
Bipartite Graph Packing Problems

Collin Wong

June 9, 2018

1 Introduction
The overarching problem of this project was trying to find the maximal number of disjoint sub-
graphs of a certain type we can pack into any graph. These disjoint graphs could be of any type
in the original problem. However, they were limited to be T2 trees for my research (T2 trees are
defined in section 2.1 of the paper). In addition, most of my work was focused on packing these
T2 trees into constrained bipartite graphs (also defined in section 2.1 of the paper).

Even with these specific constraints applied to the overall problem, the project still branched into
different subproblems such as packing trees into complete bipartite graphs and finding minimal
and maximal bounds for packing these graphs.

2 The Initial Problem

2.1 Packing T2 Trees into Undirected Bipartite Graphs
Suppose we have an undirected, bipartite graph G, where the vertices of G are partitioned into
vertex sets S and T, and |S| = |T| + 1. Assume that G is a finite graph with no loops or multiple
edges. We will define a T2 tree to be a spanning tree in which every vertex in T has a degree of
exactly 2. What is the maximum number of disjoint T2 trees we can form on graph G?

2.2 Initial Notes on the Problem
From this problem, it is important to highlight important facts about these T2 trees. Because the
trees are disjoint, none of the T2 trees drawn on a graph G can have any similar edges (in other
words, each edge in G can only be used in one T2 tree). In addition, each tree must be spanning,
so every vertex in S and T must be touched by every tree. Lastly, these must be trees, so no cycles
can be formed in any one T2 tree.

2.3 Drawing Trees
Initially, it was easiest to draw complete bipartite graphs as it allowed more T2 trees to fit within
the graph. Therefore, the upper three drawings in Figure 1 show the maximum number of trees
on the first three complete bipartite graphs: K2,1,K3,2, and K4,3.

After, I attempted to draw T2 trees that were not paths on some graphs. An example of this
approach is Tree 1 in the bottom right graph of Figure 1. This showed to be much harder as
forming cycles was much easier when not trying to find T2 paths. In addition, these trees usually
resulted in failures to create the maximum number of T2 trees on the graphs.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219380092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Initial Drawings of Packing T2 Trees into Bipartite Graphs.

2.4 Observation from Initial Drawings
Drawing T2 trees on different bipartite graphs gave some initial insights on certain bounds of this
problem:

● By definition, Graph G must have at least (2 x |T|) edges in order to have one T2 tree

● Because the T2 trees must be spanning, the maximum number of T2 trees on G ≤ min degree of
all vertices in S

● Also by the definition of the T2 tree, the maximum number of T2 trees on G ≤ ⌊min degree of all vertices in T
2

⌋

● From studying the complete graphs, the maximum number of T2 trees on G ≤ ⌊ ∣S∣
2
⌋

2.5 Theorem I: Minimum Edges to Form a T2 Tree
From the initial drawings, we can see that Graph G must have at at least (2 x |T|) edges in order
to form one T2 tree.

Theorem: In an undirected, bipartite graph G, where the vertices of G are partitioned into vertex
sets S and T, and |S| = |T| + 1, G must have at at least (2 x |T|) edges in order to form one T2

tree.

2

Proof. Suppose we have a Bipartite Graph G = (S ∪ T, E), where |S| = |T| + 1.
By definition, every vertex in T must have a degree of exactly 2 to form one T2 tree on G.
Therefore, there must be at least (2 x |T|) edges to form one T2 tree on G.

2.6 Theorem II: Maximum Edges Without Forming a T2 Tree
Another interesting case was to see how many edges can be added to graph G until the addition
of one more would surely create a T2 tree. For graph G, the max number of edges resulted from
connecting every vertex minus one in S to every vertex in T.

Theorem: In an undirected, bipartite graph G, where the vertices of G are partitioned into vertex
sets S and T, and |S| = |T| + 1, the maximum number of edges in G without forming a T2 tree is
|T|2 edges.

Proof. Suppose we want to find the maximum number of edges without forming a T2 tree on a
graph where n = |S| and m = |T|.

We can create a complete bipartite graph Km,m = (S ∪ T, E) and add a vertex into S, sd, so
that each vertex in T is connected to each vertex in S\sd. We will call this graph G.

In graph G, there is no possible way to form a T2 tree because T2 trees must be spanning and
there are no edges incident to sd.

In addition, we cannot add any more edges to S\sd, because it was created by the complete
graph Km,m.

Therefore, the only way to add an edge to G is with an edge from sd to a vertex in T.
Claim: Adding one more edge to the G will always create a T2 tree.
Proof:
Label the vertices in S: s1, s2, s3, . . . , sn
Label the vertices in T: t1, t2, t3, . . . , tn−1
We will say there are edges from every vertex in T to every vertex in S except sn (In this proof of
the claim, sn refers to the vertex sd in the encasing proof). Therefore, we can only add an edge
from sn to any vertex in T.
If we add an edge from sn to tx, where x is any integer from 1 to (n-1), we can use this formula to
find a T2 tree: sntxs1tx+1s2 . . . sn−2tx − 1sn−1
Therefore, there will always be a T2 tree in the graph after adding one more edge to G. ∎

Therefore, there can be no more edges added to G without forming a T2 tree on G.
Therefore, the maximum number of edges that we can have in a graph without forming a T2

tree is |T|2.

Figure 2: Graph with the max number of edges
without forming a T2 Tree.

3 The Complete Bipartite Graph: Kn,m

3.1 Investigation of Kn,m

The Complete Bipartite Graph Kn,m is the graph G = (S ∪ T, E), where n = |S| and m = |T|, n =
m + 1, and E contains an edge from every vertex in S to every vertex in T. The complete bipartite

3

Figure 3: T2 trees on K2,1, K3,2, and K4,3.

graph Kn,m is an important special case because the graph has every possible edge connecting
its vertices, while keeping the bipartite and no multiple edges or loops conditions. Investigation
of Kn,m, showed that it was easiest to form T2 trees on the complete bipartite graph with paths.
However, it is important to note that is may not be the case for every possible bipartite graph.

In addition, the complete graph Kn,m was useful to research because it helped form an upper
bound on the maximum number of T2 trees on all bipartite graphs, where n = m + 1. In Figure 3 ,
I have drawn the maximum number of T2 trees on K2,1, K3,2, and K4,3. However, after continuing
to draw K5,4, K6,5, and K7,6, it became obvious that each graph had ⌊n

2
⌋ disjoint T2 trees on it.

Therefore, I conjectured that this special graph Kn,m must have ⌊n
2
⌋ disjoint T2 paths on the graph

(paths are trees by definition).

3.2 Theorem III: Packing Maximal T2 trees on Kn,m

Theorem: A complete bipartite graph G = (S ∪ T, E), where |S| = |T| + 1, must have ⌊ ∣S∣
2
⌋

disjoint T2 paths on the graph.
Input: A complete bipartite graph G = (S ∪ T, E), where |S| = n, |T| = n - 1, and n > 1. Goal:
⌊n
2
⌋ disjoint T2 paths

Proof. Pink with rgb
Label the vertices in S: s1, s2, s3, . . . , sn
Label the vertices in T: t1, t2, t3, . . . , tn−1
Paths:
First : s1t1s2t2s3t3 . . . sn−1tn−1sn
Second : s3t1s4t2s5t3 . . . sntn−2s1tn−1s2
...
General: skt1sk+1t2sk+2t3 . . . sk−2tn−1sk−1

Case 1: n is even
Last : sn−1t1snt2s1t3 . . . sn−3tn−1sn−2
These are n

2
disjoint T2 paths on G. Because all edges are used, there cannot be more T2

trees/paths.

Case 2: n is odd
Last : sn−2t1sn−1t2snt3 . . . sn−4tn−1sn−3
These are n−1

2
or ⌊n

2
⌋ disjoint T2 paths on G.

The graph G initially has |S| x |T|, or n(n - 1), edges.
We know each disjoint T2 tree uses 2|T|, or 2(n - 1), edges of G.
We have created n−1

2
disjoint T2 paths on G, so we have used:

4

[n − 1

2
trees] ∗ [2(n − 1) edges

tree
] = (n − 1)2 edges (1)

We can use this to determine how many edges remaining in graph G.

n(n − 1) − (n − 1)2 = (n − 1) edges remaining (2)

We are left with (n - 1), or |T|, edges left in G, and we know we need at least 2(n - 1), or 2|T|,
edges to form another T2 path/tree.

For all n > 1, 2(n - 1) > (n - 1).
Therefore, there cannot be more T2 trees/paths.

3.3 Failures on packing the Maximal Number of T2 trees on Kn,m

While attempting to draw T2 trees on Kn,m, there were many failures, where failures are defined
as drawing less than ⌊ ∣S∣

2
⌋ disjoint T2 trees on the graph. These failures resulted from starting

on a non-minimal degree vertex of S when drawing the T2 paths, avoiding paths altogether, and
creating cycles inside the T2 trees.

If S contains an odd number of vertices, then we can still create ⌊ ∣S∣
2
⌋ disjoint T2 paths on the

graph while starting on non-minimal edges of the graph. However, when S has an even number of
vertices, each T2 path must start on minimal degree vertex of S.

In addition, attempting to use non-paths in the Kn,m graph resulted in failures. For example,
creating a T2 tree that contains a star tree (with one vertex in S as the center vertex and all other
vertices in T) will result in a failure (proved in Conjecture II). This example is shown in Figure 5.

The most common error was creating a cycle while trying to create a T2 tree when not using
the Construction in Conjecture I for finding T2 trees on Kn,m. It could also be possible to use
Depth First Search in order to find a path to fix this problem.

Figure 4: Example of a graph where you cannot create a T2 tree.

3.4 Theorem IV: Disjoint Star Trees
Theorem: A graph can never have two disjoint spanning trees, one of which is a star.

Proof. Suppose we have a graph G = (V, E) that has no multiple edges.
Suppose graph G contains a star tree, S, that has a center vertex vc and edges ES .

5

Since vc is adjacent to every other vertex in G, G\ES leaves vc as an isolated vertex.
Therefore, there cannot be another spanning tree in G\ES as vc is an isolated vertex.
Therefore, a graph with a star spanning tree cannot have another disjoint spanning tree.

Figure 5: An graphical representation of Conjecture II.

4 Research on Related Problems

4.1 Lovász on Kneser’s Conjecture
In the paper Kneser’s Conjecture, Chromatic Number, and Homotopy, Lovász attempts to gener-
alize Kneser’s Conjecture. "If the simplicial complex formed by the neighborhoods of points of a
graph is (k-2)-connected, then the graph is not k-colorable" [1]. This conjecture was used to prove
this theorem: "If we split the n-subsets of a (2n+k) element subset, one of the classes will contain
two disjoint n-subsets" [1]. In these definitions, it is still unclear what a simplicial complex is, but
an n-subset is a subset of exactly n distinct elements of the set.

As an example of this, suppose n = 2 and k = 1, and the set is 1, 2, 3, 4, 5. Therefore, the
2-subsets are: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5). We will separate
classes into subsets that do not contain the element 1 and subsets that do contain the element 1.

The two classes are:
Class 1 (that contains 1) : (1,2), (1,3), (1,4), (1,5)
Class 2 (does not contain 1): (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)

As shown, there are actually three pairs of two disjoint n-subsets in Class 2: (2,3)/(4,5), (2,4)/(3,5),
and (3,4)/(2,5). Moreover, Lovász includes another theorem that can be deduced from the first
theorem: "The chromatic number of Kneser’s graph KGn,k is k+1" [Lov77].
In Figure 6, we can see the previous example in graph form. This shows the 2 classes from the
earlier example. In addition, it shows the minimum coloring of the graph is 3 (red, yellow, and
blue vertices). Therefore, the chromatic number of KG2,1 is 3.

Unfortunately, after reading this paper, it was decided that it had no applications to the graph
packing problems I was working on.

6

Figure 6: Kneser’s graph KG2,1 (n = 2, k = 1).

4.2 Lovász on Konig’s Theorem
In his other paper, A Generalization of Konig’s Theorem, Lovász gives a generalization of Konig’s
Theorem which was originally stated for bipartite graphs. The theorem states "the maximum
number of (pairwise) independent edges of a bipartite graph G equals to the minimum number of
vertices covering all the edges of G" [Lov70].

Lovász uses many variables and functions without clear explanations in this paper, so it was
difficult to understand this paper. Nevertheless, it was also decided that this edge/vertex cover
theorem was also not helpful for bipartite graph packing.

4.3 Lovász on Covering Graphs
In the paper On Covering of Graphs, Lovász discusses how we can minimally cover graphs given
certain constraints. In this paper, he considers undirected graphs without multiple edges. The
investigation begins with covering graphs with a minimal number of paths and circuits. He gives
a theorem that says "A graph of n vertices can be covered by ≤ ⌊n

2
⌋ disjoint paths and [cycles]"

[Lov68]. He also goes on to give another theorem about complete graphs that says "a graph of n
vertices can be covered by ⌊n2

2
⌋ complete graphs" [Lov68].

Although this paper initially seemed related to the problem, it only talked about minimal cov-
erings instead of maximal coverings which would relate to our problem of packing the maximal
amount of subgraphs into a graph.

7

5 The Chinese Postman Problem

5.1 Definitions
In his paper Matching, Euler Tours and the Chinese Postman, Edmonds discusses the interesting
problem of the Chinese postman, as well as its subproblems of finding matchings and Euler tours.
In order to understand the problem, it is important to define these five terms:

• "A simple tour of G is a [cycle] which contains every edge e at least once" [Edm73].

• "A postman tour of G is a [cycle] which contains every edge at least once" [Edm73].

• "An Euler tour of G is a [cycle] which contains every edge exactly once" [Edm73].

• "The length ce of an edge e, [the weight of the edge], is assumed to be a non-negative number"
[Edm73].

• "The length of a tour is ∑l
i=1 cei , where l is the number of edges in the tour" [Edm73].

5.2 The Problem
The Chinese postman problem is to find the shortest postman tour in a undirected, connected
graph, where shortest does not mean the least number of edges, but rather the shortest length of
the tour. While this definition may seem like it is really one problem, it is actually almost always
going to be two different problems.

If the graph already contains an Euler tour, then we will just need to find the Euler tour. This
is because if the graph contains an Euler tour, then that tour is the shortest postman tour as no
edges will have to be repeated in the tour and each edge is included at least once. In order to
determine this, there is a theorem that says: if every vertex in graph G has an even degree, then
G for sure has a Euler Tour. If this is true, we will say the graph is graph G’ and move onto 5.4
Finding The Euler Tour.

However, if the graph does not contain a Euler tour, we will have to add edges to the graph
in order to create this Euler Tour, as well as finding the Euler tour.

5.3 Matching Problem
Suppose we have a graph G = (V,E), which does not contain an Euler tour. We will be adding
edges to graph G to create graph G’. We will do this by implementing a Matching Algorithm:

1. Add each odd-degree vertex in G to Gp.

2. Find the shortest path between every odd-degree vertex in G (There are O(∣V ∣3) time algo-
rithms for this), and add an edge in Gp between every edge. Each edge in Gp will have a
weight of the length of the shortest path in G of the two adjacent vertices to the edge.

3. Find an optimum 1-matching, M: a set of edges with the least possible total weight where
every vertex only touches an edge once.

4. For each edge in M, m, add an edge into G with the same weight as each edge in the shortest
path corresponding to the edge m. We will call this new graph G’.

In this algorithm, there must be a 1-matching because of the theorem that says: in a connected
graph, there must be an even number of odd degree vertices. Because G was connected and added
only its odd degree vertices to Gp, Gp must have an even number of vertices. In addition, Gp

will always be the complete graph because each vertex has an edge to every other vertex in Gp.
Therefore, there must always be a 1-matching in Gp.

8

5.4 Finding the Euler Tour
Once you have graph G’, a graph with an Euler tour, we will need an algorithm to actually find
a series of edges to follow to find an Euler tour. Edmonds calls this an End-Pairing Algorithm,
Algorithm 1. This algorithm will return the tour in the form of a list of edges of the tour. Keep
in mind that this is not a unique Euler Tour, as there can be many Euler tours. However, we now
have the shortest Postman tour of graph G’.

5.5 Applications to the Problem
Although this problem does not pack graphs, the matching algorithm relates to our problem of
packing because it is packing as many edges in a graph with the constraint that each vertex can
only touch one edge. However, this matching problem is different because we are adding in edges
into a graph whereas our problem does not allow adding edges into the graph.

Algorithm 1 End-Pairing Algorithm
Input: Graph G’ = (V’, E’) that contains an Euler Tour
Output: A list of edges of a Euler Tour of G’
1: function Pair-Ends(G’ = (V’, E’))
2: tour = ∅
3: mark all edges in E’ as unused
4: do
5: if tour == ∅ then
6: vo = any vertex in V’ connected to an unused edge in E’
7: else
8: vo = any vertex in V’ connected to an unused edge in E’ and connected to an edge

in the tour
9: end if

10: v = vo
11: currentTour = ∅
12: do
13: e = an unused edge in E’ incident to v
14: mark e as used
15: append e to currentTour
16: v = the other vertex incident to e that is not the current v
17: while v is incident to an unused edge in E’
18: if tour == ∅ then
19: tour = currentTour
20: else
21: interject currentTour into tour between two consecutive edges in tour that are both

incident to v0
22: end if
23: while There exists an unused edge in E’
24: return tour
25: end function

References
[Edm73] Jack Edmonds. Matching, euler tours and the chinese postman. 1973. Waterloo, Canada.

[Lov68] Lubromir Lovász. On covering of graphs. 1968. Budapest, Hungary.

[Lov70] Lubromir Lovász. A generalization of konig’s theorm. 1970. Budapest, Hungary.

[Lov77] Lubromir Lovász. Kneser’s conjecture, chromatic number, and homotopy. 1977. Szeged,
Hungary.

9

	Introduction
	The Initial Problem
	Packing T₂ Trees into Undirected Bipartite Graphs
	Initial Notes on the Problem
	Drawing Trees
	Observation from Initial Drawings
	Theorem I: Minimum Edges to Form a T₂ Tree
	Theorem II: Maximum Edges Without Forming a T₂ Tree

	The Complete Bipartite Graph: K₂
	Investigation of K₂
	Theorem III: Packing Maximal T₂ trees on K₂
	Failures on packing the Maximal Number of T₂ trees on K₂
	Theorem IV: Disjoint Star Trees

	Research on Related Problems
	Lovász on Kneser's Conjecture
	Lovász on Konig's Theorem
	Lovász on Covering Graphs

	The Chinese Postman Problem
	Definitions
	The Problem
	Matching Problem
	Finding the Euler Tour
	Applications to the Problem

