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Testing Behavioral Hypotheses Using an Integrated Model of Grocery
Store Shopping Path and Purchase Behavior

Abstract
We examine three sets of established behavioral hypotheses about consumers' in-store behavior using field
data on grocery store shopping paths and purchases. Our results provide field evidence for the following
empirical regularities. First, as consumers spend more time in the store, they become more purposeful—they
are less likely to spend time on exploration and more likely to shop/buy. Second, consistent with “licensing”
behavior, after purchasing virtue categories, consumers are more likely to shop at locations that carry vice
categories. Third, the presence of other shoppers attracts consumers toward a store zone but reduces
consumers' tendency to shop there.
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Abstract 

As behavioral hypotheses about in-store decision making become more common in the 

marketing literature, there is a growing need for richer, more complete datasets in order to test 

them more carefully.  We introduce a novel PathTracker® dataset that captures consumers’ in-

store shopping processes, thus allowing researchers to start thinking about how to run such tests 

using actual field data. We propose an individual-level probability model that jointly captures 

three key aspects of a consumer’s within-store behavior: which zones she visits, how long she 

stays in each zone, and what purchases she makes within that zone. After showing that our model 

offers an adequate description of the PathTracker® data, we discuss the issues involved in testing 

several behavioral hypotheses using the proposed framework.  
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1. Introduction 

Marketing researchers have recently shown increased interest in studying consumers’ in-

store decision making behaviors and the associated implications for store design and 

merchandising strategies. For instance, Dhar et al. (2007) studied consumers’ “shopping 

momentum,” where an initial purchase leads to a higher tendency of making more purchases; 

Inman et al. (2007) studied how category factors and customer characteristics drive unplanned 

purchases; Lee and Ariely (2006) studied how consumers’ goals evolve during a shopping trip; 

finally, Argo et al. (2005) and Dahl et al. (2001) investigated how the social presence of other 

shoppers can affect consumers in a retail setting.  

Testing the above behavioral hypotheses with field data would not only enhance the 

external validity of the proposed theories, but would also provide a bridge between laboratory 

studies and practical applications. A full-scale field study, however, would require data that are 

far richer than commonly used scanner data (e.g., Guadagni and Little 1983).  Even more 

complete “market basket” data (e.g., Bell and Lattin 1998) are not nearly complete enough to 

capture any of the behaviors described above. Ideally, researchers need a dataset that covers the 

entire process of in-store shopping, i.e., the path that the shopper follows and the purchases she 

makes from the moment she enters the store to the moment she reaches the checkout counter. 

Equipped with this richer path data (Hui et al. 2007a), researchers can begin to study the 

complete set of in-store decisions rather than merely looking at limited “snapshots” (e.g., scanner 

data).  

Until recently, however, suitable datasets on shopping paths and purchases were very 

difficult to obtain. To collect such data, one would typically have to physically follow shoppers 

around the store (e.g., Farley and Ring 1966) or rely on a large number of cameras (e.g., Heller 
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1988). These methods, as well as other related technologies (Burke 2005) can be costly and quite 

labor-intensive to collect and prepare large-scale datasets for analysis. But today, advances in 

data-collection technology have helped overcome these hurdles. New technologies such as Radio 

Frequency Identification (RFID) enable researchers to track multiple shoppers’ movements in 

real time. For instance, Sorensen Associates (now known as TNS Sorensen) developed the 

PathTracker® system, which uses an RFID tag attached to each shopping cart to track shoppers’ 

movements as they enter the store, until they reach the checkout counter. By combining 

individual-level movement data with their purchase records obtained from ordinary point-of-sale 

scanner data, the PathTracker® system generates datasets, as used in this paper, that include 

thousands of records of shoppers’ paths and their corresponding purchases immediately and cost 

effectively (Larson et al. 2005; Sorensen 2003). This dataset allows researchers to examine 

shoppers’ behavior at a finer level than before.  

In this paper, we introduce the PathTracker® dataset in detail, propose an integrated 

probability model to describe such data, and discuss how to test behavioral hypotheses using our 

model. We jointly captures three aspects of each shopper’s in-store behavior: (1) which areas of 

the store a consumer chooses to visit, (2) whether she chooses to stay/shop at a given location, 

i.e., considers making a purchase in each of the areas, and (3) whether/what she actually 

purchases in each area. Central to these analyses is a set of latent, time-varying variables (called 

“attractions”), corresponding to each product category and location (zone) of the store. These 

latent variables evolve based on the shopper’s path and purchases, and act in combination with 

other shopper-specific characteristics (e.g., planning-ahead propensity) to drive all of the above 

processes. Finally, a Hierarchical Bayesian formulation (Rossi et al. 2006) is used to capture 

parameter heterogeneity across shoppers.  
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While the main focus of this paper is methodological, the contribution of this paper is 

threefold. First, we introduce a novel PathTracker® dataset to other researchers and outline 

research opportunities with this rich dataset. Second, we propose a new integrated probability 

model that adequately describes these data; such a model has never been proposed in the 

literature before. Third, on a substantive level, we discuss how behavioral hypotheses (e.g., 

shopping momentum, crowding/herding, goal gradient, and category assortment effects) can be 

built into our model framework in the near future and hence tested using field data.  

The remainder of this paper is organized as follows. Section 2 describes the PathTracker 

system and provides summary statistics for our dataset. In Section 3, we specify our model and 

estimation approaches in detail. In Section 4, we apply our model to field data, demonstrate its fit, 

and interpret its parameter estimates. Section 5 discusses several behavioral hypotheses that can 

be tested under our general paradigm. Finally, Section 6 concludes with a discussion of future 

research directions. 

2. PathTracker® Data 
  

In this section, we describe the PathTracker® dataset and data preparation procedures.  

2.1 Data description 

Our dataset contains 1051 paths and associated shopping-basket data collected from 

March 14, 2004 to April 3, 2004 using the PathTracker® system, which was installed in a large 

(but typical) supermarket in the Eastern United States. The system consists of a set of RFID tags 

and antennae: A small RFID tag is affixed under each shopping cart, and emits a uniquely coded 

signal every five seconds (“blinks”); this signal is then picked up by antennae around the 

perimeter of the store to locate the cart (Sorensen 2003).  
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A PathTracker® dataset consists of shopping trips that include both the shopping path, 

represented by a list of (x,y) coordinates at five-second intervals, and purchase records (in terms 

of product UPC’s) from scanner data. Each trip starts when a shopping cart is taken at the store 

entrance, and ends when it is pushed through the checkout line to the other side of the checkout 

counter. Within the PathTracker® system, each product category’s shelf location is also 

represented by a pair of (x,y) coordinates. Together with the scanner data, this allows us to map 

each purchase back to the store location where it was made. Since we only have information 

about each product category’s (but not each individual UPC’s) location, we study purchase 

behavior at the product category level in this research; i.e., each purchased UPC is aggregated to 

its product category, and identified with the position of the product category in the store.1 

2.2 Data preparation 

Our model for consumers’ in-store movement, as we discuss in Section 3, is a discrete 

choice model (McFadden 1981). Thus, the raw data needs to be “discretized” to limit the number 

of possible locations (i.e., choice options). This is a common procedure used by other researchers 

when building models to analyze complex behaviors such as eye-tracking (e.g., Pieters and 

Wedel 2007) and pedestrian movements (e.g., Antonini et al. 2006).  

We discretize our store by dividing it into distinct, non-overlapping zones. Each (x,y) 

coordinate pair on a shopping path is then mapped to a specific zone, and no further distinction is 

made among (x,y) coordinates within the same zone. Through a careful analysis of category 

locations and discussions with Sorensen Associates, we divided the grocery store into 96 zones 

of comparable sizes, as shown in Figure 1. The location(s) of each product category across the 96 

                                                 
1 Sometimes a product category can be located in more than one area within the store. In these cases, we use 
statistical heuristics to impute where a purchase is made. Details are available upon request. When cart-level 
scanners becomes available in the future, this problem can be eliminated altogether as the time when an object is 
scanned and put into one’s shopping cart will be known.  
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zones, along with its % penetration (fraction of the 1051 shopping baskets containing the 

category), are shown in Table 1.2  Note, as mentioned before, that some product categories can 

appear in multiple zones; e.g., Paper Towels are located both in zone 37 and zone 75.  

[Insert Figure 1 about here] 

[Insert Table 1 about here] 

One of the key challenges in modeling store movement data is the need to take into 

account the existence of physical barriers (e.g. aisles, walls) in the store. We do so by 

representing the store as a “graph”: a mathematical object defined by “nodes” that represent 

regions, and “edges” that depict the adjacency between different regions. A node is placed at the 

center of each zone. An edge is drawn between two nodes if they represent two adjacent zones, 

indicating that it is possible to move from one to the other without going through any other zone. 

Figure 2 shows the grocery store represented by a graph of 96 nodes, referring to each of the 96 

aforementioned zones. An assumption here is that adjacent nodes can be reached in one blink, 

while non-adjacent nodes cannot; this assumption has been empirically verified with our data.  

[Insert Figure 2 about here] 

By representing the grocery store as a graph, we implicitly take into account physical 

barriers within the store by the presence or absence of edges between nodes. For example, in 

Figure 2, although node A and node B, which are in adjacent aisles, are close together in 

Euclidean distance, one would have to go through at least four intermediate nodes to go from A 

to B, due to the absence of an edge connecting them.  The shortest travel distance between any 

pairs of locations in the store can be approximated by the distance of the shortest path connecting 

                                                 
2 Note that the scanner data portion of our dataset is less refined than datasets used in typical academic studies. For 
instance, our data do not allow us to adequately tease apart the Skin Care and Eye Care categories, and also the Baby 
Medical Needs/Diapers categories. Thus, these categories are lumped together in Table 1. In the model, however, 
their attractions are separately estimated. 
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their respective nodes. Thus, the graph faithfully represents the distances between each zone in 

the grocery store by explicitly taking into account the multiple spatial constraints. 

Having discretized the store into 96 zones, we convert each of the 1051 shopping paths 

by mapping each (x,y) coordinate on a path at each blink to its corresponding zone. If a shopper 

spends more than one blink in the same zone, we record the number of blinks that she spends in 

that zone. Thus, a path is converted into a sequence of zone visits, along with the number of 

blinks the person spent in each zone before moving to the next zone. From here on, we refer to a 

zone transition as a “step”. Figure 3 shows an example of path discretization; the top panel 

depicts the sequence of (x,y) coordinates in the raw data, while the bottom panel shows the 

corresponding discretized path.  

[Insert Figure 3 about here] 

2.3 Summary statistics 

Since our goal is to capture shoppers’ in-store visit, stay, and purchase behaviors, hence a 

greater understanding of consumers’ underlying decision processes, we derive the following 

summary statistics that describe the data along those three key dimensions. The summary 

statistics included for visit, stay, and purchase are discussed separately in Subsections 2.3.1-2.3.3 

below. 

2.3.1 Summary statistics for visit 

We compute the total number of steps (i.e., zone transitions) that a shopper takes during 

the shopping trip, and we also compute the overall zone-to-zone transition probabilities. The 

histogram for the total number of steps is shown in Figure 4. In our dataset, the mean number of 

steps taken is 98.8 while the median is 90.0. The transitions that occur with highest frequency 
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out of each zone are shown by the solid directed arrows in Figure 5, while the light shaded 

arrows indicate all possible movements.  

[Insert Figure 4 about here] 

[Insert Figure 5 about here] 

Note from Figure 5 that there is a general tendency to “back-track” once a shopper enters 

an aisle; i.e., after a shopper enters an aisle, she is more likely to head out rather than traversing 

through it. This interesting observation is consistent with the common “excursion” and lack of 

aisle-traversal behavior documented in Larson et al. (2005) and Sorensen (2003), and can be 

valuable for determining shelf-slotting fees (i.e. mid-aisle shelf space may receive low traffic). 

2.32 Summary statistics for stay 

We compute (i) the total amount of time (in minutes) that a shopper spent in the grocery 

store, and (ii) the average amount of time that shoppers spent in each zone in the store. The 

histogram for total in-store time is shown in Figure 6. In our dataset, shoppers on average spend 

48.6 minutes in store; the median in-store time is 43.8 minutes. The average amount of time 

shoppers spent in each zone (in minutes) is shown in Figure 7.  

[Insert Figure 6 about here] 

[Insert Figure 7 about here] 

Figure 7 leads to several interesting behavioral insights about shopping behavior. First, 

shoppers on average spend a large amount of time in the area immediate to the entrance (zone 2 

and 3), where produce products (fruits and vegetables) are located; possibly due to the “personal 

nature” of the goods. Second, shoppers tend to move along aisles very quickly. Third, a shopper 

who follows the typical counter-clockwise movement through the store will in general tend to 

spend less and less time in a zone as her trip progresses, consistent with the observation in 
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Sorensen (2003) that shoppers tend to speed up as they move towards checkout.  This appears to 

provide field validation for the goal gradient hypothesis (Kivetz et al 2006, Nunes and Dreze 

2006a). 

2.3.3 Summary statistics for purchase 

We compute (i) the total number of categories that a shopper purchased during his/her 

trip, and (ii) the % purchase incidence (penetration) for each product category. The histogram of 

the total number of categories purchased is shown in Figure 8. In our dataset, shoppers purchase, 

on average, from 6.7 categories.  

[Insert Figure 8 about here] 

A key issue for retailers is to determine how much of these purchase decisions are driven 

by the attraction for each category, per se, versus the inherent attraction for the area(s) in the 

store in which they are located.  It is critically important for a retailer to isolate these two effects, 

but it is nearly impossible to perform this task with raw data alone.  It requires a formal model 

that can sort out underlying propensities for each of these decision factors. As we go on to 

develop the model, it will become clear how we accomplish this task, and we will demonstrate 

its implications with some real examples subsequently. 

3. Model Development 

We develop an integrated model to describe each consumer’s shopping path and purchase 

behavior. We present an overview of the shopper’s decision process in Section 3.1 and then 

describe each component of our model in detail in Section 3.2. For the sake of exposition, we 

focus first on a single shopper, and thus individual-level subscripts will be suppressed. Finally, in 

Section 3.3, we embed our model within a Hierarchical Bayesian framework to allow for 
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heterogeneity among shoppers’ purchase preferences, movement patterns, and planning-ahead 

tendencies.   

3.1 The shopper’s decision process 

As discussed before, we discretize each path into a number of zone transitions, which we 

refer to as “steps.” A new step is initiated each time the shopper leaves one zone and goes to 

another zone, until she reaches checkout. At step t, we denote the zone that the shopper is located 

as xt. At the first step (t=1), the shopper is located at the entrance of the grocery store. From there, 

we model the shopper’s decision process at each zone as a sequence of three (nested) decisions: 

visit, visit-to-shop, and shop-to-purchase. Each of these decisions, as depicted in Figure 9, are 

driven by the latent attractions of product categories and zones, which we will define later. 

[Insert Figure 9 about here] 

First, the shopper makes a visit decision: she decides which zone she is going to visit next. 

If that zone is the checkout, the trip ends. Otherwise, she makes a visit-to-shop decision: she 

decides whether she wants to shop at her current zone, or whether she is only passing through on 

her way to a different zone. We denote the shopper’s visit-to-shop decision by Ht, which takes 

the value 1 if a visit-to-shop conversion is made, and 0 otherwise. Note that we are unable to 

directly observe whether someone is actually shopping or just passing through, and thus Ht is a 

latent construct that is central to our model; this is similar to the spirit of Hidden Markov models 

where a latent stochastic process drives the observed outcome (e.g., Montgomery et al. 2004). 

Further, we allow for the possibility that the shopper makes a visit-to-shop conversion (Ht = 1), 

but decides not to buy anything. 
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Depending on whether she shops or not, she may stay at the zone for a different duration;  

presumably, the shopper stays longer if she is shopping than passing through. We denote by St 

the number of blinks that the shopper stays at the current node in step t.  

Next, if she decides to shop, she needs to make a shop-to-purchase decision: she decides 

which product categories, if any, to purchase in that zone. We denote her category purchase 

incidence decision as a vector tB
r

, where Bjt = 1 if category j is purchased at step t, and 0 

otherwise. If she does not make a visit-to-shop conversion, she does not make a purchase 

decision since she is only walking through the zone on her way to other zones.  

Finally, the attractions are updated to take into account the behavior observed in the 

preceding zone(s). The shopper then decides which zones to visit next, and the decision process 

in Figure 9 is restarted there. We note that it is this sequential updating, either via movement to a 

new zone (a step), an additional blink in the given zone (staytime), or the purchasing of a product 

category (all possible consumer actions) that leads to the dynamic modeling of consumer 

behavior that is captured by our model. 

3.2 The proposed model 

In our model, each of the shopper’s decisions (visit, visit-to-shop, and shop-to-purchase) 

are governed by latent constructs called category attractions and zone attractions. We define 

these constructs and their relationship to each other in Section 3.2.1. In Section 3.2.2 to 3.2.5, we 

describe how we model a shopper’s three decisions as a function of category and zone attractions.  

3.2.1 Category/zone attractions and baseline visit propensities 

We define two sets of inter-related latent variables to capture the “attractions” of product 

categories and of zones, respectively. A latent attraction is defined for each product category to 



 13 
 

model category purchase behavior; then, zone attractions are calculated based on the attraction of 

the product categories they contain.  

We define a vector of latent variables ( )′= Jtttt aaaa ,...,, 21
r , where jta (j = 1,2 … J; t = 

1,2, … T) denotes the “category attraction” of category j for the shopper at step t. These category 

attractions drive the model of purchase behavior—categories with higher attractions to the 

shopper are assumed to be more likely to be purchased. We then compute “zone attractions” 

based on the aggregation of “category attractions” of the product categories it contains. These 

“zone attractions” enter the model of shop and visit behavior, as we discuss later. The zone 

attraction for zone i for the shopper at step t is defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∈ )(
)exp(log

iCj
jtit aA        (1) 

where C(i) denotes the set of product categories available at zone i. This specification is similar 

to the “inclusive value” notion that is commonly used in nested-logit models (McFadden 1981). 

In our framework, the zone can be viewed as a “nest” that contains several product categories.3   

As we have discussed earlier, category attractions may not be constant over time. Thus, 

we allow them (and hence the derived zone attractions) to evolve depending on the shopper’s 

visitation and purchase behavior up to step t. We use a parsimonious specification to capture the 

basic evolution pattern of attractions, as follows: 

)}({1, tsjtbjttj xCjIBaa ∈Δ+Δ+=+       (2) 

That is, we posit that after the shopper visits node xt, the attraction of the categories 

contained in zone xt will change by an amount indicated by sΔ . If sΔ  is negative, the attraction 

of a product category decreases after a shopper visits the zone that contains it. If category j is 
                                                 
3 Other specifications for Equation (1) are possible. For example, we may define zone attraction as the maximum of 
the attractions of the product categories it contains, i.e., jtiCjit aA

)(
max
∈

= . We leave this for future research. 
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purchased at step t (Bjt = 1), then the attraction for category j will further change by an amount 

indicated by bΔ .   While, a priori, we strongly hypothesize that sΔ and bΔ are likely to be 

negative, our model does not impose this as a formal constraint; we let the field data (and the 

model) identify the magnitude and direction of these updating parameters. 

3.2.2 Model of visit 

The shopper first decides which zone she wants to visit next. We denote the set of zones 

that are connected to zone tx , under the graph structure we proposed earlier, by )( txM . The next 

zone 1+tx visited by the shopper must be a zone that is directly connected to tx , i.e., )(1 tt xMx ∈+ . 

The shopper’s choice of “next zone to visit” can thus be viewed as a “choose-1-out-of-n” choice 

problem, with n being the number of zones in )( txM . To capture this zone-choice decision, we 

define a latent visit utility v
itu  associated with the i-th zone. Latent utility v

itu  equals the sum of a 

zone-level baseline visit propensity Zi, a “planning-ahead” component itG  and a random, 

extreme-value distributed v
itε . The shopper will visit zone i in the next step if v

itu  is larger than the 

latent utility of any of the other zones in the current choice set )( txM . 

The shopper may plan ahead when deciding where to visit next. Her choice involves a 

tradeoff between two aspects:  (i) the intrinsic attraction of the adjoining zone, and (ii) by going 

to the adjoining zone, whether she will be closer to other zones of high attraction. We capture 

this tradeoff by defining itG  as the time-varying attraction of zone i (Ait as in Equation 1) plus a 

weighted sum of the attraction of all other zones. The weight associated with zone k is inversely 

proportional to the “distance” between zone k and the focal zone i. Specifically, we define the 

“planning ahead” component of the latent utility of zone i as: 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+= ∑
≠ik ik

kt
itit d

A
AG λκ

)1(
 , 0≥λ ; 0≥κ            (3) 

where dik denotes the graph-theoretical distance (i.e., the length of the shortest path) between 

zone i and zone k. λ is a parameter that governs how the shopper trades off immediate utility 

with the more planning-ahead concern of reaching high attraction regions later on in his trip. For 

instance,λ = ∞  means that the shopper is myopic, i.e., only concerned about the attractiveness of 

what is immediately ahead when making the visitation choice. κ is an individual-level parameter 

that measures the extent to which visit behavior can be explained by the zone attractions (above 

and beyond the zone-level baseline visit propensity Zi). 

With this random utility framework, we can write down the likelihood regarding the 

shopper’s visit decision at step t+1 (using Equation 3): 
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3.2.3 Model of visit-to-shop 
 

At each step, the shopper may decide to stay and shop in the current zone to contemplate 

a purchase. As we defined earlier, Ht equals 1 if a visit-to-shop conversion is made at step t, and 

0 otherwise. To capture this decision, we posit that the shopper will perform a visit-to-shop 

conversion if her latent “shop utility” exceeds zero. Shop utility, s
tu , is defined as a linear 

function of the current zone attraction, itss Aβα + , plus random error terms iη  (a zone-specific 

random effect), and s
tε , which is assumed to follow an extreme value distribution. sα and sβ  are 
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person-specific parameters that capture the shopper’s baseline shopping propensity and the 

extent to which his visit-to-shopping behavior is correlated with latent attractions, respectively. 

Thus, we have: 
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3.2.4 Model of stay time 

We model the shopper’s stay time and purchase behavior by two different behavioral 

processes depending on whether she makes a visit-to-shop conversion (Ht = 1) or not (Ht = 0). If 

the shopper has made a visit-to-shop conversion in the current zone, we model her stay time 

using a geometric distribution with parameter shop
xt

τ (a zone-specific parameter). On the other hand, 

if the shopper does not make a visit-to-shop conversion in the current zone, we model stay time 

as a geometric distribution with parameter pass
xt

τ . We assume that a shopper tends to spend longer 

in a zone if she is shopping than if she is only passing through. Thus, we assume that shop
i

pass
i ττ >  

for all i and parameterize the model by logit )( pass
iτ = logit i

shop
i δτ +)( , 0>iδ . Formally, 

)(geometric~]1|[ shop
xtt t

HS τ=       (7) 

)(geometric~]0|[ pass
xtt t

HS τ=       (8) 

logit )( pass
iτ = logit i

shop
i δτ +)(   for all i .    (9) 

Note that through the specification in Equation (5)—(9), we assume that stay time and purchase 

are conditionally independent given the latent visit-to-shop state. Marginally, stay time and 

purchase are allowed to be positively correlated, as intuition would suggest.  

3.2.5 Model of purchase 
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As discussed earlier, we assume that purchase in a zone is possible only if a visit-to-shop 

conversion is made. Thus, if the shopper does not make a visit-to-shop conversion in the current 

zone (Ht = 0), we assume Bjt = 0 for all j.  

When a visit-to-shop conversion is made (Ht = 1), we model category purchase incidence 

as follows. The shopper will buy from category j if it is available in her current zone and its “buy 

utility” is positive. “Buy utility” of category j is modeled as a linear function of the attraction of 

category j, jtbb aβα + , plus a random error term b
jtε , which is assumed to follow an extreme 

value distribution. Similar to our model of visit-to-shop, bα and bβ  are person-specific 

parameters that capture the shopper’s baseline buying propensity and the extent to which shop-

to-buy behavior is correlated with the latent attractions, respectively. This framework can 

accommodate impulse buying (Rook 1987) as well as planned purchase behavior (e.g., Block 

and Morwitz 1999). Our model is similar to the market basket model in Bell and Lattin (1998), 

where some or all of the categories in a zone may be purchased.  

Formally, the model for purchase is set up as follows: 

b
jtjtbb

b
jt au εβα ++=         (10) 
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=>===
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)0()1|1(  if )( txCj∈ ,  = 0 otherwise (11) 

1)0|0( === tjt HBP  for all j.      (12) 

Finally, to obtain the likelihood of a path, we multiply together the likelihood of each of 

the processes in Figure 9, i.e., visit, stay, and buy, for each step. The overall likelihood of the 

data can then be calculated by multiplying the likelihoods across all paths. To summarize, 

through the use of latent attraction variables, our model implicitly links visit, shop, and purchase 

behaviors together. A graphical depiction of the integrated nature of our model and the relevant 

parameters is shown in Figure 10. 
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[Insert Figure 10 about here] 

3.3 Hierarchical Bayesian framework 

Since consumers may have heterogeneous category preferences, shopping characteristics, 

and planning-ahead propensities, we embed our individual-model within a Hierarchical Bayesian 

framework. This leads to two key statistical advantages. First, with this setup, each consumer has 

a different set of parameters that are assumed to be drawn from a common distribution; this 

allows us to borrow strength across customers to calibrate our model. Second, by specifying a 

covariance matrix on the individual attraction parameters (see Appendix I), we can borrow 

strength across categories while taking into account category complementarities. The full details 

are discussed in Appendix I.  

To confirm that our model is properly identified and our estimation procedure can 

recover the true parameter values, we conducted a simulation experiment; the details of which 

are described in Appendix II.  

4. Empirical Application 
 

In this section, we apply our model to actual PathTracker® data. In order to assess the 

predictive validity of our model, we randomly divide our dataset of 1051 paths into a training 

sample of 851 paths, and a holdout sample of 200 paths. We calibrate our model on the training 

sample, and perform a holdout prediction task on the holdout dataset. In Section 4.1, we perform 

a set of posterior checks to ensure that our model is capable of recovering key summary statistics. 

In Section 4.2, we assess the predictive performance of our model using holdout prediction, and 

compare our model against three logical (nested) sub-models in term of both in-sample and 

holdout model fit. Section 4.3 presents parameter estimates and substantive behavioral findings.   
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4.1 Model validation 

Though our proposed model is conceptually interesting, it is important to check our 

model fit against the actual data to see whether our model can recover important summary 

statistics of the dataset (which we described in Section 2.3). Towards this end, we use posterior 

predictive checks proposed by Gelman et al. (1996) to assess the adequacy of our model. 

Specifically, we simulate 100 datasets from the posterior distribution of the model parameters, 

each with 851 paths (which replicates the size of our calibration dataset). Then, we calculate key 

summary statistics from each dataset, and compare them against those calculated from the actual 

data. That is, if the model fits the data well simulated data under the fitted model should look like 

the actual data along key summary dimensions.  The results are shown in Figure 11.  

[Insert Figure 11 about here] 

Figure 11 shows that our model recovers key summary statistics of the actual data fairly 

well. The top three panels show that data simulated from the posterior predictive distribution is 

able to replicate the key visit, stay, and purchase statistics of the dataset. The bottom three panels 

show that data simulated from our model have similar characteristics to the actual data in terms 

of average stay time (in minutes) in each zone, penetration of each product category, and zone-

to-zone transition probabilities.  

4.2 Holdout prediction and model comparison 

We also perform a holdout prediction test on the 200 holdout paths to assess the out-of-

sample predictive validity of the model. For each trip, we derive the posterior distribution of 

each customer’s individual-level parameters, using only the first half of each path to calibrate the 

model. The marginal log-likelihood of the holdout sample is computed (using Newton and 

Raftery’s (1994) importance sampling approach) and then we draw 100 sample paths to 
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complete each shopping trip.  The summary statistics that compare the actual (holdout) dataset 

and the simulated paths are considered; the results are shown in Figure 12. Although (as 

expected) the model fit is worse than the in-sample fit, our model still provides a good fit to the 

holdout data.  

[Insert Figure 12 about here] 

We also tested our model performance against benchmark models. To assess the extent to 

which the integrative nature of our model adds to its performance, we test the full model against 

nested sub-models that explicitly disable the linkage between purchase and visit/shop behavior. 

Both in-sample and holdout marginal log-likelihood are considered. The three submodels 

considered are as follows (see Figure 10): 

Submodel I ( 0=sβ ): By setting the parameter sβ to zero, the linkage between purchase 

and shopping/staying behavior is disabled. 

Submodel II ( 0=κ ): Setting κ to zero disables the linkage between purchase and visit 

behavior.  

Submodel III ( ∞→λ ): Setting λ to infinity, as described in Section 3.2.2, will imply 

that consumers are myopic.  

The results, as shown in Table 2, suggest that our full model provides a better description 

of the data (in terms of in-sample fit) and better holdout predictive performance (with respect to 

predictive log-likelihood) than any of the reduced submodels. This provides some evidence that 

our full integrated model is closer to actual behavior than the reduced models considered in 

Submodels I, II, and III.  

[Insert Table 2 about here] 

4.3 Parameter estimates and interpretation 
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The posterior distribution of the hyperparameters that govern the individual-level 

parameters are summarized in Table 3. These results offer a number of immediate insights about 

consumer behavior. First, the reasonably large estimates of κ (mean of log(κ ) is -1.54) suggests 

that purchase behavior is indeed interrelated with visitation patterns. Second, the estimates for 

both 
sβ

μ and 
bβ

μ are positive, indicating that attractions are positively correlated with both visit-

to-shop and shop-to-purchase decisions. Third, the estimates for both 
sΔ

μ and 
bΔ

μ are negative, 

suggesting that the attraction of a zone tends to decrease after a consumer visits the zone and/or 

purchases the product categories that it carries. This first finding regarding visitation is consistent 

with Soman and Shi (2003), who found that people, in general, tend to avoid (and dislike) 

backward-progression when deciding on a travel plan. Finally, the small estimates of λμ suggests 

that consumers exhibit a certain degree of planning-ahead behavior in their shopping paths. This 

is consistent with the finding in Hui et al. (2007b) where the researchers find evidence of 

forward-looking behavior for grocery shoppers. 

[Insert Table 3 about here] 

 The posterior means for the baseline attractions of the 10 highest-attractiveness 

categories are summarized in Table 4. Since purchase incidence is driven, in large part, by 

category attraction, we expect that category attractions should be positively correlated with 

simple purchase incidence statistics. Indeed, we find that the correlation between category 

attractions and purchase incidence is positive and highly significant (r = 0.58; p < 0.001). The 

product category that has the highest attraction is Fruit, with a posterior mean attraction of 2.70.  

This is well-aligned with the observation that Fruit also has the highest observed purchase 

incidence (53.8%). In contrast, the second highest attraction category, Natural/Organic Food, has 

a very low observed purchase incidence (2.5%). This lack of purchasing may be explained by the 
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product’s in-store location, and may suggest the possibility of relocating the Natural/Organic 

Food category. This shows the power and value of the model in its ability to sort out the inherent 

attractions of products per se from the regions of the store in which they reside. We return to this 

issue in more detail in the Section 5.1.  

[Insert Table 4 about here] 

 Finally, we look at the different zone-level parameter estimates. The estimates for the 

parameter shopτ and iZ  for each zone are displayed in the form of a choropleth map (Banerjee et 

al. 2004) in Figures 13 and Figure 14 respectively. As expected, zones with low shopτ  (and hence 

a long mean shopping time) generally correspond to zones where shoppers spend longer time. 

The correlation between shopτ  and average observed time spent in the zone is negative and highly 

significant (r = -0.39; p<0.001), On the other hand, the zones with high iZ correspond to zones 

that are visited more often: the correlation between iZ  and observed zone penetration is positive 

and highly significant (r=0.43; p<0.001). 

[Insert Figure 13 about here]  

[Insert Figure 14 about here] 

5. Testing behavioral hypotheses 

Our model specification and testing have focused primarily on three fundamental 

behaviors (visit, visit-to-shop, and shop-to-purchase), but the modeling framework as a whole is 

more flexible.  As we have noted at several points throughout the text, we can introduce 

additional “behavioral tendencies” into the model and examine some associated hypotheses – 

many of which have already been tested in a laboratory setting – in a relatively straightforward 

manner. Proper field testing of these hypotheses will require additional data (especially from a 

cross-store setting where there is more variability in behavior and store layout); nevertheless, we 
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believe it is valuable to lay out a roadmap to show how these behavioral generalizations can be 

incorporated into our model when more suitable data become available in the near future (and we 

discuss some of these data-related issues in the next section of the paper).  

(i) Category assortment: Researchers have been interested in consumers’ perception of 

assortment in a category (Broniarczyk et al. 1998) and the effect of product assortment on buyer 

preferences (e.g., Chernev 2003; Simonson 1999), purchase probability (Chernev 2005, 2006), 

and consumption quantities (Kahn and Wansink 2004). The effect of category assortment can be 

incorporated into our model by allowing latent attractions to be a function of the variety of the 

assortment, e.g., using the definition proposed by Hoch et al. (1999).   

(ii) Shopping momentum: Dhar et al. (2007) defined a general phenomenon which they termed 

“shopping momentum,” which refers to the tendency to purchase more items once an initial 

purchase is made. The researchers also found that the nature of the first purchase affects the 

strength of the shopping momentum effect. Within our model, we can incorporate “shopping 

momentum” by extending Equation (2) to (2*) by including an indicator variable that represents 

whether an initial purchase has already been made: 

tMomentumtsjtbjttj PxCjIBaa Δ+∈Δ+Δ+=+ )}({1,     (2*) 

where Pt takes value 1 if an initial purchase is made, and 0 otherwise. The coefficient MomentumΔ  

captures the magnitude of the shopping momentum effect. Presumably, MomentumΔ  should be 

positive; i.e., all other categories in the store become more attractive (and hence more likely to 

be purchased) given that an initial purchase has already been made. One can also generalize (2*) 

even further to allow strength of the shopping momentum effect to depend on whether the initial 

purchase is a “hedonic” or “utilitarian” item (Dhar et al. 2007).  
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(iii) Licensing and spillover effects: Since our data contain information about the sequence of 

purchases, we can explore how promotions obtained on items purchased earlier during the trip 

affect shoppers’ behavior afterwards, i.e., how they “spillover” to consumer behavior for other 

categories (Janakiraman et al. 2006). In particular, one can investigate the idea of “mental 

accounting/budgeting” (e.g., Heath and Soll 1996; Thaler 1985) or “licensing” (e.g., Khan and 

Dhar 2006). For example, does getting a deal early in the trip increase consumers’ probability to 

buy more items, given that they now think that they have “saved” early on? Coupled with data on 

promotions, we can extend our model to allow attractions to update based on the amount of 

promotions and savings that the shopper obtains up to any time. Similarly,  does buying “virtue” 

items (e.g., vegetables, organic food) early on during the trip increase the propensity to buy 

“vice” items later on given that the consumer now feel that they have the “license” to do so (e.g., 

Kivetz and Keinan 2006; Wertenbroch 1998)? Intriguing issues such as these can be addressed 

by incorporating such effects into the attraction model in Equation (2).  

(iv) Crowding/herding: Researchers have studied how grocery shoppers react to the presence of 

other shoppers in the store. Harrell and Anderson (1980) suggested that shoppers generally avoid 

crowded areas, and may reduce their shopping time in crowded conditions. Argo et al. (2005) 

and Dhal et al. (2001) stated that the “mere social presence” of other shoppers affects shopping 

behavior. On the other hand, the literature on “herding” effects (e.g., Banerjee 1992; Becker 

1991) suggests that shoppers may prefer areas where other shoppers are located. Taken together, 

the effect of the number of other shoppers may be an inverted-U shape: a moderate shopper 

density may encourage visitation/shopping, while too much crowding may cause shoppers to 

avoid such areas. Given complete data on the position of each cart, our model can be extended 

and used to test these hypotheses. More specifically, one can incorporate “shopper density”, i.e., 
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the number of shoppers in a certain zone divided by the area of the zone, as a covariate in the 

model of visit (Equation (4)) and the model of visit-to-shop (Equation (6)). The effects of 

crowding/herding can then be assessed quantitatively.  

(v) Non-stationary behaviors: Shoppers’ behavior may change in many ways over the course of 

their trip. As noted earlier, Sorensen (2003) observed that shoppers tend to speed up as they 

move towards the checkout counter. This observation may be related to the research on “goal 

gradient” (e.g., Kivetz et al. 2006), such that consumers tend to expend more effort and 

“accelerate” as they get closer to their goals (see also Nunes and Dreze 2006a). To incorporate 

this effect, we can generalize Equations (7) and (8) to allow shopping time to be a function of the 

distance to checkout. A similar issue is whether consumers tend to buy more unplanned items the 

longer they spend in the store, perhaps due to fatigue and thus a reduction of self-regulatory 

resources (Vohs and Faber 2007). This issue can be fruitfully explored by incorporating in-store 

time as a covariate for the variance term in the model of purchase, i.e., Equation (10).  

6. Conclusions and Directions for Future Research 

In this paper, we have introduced a an integrated modeling framework to capture, 

describe, and predict a consumer’s shopping path and purchase behavior in a grocery store. 

Using a set of latent variables that describe the “attraction” of each product category and zone, 

our model integrates three aspects of grocery shopping: (1) where shoppers visit and their zone-

to-zone transitions, (2) whether (and for how long) they stay and shop in each zone, and (3) what 

product categories they purchase.  

We then applied our model to a sample of PathTracker® data provided by Sorensen 

Associates. Our model is able to replicate the data closely (in and out of sample) on various key 

summary statistics with respect to consumer visit, stay, and buy behavior.  A number of 
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academic and practical insights emerge from the model – chief among them is the ability to sort 

out how much of a product’s purchasing is due to its inherent attractiveness, per se, versus the 

propensity of shoppers to visit certain regions of the store (regardless of what products are 

carried there. 

We discuss how the model can be extended so that various well-established behavioral 

hypotheses can be incorporated into our model framework, thus allowing us to validate existing 

behavioral theories using field data. Beyond these conceptual extensions, our model can also be 

extended through the incorporation of additional data structures that we do not have in our initial 

dataset. All of these are “close-in” extensions, which should be available to managers and 

academic researchers in the very near future.   

(1) Cross-store study: The PathTracker® system is being installed in an increasing number of 

supermarkets (and other types of retail stores) around the world to track consumers’ shopping 

patterns. Our model can easily be applied to the other stores to conduct a cross-store study, to 

help us understand how store characteristics (e.g., square footage, number of aisles) are related to 

consumers’ movement tendencies and shop/purchase behavior. For instance, Meyers-Levy and 

Zhu (2007) demonstrated how ceiling height affect consumers’ information processing and with 

store varying layout information, this will be easily testable. 

(2) Consumer characteristics: The Hierarchical Bayesian framework allows us to obtain 

individual-level parameters for each consumer. If consumer covariates (e.g., 

demographics/socioeconomics, attitudinal measures, and other behavioral data) were also 

available, for example, by bringing in data from a store loyalty card program (Nunes and Dreze 

2006b), we can link these covariates to our model parameters. Formally, we can extend Equation 

(14) as follows (Rossi et al. 2006): 
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),(~))'log(,,,,,,),(log( Innbsbbss yMVN Σ′ΔΔ γλβαβακ     (16) 

where ny′  denotes a vector of individual-level covariates for the n-th consumer. With this 

framework, our model may then offer empirical testing of different hypotheses that behavioral 

researchers are interested in. For instance, by studying the relationship between the coefficients κ 

and λ and consumer demographics, we may learn how planning-ahead tendencies differ across 

shoppers of different gender and age (e.g., Otnes and McGrath 2001; Yoon 1997). Similarly, we 

can link individual-level preference for product categories, shopping characteristics, and 

movement patterns with individual-level demographics. One particularly interesting research 

direction is to study the “efficiency” of different types of shoppers (e.g., Hui et al. 2007b). 

(3) Survey data: By combining shopping path data with surveys, a lot of interesting behavioral 

questions can be addressed. For instance, one can ask consumers to state their shopping goals 

(Lee and Ariely 2007) before entering the store, and study how the propensity of unplanned 

purchase (Inman et al. 2007) is related to their path behavior. Further, one can also study how 

consumers’ path and purchase behavior changes under time pressure, a topic of recent interest 

for many behavioral researchers (e.g., Dhar and Nowlis 1999; Suri and Monroe 2003).   

The study of paths and related behaviors extends well beyond the applications outlined in 

this paper. Path data, which includes the movement patterns of animals, traffic, and pedestrians, 

have been studied extensively in other fields. In marketing, path data arise naturally from eye-

tracking applications, web clickstream data, or even Information Acceleration sessions (Hui et al. 

2007a). As better consumer-tracking technologies (beyond RFID) become more commonplace, 

we expect that path-related data will become more widely available and cost efficient in the near 

future. The collection and analysis of paths to understand consumer behavior may one day 

become widespread in marketing, much like the routine analyses done with scanner data today. 
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Thus, we believe that marketing researchers will benefit from a deeper study of path data, 

particularly as they utilize theories and analytical approaches from psychology, economics, and 

sociology, as we have outlined here.
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Appendix I: Hierarchical Bayesian Specification  

The parameter vector for the n-th consumer, ( nbsbsbsa ),,,,,,,, λββαακ ΔΔ
r , is assumed to 

be drawn from a set of common prior distributions. In the discussion below, we first specify the 

prior for the attraction vector ar , then the prior for the rest of the parameters. 

For the attraction vector, we specify 

),(~ AAn Na ∑μrr .        (12) 

 The variance-covariance matrix AΣ allows us to borrow strength across categories by 

taking into account category complementarities. In particular, the ),( jj ′ -th entry of AΣ  

corresponds to the degree of complementarity between category j and category j′ . For example, 

if category j and j′  are complements, given that a person has purchased category j, we might 

expect that category j′  is more likely to be purchased in the same trip as well. In this case, one 

may expect that the entry AΣ (j,j’) will be large and positive. In general, AΣ  could be an 

unrestricted N x N matrix, with N being the number of categories. To reduce the number of 

parameters, we impose a 2-dimensional factor analytic structure on AΣ .4 Other studies that use a 

similar approach to capture dependence structures across categories include Hruschka et al. 

(1999). Formally, let ),( 21 jjj zzz = be the “spatial position” of the j-th category. We model AΣ  as 

2
],[ σ=Σ jjA          

||)||exp()( 2
],[ jjjjA zzjj ′′ −−=′≠Σ σ       (13) 

where 2
22

2
11 )()(|||| jjjjjj zzzzzz ′′′ −+−=− . 

                                                 
4 Our model can be generalized to include a D-dimensional map. In particular, we fit the model using D=2 and D=3; 
both model fits and parameter estimates are very similar. Thus, we restrict our attention to the D=2 case for ease of 
computation. 
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For model identification, the variance parameter 2σ is set equal to 1. The variance 

hyperparameters and the “positions” ),...,,( 21 Jzzzz =r are given independent standard Gaussian 

diffuse priors N(0, 1002) and are jointly estimated with other parameters in our model. For model 

identification, we set the first category at the origin, the second category on the x-axis, and the 

third category on the y-axis to control for shift, rotation around origin, and reflection about the x-

axis respectively (Bradlow & Schmittlein 2000). 

The other individual-level parameters (after suitable transformations) are assumed to 

follow standard multivariate Gaussian hyperpriors: 

),(~))log(,,,,,,),(log( IInbsbbss MVN Σ′ΔΔ μλβαβακ r .   (14) 

Similarly, zone-level parameters ( i
pass

iiZ δτ ,, ) for each zone are assumed to be drawn 

from a common multivariate Gaussian distribution: 

 ),(~
)log(

)(logit ZONEZONE

i

pass
i

i

MVN
Z

Σ
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
μ

δ
τ .      (15) 

For model identification, the mean hyperparameter associated with iZ is set to 0. 

To complete our Hierarchical Bayesian model specification, we specify a set of weakly 

informative, conjugate priors for all hyperparameters in our model. A MCMC procedure allows 

us to make inferences about our model parameters using samples from their posterior 

distributions (details available upon request). 
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Appendix II: Simulation Study  
 

Since the proposed model is new to the literature, we perform a simulation study to 

ensure that our model and estimation procedure are able to produce accurate parameter estimates, 

and to assess whether the amount of data we have is adequate for model identification. To 

roughly replicate the size of our actual dataset, we simulate 1000 paths from a set of known 

parameters shown in Table 2. Then, the MCMC procedure is used to sample from the posterior 

distributions of our model parameters.  

We choose the parameter values used for our simulation as follows. The zone-level 

parameters ( i
pass

iiZ δτ ,, ) are chosen so that the simulated data has similar stay and visit 

characteristics with the actual data. For the other parameters, the mean vector of category 

attractions Aμ
r is simulated from a N(0,1) distribution, while the coordinates of the position  of 

each category are generated from a N(0,5) distribution. The mean vector for individual-level 

parameters Iμ
r is set to (0,0,1,0,1,-0.5,-0.2,0)’. Finally, the variance-covariance matrix IΣ is set to 

0.01I to allow shoppers to be heterogeneous in their individual-level parameters.  

Estimation results for the hyperparameters that govern the individual-level parameters 

(besides category attractions) are shown in Table A1. Plots of the true versus estimated 

parameters for category attractions and zone-level parameters are shown in Figure A1. In each of 

the panels of Figure 12, the true values of the parameters are plotted on the x-axis while the 

mean of each posterior distribution is plotted on the y-axis. As can be seen, the true parameter 

values for the mean category attractions vector Aμ
r , zone-level parameters ,, pass

iiZ τ  and iδ , and 

the correlation between category attractions are accurately recovered by our estimation 

procedure.  
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 True value Posterior Mean Posterior Standard Deviation 

κμ  0.000 -0.001 0.009

sαμ  0.000 0.008 0.023

sβ
μ  1.000 1.003 0.012

bα
μ  0.000 0.007 0.009

bβ
μ  1.000 1.022 0.016

sΔ
μ  -0.500 -0.496 0.006

bΔ
μ  -0.200 -0.203 0.010

λμ  0.000 -0.010 0.010

Table A1. Estimation results for model hyperparameters in simulation study. 

 

 
 
Figure A1. Estimation results for model parameters in simulation study not shown in Table 2. In 
each panel, the true values are plotted on the x-axis while the mean of the posterior distribution is 
plotted on the y-axis. 
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Category Name Zones %buy  Category Name Zones %buy 
Fruit 2,4 53.8%  Shampoo/Conditioner 81,82 2.5% 
Vegetables  3,4,5 50.4%  Laundry Supplies 78.79 2.5% 
Butter/Cheese/Cream 38,39,82,83 38.0%  Natural/Organic Food 7 2.5% 
Carbonated Beverages 16,21,22,23 24.2%  Pudding/Dry Dessert 25 2.1% 
Salty Snacks 62,63,64,92 23.2%  Rice 42 2.1% 
Cookies/Crackers 18,44,45,46,47,93 22.6%  Shelf-Stable Milk 27 1.9% 
Milk 38 22.6%  Bakery Service 8,10 1.7% 
Ice Cream 57,58,59,60 19.6%  Hot Beverage Add-Ins 49 1.7% 
Bread 52,53,61,93 19.4%  Canned RTE Meat Entrées 40 1.7% 
Candy/Gum/Mints 60,91,92 17.3%  Baby Food 71 1.6% 
Cereal  49,50,94 17.1%  Stationery/School Supplies 69,70 1.6% 
Eggs 36 14.7%  Wine 28,29 1.5% 
Canned Vegetables 47,61 12.7%  Refrigerated Snacks 81 1.5% 
Baking Ingredients 18,24,25,26,27 12.2%  Ethnic (Oriental) 41 1.5% 
Frozen Prepared Dinners 55,56 11.9%  Ethnic (TexMex) 43 1.5% 
Drinks (others) 52,53,94 11.9%  Toaster Pastries 48 1.4% 
Yogurt 81 11.5%  Paper and Plastic Bags 68 1.4% 
Pasta Sauce 14,30 11.2%  Special Diet Items 9 1.4% 
Fruit Juice 36 10.8%  Cooking Oil 27 1.3% 
Canned Dried Fruit 20,95 10.8%  Salad Add-Ins 27 1.3% 
Pet Care 60,65,66,67 10.7%  Natural/Organic Snacks 11 1.3% 
Meat/Poultry/Seafood Manufactured Prepack 31,35 10.3%  Canned Meat 40 1.2% 
Canned Soup 44,61 9.7%  Toiletries 87,90,91,92 1.2% 
Frozen Pizza Snacks 55,56 9.1%  Meat/Poultry/Seafood Fresh Prepack 32 1.2% 
Bath Tissue 37,77 9.0%  Ethnic (Hispanic) 43 1.1% 
Frozen Vegetables 54 8.6%  Rolls/Buns/Pitas 52,53 1.0% 
Peanut Butter/Jams 48,61 7.7%  Prepackaged Deli Prepared Lunch 14 1.0% 
Bottled Water 23,40 7.6%  Prepared Food/Potatoes 45 1.0% 
Prepared Food/Dried Dinners 29,95 7.4%  Tea 49 0.9% 
Frozen Meat/Poultry/Seafood 54,56 7.0%  Frozen Dough/Bread/Bagel 58 0.9% 
Pasta 30 6.9%  Electronic Media 89 0.9% 
Frozen Drinks 57 6.1%  Cosmetics/Deodorant 86 0.9% 
Pastry/Snack Cakes 51 5.8%  Pancake/Syrup 26,48 0.9% 
Granola Bars 19,94 5.3%  Deli Prepack 13,15 0.8% 
Bagels/Breadsticks 52,53,73 5.2%  Feminine Hygiene 72 0.7% 
Spices/Seasonings 16,26,46,95 4.9%  Dry Soup 45 0.7% 
Magazines 77,91,92 4.9%  Hard Liquor 42,43 0.6% 
Condiments/Sauces 24,25,26 4.7%  Baby Medical Needs 71,72 0.6% 
Frozen Baked Goods 57,58 4.6%  Baking Supplies 61 0.6% 
Tobacco 90,91 4.6%  Hair Color Accessories 83 0.6% 
Household Cleaners 78,79 4.4%  Batteries 80,84 0.5% 
Facial Tissue 76,84 4.4%  Light Bulbs 80 0.5% 
Paper Towels 37,75 4.4%  Office Supplies 75 0.5% 
Coffee 50 4.3%  Plastic Wrap 68 0.5% 
Frozen Potatoes/Onions 54 4.2%  Deli Service 12 0.4% 
Oral Care 74,91,92 4.2%  Dried Beans/Peas 43,47 0.4% 
Prepackaged Deli Meat 34 4.2%  Natural/Organic Drinks 11 0.4% 
Frozen Dessert/Fruit 58,93 4.0%  Aluminum Foil 68 0.4% 
Canned Seafood 40 3.7%  Napkins 76 0.4% 
Non-Refrigerated Dressings 25 3.6%  Hot Chocolate Mix 49 0.3% 
Disposable Tableware 69,94 3.6%  Deli Amenities 15 0.3% 
Olives/Peppers/Pickles 24 3.5%  Automotive Supply 67 0.1% 
Dough Products 39 2.9%  Apparel 73 0.1% 
OTC Medicines 74,88,91,92 2.9%  Meat/Poultry/Seafood Fresh Service 17,31 0.1% 
Beer 62,63,93 2.9%  Meat/Poultry/Seafood Fully/Partially Cooked 33 0.1% 
Non-Carbonated Flavored Drinks 51 2.8%  Floral 2,6 0.0% 
Skin/eye care 84,85,86,87,88 2.6%  Natural/Organic (Others) 7 0.0% 

 
Table 1. Locations of product categories. 
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 In-sample Marginal LL Holdout marginal LL 
Full Model -468673.0 -112350.4
Submodel I ( 0=sβ ) -470408.3 -112921.0
Submodel II ( 0=κ ) -477039.0 -113078.1
Submodel III ( ∞→λ ) -470284.6 -112719.4

Table 2. Comparison between full model and Submodels I, II, and III. 

 
 Posterior Mean Posterior S.D. 95% Posterior Interval 

κμ  -1.364 0.018 (-1.399, -1.331) 

sαμ  -1.608 0.075 (-1.711, -1.475) 

sβ
μ  0.466 0.023 ( 0.431,  0.506) 

bα
μ  -2.544 0.041 (-2.621, -2.480) 

bβ
μ  1.189 0.031 ( 1.135,  1.247) 

sΔ
μ  -0.341 0.010 (-0.360, -0.323) 

bΔ
μ  -0.201 0.012 (-0.223, -0.181) 

λμ  -0.751 0.017 (-0.782, -0.713) 

Table 3. Estimation results for model hyperparameters in the actual data. 
 
 
Product Category Attraction 
Fruit 2.70
Natural/Organic Food 2.24
Special Diet Items 2.04
Butter/Cheese/Cream 1.80
Salty Snacks 1.62
Vegetables 1.59
Pastry/Snack Cakes 1.54
Cereal 1.47
Yogurt 1.27
Canned Vegetables 1.27
 
Table 4. Posterior mean for category attractions for the 10 categories with the highest attraction, 
sorted in decreasing order. 
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Figure 1. Grocery store divided into 96 zones. 

 

Figure 2. Grocery store represented by a graph of 96 nodes.  
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Figure 3. Example of path discretization.
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Figure 4. Histogram of number of steps (vertical line denotes the mean). 
 

 
Figure 5. Most frequent transition out of each zone. 
 
 



 42 
 

 
 
Figure 6. Histogram of total in-store time in minutes (vertical line denotes the mean). 
 

 
 
Figure 7. Average time a shopper spent (in minutes) in each zone. 
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Figure 8. Histogram of the total number of product categories purchased (vertical line denotes 
the mean). 
  
 

 
 
Figure 9. The shopper’s in-store decision process. 
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Figure 10. A schematic of the integrated model structure. 
 

 
 
Figure 11. Posterior check for actual data. In the upper three panels, histograms of summary 
statistics are drawn with the solid vertical line for the actual (calibration) dataset. In the bottom 
three panels, the actual values of the summary statistics (calculated from the calibration dataset) 
are plotted on the x-axis; the mean from the posterior sample is plotted on the y-axis.  
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Figure 12. Holdout prediction posterior check. In the upper three panels, histograms of summary 
statistics are drawn with the solid vertical line for the holdout dataset. In the bottom three panels, 
the actual values of the summary statistics (calculated from the holdout dataset) are plotted on 
the x-axis; the mean from the posterior sample is plotted on the y-axis.  
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Figure 13. shopτ for each zone; zones with longer shopping time are shaded in darker gray.  
 
 

 
Figure 14. iZ  for each zone; zones with higher iZ  are shaded in darker gray. 
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