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Count Models Based on Weibull Interarrival Times

Abstract
The widespread popularity and use of both the Poisson and the negative binomial models for count data arise,
in part, from their derivation as the number of arrivals in a given time period assuming exponentially
distributed interarrival times (without and with heterogeneity in the underlying base rates, respectively).
However, with that clean theory come some limitations including limited flexibility in the assumed underlying
arrival rate distribution and the inability to model underdispersed counts (variance less than the mean).
Although extant research has addressed some of these issues, there still remain numerous valuable extensions.
In this research, we present a model that, due to computational tractability, was previously thought to be
infeasible. In particular, we introduce here a generalized model for count data based upon an assumed Weibull
interarrival process that nests the Poisson and negative binomial models as special cases. The computational
intractability is overcome by deriving the Weibull count model using a polynomial expansion which then
allows for closed-form inference (integration term-by-term) when incorporating heterogeneity due to the
conjugacy of the expansion and a commonly employed gamma distribution. In addition, we demonstrate that
this new Weibull count model can (1) model both over- and underdispersed count data, (2) allow covariates
to be introduced in a straightforward manner through the hazard function, and (3) be computed in standard
software.
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Abstract

The widespread popularity and use of both the Poisson and negative binomial models for count

data arises, in part, from their derivation as the number of arrivals in a given time period assuming

exponenitally distributed interarrival times (without and with heterogeneity in the underlying base

rates respectively). However, with that clean theory comes some limitations including limited flexi-

bility in the assumed underlying arrival rate distribution and the inability to model underdispersed

counts (variance less than the mean). While extant research has addressed some of these issues,

there still remain numerous valuable extensions.

In this research, we present a model that, due to computational tractability, was previously

thought to be infeasible. In particular, we introduce here a generalized model for count data based

upon an assumed Weibull interarrival process that nests the Poisson and negative binomial models

as special cases. The computational intractability is overcome by deriving the Weibull count model

using a polynomial expansion which then allows for closed-form inference (integration term-by-

term) when incorporating heterogeneity due to the conjugacy of the expansion and a commonly

employed gamma distribution.

In addition, we demonstrate that this new Weibull count model can: (a) sometimes alleviate the

need for heterogeneity suggesting that what many think is overdispersion may just be model misfit

due to a different and more flexible timing model (Weibull versus exponential), (b) model both over

and under dispersed count data, (c) allow covariates to be introduced straightforwardly through the

hazard function, and (d) be computed in standard software. In fact, we demonstrate the efficacy

of our approach using a data analysis run, including bootstrap standard errors computed via a

weighted-likelihood, run in Microsoft Excel.



1 Introduction

The widespread popularity of the Poisson model for count data arises, in part, from its derivation as

the number of arrivals in a given time period assuming exponentially distributed interarrival times.

But of the thousands of other count models that have been developed over the years (see Wimmer

and Altmann (1999) for an excellent synthesis), very few share this straightforward connection

between a count model and its timing model equivalent. The connection between a count model

and a timing process is more than just a theoretical nicety: in many different contexts, it is useful

– if not essential – for a researcher to be able to estimate a model using one form (timing or

counting) but apply it using the other. As but one example, marketing managers frequently collect

interarrival time data (often in the form of a recency question) but want to make predictions of the

number of arrivals (purchases) that a particular customer is likely to make over the next year.

Furthermore, the Poisson count model is truly valid only in the case where the data of interest

support the restrictive assumption of equidispersion, i.e., where the variance of the data equals the

mean. Statisticians have recognized this limitation for many years, and now routinely use models

that allow for overdispersion (i.e., datasets marked by a fatter, longer right tail than the Poisson

will accommodate). A heterogeneous gamma-Poisson model (i.e., the negative binomial or NBD) is

generally the first count model invoked for this common situation. But what about datasets with

the opposite problem, namely underdispersion? Statisticians have acknowledged and addressed this

issue in different ways (King, 1989; Cameron and Trivedi 1998), but with the possible exception

of a count model featuring gamma-distributed interarrival times proposed by Winkelmann (1995),

none of these underdispersed count models (to the best of our knowledge) offers the conceptual

elegance and usefulness of the Poisson-exponential connection.

Winkelmann (1995) readily admits the limitations of his gamma-based model. Among other

reasons, he comments on the inability to obtain a closed-form hazard function for the gamma,

which makes the incorporation of explanatory variables an ad hoc process when compared to the

standard Poisson or NBD “regression” models. He points out that “the Weibull distribution is
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preferred in duration analysis for its closed-form hazard function ...” but does not pursue such

a model. The development and exploration of such a model is the main objective of the present

paper.

Before we develop our Weibull count model, we first set the stage by laying out the main

properties that the Weibull count model developed here embodies.

(1) The model generalizes (nests) the most commonly used extant models such as the Poisson

and the NBD as special cases; thus, when a simple structure is sufficient, the researcher will

see it through the estimated model parameters. Furthermore, standard inferential procedures

(e.g., the likelihood ratio test) can be used to compare different specifications.

(2) The model handles both overdispersed and underdispersed data, both of which are likely to

be seen in practice.

(3) Researchers who believe that the interarrival times of their dataset are Weibull distributed

now have a corresponding counting model to use.

(4) The model is computationally feasible to work with. The model is estimable without requiring

a formal programming language; it lends itself to implementation within a popular computing

environment, such as a spreadsheet.

(5) The model allows for the incorporation of person-level heterogeneity reflecting the fact that

individuals’ interarrival rates may vary quite substantially across the population.

(6) The mechanism required to incorporate covariate effects is clear and simple. This process

is consistent with standard “proportional hazards” methods, which represent the dominant

paradigm for ordinary single-event timing models.

In this paper, we derive a new model for count data that satisfies these six criteria in the

following ways. First, our count model is based upon an assumed Weibull interarrival process,

which nests the exponential as a well-known special case. Second, we demonstrate that the Weibull
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count model, via the shape parameter being less than, equal to, or greater than one can capture

overdispersed, equidispersed, and underdispersed data respectively. Third, the Weibull interarrival

time story is far richer than the exponential story, since it allows for non-constant hazard rates

(duration dependence). Fourth, and a significant contribution of this research if it is to impact

statistical practice, is the fact that we implement the model entirely in Microsoft Excel. This is

accomplised by deriving our model using a polynomial expansion (which can be expressed in closed-

form). See Bradlow, Hardie, and Fader (2002), Everson and Bradlow (2002), and Miller, Bradlow

and Dayaratna (2006) for similar polynomial expansion solutions for the negative binomial, Beta-

Binomial and binary logit models respectively. Fifth, and related to the previous point, once the

model is expressed as a closed-form sum of polynomial terms, we can easily introduce a conjugate

mixing distribution (the gamma distribution) to capture the underlying disperson in incidence

rates across individuals. This ensures that our model (unlike the gamma-based form proposed by

Winkelmann (1995)) nests the NBD in addition to the Poisson. Finally, we will demonstrate that

we can use the proportional hazards approach to introduce covariates in a very natural manner.

The remainder of this paper is laid out as follows. In the next section, we provide a more detailed

description of the major ways in which other researchers have extended basic count models (but

rarely with an eye towards maintaining a known interarrival timing process). Section 3 contains the

derivation of our Weibull count model, focusing specifically on the polynomial approximation that

leads to the closed-form benefits. In Section 4 we re-analyze the same data used by Winkelmann

(1995) and provide a set of results comparing a sequence of nested models, the most complicated

of which has an underlying Weibull arrival process, heterogeneous baseline rates, and covariates.

Through the sequence of models we fit, we are able to ascertain which aspects of the model are

most critical. We demonstrate that when the Weibull interarrival process is utilized, the need for

underlying heterogeneity is greatly reduced. (Of course our claims are limited to the dataset we

analyze but we suspect it will be true more generally). Finally, we provide some concluding remarks

and areas for future research in Section 5.
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2 Prior Related Research

The primary way in which this research contributes to the literature on count data is by generalizing

the underlying interarrival timing model to allow for greater flexibility in its hazard function, which

(as described below) is how flexible forms of dispersion are accounted for. For example, Winkelmann

(1995) offered a careful analysis of, a valuable framework, and his gamma counting model accounts

for the relationship between the nature (i.e., slope) of the timing model hazard function and the

type of dispersion seen in the equivalent count data. In particular, if we denote the mean of the

interarrival distribution by µ, the variance by σ2, and the hazard function by

h(t) =
f(t)

1 − F (t)
,

where f(t) and F(t) are the density and cumulative probability functions respectively, we say that

the distribution has negative duration dependence if dh(t)
dt < 0 and positive duration dependence if

dh(t)
dt > 0. If the hazard function is monotonic, then

dh(t)
dt

> 0 ⇒ σ/µ < 1

dh(t)
dt

= 0 ⇒ σ/µ = 1

dh(t)
dt

< 0 ⇒ σ/µ > 1.

(see Barlow and Proschan 1965, p. 33). These three cases correspond to count data characterized

by underdispersion, equidispersion, and overdispersion, respectively.

Focusing on non-constant hazard rates (as above) is but one way in which researchers have

extended count models; we discuss some other methods briefly. Another way to capture the same

kinds of patterns seen in duration dependent models is to assume that the probability of an event

occurring depends on the number of events that have occurred previously, as opposed to the arrival

time of the most recent event (duration dependence). These models are said to display contagion.

For instance, they have been studied in the literature on accident proneness (Arbous and Kerrich

1951, Feller 1943). For more information, one can reference Gurland (1995) for a contagious
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discrete-time model that leads to the negative binomial in which an occurrence increases and a

non-occurrence decreases the probability of a future occurrence. Other models for occurrence

dependence have been developed by Mullahy (1986), and Gourieroux and Visser (1997). One can

also make the assumption that successive events are independent but the process intensity varies

as a function of time. This class of models is known as nonhomogeneous Poisson processes and

is described in Lawless (1987). We believe that a promising area for future research would be a

comparison of both forms of dependence (duration and occurrence), although here we focus only

on the former.

Beyond an explicit focus on any kind of time dependence, there are other many distributions

that have been formulated to be able to accommodate underdispersed as well as overdispersed data.

Researchers such as Benning and Korolev (2002), Cameron and Trivedi (1998), King (1989), and

Shmueli et al (2005) have proposed and discussed a wide variety of generalized count models that

can handle overdispersion and underdispersion. But few (if any) offer the benefits or elegance of

something like the Poisson-exponential connection. In the next secion we lay out our model that

fully respects this connection and also offers a great deal of flexibility in being able to capture a

range of count data dispersion patterns.

2.1 A Modeling Framework

Much extant research on count data has been focused on extending the basic Poisson model (denoted

here as model [0]) to allow for hyperdispersion via a non-constant hazard rate. The basic ways in

which hyperdispersion have been accounted for include: (model [1]) adding covariates to the model,

(model [2]) incorporating individual-level heterogeneity for the baseline rates, and (model [3]) both

[1] and [2]. In particular, if we let

[Xit|λi] ∼ Poisson(λiexp(Z ′
itβ)), (1)

a proportional-hazards framework (Cox, 1972), where Xit is a non-negative integer (count) for unit
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i = 1, . . . , I on its t = 1, . . . , Ti-th observation, λi is the baseline rate for unit i, Zit = (Zit1, . . . , ZitP )

is a vector of covariates that describe each individual, and β′ = (β1, . . . , βP ) is a vector of covariate

slopes: model [0] is obtained by setting λi = λ for all i and Z ′
itβ = 0 (an intercept only); model

[1] is obtained by setting λi = λ for all i (the Poisson Regression Model); model [2] is obtained

by setting P = 1, Zβ
it = 0 and letting λi ∼ g(λi|θ) (when g is the gamma distribution then model

[2] integrated over the distribution of λi is the Negative Binomial Distribution); and model [3] is

as given in equation (1) where again λi ∼ g(λi|θ). Model [3] is also sometimes referred to as the

Neg-Bin II model or a random-intercepts Poisson regression model. Later in Section 4, we compare

the results of models [0]-[3] to those derived in this research.

What is of interest to note is that all of these extensions use the Poisson model (with associated

exponential interarrival times) as their kernel. That is, these extensions to the model have not been

done at the core unit of analysis, i.e., the underlying arrival time distribution, but instead work

strictly with the count model from an assumed simple arrival time distribution. What we do in

this research is to enhance the flexibility of the arrival time model to account for richer patterns.

In particular, instead, we assume that the underlying arrival time distribution for Yik, the k − th

arrival for unit i follows a Weibull with density given by:

f(Yik = y|λi, β, c) = λicy
c−1exp(−λiy

c) (2)

Later, when we introduce covariates into the model, we do it through the hazard function:

h(t) = λctc−1 (3)

which is monotonically increasing for c > 1, monotonically decreasing for c < 1, and constant (and

equal to λ) when c = 1.

Using the standard proportional hazards framework, we then boost this “baseline” hazard (given

in (3)) by a weighted vector of the covariates h(t) = h0(t)exp(β′Z), and then rely on the well-known

relationship between the hazard function and the CDF
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F (t) = 1 − exp(−
∫

(h(u)du))

to arrive at the Weibull regression model

f(Yik = y|λi, β, c) = λiexp(Z ′
itβ)cyc−1exp(−λiexp(Z ′

itβ)yc) (4)

We note that when c = 1, equation (4) simplifies to a heterogeneous exponential arrival time

model with covariates that leads to count models [0]-[3] above.

Thus, directly analogous to models [0]-[3] which are based on an exponential interarrival time,

our interest lies in looking at various reduced-form specifications of model (4). Specifically, we

denote as model [4], the Weibull model without heterogeneity and without covariates (model [0]

analog) such that λi = λ and Z ′
itβ = 0. We label model [5] as the Weibull regression model (without

heterogeneity) such that λi = λ. Model [6] is the model, to be discussed in section 3.2, in which

we allow for heterogeneity in baseline rates λi but do not include covariates (Z ′
itβ = 0). Finally,

model [7] is the fully parameterized model that includes heterogeneity and covariates. All eight of

these models will be fit and results compared in Section 4.

3 Basic Theory and Definitions

Before discussing the Weibull count model itself, we describe the general framework utilized to

derive the model that is based upon the relationship between interarrival times and their count

model equivalent. Let Yn be the time from the measurement origin at which the n-th event occurs.

Let X(t) denote the number of events that have occurred up until time t. The relationship between

interarrival times and the number of events is

Yn ≤ t ⇔ X(t) ≥ n.
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We can restate this relationship by saying that the amount of time at which the n-th event occurred

from the time origin is less than or equal to t if and only if the number of events that have occurred

by time t is greater than or equal to n.

We therefore have the following relationships that allow us to derive our Weibull count model

Cn(t):

Cn(t) = P (X(t) = n) = P (X(t) ≥ n) − P (X(t) ≥ n + 1) (5)

= P (Yn ≤ t) − P (Yn+1 ≤ t).

If we let the cumulative density function (cdf) of Yn be Fn(t), then Cn(t) = P (X(t) = n) =

Fn(t) − Fn+1(t). In the case where the measurement time origin (and thus the counting) process

coincides with the occurrence of an event, then Fn(t) is simply the n-fold convolution of the common

interarrival time distribution which may or may not have a closed-form solution. Based upon (5),

we derive our Weibull count model next based upon a polynomial expansion of F(t).

3.1 Weibull Count Model

We derive the basic Weibull count model, model [4] from above, by assuming that the interarrival

times are independent and identically distributed Weibull with probability density function (pdf)

f(t) = λctc−1e−λtc , (c, λ ∈ R+), and corresponding cdf F (t) = 1 − e−λtc , which simplifies to the

exponential model when c = 1.

The challenge in deriving the Weibull count model arises in the need to be able to evaluate

convolutions of the form
∫ t
0 F (t − s)f(s)ds. While this integral is easily solved for the exponential

density, as well as the gamma with an integer-value shape parameter (a.k.a. the Erlang distribu-

tion), it does not have a proper solution for the Weibull. Thus, our approach is to handle this

intergral (and derive the Weibull count model as a whole) using a Taylor series approximation to

the Weibull density.

In particular, the Taylor series approximations obtained by expanding the exponential pieces
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(eλtc) respectively, for both the cdf and pdf of the Weibull are:

F (t) =
∞∑

j=1

(−1)j+1(λtc)j

Γ(j + 1)
(6)

and

f(t) =
∞∑

j=1

(−1)j+1cjλjtcj−1

Γ(j + 1)
. (7)

Utilizing, as in (5), that Cn(t) = Fn(t)−Fn+1(t), we obtain the following recursive relationship

that we utilize in deriving the Weibull count model:

Cn(t) =
∫ t

0
Fn−1(t − s)f(s)ds −

∫ t

0
Fn(t − s)f(s)ds (8)

=
∫ t

0
Cn−1(t − s)f(s)ds.

Before proceeding to develop the general solution to the problem, we note that F0(t) is 1 for all

t and F1(t) = F (t). Therefore, we have C0(t) = F0(t)−F1(t) = e−λtc =
∑∞

j=0
(−1)j(λtc)j

Γ(j+1) . Using the

recursive formula in (8), we can therefore compute C1(t):

C1(t) =
∫ t

0
C0(t − s)f(s)ds (9)

=
∫ t

0
(
∞∑

j=0

(−1)j(λ(t − s)c)j

Γ(j + 1)
)(

∞∑
k=1

(−1)k+1ckλksck−1

Γ(k + 1)
dsF1

=
∞∑

j=0

∞∑
k=1

(−1)j(−1)k+1(λ)j(λ)k

Γ(j + 1)Γ(k + 1)

∫ t

0
ck(t − s)cjsck−1ds

=
∞∑

j=0

∞∑
k=1

(−1)j(−1)k+1(λ)j(λ)k

Γ(j + 1)Γ(k + 1)
(t)cj(t)ckΓ(cj + 1)Γ(ck + 1)

Γ(cj + ck + 1)

Then, by using a change of variables m = j and l = m + k, we obtain:

=
∞∑
l=1

(
l−1∑
m=0

(−1)m(−1)l−m+1(λ)m(λ)l−m

Γ(m + 1)Γ(l − m + 1)
(t)cm(t)cl−cmΓ(cm + 1)Γ(cl − cm + 1)

Γ(cm + cl − cm + 1)
)
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=
∞∑
l=1

(−1)l+1(λtc)l

Γ(cl + 1)
(

l−1∑
m=0

Γ(cm + 1)Γ(cl − cm + 1)
Γ(m + 1)Γ(l − m + 1)

=
∞∑
l=1

(−1)l+1(λtc)lαl
m

Γ(cl + 1)

where αl
m =

∑l−1
m=0

Γ(cm+1)Γ(cl−cm+1)
Γ(m+1)Γ(l−m+1) .

This suggests a general form for Cn(t), namely:
∑∞

l=n
(−1)l+n(λtc)lαn

l
Γ(cl+1) which is confirmed by

Cn+1(t) =
∫ t

0
Cn(t − s)f(s)ds (10)

=
∫ t

0
(
∞∑

j=n

(−1)j+n(λ(t − s)c)jαn
j

Γ(cj + 1)
)(

∞∑
k=1

(−1)k+1ckλksck−1

Γ(k + 1)
ds

=
∞∑

j=n

∞∑
k=1

(−1)j+n(−1)k+1(λ)j(λ)kαi
j

Γ(cj + 1)Γ(k + 1)

∫ t

0
ck(t − s)cjsck−1ds

=
∞∑

j=n

∞∑
k=1

(−1)j+n(−1)k+1(λ)j(λ)kαn
j

Γ(cj + 1)Γ(k + 1)
(t)cj(t)ckΓ(cj + 1)Γ(ck + 1)

Γ(cj + ck + 1)

=
∞∑

l=n+1

(−1)l+n+1(λtc)l

Γ(cl + 1)
(

l−1∑
m=n

αn
m

Γ(cl − cm + 1)
Γ(l − m + 1)

)

=
∞∑

l=n+1

(−1)l+1(λtc)lαn+1
l

Γ(cl + 1)

where αn+1
l =

∑l−1
m=n αn

m
Γ(cl−cm+1)
Γ(l−m+1) .

Therefore, we have the main result of this paper, the Weibull count model:

P (N(t) = n) = Cn(t) =
∞∑

j=n

(−1)j+n(λtc)jαn
j

Γ(cj + 1)
n = 0, 1, 2, ... (11)

where α0
j = Γ(cj+1)

Γ(j+1) j = 0, 1, 2, ... and αn+1
j =

∑j−1
m=n αn

m
Γ(cj−cm+1)
Γ(j−m+1) , for n = 0, 1, 2, ... for j =

n + 1, n + 2, n + 3, ....

We note in addition that the expectation of this count model is

E(N) =
∞∑

n=1

∞∑
j=n

n(−1)j+n(λtc)jαn
j

Γ(cj + 1)

10



with variance given by

V ar(N) = E(N2) − (E(N))2

=
∞∑

n=2

∞∑
j=n

n2(−1)j+n(λtc)jαn
j

Γ(cj + 1)
− (

∞∑
n=1

∞∑
j=n

n(−1)j+i(λtc)jαn
j

Γ(cj + 1)
)2.

3.2 The Benefits of the Weibull Count Model

We now revisit the properties listed in Section 1, point-by-point (and provided in italics below),

both to describe those aspects that the basic Weibull count model (without covariates and without

heterogeneity) given in (11) provides, and those that require extensions.

(1) The model generalizes (nests) the most commonly used extant models such as the Poisson and

the NBD as special cases; thus, when a simple structure is sufficient, the researcher will clearly

see it through the estimated model parameters. Furthermore, standard inferential procedures

(e.g., the likelihood ratio test) can be used to compare different specifications.

We note that when we set c = 1 in (11), we do in fact get the Poisson count model as P (N(t) =

n) =
∑∞

j=n
(−1)j+n(λ)jαn

j

Γ(j+1) , a standard result. With regards to the negative binomial model, we

discuss this with respect to item [5] below, when λ is allowed to vary across the population.

(2) The model handles both overdispersed and underdispersed data, both of which are likely to be

seen in practice.

Through extensive simulations (because the result is unavailable in closed-form), we have verified

that for 0 < c < 1, the probability mass function assocaited with the Weibull count model displays

overdispersion, whereas for c > 1, underdispersion is displayed. That is, the underlying interarrival

times have a decreasing (increasing) hazard for 0 < c < 1 (c > 1). Thus, negative duration

dependence is associated with overdispersion, positive duration dependence with underdispersion
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(Winkelmann 1995). A lack of duration dependence leads to the Poisson distribution with equal

mean and variance.

As one demonstration of these findings, Figures 1 and 2 display probability histograms for the

Weibull and Poisson count models with different parameter values. Both the Weibull and the

Poisson were intentionally chosen to have identical means (set to 2); yet their dispersion is quite

different. In Figure 1, we have the probability histograms for an underdispersed Weibull with

parameters c = 1.5 and λ = 2.93, and a Poisson with λ = 2. The variance of the Weibull count

model in this case is 0.880. In Figure 2, we have the probability histograms for an overdispersed

Weibull with parameters c = .5 and λ = 1.39, and again the Poisson with λ = 2. The variance of

the Weibull count model in this case is 3.40, which is greater than the mean, as expected.

Insert Figures 1 and 2 here

(3) Researchers who believe that the interarrival times of their dataset are Weibull distributed

now have a corresponding counting model to use.

As (11) is derived from the Weibull timing model, the link between the timing model and its

counting model equivalent is maintained. Hence, in those cases where an analysis of the interarrival

times (if the data are available) suggests that a more flexible timing model is needed, it can now

be incorporated via its count model equivalent. Furthermore, in those cases where one only has

count data, but would like to make forecasts of the next arrival time, this can now be done given

the timing and count model link that is now achieved.

(4) The model is computationally feasible to work with. The model is estimable without requiring

a formal programming language; it lends itself to implementation within a popular computing

environment, such as a spreadsheet.

Although the summations shown in the expressions above may seem a bit daunting at first, they

are easy to manage from an operational standpoint. We will demonstrate in Section 4 that the

model is tractable enough that we perform parameter estimtion, etc., in Microsoft Excel.
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(5) The model allows for the incorporation of person-level heterogeneity reflecting the fact that

individuals’ interarrival rates may vary quite substantially across the population.

One nice feature of the model presented in (11) is that introducing heterogeneity across units in

their rate parameters, λi, is straightforward. If, as is standard in many timing models, we assume

that the underlying rates are drawn from a gamma distribution, λi ∼ gamma(r, α), we can increase

the model flexibility at the expense of only one additional model parameter and also, as per item 1,

when c = 1 nest the negative binomial model. Thus, when we combine our polynomial expansion

Weibull count model in (11) with a gamma mixing distribution, we get a count model that nests

the Poisson and negative binomial.

In particular, the derivation of the heterogeneous Weibull count model, model [6] from Section

2.1, is given as follows:

P (N(t) = n) =
∫ ∞

0
[
∞∑

j=n

(−1)j+n(λit
c)jαn

j

Γ(cj + 1)
]g(λi|r, α)dλi (12)

=
∫ ∞

0
[
∞∑

j=n

(−1)j+n(λit
c)jαn

j

Γ(cj + 1)
]
αr(λi)r−1e−αλi

Γ(r)
dλi

= [
∞∑

j=n

(−1)j+n(tc)jαn
j

Γ(cj + 1)
]
∫ ∞

0
λj

i

αr(λi)r−1e−αλi

Γ(r)
dλi

= [
∞∑

j=n

(−1)j+n(tc)jαn
j

Γ(cj + 1)
]
Γ(r + j)
Γ(r)αj

;

This expression is simply a weighted sum of the j-th moments of the gamma distribution around

zero, Γ(r+j)
Γ(r)αj , as λj

i enters the polynomial approximated likelihood in a linear way. Hence, the

conjugacy of the gamma mixing distribution, and the polynomial approximated likelihood is directly

obtained.

(6) The mechanism required to incorporate covariate effects is clear and simple. This process

is consistent with standard “proportional hazards” methods, which represent the dominant

paradigm for ordinary single-event timing models.
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Now that we have the closed-form solution for the heterogeneous count model with an underlying

Weibull interarrival process, we extend it to allow for the inclusion of covariates, i.e., models [5]

and [7] from Section 2.1. We define the Weibull regression model, without heterogeneity, as

P (N(t) = n) =
∞∑

j=n

(−1)j+n(λex′
iβtc)jαn

j

Γ(cj + 1)
(13)

= (
∞∑

j=n

(−1)j+n(λtc)jαn
j

Γ(cj + 1)
)(ex′

iβ)j

where x′
i denotes the covariate vector for unit i and β a set of covariate slopes. In an analogous

manner, we derive model [7], our most complex model which allows for Weibull interrival times,

covariate heterogeneity, and parameter heterogeneity and is given by:

P (N(t) = n) =
∞∑

j=n

(−1)j+n(tc)jαn
j

Γ(cj + 1)
Γ(r + j)
Γ(r)αj

(ex′
iβ)j . (14)

after integrating over λi ∼ gamma(r, α).

We next describe an application of these models using a data set initially described and analyzed

by Winkelmann (1995) that is an underdispersed count data set with covariates.

4 Testing and Results

Besides the derivation of the Weibull count model, with and without covariates and with and

without heterogeneity, an additional goal of this research was to provide an empirical demonstration

of our model with two aspects in mind. First, that the polynomial expansion and conjugate prior

derived here, which then allows for a closed-form solution has computational advantages that

should not be trivialized. Remarkably enough, the computational approach for our class of models,

including the computation of bootstrap standard errors (Efron, 1982), was conducted entirely in

Microsoft Excel, an aspect we believe makes our approach widely accessible. The spreadsheets that

were utilized are available upon request.
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Specifically, to compute the standard errors of coefficients under the series of models, we utilized

a bootstrap procedure in which 30 replicate data sets for each model were generated by sampling

individual respondents from the original data set with replacement. The results reported for the

standard errors are the standard deviation of the coefficients across those samples. We note that

for our model, the bootstrapping procedure can be implemented by using a weighted likelihood

approach where each observation’s weight in the likelihood is the number of times that it appears

in the replicate sample; a procedure easily implemented within Excel. This equivalence of using

a weighted likelihood approach to compute bootstrap standard errors we believe is not specific

to this model, can be utilized in a large number of research domains, and hence can be applied

in software packages that contain just random number generation and function maximizer (e.g.

Microsoft Excel solver) capabilities.

Secondly, one research question we wished to investigate was whether a more flexible (and per-

haps more realistic, in many cases) timing model (e.g., Weibull versus exponential) might alleviate

the need for heterogeneity – whether brought in through the underlying rates or via covariates.

Thus, as we fit a sequence of models with increasing complexity (Poisson, Poisson with covariates,

negative binomial, negative binomial with covariates, Weibull, Weibull with covariates, Weibull

with gamma heterogeneity, and Weibull with gamma heterogeneity and covariates, as described in

Section 2.1), but differing in the source of that complexity, we focus on which aspects of the model

are doing the “heavy lifting”. Therefore, if in fact we find that a richer underlying kernel timing

model can provide an adequate fit when compared to a model that requires heterogeneity, this is

important from a scientific perspective. Perhaps researchers’ long-standing faith in the validity and

robustness of the exponential distribution may be misplaced.

We apply our series of models to a data set initially (and more fully) described by Winkelmann

(1995) which contains as a dependent variable the number of children born to a random sample of

females. A number of explanatory variables are available including the female’s general education

(measured as the number of years of school), a series of dummy variables for post-secondary educa-

tion (either vocational training or university), nationality (German or not), rural or urban dwelling,
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religious denomination (Catholic, Protestant, and Muslim, with other or none as reference group),

and continuous variables for year of birth and age at marriage.

This data set was chosen for a number of reasons. First, the paper by Winkelmann (1995) acted

as a motivation for this research; hence utilizing the identical data set made sense. Secondly, for

this data set, the variance of the number of births is less than the mean (2.3 versus 2.4), thus we

have an opportunity to demonstrate the ability of the Weibull family of count models to handle

underdispersion. And finally, as Winkelmann (1995) already contained the results for the Poisson

regression model (model [1] here) and the gamma-based count model which he derived in that

paper, we already had results that will let us confirm the accuracy of our computational approach,

and will also provide a strong benchmark (the gamma-based model) to which we can compare the

Weibull.

Tables 1 and 2 below list the results of the non-regression models (without covariates) and

the regression models, respectively. We note that the log-likelihood values computed using our

approach, for both the regular Poisson (LL = -2186.8) and Poisson regression (LL = -2101.8) are

identical to those in Table 1 (p. 471) of Winkelmann (1995), thus verifying the accuracy of our

polynomial expansion approach. In addition, the last column in Table 2, the results of the gamma

count model, is taken directly from Table 1 (p. 471) from Winkelmann (1995). We first describe

our findings with respect to the models without and then with covariates.

The non-regression models show that the Weibull model has a better log-likelihood than the

Poisson (which it must as it nests it) and the NBD. The latter two models are identical for this data

set, because the underdispersion will drive the NBD heterogeneity to zero (r and α are extremely

large). (The presence of gamma heterogeneity around the Poisson process would overdisperse, not

underdisperse, the fertility counts, so it wouldn’t help in this case.) Similarly, the log-likelihood of

the Weibull model with heterogeneity is effectively equal to that of the simple Weibull model, i.e.,

heterogeneity is still unnecessary.

Although these results are not especially dramatic, they do provide initial evidence that duration
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dependence plays a distinctly different role when compared to heterogeneity. It is valuable to have

a model that can distinguish between these two factors. If the underlying data set were instead

overdispersed, one could use the heterogeneous Weibull count model to determine whether the “non-

Poisson” dispersion effects were coming from the timing process or from cross-sectional differences.

We leave this deeper comparison for future research.

Notice finally that the value of c in both Weibull models is 1.116, slightly more than two standard

errors above 1. This is consistent with our earlier discussion result that when c is greater than 1,

the Weibull count model’s variance is less than the mean – underdispersion. It also indicates that

the “arrival process” for babies is not completely random. A mother is unlikely to have a baby

immediately after the birth of a previous child (which fits the laws of nature quite well), but the

odds (or hazard) of delivering another child steadily increases thereafter.

Insert Table 1 Here

Turning our attention to the models with covariates, we first note that the two Weibull regression

models provide the best fits, i.e., a slight improvement in log-likelihood compared to the Poisson

and Winkelmann’s gamma count model. Once again, adding heterogeneity to the Poisson and

Weibull models add very little. The values of c for the Weibull regression and heterogeneous

Weibull regression models are slightly higher than before, and still significantly greater than 1.

The coefficients for the covariates show very small differences across the models. The coefficients

of all variables are identical in sign as those in Winkelmann (1995), are extremely stable across the

class of models, and have comparable standard errors such that the variables that are significant

coincide in both sets of models1.

Insert Table 2 Here
1The year of birth and age of marriage variables were centered in Winkelmann, and not here, hence the difference

in size of the coefficients. However, the Poisson regression models as indicated by the log-likelihoods are the same.
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5 Conclusions

In this research, we have derived and provided an empirical demonstration for an entirely new

class of count models derived from a Weibull interarrival time process. The new model has many

nice features such as its closed-form nature, computational simplicity, the ability to nest both the

Poisson and NBD models, and the ability to bring in both heterogeneity and covariates in a natural

way. The key to the derivation is the use of a Taylor series expansion to get around the fact that,

unlike the exponential or gamma distributions, there is no simple way to obtain a convolution of

two (or more) Weibulls.

From an empirical standpoint, we showed that the Weibull count model offers a slight improve-

ment in log-likelihood when compared to the gamma count model of Winkelmann (1995) and a

dramatic improvement over extant models commonly used. Admittedly the differences, compared

to Winkelmann’s gamma count model, are small, and it’s impossible to generalize from one data

set, but these results provide encouraging signs about the model’s usefulness and validity. More

importantly, the model provides a sizeable improvement over the more traditional Poisson/NBD

model (with and without covariates). This may have important implications in many cases, be-

cause most researchers have always turned to heterogeneity as the first explanation/correction for

data sets that do not conform well to the simple assumption of Poisson counts (and, implicitly,

exponential interarrival times). Now researchers have a very plausible second explanation available

(i.e., Weibull interarrival times), and unlike Winkelmann’s model, they can further explore it us-

ing conventional techniques such as proportional hazards for covariates and a parametric mixing

distribution for heterogeneity. This is a powerful combination of old and new methods that has

substantial promise for a wide variety of application areas.
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Table 1: Non-regression model results for total marital fertility.

Model

Poisson NBD Weibull Het. Weibull

Variable Coef SE Coef SE Coef SE Coef SE

λ 2.38 0.046 - - 2.635 0.099 - -

c - - - - 1.116 0.050 1.116 0.051

r - - 35183010 684118 - - 17292.3 85.04

α - - 14753795 323713 - - 6561.7 221.3

Log Likelihood -2186.8 - -2186.8 - -2180.4 - -2180.3 -

Table 2: Regression model results for total marital fertility.

Model

Poisson NBD Weibull Het. Weibull Gamma

Variable Coef SE Coef SE Coef SE Coef SE Coef SE

German -0.200 0.077 -0.200 0.077 -0.222 0.086 -0.222 0.095 -0.190 0.060

Years of Schooling 0.033 0.039 0.033 0.039 0.038 0.045 0.039 0.043 0.032 0.027

Vocational Training -0.153 0.036 0.153 0.036 -0.173 0.040 -0.174 0.039 -0.144 0.037

University -0.155 0.158 -0.155 0.158 -0.174 0.181 -0.204 0.177 -0.146 0.130

Catholic 0.218 0.071 0.218 0.071 0.242 0.080 0.249 0.079 0.206 0.059

Protestant 0.113 0.079 0.113 0.079 0.123 0.089 0.128 0.087 0.107 0.063

Muslim 0.548 0.077 0.548 0.077 0.639 0.092 0.651 0.087 0.523 0.070

Rural 0.059 0.046 0.059 0.046 0.068 0.053 0.067 0.052 0.055 0.032

Year of Birth 0.242 0.176 0.242 0.176 0.231 0.200 0.240 0.199 -0.002 0.002

Age at Marriage -3.044 0.663 -3.044 0.663 -3.403 0.771 -3.370 0.791 -0.290 0.006

λ 3.150 1.020 - - 4.044 1.590 - - - -

c - - - - 1.236 0.054 1.254 0.054 - -

r - - 1766.28 147 - - 17011 354.0 - -

α - - 560.3 190.3 - - 5023.7 1414.8 1.439 0.233

Log Likelihood -2101.8 - -2101.8 - -2077.0 - -2076.3 - -2078.2 -
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Figure 1: Poisson and Weibull models displaying underdispersion.
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Figure 2: Poisson and Weibull models displaying overdispersion.
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