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Abstract. This paper presents a provably correct method for robot
navigation in 2D environments cluttered with familiar but unexpected
non-convex, star-shaped obstacles as well as completely unknown, con-
vex obstacles. We presuppose a limited range onboard sensor, capable of
recognizing, localizing and (leveraging ideas from constructive solid ge-
ometry) generating online from its catalogue of the familiar, non-convex
shapes an implicit representation of each one. These representations un-
derlie an online change of coordinates to a completely convex model plan-
ning space wherein a previously developed online construction yields a
provably correct reactive controller that is pulled back to the physically
sensed representation to generate the actual robot commands. We extend
the construction to differential drive robots, and suggest the empirical
utility of the proposed control architecture using both formal proofs and
numerical simulations.

Keywords: Motion and Path Planning · Collision Avoidance · Vision
and Sensor-based Control.

1 Introduction

1.1 Motivation and Prior Work

Recent advances in the theory of sensor-based reactive navigation [2] and its
application to wheeled [3] and legged [28] robots promote its central role in
provably correct architectures for increasingly complicated mobile manipulation
tasks [29, 31]. The advance of the new theory [2] over prior sensor-based col-
lision avoidance schemes [5–8, 10, 11, 15, 20, 26] was the additional guaranteed
convergence to a designated goal which had theretofore only been established
for reactive planners possessing substantial prior knowledge about the environ-
ment [19, 24]. A key feature of these new (and other recent parallel [14, 21])

? This work was supported by AFRL grant FA865015D1845 (subcontract 6697371).
The authors thank Dr. Omur Arslan for many formative discussions and for sharing
his simulation and presentation infrastructure.
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approaches is that they trade away prior knowledge for the presumption of sim-
plicity: unknown obstacles can be successfully negotiated in real time without
losing global convergence guarantees if they are “round” (i.e., very strongly con-
vex in a sense made precise in [3]). The likely necessity of such simple geometry
for guaranteed safe convergence by a completely uninformed “greedy” reactive
navigation planner is suggested by the result that a collision avoiding, distance-
diminishing reactive navigation policy can reach arbitrarily placed goals in an
unknown freespace only if all obstacles are “round” [3, Proposition 14].

This paper offers a step toward elucidating the manner in which partial
knowledge may suffice to inform safe, convergent, reactive navigation in geomet-
rically more interesting environments. Growing experience negotiating learned
[12] or estimated [17,27] environments suggests that reasonable statistical priors
may go a long way toward provable stochastic navigation. But in this work we
are interested in what sort of deterministic guarantees may be possible. Recent
developments in semantic SLAM [9] and object pose and triangular mesh ex-
traction using convolutional neural net architectures [16, 18, 22] now provide an
avenue for incorporating partial prior knowledge within a deterministic frame-
work well suited to the vector field planning methods reviewed above.

1.2 Contributions and Organization of the Paper

We consider the navigation problem in a 2D workspace cluttered with unknown
convex obstacles, along with “familiar” non-convex, star-shaped obstacles [23]
that belong to classes of known geometries, but whose number and placement
are unknown, awaiting discovery at execution time. We assume a limited range
onboard sensor, a sufficient margin separating all obstacles from each other and
the goal, and a catalogue of known star-shaped sets, along with a “mapping
oracle” for their online identification and localization in the physical workspace.
These ingredients suggest a representation of the environment taking the form
of a “multi-layer” triple of topological spaces whose realtime interaction can be
exploited to integrate the geometrically naive sensor driven methods of [2] with
the offline memorized geometry sensitive methods of [24]. Specifically, we adapt
the construction of [23] to generate a realtime smooth change of coordinates (a
diffeomorphism) of the mapped layer of the environment into a (locally) topolog-
ically equivalent but geometrically more favorable model layer relative to which
the reactive methods of [2] can be directly applied. We prove that the conjugate
vector field defined by pulling back the reactive model space planner through
this diffeomorphism induces a vector field on the robot’s physical configuration
space that inherits the same formal guarantees of obstacle avoidance and con-
vergence. We extend the construction to the case of a differential drive robot,
by pulling back the extended field over planar rigid transformations introduced
for this purpose in [2] through a suitable polar coordinate transformation of the
tangent lift of our original planar diffeomorphism and demonstrate, once again,
that the physical differential drive robot inherits the same obstacle avoidance and
convergence properties as those guaranteed for the geometrically simple model
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robot [2]. Finally, to better support online implementation of these constructions,
we adopt modular methods for implicit description of geometric shape [25].

The paper is organized as follows. Section 2 describes the problem and es-
tablishes our assumptions. Section 3 describes the physical, mapped and model
planning layers used in the constructed diffeomorphism between the mapped
and model layers, whose properties are established next. Based on these results,
Section 4 describes our control approach both for fully actuated and differen-
tial drive robots. Section 5 presents a variety of illustrative numerical studies
and Section 6 concludes by summarizing our findings and presenting ideas for
future work. Finally, the reader is referred to Appendix A and Appendix B of
the accompanying technical report [30] for the proofs of our main results and a
sketch of the ideas from computational geometry [25] underlying our modular
construction of implicit representations of polygonal obstacles, respectively.

2 Problem Formulation

We consider a disk-shaped robot with radius r > 0, centered at x ∈ R2, nav-
igating a closed, compact workspace W ⊂ R2, with known convex boundary
∂W. The robot is assumed to possess a sensor with fixed range R, capable of
recognizing “familiar” objects, as well as estimating the distance of the robot to
nearby obstacles3.

The workspace is cluttered by an unknown number of fixed, disjoint obstacles,
denoted by O := (O1, O2, . . .). We adopt the notation in [2] and define the
freespace as

F :=

{
x ∈W

∣∣∣B(x, r) ⊆W \
⋃
i

Oi

}
(1)

where B(x, r) is the open ball centered at x with radius r, and B(x, r) denotes
its closure. To simplify our notation, we neglect the robot dimensions, by dilating
each obstacle in O by r, and assume that the robot operates in F. We denote
the set of dilated obstacles by Õ.

Although none of the positions of any obstacles in Õ are à-priori known, a
subset Õ∗ ⊆ Õ of these obstacles is assumed to be “familiar” in the sense of
having an à-priori known, readily recognizable star-shaped geometry [23] (i.e.,
belonging to a known catalogue of star-shaped geometry classes), which the robot
can efficiently identify and localize instantaneously from online sensory measure-
ment. Although the implementation of such a sensory apparatus lies well beyond
the scope of the present paper, recent work on semantic SLAM [9] provides an
excellent example with empirically demonstrated technology for achieving this
need for localizing, identifying and keeping track of all the familiar obstacles
encountered in the otherwise unknown environment. The à-priori unknown cen-
ter of each catalogued star-shaped obstacle Õ∗i is denoted x∗i . Similarly to [24],

3 We refer the reader to an example of existing technology [1] generating 2D LIDAR
scans from 3D point clouds for such an approach.
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each star-shaped obstacle Õ∗i ∈ Õ∗ can be described by an obstacle function, a
real-valued map providing an implicit representation of the form

Õ∗i = {x ∈ R2 |βi(x) ≤ 0} (2)

which the robot must construct online from the catalogued geometry, after it
has localized Õ∗i . The remaining obstacles Õconvex := Õ\Õ∗ are are assumed to
be strictly convex but are in all other regards (location and specific shape) com-
pletely unknown to the robot, while nevertheless satisfying a curvature condition
given in [2, Assumption 2].

For the obstacle functions, we require the technical assumptions introduced
in [24, Appendix III], outlined as follows.

Assumption 1. The obstacle functions satisfy the following requirements

a) For each Õ∗i ∈ Õ∗, there exists ε1i > 0 such that for any two obstacles
Õ∗i , Õ

∗
j ∈ Õ∗

{x |βi(x) ≤ ε1i}
⋂
{x |βj(x) ≤ ε1j} = ∅ (3)

i.e., the “thickened boundaries” of any two stars still do not overlap.
b) For each Õ∗i ∈ Õ∗, there exists ε2i > 0 such that the set {x |βi(x) ≤ ε2i} does

not contain the goal xd ∈ F and does not intersect with any other obstacle
in Õconvex.

c) For each obstacle function βi, there exists a pair of positive constants (δi, ε3i)
satisfying the inner product condition4

(x− x∗i )
>∇βi(x) ≥ δi (4)

for all x ∈ R2 such that βi(x) ≤ ε3i.

For each obstacle Õ∗i ∈ Õ∗, we then define εi = min{ε1i, ε2i, ε3i}. Finally, we
will assume that the range of the sensor R satisfies R >> εi for all i.

Based on these assumptions and further positing first-order, fully-actuated
robot dynamics ẋ = u(x), the problem consists of finding a Lipschitz continuous
controller u : F → R2, that leaves the freespace F positively invariant and
asymptotically steers almost all configurations in F to the given goal xd ∈ F.

3 Multi-layer Representation of the Environment and Its
Associated Transformations

In this Section, we introduce associated notation for, and transformations be-
tween three distinct representations of the environment that we will refer to as
planning “layers” and use in the construction of our algorithm. Fig. 1 illustrates
the role of these layers and the transformations that relate them in constructing
and analyzing a realtime generated vector field that guarantees safe passage to

4 A brief discussion on this condition is given in [30, Appendix B].
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Fig. 1. Snapshot Illustration of Key Ideas. The robot in the physical layer (left frame,
depicting in blue the robot’s placement in the workspace along with the prior trajec-
tory of its centroid) containing both familiar objects of known geometry but unknown
location (dark grey) and unknown obstacles (light grey), moves towards a goal and dis-
covers obstacles (black) with an onboard sensor of limited range (orange disk). These
obstacles are localized and stored permanently in the mapped layer (middle frame, de-
picting in blue the robot’s placement as a point in freespace rather than its body in the
workspace) if they have familiar geometry or temporarily, with just the corresponding
sensed fragments, if they are unknown. An online map h(x) is then constructed (Sec-
tion 3), from the mapped layer to a geometrically simple model layer (right frame, now
depicting the robot’s placement and prior tractory amongst the h-deformed convex
images of the mapped obstacles). A doubly reactive control scheme for convex envi-
ronments [2] defines a vector field on the model layer which is pulled back in realtime
through the diffeomorphism to generate the input in the physical layer (Section 4).

the goal. The new technical contribution is an adaptation of the methods of [24]
to the construction of a diffeomorphism, h, where the requirement for fast, on-
line performance demands an algorithm that is as simple as possible and with
few tunable parameters. Hence, since the reactive controller in [2] is designed to
(provably) handle convex shapes, sensed obstacles not recognized by the seman-
tic SLAM process are simply assumed to be convex (implemented by designing
h to resolve to the identity transformation in the neighborhood of “unfamiliar”
objects) and the control response defaults to that prior construction.

3.1 Description of Planning Layers

Physical Layer The physical layer is a complete description of the geometry of
the unknown actual world and while inaccessible to the robot is used for purposes
of analysis. It describes the actual workspace W, punctured with the obstacles
O. This gives rise to the freespace F, given in (1), consisting of all placements of
the robot’s centroid that entail no intersections of its body with any obstacles.
The robot navigates this layer, and discovers and localizes new obstacles, which
are then stored in its semantic map if their geometry is familiar.
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Mapped Layer The mapped layer Fmap has the same boundary as F (i.e.
∂Fmap := ∂F) and records the robot’s evolving information about the envi-
ronment aggregated from the raw sensor data about the observable portions of
N ≥ 0 unrecognized (and therefore, presumed convex) obstacles {Õ1, . . . , ÕN} ⊆
Õconvex, together with the inferred star centers x∗j and obstacle functions βj of

M ≥ 0 star-shaped obstacles {Õ∗1 , . . . , Õ∗M} ⊆ Õ∗, that are instantiated at the
moment the sensory data triggers the “memory” that identifies and localizes
a familiar obstacle. It is important to note that the star environment is con-
stantly updated, both by discovering and storing new star-shaped obstacles in
the semantic map and by discarding old information and storing new informa-
tion regarding obstacles in Õconvex. In this representation, the robot is treated
as a point particle, since all obstacles are dilated by r in the passage from the
workspace to the freespace representation of valid placements.

Model Layer The model layer Fmodel has the same boundary as F (i.e. ∂Fmodel :=
∂F) and consists of a collection of M Euclidean disks, each centered at one of
the mapped star centers, x∗j , j = 1, . . . ,M , and copies of the sensed fragments of

the N unrecognized visible convex obstacles in Õconvex. The radii {ρ1, . . . , ρM}
of the M disks are chosen so that B(x∗j , ρj) ⊆ {x |βj(x) < 0}, as in [24].

This metric convex sphere world comprises the data generating the doubly
reactive algorithm of [2], which will be applied to the physical robot via the online
generated change of coordinates between the mapped layer and the model layer
to be now constructed.

3.2 Description of the C∞ Switches

In order to simplify the diffeomorphism construction, we depart from the con-
struction of analytic switches [23] and rely instead on the C∞ function ζ : R→ R
[13] described by

ζ(χ) =

{
e−1/χ, χ > 0

0, χ ≤ 0
(5)

with derivative

ζ ′(χ) =

{
ζ(χ)
χ2 , χ > 0

0, χ ≤ 0
(6)

Based on that function, we can then define the C∞ switches for each star-shaped
obstacle Õ∗j in the semantic map as

σj(x) = ηj ◦ βj(x), j = 1, . . . ,M (7)

with ηj(χ) = ζ(εj − χ)/ζ(εj) and εj given according to Assumption 1. The
gradient of the switch σj is given by

∇σj(x) = (η′j ◦ βj(x)) · ∇βj(x) (8)
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Finally, we define

σd(x) = 1−
M∑
j=1

σj(x) (9)

Using the above construction, it is easy to see that σj(x) = 1 on the boundary
of the j-th obstacle and σj(x) = 0 when βj(x) > εj for each j = 1, . . . ,M . Based
on Assumption 1 and the choice of εj for each j, we are, therefore, led to the
following results.

Lemma 1. At any point x ∈ Fmap, at most one of the switches {σ1, . . . , σM}
can be nonzero.

Corollary 1. The set {σ1, . . . , σM , σd} defines a partition of unity over Fmap.

3.3 Description of the Star Deforming Factors

The deforming factors are the functions νj(x) : Fmap → R, j = 1, . . . ,M , respon-
sible for transforming each star-shaped obstacle into a disk in R2. Once again,
we use here a slightly different construction than [23], in that the value of each
deforming factor νj at a point x does not depend on the value of βj(x). Namely,
the deforming factors are given based on the desired final radii ρj , j = 1, . . . ,M
as

νj(x) =
ρj

||x− x∗j ||
(10)

We also get

∇νj(x) = − ρj
||x− x∗j ||3

(x− x∗j ) (11)

3.4 The Map Between the Mapped and the Model Layer

Construction The map forM star-shaped obstacles centered at x∗j , j = 1, . . . ,M
is described by a function h : Fmap → Fmodel given by

h(x) =

M∑
j=1

σj(x)
[
νj(x)(x− x∗j ) + x∗j

]
+ σd(x)x (12)

Note that the N visible convex obstacles {Õ1, . . . , ÕN} ⊆ Õconvex are not
considered in the construction of the map. Since the reactive controller used
in the model space Fmodel can handle convex obstacles and there is enough
separation between convex and star-shaped obstacles according to Assumption
1-(b), we can “transfer” the geometry of those obstacles directly in the model
space using the identity transformation.

Finally, note that Assumption 1-(b) implies that h(xd) = xd, since the target
location is assumed to be sufficiently far from all star-shaped obstacles.
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Based on the construction of the map h, the jacobian Dxh at any point
x ∈ Fmap is given by

Dxh =

M∑
j=1

{
σj(x)νj(x)I + (x− x∗j )

[
σj(x)∇νj(x)> + (νj(x)− 1)∇σj(x)>

]}
+σd(x)I

(13)

Qualitative Properties of the Map We first verify that the construction is
a smooth change of coordinates between the mapped and the model layers.

Lemma 2. The map h from Fmap to Fmodel is smooth.

Proof. Included in Appendix A.1 of the accompanying technical report [30]. �

Proposition 1. The map h is a C∞ diffeomorphism between Fmap and Fmodel.

Proof. Included in Appendix A.1 of the accompanying technical report [30]. �

Implicit representation of obstacles To implement the diffeomorphism be-
tween Fmap and Fmodel, shown in (12), we rely on the existence of a smooth
obstacle function βj(x) for each star-shaped obstacle j = 1, . . . ,M stored in the
semantic map. Since recently developed technology [16,18,22] provides means of
performing obstacle identification in the form of triangular meshes, in this work
we focus on polygonal obstacles on the plane and derive implicit representations
using so called “R-functions” from the constructive solid geometry literature [25].
In [30, Appendix B], we describe the method used for the construction of such
implicit functions for polygonal obstacles that have the desired property of be-
ing analytic everywhere except for the polygon vertices. For the construction,
we assume that the sensor has already identified, localized and included each
discovered star-shaped obstacle in Fmap; i.e., it has determined its pose in Fmap,
given as a rotation Rj of its vertices on the plane followed by a translation of
its center x∗j , and that the corresponding polygon has already been dilated by r
for inclusion in Fmap.

4 Reactive Controller

4.1 Reactive Controller for Fully Actuated Robots

Construction First, we consider a fully actuated particle with state x ∈ Fmap,
whose dynamics are described by

ẋ = u (14)

The dynamics of the fully actuated particle in Fmodel with state y ∈ Fmodel are
described by ẏ = v(y) with the control v(y) given in [2] as5

v(y) = −k
(
y −ΠLF(y)(xd)

)
(15)

5 Here ΠC(q) denotes the metric projection of q on a convex set C.
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Here, the convex local freespace for y, LF(y) ⊂ Fmodel, is defined as in [2, Eqn.
(30)]. Using the diffeomorphism construction in (12) and its jacobian in (13), we
construct our controller as the vector field u : Fmap → TFmap given by

u(x) = [Dxh]−1 · (v ◦ h(x)) (16)

Qualitative Properties First of all, if the range of the virtual LIDAR sensor
used to construct LF(y) in the model layer is smaller than R, the vector field u
is Lipschitz continuous since v(y) is shown to be Lipschitz continuous in [2] and
y = h(x) is a smooth change of coordinates. We are led to the following result.

Corollary 2. The vector field u : Fmap → TFmap generates a unique continu-
ously differentiable partial flow.

To ensure completeness (i.e. absence of finite time escape through boundaries
in Fmap) we must verify that the robot never collides with any obstacle in the
environment, i.e., leaves its freespace positively invariant.

Proposition 2. The freespace Fmap is positively invariant under the law (16).

Proof. Included in Appendix A.2 of the accompanying technical report [30]. �

Lemma 3. 1. The set of stationary points of control law (16) is given as

{xd}
⋃
{h−1(sj)}j∈{1,...,M}

⋃N
i=1 Gi, where6

sj = x∗j − ρj
xd − x∗j
||xd − x∗j ||

(17a)

Gi :=

{
q ∈ Fmap

∣∣∣ d(q, Oi) = r,
(q−ΠOi

(q))>(q− xd)

||q−ΠOi
(q)|| ||q− xd||

= 1

}
(17b)

with j spanning the M star-shaped obstacles in Fmap and i spanning the N
convex obstacles in Fmap.

2. The goal xd is the only locally stable equilibrium of control law (16) and all

the other stationary points {h−1(sj)}j∈{1,...,M}
⋃N
i=1 Gi, each associated with

an obstacle, are nondegenerate saddles.

Proof. Included in Appendix A.2 of the accompanying technical report [30]. �

Proposition 3. The goal location xd is an asymptotically stable equilibrium of
(16), whose region of attraction includes the freespace Fmap excepting a set of
measure zero.

Proof. Included in Appendix A.2 of the accompanying technical report [30]. �

We can now immediately conclude the following central summary statement.

Theorem 1. The reactive controller in (16) leaves the freespace Fmap positively
invariant, and its unique continuously differentiable flow, starting at almost any
robot placement x ∈ Fmap, asymptotically reaches the goal location xd, while
strictly decreasing ||h(x)− xd|| along the way.
6 Here d(A,B) = inf{||a − b|| |a ∈ A,b ∈ B} denotes the distance between two sets
A,B.
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4.2 Reactive Controller for Differential Drive Robots

In this Section, we extend our reactive controller to the case of a differential
drive robot, whose state is x := (x, ψ) ∈ Fmap × S1 ⊂ SE(2), and its dynamics
are given by7

ẋ = B(ψ)u (18)

with B(ψ) =

[
cosψ sinψ 0

0 0 1

]>
and u = (v, ω) with v ∈ R and ω ∈ R the linear

and angular input respectively. We will follow a similar procedure to the fully
actuated case; we begin by describing a smooth diffeomorphism h : Fmap×S1 →
Fmodel × S1 and then we establish the results about the controller.

Construction and Properties of the SE(2) Diffeomorphism We con-
struct our map h from Fmap × S1 to Fmodel × S1 as

y = (y, ϕ) = h(x) := (h(x), ξ(x)) (19)

with x = (x, ψ) ∈ Fmap × S1, y := (y, ϕ) ∈ Fmodel × S1 and

ϕ = ξ(x) := ∠ (e(x)) (20)

Here, ∠e := atan2(e2, e1) and

e(x) = Πy ·Dxh ·B(ψ) ·
[
1
0

]
= Dxh

[
cosψ
sinψ

]
(21)

with Πy denoting the projection onto the first two components. The reason for
choosing ϕ as in (20) will become evident in the next paragraph, in our effort to
control the equivalent differential drive robot dynamics in Fmodel.

Proposition 4. The map h in (19) is a C∞ diffeomorphism from Fmap × S1

to Fmodel × S1.

Proof. Included in Appendix A.2 of the accompanying technical report [30]. �

Construction of the Reactive Controller Using (19), we can find the push-
forward of the differential drive robot dynamics in (18) as

ẏ =

[
ẏ
ϕ̇

]
=

d

dt

[
h(x)
ξ(x)

]
=
[
Dxh ◦ h

−1
(y)
]
·
(
B ◦ h

−1
(y)
)
· u (22)

Based on the above, we can then write

ẏ =

[
ẏ
ϕ̇

]
=

d

dt

[
h(x)
ξ(x)

]
= B(ϕ)v (23)

7 We use the ordered set notation (∗, ∗, . . .) and the matrix notation
[
∗ ∗ . . .

]>
for

vectors interchangeably.
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with v = (v̂, ω̂), and the inputs (v̂, ω̂) related to (v, ω) through

v̂ = ||e(x)|| v (24)

ω̂ = vDxξ

[
cosψ
sinψ

]
+
∂ξ

∂ψ
ω (25)

with Dxξ =
[
∂ξ
∂x

∂ξ
∂y

]
. The calculation of Dxξ can be tedious, since it involves

derivatives of elements of Dxh, and is included in [30, Appendix C].

Hence, we have found equivalent differential drive robot dynamics, defined on
Fmodel×S1. The idea now is to use the control strategy in [2] for the dynamical
system in (23) to find reference inputs v̂, ω̂, and then use (24), (25) to find the
actual inputs v, ω that achieve those reference inputs as

v =
v̂

||e(x)||
(26a)

ω =

(
∂ξ

∂ψ

)−1(
ω̂ − vDxξ

[
cosψ
sinψ

])
(26b)

Namely, our reference inputs v̂ and ω̂ inspired by [2, 4] are given as8

v̂ = −k
[
cosϕ
sinϕ

]> (
y −ΠLF(y)∩H‖(xd)

)
(27a)

ω̂ = k atan


[
− sinϕ
cosϕ

]>(
y −

ΠLF(y)∩HG
(xd) + ΠLF(y)(xd)

2

)
[
cosϕ
sinϕ

]>(
y −

ΠLF(y)∩HG
(xd) + ΠLF(y)(xd)

2

)
 (27b)

with k > 0 a fixed gain, LF(y) ⊂ Fmodel the convex polygon defining the local
freespace at y = h(x), and H‖ and HG the lines defined in [2] as

H‖ =

{
z ∈ Fmodel

∣∣∣ [− sinϕ
cosϕ

]>
(z− y) = 0

}
(28)

HG = {αy + (1− α)xd ∈ Fmodel |α ∈ R} (29)

8 In (19), we construct a diffeomorphism h between Fmap × S1 and Fmodel × S1.
However, for practical purposes, we deal only with one specific chart of S1 in our
control structure, described by the angles (−π, π]. As shown in [4], the discontinuity
at ±π does not induce a discontinuity in our controller due to the use of the atan
function in (27b). On the contrary, with the use of (27b) as in [2,4], the robot never
changes heading in Fmodel, which implies that the generated trajectories both in
Fmodel and (by the properties of the diffeomorphism h) in Fmap have no cusps, even
though the robot might change heading in Fmap because of the more complicated
nature of the function ξ in (20).
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(1a) (1b) (2a) (2b)

Fig. 2. Navigation around a U-shaped obstacle: 1) Fully actuated particle: (a) Orig-
inal doubly reactive algorithm [2], (b) Our algorithm, 2) Differential drive robot: (a)
Original doubly reactive algorithm [2], (b) Our algorithm.

Qualitative Properties The properties of the differential drive robot control
law given in (26) can be summarized in the following theorem.

Theorem 2. The reactive controller for differential drive robots, given in (26),
leaves the freespace Fmap × S1 positively invariant, and its unique continuously
differentiable flow, starting at almost any robot configuration (x, ψ) ∈ Fmap ×
S1, asymptotically steers the robot to the goal location x∗, without increasing
||h(x)− xd|| along the way.

Proof. Included in Appendix A.2 of the accompanying technical report [30]. �

5 Numerical Experiments

In this Section, we present numerical experiments that verify our formal results.
All simulations were run in MATLAB using ode45, with control gain k = 0.4 and
p = 20 for the R-function construction (see [30, Appendix B]). The reader is also
referred to our video attachment for a visualization of the examples presented
here and more numerical simulations.

5.1 Comparison with Original Doubly Reactive Algorithm

We begin with a comparison of our algorithm performance with the standalone
version of the doubly reactive algorithm in [2], that we use in our construction.
Fig. 2 demonstrates the basic limitation of this algorithm; in the presence of a
non-convex obstacle or a flat surface, whose curvature violates [2, Assumption 2],
the robot gets stuck in undesired local minima. On the contrary, our algorithm
is capable of overcoming this limitation, on the premise that the robot can
recognize the obstacle with star-shaped geometry at hand. The robot radius is
0.2m and the value of ε used for the obstacle is 0.3.
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Fully actuated Differential drive

Fig. 3. Navigation in a cluttered environment with U-shaped obstacles. Top - Trajec-
tories in the physical, mapped and model layers from a particular initial condition.
Bottom - Convergence to the goal from several initial conditions: left - fully actuated
robot, right - differential drive robot.

Chair

Table 1

Table 2

Armchair

Couch

Fully actuated Differential drive

Fig. 4. Navigating a room cluttered with known star-shaped and unknown convex
obstacles. Top - Trajectories in the physical, mapped and model layers from a particular
initial condition. Bottom - Convergence to the goal from several initial conditions: left
- fully actuated robot, right - differential drive robot. Mapped obstacles are shown in
black, known obstacles in dark grey and unknown obstacles in light grey.
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5.2 Navigation in a Cluttered Non-Convex Environment

In the next set of numerical experiments, we evaluate the performance of our
algorithm in a cluttered environment, packed with instances of the same U-
shaped obstacle, with star-shaped geometry, we use in Fig. 2. Both the fully
actuated and the differential drive robot are capable of converging to the desired
goal from a variety of initial conditions, as shown in Fig. 3. In the same figure, we
also focus on a particular initial condition and include the trajectories observed
in the physical, mapped and model layers. The robot radius is 0.25m and value
of ε used for all the star-shaped obstacles in the environment is 0.3.

5.3 Navigation Among Mixed Star-Shaped and Convex Obstacles

Finally, we report experiments in an environment cluttered with both star-
shaped obstacles (with known geometry) and unknown convex obstacles. We
consider a robot of radius 0.2m navigating a room towards a goal. The robot
can recognize familiar star-shaped obstacles (e.g., the couch, tables, armchair,
chairs) but is unaware of several other convex obstacles in the environment. Fig.
4 summarizes our results for several initial conditions. We also include trajecto-
ries observed in the physical, mapped and model layers during a single run. The
value of ε used for all the star-shaped obstacles in the environment is 0.3.

6 Conclusion and Future Work

In this paper, we present a provably correct method for robot navigation in 2D
environments cluttered with familiar but unexpected non-convex, star-shaped
obstacles as well as completely unknown, convex obstacles. The robot uses a
limited range onboard sensor, capable of recognizing, localizing and generating
online from its catalogue of the familiar, non-convex shapes an implicit repre-
sentation of each one. These sensory data and their interpreted representations
underlie an online change of coordinates to a completely convex model plan-
ning space wherein a previously developed online construction yields a provably
correct reactive controller that is pulled back to the physically sensed repre-
sentation to generate the actual robot commands. Using a modified change of
coordinates, the construction is also extended to differential drive robots, and
numerical simulations further verify the validity of our formal results.

Experimental validation of our algorithm with deep learning techniques for
object pose and triangular mesh recognition [22] is currently underway. Next
steps target environments presenting geometry more complicated than star-
shaped obstacles, by appropriately modifying the purging transformation algo-
rithm for trees-of-stars, presented in [24]. Future work aims to relax the required
degree of partial knowledge and the separation assumptions needed for our for-
mal results, by merging the “implicit representation trees” (e.g. see [30, Fig. 5])
online, when needed.
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