believe that if better IR sensors
and motors were purchased and the individual pieces were purchased instead of kits, the price
would still be around the $130-$150 range.

18

Item # Part Description Part # Supplier Name Quantity Price Extended Price

1 Arduino
Mega Board

B01H4ZLZLQ Amazon 1 $14.99 $14.99

2 L293D Motor
Drive Shield

B00TMA4YSS Amazon 1 $8.99 $8.99

3 Two Wheel Drive
Robot Chassis
Kit

B01L0ZY842 Amazon 1 $12.99 $12.99

4 Four Wheel
Drive Robot
Chassis Kit

B00NAT3VF4 Amazon 1 $15.99 $15.99

5 IR Sensor B01I57HIJ0 Amazon 10 $0.99 $9.99

6 DC Motor B073Q2Y3RC Amazon 6 $1.16 $6.99

7 8” Ribbon
Cables Kit

B01EV70C78 Amazon 1 $7.86 $7.86

8 Mini Breadboard B01EV6SBXQ Amazon 6 $1.31 $7.86

9 Plastic Gear Set B079M5SY6D Amazon 1 $10.99 $10.99

10 Plastic Funnel B00OABYBJG Amazon 4 $1.57 $6.29

11 9V Battery Clip B00NIP0P9U Amazon 5 $1.20 $5.99

12 Polycarbonate
Sheet

SKU
987295

Home Depot 3 $4.98 $14.94

13 1” PVC Pipe SKU ​193755 Home Depot 1 $3.97 $3.97

14 1-½” x 1-½” x 1”
PVC Tee

SKU ​294179 Home Depot 1 $2.48 $2.48

15 1” x ¾” PVC
Bushing

SKU 745078 Home Depot 1 $1.44 $1.44

Total: $131.76

Table 1 - Bill of Materials

19

Lessons Learned
There were many lessons to be taken from this project. The biggest lesson was the value in
prototyping and testing. Each prototype improves upon the one before, and each test reveals new
problems that need to be solved. Testing must be done in a proper manner though. Tests should
be designed to fully analyze the product’s functionality to make sure the product does everything
that it needs to do. Some tests I performed focused on only using one component of the robot
instead of everything together. The test would pass with just the isolated component and then fail
once every component was implemented. Other tests were simply designed without the big
picture in mind and did not truly evaluate the robot’s functionality in the correct manner. The
more iterations of effective testing and prototyping that a product goes through, the more
developed the product is going to be. A more developed product will hopefully be more
successful than a product that has only had one or two primitive prototypes.

Another lesson learned was that skimping out on certain components can be more costly than
purchasing a more expensive, reliable component to begin with. The drive wheels and the motors
powering these wheels were very unreliable. Each wheel had a design pattern on the rubber
which affected how quickly the wheel could spin based on what direction the wheel was
spinning. In turn, the motors also differed in how quickly they would spin even when powered
by a constant voltage. Sometimes the motors would spin at max speed, but other times the
motors did not generate enough power to even move the robot more than a couple inches over a
few seconds. A stronger, more reliable motor would have ensured consistency between trials in
the project.

If I were to restart from the beginning, there are a few design choices I would change. First, I
would eliminate the need for the robot to physically turn and change its orientation by giving the
bot a square shape. Then I would change the robot so that it uses the walls for tracking instead of
the black line. It is quicker to just have the robot run into the wall and then drive along the wall
to dispense balls than it is to follow the line to the dispenser. The method of dispensing balls
would also have to change. Instead of having a servo arm dispense the balls, there would just be
a static plastic piece at 7” height that hits the dispenser as the robot drives by. Balls would drop
into a collection area found on either side of the bot. The pitching mechanism would still be
similar to my current design. I believe with this redesign the robot would have potential for a
much higher score in competition.

20

Conclusion
Overall, this project provided an educational and fulfilling experience. The project exposed me
to the product design, implementation, and testing process. It also exposed errors or things I had
not thought about during my design process that I can account for in the future. Assembling the
robot and making sure all the parts worked together applied many of the techniques and
processes that I had learned from previous courses at Cal Poly. The Roborodentia competition
itself was also educational and fulfilling. Seeing how other people developed a solution to the
same problem was interesting. I would recommend participating in Roborodentia to anyone that
has an interest in robotics.

21

