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1.0 Introduction

1.1 Purpose

The purpose of this report is to calculate and document the limit states and overall capacity of the
1970’s vintage steel reaction frame in High Bay Laboratory at California Polytechnic State University, San
Luis Obispo’s College of Architecture and Environmental Design. A reaction frame is used for large scale
structural component testing and requires high strength and stiffness, when compared to the structural
test specimens, in order to obtain accurate results. A reaction frame with high strength and stiffness will
allow for specimen testing to failure and prevent yielding and excess deflection in the reaction frames.
Since there are no remaining plans of the reaction frame, member cross sections and connections were
identified based on visual inspections. RISA 3D, a structural analysis software tool, and hand calculations
were used to confirm the demand on members of the frame with an actuator applying 23.6 kip lateral
force cyclically at the top of the frame. The selected demand is based on existing double-acting actuator
with a compression capacity of 110 kips, and 23.6 kip tension capacity.

1.2 Scope of Report

This report includes an investigation of the existing reaction frames, strong floor, and respective
connection’s capacity for quasi-static cyclical testing. There are many uncertainties in this report, such as
material properties, which were determined with knowledge of typical construction practices circa 1970
or by assuming code minimum values. For code references used in this report, reference Section 3.3.
The design of specimens for future tests are limited to the strength of the existing system, highlighting
the value of this report to researches in Cal Poly’s Architectural Engineering department.

1.3 Report Overview

The final deliverable for this project is a set of calculations that will serve as an archive to be used in
future experimental projects conducted in the High Bay laboratory. The report opens with the
verification of existing conditions, followed by estimating the capacity of the existing steel reaction
frames, strong floor, and their respective connections using an ultimate strength limit state approach. It
concludes with a summary of the governing component of the reaction frame system as well as
suggestions for upgrading the system and actuator in the future.

1.4 Future Work

The original intent of this overall project was to design, test, and repair concrete wall specimens. It was
necessary to ensure the reaction frame, by applying loads to the test specimens, does not yield prior to
the wall specimen failures. The concrete shear wall specimens were used to determine deflection
criteria and how to stiffen the reaction frames.



2.0 Verification of Existing Conditions
2.1 Reaction Frame Setup

The current testing setup was constructed using two adjacent reaction frames (Figure 1), which are set
3-ft apart and bolted into a sleeves embedded in the strong floor (Figure 9). A third reaction frame
currently is attached to a large horizontal beam, which provides out-of-plane stability. For simplicity,
both the third reaction frame and horizontal beam connecting the three frames will not be included in
the analysis. Photographs in Appendix A.3 represent the current as-built condition of the frames. It
should be noted that the vertical placement of the horizontal beam will vary based on the desired
experimental setup for the structure being tested. Drawings and calculations represent the desired
configuration for testing described in Section 1.4.

2.2 Member Sizes

The steel reaction frame and strong floor were constructed during the 1970s. Steel reaction frame
members (Figure 1) were measured to the nearest 1/16-in using a measuring tape and were compared
to sizes in the 7™ edition Steel Construction Manual (AISC 360-73). Steel structural member sections
were identified based on web thickness, web depth, flange thickness, and flange width. In cases where
geometry was indistinguishable, the member with the smallest capacity was chosen (i.e. W12x40 vs
W12x80, W12x40 was selected). Therefore, the analyses in this document may be considered
conservative.

It was assumed that the reaction frame was constructed using the following members, as determined
with AISC 360-73:

e Horizontal beam between reaction frames: W8x24

e Reaction frame columns: W14x61

e Main diagonal braces in reaction frames: (2)C9x13.4

e Smaller diagonal braces in reaction frames: (2)C4x4.5

e Reaction frame floor beam: W12x36

2.3 Connections

Bolts were measured to the nearest 1/16-in using a measuring tape. 7/8-in diameter bolts are typically
used in the frame. 1-1/4-in diameter bolts are used to anchor the steel reaction frame into the strong
floor. 1-1/2-in diameter bolts are used for the connection between the actuator and sandwich plate.
Due to the lack of existing details, it was assumed that a minimum of 1/4-in fillet welds were used for
each welded connection.

2.4 Crane

The existing crane is a Detroit Hoist with a capacity of 3 ton, which is equivalent to 6,000 pounds.



2.5 Actuator

The actuator with the greatest capacity currently available in the High Bay Laboratory is the Enerpac
RR5013. It has compression capacity of 110 kips and a tension capacity of 23.6 kips. Two special plates
have been fabricated to connect the actuator to the horizontal beam (Figure 7), which are referred to as
the “sandwich plates” throughout this report. The sandwich plate which is used in this analysis is option
A as noted in Figure 8. Note that sandwich plate - Option B consists of larger plates, more welded
connections, and has a larger capacity, which is not analyzed in this report.

2.6 Strong Floor

A cross-section of the existing strong floor, shown in Figure 9, is 4-ft deep and was constructed with
steel reinforcement mats of both No. 6 @ 6-in o.c. and No. 6 @ 4-in o.c. at the top and bottom of the
floor cross-section, respectively. Figure 9 shows a steel tube is embedded at the surface of the strong
floorand allows bolts to be anchored 4-in. No. 11 rebar is attached to the bottom of the sleeve using a
full penetration weld and is hooked at the bottom of the strong floor. Figure 10 shows original 1974
hand-drafted plans of the existing strong floor in the High Bay Laboratory, which was acquired from the
Cal Poly Facilities archive.



2.7 As-Built Drawings

SANDWICH
PLATE,
OPTION A

WARYING LR TO 13

38" PL

s
TiE" PLr

Wax24

LUREY

= =1 -~ DETAILA
~

(4) 7/8" DIA. BOLTS

DETAIL D
_——

~
b

b1
38" PLTYP. UNO

LN

i DETAILC

ral

100

AN

-~
s

123"
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3.0 Structural Analysis

3.1 Material Assumptions

Nominal values, based on prescribed material strengths per American Society of Civil Engineers (ASCE)
41-17, American Institute of Steel Construction (AISC) 360-73 or as indicated on existing plans, were
used in this evaluation. The AISC 360-73 utilized ASD load combinations, therefore nominal capacities
were determined using information from the Uniform Building Code UBC -73. The only values extracted
from Chapter 4 in AISC 360-73 were for bolt shear and bolt tension.

3.1.1 Reaction Frame Material Assumptions

e Modern A36 Grade Structural Steel
o Steel Yield Strength, F, = 36 ksi
o0 Steel Ultimate Strength, F, = 62 ksi
® FE40XX Electrode Weld Material
o Weld Filler Strength, Fexx= 40 ksi
® A325 Grade Bolts
O Bolt Tensile Strength, Fn: = 66.7 ksi
o Bolt Shear Strength, F,,= 37.5 ksi

3.1.2 Strong Floor Material Assumptions

e Concrete

o Concrete Compressive Strength, f.’ = 3000 psi
® Rebar

O Rebar Yield Strength, F, = 40 ksi

3.2 Loading Assumptions

e For a description of the load flow, reference Appendix A.2.1.
Loading from the actuator was applied in the plane of the steel reaction frames and was
distributed evenly between the two reaction frames.

e Frame self-weight was neglected in the reaction frame calculations because it is insignificant
when compared to axial force subjected to the column from the actuator.

e Frame self-weight was considered in the strong floor anchor bolt calculations because friction
due to self-weight and bolt clamping contribute to shear resistance.

® A 23.6 kip actuator force was applied cyclically at a height of 13-ft from the ground.

3.3 Analysis Assumptions

® An ultimate strength limit state approach was used to analyze the frame and all components in
the reaction frames.
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e A strength reduction factor of $=1.0 was used to calculate the nominal capacities of the existing
members and connections.

e RISA 3D was used to verify hand calculations for axial, shear, and moment demands on the
reaction frame. RISA 3D and hand calculations have a difference of less than 5% due to rounding
of member lengths in RISA 3D. Thus, hand calculations were used in this analysis for demand
and capacity calculations of all members and their respective connections.

Actual member sizes were input into RISA 3D for deflection check.

e The smaller diagonal members, (2) C4x4.5, were included in the frame to reduce the unbraced
length of the (2) C9x13.4 and were anticipated not to transfer loads. Thus, the (2) C4x4.5 were
not included in the analysis.

3.4 RISA 3D Analysis

RISA 3D was used to model the demands on the reaction frame system; the model and outputs are
summarized in Appendix A.1. Only two reaction frames, as noted in Section 2.1, were used in the model.
The model was created using member sizes determined in Section 2.2 and a point load of 23.6 kips was
applied to the mid-span of the horizontal beam positioned 13-ft above the ground. Only pinned
connections were used in the model. The RISA 3D results were compared to hand calculations, yielding a
percent difference of less than five percent. It should be noted that this analysis assumed no fixity in the
connections for simplicity in analysis, when in reality there are some fixities.

3.5 Capacity Analysis per Code Provisions

Limit states of the reaction frame were determined using modern or vintage code provisions. As noted
in Section 3.3, a strength reduction factor of $=1.0 is used in this analysis. An ultimate strength limit
state was used to determine all capacities in the frames and will be reduced according to researcher
defined criteria based on their structural test specimen and experimental objectives of their project.

The steel reaction frame members and connections were analyzed using AISC 360-10. For limit states
not mentioned in AISC 360-10, Segui’s Steel Design, 5" Edition was used to determine capacities (Segui
2013). However, AISC 360-73 and UBC-73 were used to determine anchor bolt capacities: AISC 360-73
provided ASD capacities for bolts and UBC-73 was required to determine load combinations and bolt
nominal capacities. American Concrete Institute (ACl) 318-14 was used to determine anchor bolt to
concrete connection capacities, including concrete breakout and development length.

Deflection for the frame system was determined based on the cracked section analysis, per ACl 318-14,
of the proposed concrete shear wall specimens noted in Section 1.4. The cracking limit state of these
walls was considered because the frame must be sufficiently stiff to perform well under the elastic
energy that will be released from the frame into the wall due to the wall cracking. An additional analysis
accounting for inelastic deflection of the wall is necessary once the final concrete wall specimen design
has been completed.

17



3.6 Standards of Practice

e American Concrete Institute’s Building Code Requirements for Structural Concrete (ACl 318-14)
American Institute of Steel Construction’s Steel Construction Manual (ANSI/AISC 360-10, 14th

Edition)

e American Institute of Steel Construction’s Steel Construction Manual (ANSI/AISC 360-73, 7th
Edition)

® American Society of Civil Engineers’ Seismic Evaluation and Retrofit of Existing Buildings (ASCE
41-17)

e Universal Building Code (UBC-73)

18



3.7 Limit States and D/C Ratios for Steel Reaction Frames and Strong Floor

The capacities calculated in this table are in accordance with modern code provisions, as noted in

Section 3.6. The demands were determined using hand calculations, which are within 5% of RISA 3D

values as mentioned in Section 3.5. Comments on deflection values are discussed in Section 4.6. Some

limit states were deemed non-critical, non-probable failure mode and not calculated in this report as
indicated by the N/A designation in Table 1.

Table 1 : Summary of Limit States for Reaction Frame

High Bay Steel Reaction Frame and Strong Floor Limit States (for Vu =23.6 kips, h=13-ft)

Member/
Connection

Horizontal
Beam
between
Reaction
Frames (Sec.
A.2.2)

Sandwich
Plate (Option
A) between
Horizontal
Beam and
Actuator
(Sec. A.2.2)

Horizontal
Beam and
Reaction
Frame
Connection
(Sec. A.2.2)

Reaction
Frame
Column (Sec.
A.2.3)

Limit State

Shear (k)
Flexure (k-ft)

Deflection (in) **

Weld in Tension (k)

Bolt Shear (ksi)

Bolt Bearing (ksi)

Bolt Tear Out (k)

Bolt Bending (ksi)

Plate Yielding (k)

Plate Rupturing (k)

Bolt Tension in Sandwich Plate(ksi)
Prying Action in Sandwich Plate (ksi)
Plate Bending (ksi)

Plate Shear (ksi)

Stiffener Buckling (ksi)

Stiffener Yielding (ksi)

Bolt Tension in Column to Beam
Connection (ksi)
Prying Action in Column to Beam
Connection (ksi)

Flexure (k-ft)
Shear (k)

Deflection (in) **

Yielding (k)

Rupture (k)

Compression (k)

Capacity Demand

324
69.3

0.138

36.6
54
36
11.8
54
33.8
21.8
40
40
36
N/A
N/A

36
66.7

40

273.6
75.9

0.135

644

960.3
639

11.8
17.7

0.00959

11.8
13.4
20.1
11.8
0.04
11.8
11.8
9.81
13.1
17.7
N/A
N/A

3.9
4.91

6.45

61.4
11.8

0.308

20.8

20.8
20.8

D/C

0.364
0.255

0.069

0.322
0.248
0.558
1.000
0.001
0.349
0.541
0.245
0.328
0.492
N/A

N/A

0.108
0.123

0.161

0.224
0.155

2.281

0.032

0.022
0.033

Code Reference

AISC 360-10 Eqn. G2-1
AISC 360-10 Egn. F2-1

ACl 318-14 T.6.6.3.1.1(a)

AISC 360-10 Eqgn. J2-4
AISC 360-73 Chapter 4

AISC 360-10 Egn. D2-1
AISC 360-10 Egn. D2-2
AISC 360-73 Chapter 4

AISC 360-10 Egn. D2-1

AISC 360-73 Chapter 4

AISC 360-10 Eqn. F2-1
AISC 360-10 Egn. G2-1

AClI 318-14 T.6.6.3.1.1(a)

AISC 360-10 Egn. D2-1

AISC 360-10 Egn. D2-2
AISC 360-10 Eqn. E3-1
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Table 2 Cont’d : Summary of Limit States for Reaction Frame

High Bay Steel Reaction Frame and Strong Floor Limit States (for Vu =23.6 kips, h=13-ft)

Member/
Connection

Reaction
Frame
Column to
Floor Beam
(Sec. A.2.3)

Main Brace
(Sec. A.2.4)

Floor Beam
to Strong
Floor (Sec.

A.2.5)

Strong Floor
(Sec. A.2.5)

Overall
Reaction
Frame (Sec.
A.2.6) *

* This analysis uses a cracked moment of inertia. Reference Section 3.5 for more detail.

Limit State

Bolt Tension (k)

Bolt Shear (k)

Weld in Shear (k)

Weld in Tension (k)
Shear of Base Metal (k)
Plate Yielding (k)

Plate Rupturing (k)

Block Shear (k)

Bolt Shear (ksi)

Bolt Bearing (ksi)

Bolt Tear Out (k)
Member Yielding (k)
Member Rupturing (k)
Member Compression (k)
Weld in Shear and Tension (k)
Axial Deflection **
Anchor Bolt Shear
Anchor Bolt Yielding

Clamping Force + Friction

Break Out
Rebar Yielding

Deflection of Wall Specimen (in) **

Deflection at 3.0% Drift (in)

Capacity Demand D/C

321
180.4
286.5
286.5
386.78
121.5
165.5
103.6
37.5
36

11
283.7
38.4
N/A
137.7
0.138
66.3
117.8

71.75

98.6
62.4

0.135

N/A

20.8
9

9
20.8
9
29.4
29.4
29.4
12.2
10.5
3.68
14.7
14.7
N/A
29.4
0.0218
2.95
10.4

23.6

10.4
10.4

0.339

4.68

0.065
0.050
0.031
0.073
0.023
0.242
0.178
0.284
0.320
0.292
0.335
0.052
0.383
N/A

0.214
0.158
0.044
0.088

0.329

0.105
0.167

2.511

N/A

Code Reference

AISC 360-73 Chapter 4
AISC 360-73 Chapter 4
AISC 360-10 Eqgn. J2-3
AISC 360-10 Egn. J2-4
AISC 360-10 Eqn. J2-5
AISC 360-10 Eqn. D2-1
AISC 360-10 Eqn. D2-2
AISC 360-10 Eqn. J4-5
AISC 360-73 Chapter 4

AISC 360-10 Eqn. D2-1
AISC 360-10 Eqn. D2-2
AISC 360-10 Eqn. J2-4
ACl 318-14 T.6.6.3.1.1(a)

AISC 360-73 Chapter 4
AISC 360-73 Chapter 4

ACI 318-1425.4.3.1

ACl 318-14 T.6.6.3.1.1(a)

** Only accounts for elastic deflection of the wall specimen. Demand should be modified based on researcher’s

anticipated drift capacity (including inelastic response) of their test specimen.
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4.0 Discussion
4.1 Reduction Factors

An ultimate strength limit state approach was used in the analysis of the frame and associated
components. This was done to find the nominal capacity of the reaction frame and strong floor. After
determining the nominal capacity, a reasonable safety factor should be applied by the researcher to the
reaction frame members and respective connections based on the loading they anticipate in their
experimental test, to avoid yielding in the reaction frames and safety of researchers in the laboratory.

4.2 Verification of Demands

It should be noted that hand calculations are used in the determination of demands and discussion of
results. RISA-3D was utilized to develop a computational model and compared to hand calculations to
verify accuracy of member forces and deflection of the frame under a lateral force of 23.6 kips. Forces
and deflections obtained from RISA 3D were within 5% of values from hand calculations. RISA 3D
calculated deflection of 0.321-in was compared to a deflection 0.308-in using hand calculations at the
point of the applied load 13-ft above the ground.

4.3 Critical Limit States

The determined governing limit states for the current setup are deflection in the frame and shear in the
horizontal beam. Additionally, the sandwich plate — option A was the most critical element in the
system. It is recommended that the sandwich plate — option B is used instead. The capacity of option B
was not calculated, but option B has larger plates and bolts thus it can be safely assumed to have a
larger capacity.

Beam shear in the horizontal beam will be a concern if a larger capacity actuator is used. The horizontal
beam can be easily replaced with a beam of greater shear capacity if a larger capacity actuator is used.
Considerations also must be made for deflection in the reaction frame system as this can affect the
accuracy of test results; therefore, a frame stiffening plan is described in Section 4.5.

4.4 Impact of Actuator Location on Frame Response

The height of the horizontal beam that connects the two frames and supports the actuator can be
adjusted on the columns of the frame. If the actuator is repositioned below the main diagonal braces
(refer to Figure 1), there will be increased column base shear demand. This will require certain limit
states to be reassessed, including: shear in the column to plate weld and bolt shear between the 7/8”
plate and floor beam. At an actuator height below the main diagonal brace, the column moment and
deflection demands would decrease. However, if the actuator was moved higher on the frame, the
moment and deflection would increase in the column, requiring a stiffer and stronger frame.
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4.5 Proposed Upgrades

4.5.1 Brace Upgrade

The main concern revealed from the frame analysis in this report was that the deflection of the reaction
frame during cyclic loading from the actuator exceeded the tolerances that would allow researchers to
accurately apply load to the top of the proposed concrete wall specimens.

In order to mitigate this issue, a retrofit approach has been developed where another brace is added to
the frame system to increase the frame stiffness. This is shown in Figure 11 and described below:

o Gusset plates will be fillet welded onto bolted plates.
e Bolted plates will be attached to the column and the floor beam extension.
e The new bracing member will be bolted into gusset plates. There are several suggested options:
o Option A: (2) C15x50, where the reaction frame system is ten times (10x) stiffer than
proposed concrete wall specimen mentioned in Section 1.4.
o Option B: HSS 12x8x5/8, where the frame is 5x stiffer than the wall specimen.
o Option C: HSS 14x0.625, where the frame is 5x stiffer than the wall specimen.
e Afloor beam extension will be added to existing floor beam to attach the proposed brace.
e Stiffener plates will be installed at locations where the proposed brace attaches to floor beam
and column in order to prevent local web buckling of these members.
e Note: The proposed braces do not require additional intermediate bracing as buckling should
not be a concern. Axial force applied to the braces will be small compared to the axial capacity.

The stiffening options consist of channels or rectangular/circular HSS tubes. The brace constructed from
two channel sections is an attractive option as it does not require additional cuts to attach the gusset
plates and will provide twice the stiffness, yet it may buckle in the weak axis. The HSS tubes are less
likely to buckle in the weak axis, but require a cut slot to fit the gusset plates.

4.5.2 Bolt Upgrade

Another suggestion to improve the performance of the frame for future uses is upgrading the bolts. The
bolts were analyzed using material properties in accordance with AISC 360-73. The bolt shear and
tension values prescribed in ASIC 360-73 are significantly lower than contemporary values as found in
AISC 360-10, but were adjusted using load combinations found in UBC-73. These values are similar to
contemporary values, but may still be upgraded for increased capacity.

However, yielding in the bolts first may be desirable, due to the fact that they’re inexpensive and easy to
replace. This may prevent yielding in other connections and members.
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4.5.3 Actuator Upgrade

A larger capacity actuator can be utilized if the reaction frame is sufficiently stiff such that deflection is
not an issue under the maximum actuator load. Deflection criteria will have to be determined upon the
individual researcher’s requirements and/or tolerance. Additionally, the force may be applied closer to
the column-to-brace connection, which decreases deflection in the reaction frame, but increases shear
demand on the members and connections. Based off the beam’s shear demand to capacity ratio being
closest to 1.0 (not including sandwich plate or deflection), the maximum capacity of the frame is
upwards of 60 kips if the reaction frames are stiffened and the installation of a sandwich plate with a
larger capacity (Figure 8, Option B).

4.5.4 Considerations

As a result of the additional braces, loads will be redistributed. Since there will be two load paths, the
stiffer brace member will experience larger forces. The redistribution of forces is dependent on the
distance and stiffness of each brace is from the applied load.

Additionally, with the new brace the frame system behavior changes and different limit states become a
concern. To finalize the design of the reaction frame upgrade it would be necessary complete a new
analysis of the system with similar limit states of the existing brace. These demand and capacity
calculations (Appendix A.2) can be utilized to determine demand and capacity values for the upgraded
system. New members should be designed considering these critical limit states. Member rupture and
bolt tear out were concerns with the existing brace member. Member rupture will not be a concern for
any of these suggested brace upgrade options due to the increase in cross-sectional area and bolt tear
out will be accommodated by using larger gusset plates. The new critical limit state will likely be prying
action in the bolted connections to the column and floor beam.
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4.6 Deflection and Drift

The upper bound deflection for the frame should correspond to the ultimate deflection of the concrete
wall. However, the inelastic deformation response of the concrete wall specimen has not yet been
calculated since the design of these specimens has not been finalized. Therefore, the values in Table 1
are representative of the cracked limit state.

The calculated drift in this report, with respect to the cracked limit state of the concrete wall, is
0.0865%, but does not represent the anticipated ultimate drift capacity of the wall. Birely (2011)
examines the ultimate drift capacity of 70+ planar concrete walls with various design parameters.
Specifically the walls that similar to those in the proposed research from Section 1.4 with a low
boundary element reinforcing ratio (average drift of 3.1%), low cross-sectional aspect ratio (CSAR)
around 10 (average drift is 1.5%), and low vertical reinforcing ratio (average drift is 3.0%). Based on
these results, the expected drift ratio for the proposed concrete wall specimens will be around 2.5 to
3.0% because reinforcing steel in the boundary element and web are believed to greatly affect the
deflection. To be conservative, the deflection associated with a 3.0% drift (4.68-in) should be considered
the upper bound deflection for the frame.

4.7 Stress Fatigue

The cyclic loads applied to this structure are quasi-static and consists of a low number of cycles. high
testing tress sfatigue in materials usually experience a minimum of 10,000 cycles. This was not a concern
due to the low number of testing cycles that frame is expected to have experienced and will experience
over the years.
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5.0 Conclusion
5.1 Critical Limit States

As mentioned in Section 4.3, the critical limit states determined in this analysis of the High Bay
Laboratory steel reaction frame are shear in the horizontal beam and deflection in the overall system. To
resolve the first concern Sandwich plate — option A should be replaced with option B for increased
capacity. To mitigate effects of deflection, a stiffening schematic was provided in Section 4.5.

5.2 Proposed Upgrades

As described in Section 4.5, the goal with these adding new braces at a height of 13-ft from the ground
is to ensure that the reaction frame will be considerably stiffer than test specimens. There is no specific
criteria for deflection limits, therefore the stiffness of the frame was compared to the proposed
concrete wall specimens. Since this is a proposed solution, capacities of the new braces have not been
calculated. If the proposed solution is to be designed, capacities and demands in these members and
connections will be determined accordingly.

The system may further be strengthened by using modern grade bolts, as mentioned in Section 4.5.2.
However, this is not a critical issue and may be addressed if a larger capacity actuator is purchased.

5.3 Maximum Capacity

As discussed in Section 4.5.3, a larger capacity actuator or larger force may be applied to specimen if the
stiffness is increased and sandwich plate are replaced. The frame’s capacity is expected to increase to
more than 60 kips if the proposed upgrades are made.
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A. Appendix

A.1 RISA 3D Output
Member Primary Data

Label | Joint J Joint K Joint Rotate(deqg) Section/Shape  Type Design List Material Design Rules
1 M1 N1 N2 W14x61 |Column|Wide Flange| A36 Gr.36 | Typical
2 M2 N3 N4 2C9x13.4 |VBrace| Channel |A36Gr.36 | Typical
3 M3 N1 N5 W12x40 Beam |Wide Flange| A36 Gr.36 | Typical
4 M4 Al A5 W12x40 | Beam |[Wide Flange| A36 Gr.36 | Typical
5 M5 A4 A3 2C9x13.4 |VBrace| Channel |A36Gr.36 | Typical
6 M6 A1 A2 W14x61 |Column|Wide Flange| A36 Gr.36 | Typical
7 M7 A8 N8 W8x24 Beam |Wide Flange| A36 Gr.36 | Typical

Joint Boundaty Conditions

Joint Label X [k/in] Y [kAn] Z [K/in] X Rot.[k-ft/rad] Y Rot [k-ft/rad] Z Rot.[k-ft/rad]
1 N1 Reaction Reaction Reaction
2 N5 Reaction Reaction Reaction
3 N6 Reaction Reaction Reaction
4 N7 Reaction Reaction Reaction
5 A1l Reaction Reaction Reaction
6 AB Reaction Reaction Reaction
7 A7 Reaction Reaction Reaction
8 A5 Reaction Reaction Reaction

Joint L oads and Enforced Displacements (BLC 1 : Actuator)
Joint Label L.DM Direction Magnitude[(k k-ft). (in.rad), (k"s*2/1...
(4 | N17 [ L | X [ 236

Basic Load Cases

BLC Description Category X Gravity Y Gravity _Z Gravity Joint Point _ Distributed Area(lvle... Surface(P...
[1 ] Actuator l None | [ [ [ 1 ] [

L oad Combinations

Description Sol..PD..SR..BLC Fact.. BLC Fact..BLC Fact..BLC Fact.. BLC Fact.. BLC Fact..BLC Fact..BLC Fact..BLC Fact.. BLC Fact...
[1 lactatortdyes] [ [474 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ ]

Joint Reactions (By Combination)

LC Joint Label X [Kk] Y [K] Z k] MX [k-ft] MY [k-ft] MZ [k-ft]
1 1 N1 9.932 -22.653 -.069 0 0
2 1 N5 0 -1.644 .005 0 0 0
3 1 N6 -6.209 6.675 .088 0] 0 0
4 1 N7 -15.523 17.622 -.025 0 0 0
5 1 A1 9.932 -22.653 .069 0 0 0
6 1 A6 -6.209 6.675 -.088 0 6] 0
7 1 A7 -15.523 17.622 .025 0 0 0
8 1 A5 0 -1.644 -.005 0 0 0
9 1 Totals: -23.6 0 0
10 | 1 COG (ft): NC NC NC

Maximum Member Section Forces

LC MemberLab... Axiallk] Loc[ft] ¥ Shear[k] Loc[fi] z Shearfk] Loc[ft] Torque[k-...Loc[ft] y-yIMoment][...Loc[fi] z-z Moment]...L oc[f]
1 M1 m.] O |6563| 11.8 |6.563 0 12.104] 0 12.104 .005 0 64.162 |6.563

min21.732] 0 | -9.932 | O 0 0 | -222 [6563] -001  |11.958 0 12.104
0

1
2

3 1 M2 m..[30.734| 0 0 0 0 -.007 0 0 0 0 0
4 min|30.734| 0O 0 0 0 0 -.007 0 6] 6] 0 6]
5 |1 M3  |m..|15.523|6563| 5754 |4.047] 02 |4047| .005 0 217 0 4855 |7.547
6 min|-6.209|4.047 | -15.978 [6.563| - 069 0 0 6.563 -.057 4.047| -10.776 |6453
7 1 M4 Im..|15.523|6.563| 5754 |4.047] 069 0 0 |6.563] 057 |4.047] 4855 |1.547
8 min|-6.209|4.047 | -15.978 |6563| -02 |[4.047| -.005 0 =217 6] -10.776 |6453
9 1 M5 m..[30.734| 0 0 0 0 0 .007 0 0 0 0 0
10 min[30.734| 0 0 0 0 0 .007 0 0 0 0 0
11 |1 M6 |m.] O |6563] 11.8 |6.563 0 0 222 |6563] 001 [11.958] 64.162 |6.563
12 min-21.732] 0 | -9.932 | 0 0 2104 p {2104 -005 0 0 12.104
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Maximum Member Section Forces (Continued)

LC MemberLab.. Axiallk] Loc[ft] v Shear[k] Loc[fi] z Sheark] Loc[ft] Torque[k-...Loc[ft] y-y IMoment[...L oc[ft] z-z Moment]...L oc[f]
T . 4 M7 m.| 0O 0 0 0 11.8 1.5 0 0 222 0 -.001 0
14 minj Q 0 0 0 -11.8 0 0] 0 -17.478 | 1.5 -.001 0
Member Section Forces
LC IMember Label Sec  Axiallk] ySheark] z Shear[k] Torque[k-f] y-yMoment[k-fi] Z-z Moment[k-ft]

1 1 M1 i -21.732 | -9.932 0 -.217 .005 .342

2 2 | -21.732 | -9.932 0] =217 .005 35.104

3 3 0 11.8 0 -.222 0 59

4 4 0 11.8 0 -.222 -.001 17.7

5 5 0 0 0 0 0 0

6 |1 M2 1 30.734 0 0 -.007 0 0

7 2 30.734 0 0 -.007 0 0

8 3 30.734 0 0 -.007 0 0

9 4 30.734 0 0 -.007 0 0

10 2 30.734 0 0 -.007 0 0

11 |1 M3 1 0 -.921 -.069 .005 217 -.342

12 2 0 -.921 -.069 .005 .037 2.075

13 3 -6.209 5.754 .02 .005 -.034 -3.852

14 4 0 1.644 -.005 0 .014 4.316

15 5 0 1.644 -.005 0 0 0

16 | 1 M4 1 0 -.921 .069 -.005 =217 -.342

17 2 0 -.921 .069 -.005 -.037 2.075

18 3 -6.209 5.754 -.02 -.005 .034 -3.852

19 4 0 1.644 .005 0 -.014 4.316
20 & 0 1.644 .005 0 0 0
21 |1 M5 1 30.734 0 0 .007 0 0
22 2 30.734 0 0 .007 0 0
23 3 30.734 0 0 .007 0 0
24 4 30.734 0 0 .007 0 0
25 5 30.734 0 0 .007 0 0
26 | 1 M6 1 -21.732 | -9.932 0 217 -.005 .342
27 2 | -21.732 | -9.932 0 217 -.005 35.104
28 3 0 11.8 0 222 0 59
29 4 0 11.8 0] .222 .001 17
30 5 0 0] 0 0 0 0
31 |1 M7 1 0 0 -11.8 0 222 -.001
32 2 0 0 -11.8 0 -8.628 -.001
33 3 0 0 11.8 0 -17.478 -.001
34 4 0 0 11.8 0 -8.628 -.001
35 5 0 0 11.8 0 222 -.001

Joint Deflections (By Combination)
LC Joint Label X [in] Y [in] Z [in] X Rotation [rad] Y Rotation [rad] Z Rotation [rad]

1 1 N1 0 0 0 -1.195e-06 | 3.612e-05 1.021e-05
2 1 N2 355 .004 0 1.652e-07 4.389e-03 | -3.777e-03
3 1 N3 .038 .004 0 5.262e-07 2.37e-03 -2.046e-03
4 1 N4 0 -.007 0 -1.076e-04 | 3.026e-06 8.366e-05
5 1 N5 0 0 0 -1.076e-04 | -1.031e-06 | -4.127e-06
6 1 N6 0 0 0 -6.669e-05 | -8.774e-06 | -1.111e-04
7 1 N7 0 0 0 -1.076e-04 | 2.229e-06 1.455e-04
8 1 N8 .264 .004 0 1.652e-07 4.389e-03 | -3.777e-03
9 1 A1 0 0 0 1.195e-06 | -3.612e-05 | 1.021e-05
10 1 A2 255 .004 0 -1.652e-07 | -4.389e-03 | -3.777e-03
11 1 A3 .038 .004 0 -5.262e-07 -2.37e-03 | -2.046e-03
12 1 A4 0 -.007 0 1.076e-04 | -3.026e-06 | 8.366e-05
13 il A5 0 0 0 1.076e-04 1.031e-06 | -4.127e-06
14 1 A6 0 0 0 6.669e-05 8.774e-06 | -1.111e-04
15 1 A7 0 0 0 1.076e-04 | -2.229e-06 | 1.455e-04
16 1 A8 .264 .004 0 -1.652e-07 | -4.389e-03 | -3.777e-03
17 1 N17 321 .004 0 0 0 -3.777e-03
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A.1.1 Member and Joint Labels
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A.1.2 Deflected Shape
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A.1.3 Axial Force Diagram
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A.1.4 Shear Force Diagram (Along Z-Axis)
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A.1.5 Shear Force Diagram (Along Y-Axis)
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A.1.6 Moment Diagram (Y-Y Axis)
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A.1.7 Moment Diagram (Z-Z Axis)
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A.2 Calculations

A.2.1 Load Flow
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A.2.5 Reaction Frame to Strong Floor Connections
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FLOOR BEAM To STRONG FLOGLUONNECT 10K
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SUEAR FRICTION! on ReAcTIon PRAME
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CLAMPING FORCE  (F.)
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A.2.6 Overall System Deflection
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A.2.7 Proposed Concrete Wall Specimen
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A.2.8 Proposed Upgrade
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A.3 Existing Condition Photographs

Figure 12:

Front Right View of Reaction Frames
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Figure 13 : Back Left View of Reaction Frames
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Figure 14 : Reaction Frame Front Elevation

See Fig.15
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Figure 15 : Reaction Frame Horizontal Beam

Figure 16 : Sandwich Plate on Horizontal Beam
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Figure 17 : Top View of Horizontal Beam

Figure 18 : Stiffener Plate in Horizontal Beam
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See Fig.25
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See Fig.23 =
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See Fig.22

Figure 19 : Elevation of Steel Reaction Frames
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Figure 20 : Brace Connected to Column with Gusset Plate

Figure 21 : Intermediate Horizontal Member for Main Brace
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Figure 22 : Intermediate Diagonal Member for Main Brace

g

Figure 23 : Main Brace Gusset Plates Bolted to Intermediate Members
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Figure 24 : Brace to Floor Beam Connection

Figure 25 : Reaction Frame Column to Floor Beam Connection
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Figure 26 : Cal Poly San Luis Obispo High Bay Laboratory
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