ASYV Women's Cooperative and Opportunity Center

Rubona, Rwanda

Written by Tia DeHarpport & Tanya Wohlfarth

Advised by Dr. Allen C. Estes

California Polytechnic State University

San Luis Obispo, California

Spring Quarter 2018

Table of Contents

I. ABSTRACT	2
II. INTRODUCTION	2
III. PROJECT	3
IV. DELIVERABLES	6
V. CHALLENGES	9
VI. TRAVEL EXPERIENCE	10
VII. CONCLUSION	13
VIII. SOURCES	13
IX. APPENDIX A: STRUCTURAL CALCULATIONS	14
X. APPENDIX B: STRUCTURAL DRAWINGS	15
XI. APPENDIX C: SENIOR PROJECT PRESENTATION	16

I. ABSTRACT

Journeyman International is a non-profit company that coordinates the design and construction of humanitarian projects between architecture, architectural engineering, and construction management students in order to build impactful projects in developing nations at a minimal cost. One of these projects is Kwitunga: a Women's Cooperative and Opportunity Center in the Eastern Province of Rwanda. This project consists of four buildings that create a space for women to design, create, and sell clothing items, harvest tropical fruits, socialize, and provide a safe space for their children. The project team consists of four students from California Polytechnic State University in San Luis Obispo: two architectural engineering students, one architecture student, and one construction management student. This report includes the work of the two architectural engineering students, which consists of background information, a project description, structural calculations and drawings, challenges faced during the design process, and reflections on the personal impacts of having a role in this project.

II. INTRODUCTION

Journeyman International (JI) is a non-profit company that coordinates the design and construction of humanitarian projects between architecture, architectural engineering, and construction management students. JI started nine years ago by Daniel Wiens, a past construction management student at California Polytechnic State University (Cal Poly) in San Luis Obispo, who wanted to complete a senior thesis project that would have a lasting impact. Daniel's senior thesis project was to construct a dental center in Belize. Once it was constructed, he wanted to continue doing humanitarian work, so he created Journeyman International. JI gives students the opportunity to work closely with the client to provide an architectural design, structural drawings, and a construction management estimate in order to

build impactful projects in developing nations at a minimal cost. This report is about the work of architectural engineering students Tia DeHarpport and Tanya Wohlfarth in a Women's Cooperative and Opportunity Center in the Eastern Province of Rwanda.

Rwanda is a nation in central Africa that has a particularly rich history. In 1994, Rwanda experienced a horrific genocide due to a divide between classes. Within the 100 days of extreme violence that occurred, almost one million people were killed, and nearly 500,000 women were raped and many still suffer the memories of the physical violence and the loss of family members. This extremely recent and terrible event has shaped the outlook of all Rwandans and exemplifies their unique mindset. Rwandans today work side-by-side and are focused on rebuilding their nation together. Since most perpetrators and victims of the genocide were male, the Rwandan population was left to be 70% women (Nowrojee). Today in rural communities women are still exposed to domestic violence and poverty while making up more than half of the labor force and are barred from opportunities due to gender inequality. A safe environment dedicated to the working-woman may help Rwandan women become empowered and resilient to oppression. This Women's Cooperative and Community Center is meant to encourage the economic and social empowerment of women in Rwanda, and could provide a sustainable sanctuary for local women to gain economic independence.

III. PROJECT

Kwitunga, which is translated to mean being self-sustainable in Kinyarwanda (official language of Rwanda), is the name of the Women's Cooperative and Opportunity Center which has been designed by four students from California Polytechnic State University (Cal Poly), located in San Luis Obispo, California. The design includes a series of four buildings: a storefront, a work space, a community center, and a preparation area for tropical fruits. This

Current Status of the Kwitunga Project Site in Rubona, Rwanda

project is meant to provide a place for a group of local women to dye fabrics, sew clothing and make fabric jewelry, collect and prepare pineapples and mangos, and sell these items in an effort to give the women economic independence. Since many of the women have children, there is also a secluded outdoor space for children to play within eyesight of their

mothers. The design team for this project includes architecture student Amanda Stahler, construction management student Dustin Sullivan, and two architectural engineering students,

Tia DeHarpport and Tanya Wohlfarth. All four members of the design team are graduating seniors at Cal Poly who are working on this project with a primary goal of creating a safe space for these women, and a secondary goal of fulfilling senior thesis project requirements. The group collaborated and worked together for seven months in

order to complete the design of this project, which will be located 30 miles east of Kigali, Rwanda's capital city.

This project is made up of four buildings, each with a different purpose. The first building, located on the front corner of the site, is the storefront where the women will be able to sell their goods to the community. The next building on the left side of the site is the women's cooperative building which provides a space for the women to dye fabric and sell clothing, as well as store their sewing equipment. The next building to the right of the site will be a community center, which is meant to be used by local villagers. The final building is the pineapple and mango cooperative, which provides a location for the women to bring pineapples and mangos from a nearby location to prepare and sell. All four of the buildings offer open floor plans in communal areas. In addition, the buildings have large openings in the exterior brick walls in some locations to give them

Kwitunga Project Site Map

an open and welcoming feeling.

How Masonry is Placed -From Confined Masonry Workshop Handbook PDF

The structural systems for all four buildings are very similar. The gravity load is supported by large dimension lumber trusses, which lay on reinforced concrete columns. The lateral seismic load is resisted by confined masonry walls made of brick and concrete. Confined masonry, unlike unreinforced masonry, is constructed to specifically confine the bricks within a reinforced concrete beam and column system to be able to effectively resist lateral forces. This is accomplished by first constructing the column and beam steel

reinforcement cages, inserting the clay bricks between the reinforcement cages, and finally pouring the concrete columns and beams. While the clay brick infill is not reinforced with steel bars, the wall acts as a bracing panel which is confined by the surrounding concrete beams and columns. The reinforced concrete columns and beams help to prevent brittle seismic response of the masonry infill. The foundation system for these four buildings is made of continuous wall footings under the clay brick walls, and isolated footings underneath the concrete columns which are not connected to a clay brick wall.

Tia and Tanya, the two architectural engineering students, had to make some decisions before starting the structural design of the four buildings. Since neither of them had done any structural design in a developing country before this project, selecting an appropriate building code was the first challenge. Although Rwanda has their own building code, it is very limited and therefore the students chose to use the International Building Code (IBC) because it is much more detailed and up to date than the Rwandan code. Another challenge involved choosing the seismic ground accelerations for the project site. The site is located in a very rural area 30 miles east of Kigali, so the architectural engineering students were unable to find data for the particular location of the project site. Because of this, they decided to use Sds values from Kigali because of the project site's proximity.

IV. DELIVERABLES

Structural calculations for all four buildings were completed to ensure the safety of the building occupants. These calculations can be found in Appendix A. The three smaller buildings (the women's sewing cooperative, community center, and pineapple and mango cooperative) are the same size, have very similar layouts, and were designed with the same materials, so one structural design with the most conservative values was done for these three buildings for a

majority of the calculations. The fourth building, the storefront, is larger and has a much different layout, so separate calculations were done for this building.

First, preliminary calculations were completed in order to estimate structural member sizes. This allowed the architectural engineering students to find the weights of each member and the gravity loads that will act on them. Afterward, the design of the gravity members began. Calculations for the largest loads of gravity beams and gravity columns were done using the requirements of the ACI (American Concrete Institute) 318-14 code book, and the computer programs SP (Structure Point) Beam and SP Column were used to aid these calculations. The compressive strength of concrete for the beams and columns was conservatively taken to be 3,000 psi since there are less stringent construction regulations in Rwanda than in the United States. Next, timber trusses were sized using the structural analysis program RISA-3D, and connections were designed using the 2015 NDS (National Design Specification) published by the American Wood Council. The dimensional lumber truss members were assumed to be Douglas-Fir Larch, Grade 3. This was a conservative decision since the available timber in Rwanda is Eucalyptus. After discussing with Daniel Wiens, grade 3 Douglas-Fir Larch was decided to be the most conservative and with the closest specific gravity to Eucalyptus. The effect of temperature and moisture on the lumber was assumed to be negligible. The final gravity calculation was the slab on grade. A typical design that is often used in the United States for 1-2 story buildings was used for this project, which is to provide a 5" thick concrete slab with #3 reinforcing bar at 18" on center each way.

Next, calculations were done to find whether wind or seismic forces govern at the project site. Seismic values were taken from Kigali since it is only 30 km from the project site and no data from the site was given. The team was unable to find wind forces for the project site or a nearby area, so with help of JI CEO Daniel Wiens, a solution was found. The team used a wind

pressure of 110 mph since this is the lowest wind pressure in the United States, but is still a very conservative value for Rwanda. It was found that seismic forces govern, and so lateral calculations were completed based on seismic values. An R-value of 1.5 was used based on the R-value for unconfined masonry, which resulted in a seismic base shear value of 90 kips. The lateral calculations consist of the design of confined masonry walls, bond beams, and a plywood diaphragm that is topped with a corrugated metal decking. The wood diaphragm was designed using tables in the 2015 NDS. Since confined masonry construction is not practiced in the US, an international prescriptive design guide was followed to complete the design. The design guide used is titled 'Seismic Design Guide for Low-Rise Confined Masonry Buildings,' and was written by a group of licensed structural engineers from around the world who are earthquake engineering and confined masonry construction experts. It outlines the design of confined masonry based on research that has been conducted and the performance of confined masonry buildings in recent earthquakes. Concrete bond beams were designed using the ACI 318-14 code book. These beams were designed to resist the lateral forces that move between the confined masonry walls and the wood diaphragm. The wood diaphragm members and connections were then designed to properly resist seismic forces.

The final calculations were for isolated column footings and continuous wall footings using the ACI 318-14 requirements for size and reinforcement. The assumed concrete compressive strength was 3,000 psi and the reinforcing bar yield strength was 60 ksi. Fortunately, a soils report was provided to the team which showed that the allowable soil pressure for the project site is 120 kN/m2, which is around 2,500 psf. The design for the footing reinforcement is similar to that of a concrete slab, with flexural, shrinkage and temperature reinforcement on the top and bottom of the footings. For adequate development length, 90-degree hooks will be provided.

The ultimate deliverables by the architectural engineering students include a structural calculation package (Appendix A) and a structural drawing package (Appendix B). Once the calculations were completed, the set of structural drawings was finalized to easily convey the information found in the calculations. These drawings include general notes, foundation plans and floor plans for each building, and connection details based on the building conditions. Coherent structural drawings were combined with the architectural drawings to relay the findings of the calculations to in-country architects and engineers to review them before construction begins.

V. CHALLENGES

Many challenges were faced during the structural design of this project. One particularly difficult challenge was the design of the confined masonry walls. Since the construction of any kind of unreinforced masonry, confined or not, is not allowed in the US, it was difficult to find information on how to design this type of lateral system. Fortunately, a prescriptive design guide was found and used to complete the design of the walls. This design guide was created by a committee of international experts in earthquake engineering and confined masonry design. It is based on various international codes and the history of the performance of confined masonry buildings.

Another challenge was estimating the compressive strength of the clay bricks and the concrete. Since Rwandan construction standards are less stringent than standards in the US, a conservative compressive strength value of 3,000 psi for both materials was chosen in order to ensure that the buildings would not be under-designed. Other challenges included designing a structure out of readily available materials. Because construction materials are sometimes carried by hand to the construction site and materials available in Rwanda are different than

those in the US, Tia and Tanya worked closely with Carly Althoff, a Journeyman International employee who lives in Rwanda, to ensure that the structure they designed could be transported and built within the budget for the project.

The land for this project has already been purchased, so once funding is secured, the construction of the buildings can begin. Journeyman International is responsible for finding project funding, and the project team is hopeful that this will happen quickly so that the local women can have a comfortable space to work and sell their products in the near future. Depending on the amount of money that is secured, one or two of the buildings may be built prior to the complete project.

VI. TRAVEL EXPERIENCE

In December 2017, design team members Amanda Stahler, Tia DeHarpport, and Tanya Wohlfarth traveled to Rwanda for ten days. They were accompanied by Journeyman International CEO Daniel Wiens and other staff members. The main goal was to visit the Kwitunga project site in the Eastern Province, but the students were able to travel all around Rwanda and experience as much of the vibrant culture as they could. The students' ability to

visit Rwanda gave them valuable insight that better prepared them to design the women's cooperative and opportunity center.

At the project site, the students met Twaha Twagirimana from the ASYV Solar Farm located adjacent to the site. He provided a soils report for the site and led a tour of the solar farm. The students also met Josiane, who

Students Tia, Tanya, and Amanda pictured at project site with Twaha and Josiane

brought the students to a nearby cooperative which is being used by a group of eleven women. These women are the most talented clothing makers in their village, and will be using the Kwitunga cooperative upon completion. Their current working conditions are extremely poor, with insufficient lighting and working materials. The building is very small and has only a few tiny windows along one wall. In addition, there are minimal chairs and tables for the women to work. Most importantly, some of the structural connections were made of zip-ties and are therefore very unsafe. While the students were there, Josiane acted as a translator between them and the Rwandan women. Thanks to her, architecture student Amanda Stahler was able to directly ask

the women what they would like in terms of the design of the cooperative which helped her immensely during the design process. The women expressed a lot of gratitude toward the students for designing their new workspace, and the students were happy to learn more about the increase in safety and economic independence that their design will provide for these women.

JI students with Rwandan women in front of their current cooperative building

Aside from visiting various towns and project sites while in Rwanda, the students visited many Rwandan landmarks, the most significant being the Kigali Genocide Memorial. As mentioned in the introduction of this report, Rwanda experienced a horrific genocide in 1994 which resulted in one million deaths, more than ten percent of the total population. The country is still rebuilding, and visiting the memorial taught the students more about Rwandan history and culture. The students also visited many rural villages and interacted with the community members there. In addition, students had the chance to visit MASS Design Group and learn more about how architectural design and construction differ in Rwanda compared to the US.

Specifically, issues relating to building with a limited budget and constructing for proper building strength were discussed. Although the days were packed full of learning experiences, there was also time for many fun activities. The most notable experiences include swimming in Lake Kivu and going on a safari on the border of Tanzania.

Students also learned about the construction practices and materials used in Rwanda, which was very helpful during the design process. While visiting a community center in Sunzu Village in northwestern Rwanda, students experienced first-hand how members of a community

Students carrying rocks for retaining wall in Sunzu Village

worked together to build a retaining wall. All the rocks used for this wall were carried up the hills to this village on the heads of the villagers. The students tried carrying the heavy rocks themselves and struggled while moving them short distances. Experiencing this significantly impacted the design of the project. Seeing that materials are transported by people instead of vehicles limited the materials that the design team could use for the project. For example, instead of using metal trusses, the students opted for dimension lumber trusses to decrease the weight of the materials being

Actually visiting the project site and the country of Rwanda was immensely impactful for the students. By meeting the women that would be working in the Women's Cooperative, the design team was able to understand the importance and significance of their design on this rural community. Visiting Rwanda also increased the students' understanding of the building practices in Rwanda which helps to produce a design that is not only culturally practical but also affordable and attainable.

hand carried.

VII. CONCLUSION

Working on this senior thesis project has been an incredibly unique and rewarding experience for all four of the students involved. Having the opportunity to design entire buildings from start to finish has been rewarding enough due to the engineering knowledge, experience, and judgement gained, but that is not the most impactful part of completing this project. Spending ten days experiencing life in various areas of Rwanda provided the students with an eye-opening experience and helped them increase their understanding of different ways of life and cultures worldwide. While the team was incredibly excited to provide women across the world with a space that will ultimately give them economic and social empowerment, actually meeting these women made the hard work much more tangible. Envisioning the women's faces made all of the nearly 300 hours spent in the architectural engineering labs completely worth it for Tia and Tanya. They hope to visit the project site again after the project is completed, and hope the ASYV Women's Cooperative and Opportunity Center will be actively changing local women's lives when we do.

VIII. SOURCES

Nowrojee, Binaifer. *Shattered lives: sexual violence during the Rwandan genocide and its aftermath*. New York: Human Rights Watch, 1996. Print.

Meli, Roberto. *Seismic Design Guide for Low-Rise Confined Masonry Buildings.* EERI & IAEE, 2011. PDF.

ACI Committee 318. *Building Code Requirements for Structural Concrete: (ACI 318-14); and Commentary (ACI 318R-14)*. Farmington Hills, MI: American Concrete Institute, 2014. Print.

American Society of Civil Engineers. *Minimum Design Loads for Buildings and Other Structures*. ASCE/SEI Standard 7-10, 2010. Print.

American Wood Council. National Design Specification for Wood Construction. ACI, 2015. Print.

XI. APPENDIX A:

STRUCTURAL CALCULATIONS

ASYV COMMUNITY CENTER AND WOMEN'S CO-OP RUBONA, RWANDA

Structural Calculations

June 13, 2018

Prepared For: Afritech Energy Journeyman International

Prepared by: Tia DeHarpport Tanya Wohlfarth

California Polytechnic State University, San Luis Obispo

Table of Contents

Design Criteria	0.1
Building A Load Takeoff	1.1
Building B Load Takeoff	1.2
Building A Truss Calculations	2.1
Building B Truss Calculations	2.4
Building A Beam Calculations	3.1
Building B Beam Calculations	3.2
Building A Column Calculations	4.1
Building B Column Calculations	4.3
Building A Column Footing Calculations	5.1
Building B Column Footing Calculations	5.4
Slab on Grade Calculations	6.1
Building A Lateral Load Distribution	7.1
Building B Lateral Load Distribution	7.3
Building A Confined Masonry Walls	8.1
Building B Confined Masonry Walls	8.3
Building A Wall Foundations	9.1
Building B Wall Foundations	9.14
Diaphragm Calculations	10.1
Bond Beam Calculations	11.1
Appendix	12.1

Design Criteria

Design Code: 2015 International Building Code (IBC) Risk Category: II

Seismic:

Seismic Coefficients: Sds = 0.19 Sd1 = 0.07 Sms = 0.28 Sm1 = 0.11Seismic Importance Factor: I = 1Site Class: B

Wind:

Wind Exposure: Partially Enclosed Wind Speed: V = 110 MPH

Material:

Concrete: f'c = 3000 psi @ 28 days (Foundation) f'c = 3000 psi @ 28 days (Beams and Columns) Reinf. Steel: fy = 60 ksi, ASTM A614, Grade 60 Masonry: f'm = 3000 psi Lumber: Grade 2 DF-L

Geotechnical Report by: Author: Boden und Wasser Report Number: 13671-4 Date: 10/01/2014

Journeyman	International n's Cooperative				Tanya Wohlfarth Tia DeHarpport		
Reference		Calculations			Answers		
	BUILDING A LOAD TAKEOFF						
				WEIGHT (ka/m^2)			
	SOLAR PANELS		2.34	11.41			
	METAL DECK ROO	FING	0.88	4.29			
	2"x4" HORIZONTAL	DIAPHRAGM	6.25	30.50			
	2"x4" @ 2' O.C.		0.91	4.45			
	WOOD TRUSSES		0.83	4.07			
	LIGHT FIXTURES		2.00	9.76			
	WOVEN MATT CEIL	lNG	0.21	1.01			
	MISC.		2.00	9.76			
		TOTAL TO BEAMS:	15.42	75.25			
			WEIGHT (PLF)	WEIGHT (KG/M)			
	CONCRETE BEAMS	3	75	366			
			WEIGHT (LBS.)	WEIGHT (KG)			
		TOTAL TO COLUMN:	1485.1	3274.0			
			WEIGHT (LBS.)	WEIGHT (KG)			
		ЛN	1500	7320			
			WEIGHT (PLF)	WEIGHT (KG/M)			
	MASONRY WALLS		74	360			
			WEIGHT (LBS.)	WEIGHT (KG)			
		TOTAL TO FOUNDATIC	305187.0	138430.7			
			WEIGHT (KIPS)	WEIGHT (KG)			
	TOTAL BUILDING V	VEIGHT	305.2	138430.7			
	LIVE LOAD		WEIGHT (PSF)	WEIGHT (kg/m^2)			
		ROOF:	20	97.6			
		FLOOR:	100	488			
	Linear Deed Lead to	Foundations	50040	kalm			
			52018	NY/III			
	I				1.1		

Journeyman ASYV Womer	International n's Cooperative				Tanya Wohlfarth Tia DeHarpport
Reference		Calculation	S		Answers
		BUILDING B LOAD TAK	<u>KEOFF</u>		
	DEAD LOADS		WEIGHT (PSF)	WEIGHT (kg/m^2	2)
	SOLAR PANELS		2.34	11.41	
	METAL DECK R	OOFING	0.88	4.29	
	2"x4" HORIZON	ITAL DIAPHRAGM	6.25	30.50	
	2"x4" @ 2' O.C.		0.91	4.44	
	WOOD TRUSSE	S	0.83	4.05	
	LIGHT FIXTURE	S	2.00	9.76	
	WOVEN MATT	CEILING	0.21	1.02	
	MEP/MISC.		2.00	9.76	
		TOTAL TO BEAMS:	15.42	75.2	
			WEIGHT (PLF)	WEIGHT (KG/	 M)
	CONCRETE BEA	MS	75	366	
			WEIGHT (LBS.)	WEIGHT (KG)	
		TOTAL TO COLUMN:	1484.98	3273.82	
			WEIGHT (LBS.)	WEIGHT (KG)	
	CONCRETE COL	UMN	1500	7320	
			WEIGHT (PLF)	WEIGHT (KG/	M)
	MASONRY WAI	LLS	74	360	
			WEIGHT (LBS.)	WEIGHT (KG)	
		TOTAL TO FOUNDATIONS:	148724.96	67460.58714	
			WEIGHT (KIPS)	WEIGHT (KG)	
	TOTAL BUILDIN	IG WEIGHT	148.72	67460.5871	
	LIVE LOADS	DOOF.			<u>_</u>)
		RUUF:	20	97.0	
		FLOOR:	100	488	
	Load to N/S Fo	undation - Workplace	60417.82	kg	
	Load to N/S Fo	undation - Community	60417.82	kg	
	Load to E/W Fo	oundation - Workplace	35793.82	kg	
					1.2

Journeyma	an International	Tanya Wohlfarth
ASYV Wom	ien's Cooperative	Lia DeHarpport
Reference	Calculations	Answers
	BUILDING A TRUSS CONNECTION CALCULATIONS	
	DIAGONAL MEMBER TO CHORD	
	Width of main member = 5.5 in	
NDS	Width of side member = 7.25 in	
Table 12F	Thickness of main member (tm) = 1.5 in	
	Thickness of side member (ts) = 1.5 in	
	Eucalyptus Use G = 0.50 (SG similar to DF-L) Grade 3	
	Bolt diameter = 0.50 in	
	Zparallel (1 bolt) = 1050 lb	
	Number of bolts in connection = 2	
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	
	Cd = 1.25 Construction loading	
	Cm = 1 No moisture, dry conditions	
	Ct = 1 No extreme temperatures	
Table	Cg:	
11.3.6A	As = 21.75 in^2	
	Am = 8.25 in^2	
	Ratio: 0.38	
	Use 0.5 (conservative)	
	Cg = 0.99 from table	
	CΔ = 1	
	Ceg = 1 No end grain nailing	
	Cdi = 1 Not part of a diaphragm	
	Ctn = 1 Not a toenail	
	7 parallal' = 2508.9 lb 1178.9 kg	
Tabla	SPACING End distance	
	End distance $ED > 4D$ (concernative)	
12.5.1A	2.5 in	
Table	Spacing of bolts in a row	
12.5.1B	Parallel to grain loading	
	2 in	
Table	Edge distance	
12.5.1C	//D = 3	
	0.75 in	
	l	I a i

Journeyma ASYV Wom	in Internati ien's Coope	onal erative					Tanya Wohlfarth Tia DeHarpport
Reference				Calculati	ons		Answers
		Spacing be	tween row Not Appli	vs icable			
	DEMAND						
Appendix		From RISA	=	8	320 kg	Most conservative	
12.19		Capacity =		117	'8.8 kg	GOOD	
	VERTICAL		TO CHOR	D			
	Width of ma	ain member	=		5.5 in		
NDS	Width of sid	de member :	=	7	.25 in		
Table 12F	Thickness of	of main men	nber (tm) =	=	1.5 in		
	Thickness of	of side mem	ber (ts) =		1.5 in		
	Eucalyptus	Use G = 0.	50 (SG sir	nilar to DF-L) Grade 3		
	Bolt diamet	er =		0	.50 in		
	Zparallel (1	bolt) =		1(050 lb		
	Number of bolts in connection = 2						
	CAPACITY	,					
	Zparallel' =	(Zparallel)(Cd)(Cm)(0	Ct)(Cg)(C∆)(Ceg)(Cdi)(Ctn)		
		Cd =	1.:	25 Construc	tion loading		
		Cm =		1 No moist	ure, dry conditi	ons	
		Ct =		1 No extrem	ne temperature	es	
Table		Cg:					
11.3.6A			As =	21	.75 in^2		
			Am =	8	.25 in^2		
			Ratio:	0	.38		
			Use 0.5 (conservative	e)		
		Cg =	0.9	99 from table	e		
		CΔ =		1			
		Ceg =		1 No end g	rain nailing		
		Cdi =		1 Not part of	of a diaphragm		
		Ctn =		1 Not a toe	nail		
	Zparallel' =	2598.8	lb	117	8.8 kg		

Journeyma	in Internat	ional			Tanya Wohlfarth
Poforonco	len s coop	erative	Calculations		
Reference			Calculations		Answers
	SPACING				
Table		End distance			
12.5.1A		5D > 4D (co	onservative)		
		2.5	in		
Table		Spacing of bolts in a rov	N		
12.5.1B		Parallel to g	grain loading		
		2	in		
Table		Edge distance			
12.5.1C		I/D =	3		
		0.75	in		
		Spacing between rows			
		Not Applica	ble		
	DEMAND				
Annondiv	DEWAND	From DISA -	208 kg		
10.10		Canacity =	290 kg 1178 8 kg	GOOD	
12.18			1170.0 Kg	GOOD	
	•				2.3

ASYV Wome	n's Cooperative			Tia DeHarppor		
Reference			Calculations	Answers		
	BUIL	DING B TRUS	S CONNECTION CALCULATIONS			
	DIAGONAL MEM	BER TO CHOP	RD			
	Width of main mer	nber =	5.5 in			
NDS	Width of side mem	iber =	7.25 in			
Table 12F	Thickness of main	member (tm) =	= 1.5 in			
	Thickness of side	member (ts) =	1.5 in			
	Eucalyptus Use G	6 = 0.50 (SG si	milar to DF-L) Grade 3			
	Bolt diameter =		5/8 in			
	Zparallel (1 bolt) =		1310 lb			
	Number of bolts in	connection =	2			
	CADACITY					
	Zparallol' = (Zpar					
	Cd =	1	.25 Construction loading			
	Cm =		1 No moisture, dry conditions			
	Ct =		1 No extreme temperatures			
Table	Cg:					
11.3.6A		As =	21.75 in^2			
		Am =	8.25 in^2			
		Ratio:	0.38			
		Use 0.5	(conservative)			
	Cg =	0	9.99 from table			
	CΔ =		1			
	Ceg =		1 No end grain nailing			
	Cdi =		1 Not part of a diaphragm			
	Ctn =		1 Not a toenail			
	Zparallel' = 3	242.3 lb	1470.7 kg			
	SPACING					
Table	End d	istance				
12.5.1A		5D > 4D	(conservative)			
			3 in			
Table	Spaci	ng of bolts in a	row			
12.5.1B	-	Parallel	to grain loading			
			2.5 in			

Journeyman	International			Tanya Wohlfarth
ASYV Womer	n's Cooperative			Tia DeHarpport
Reference		Answers		
Table	Edge distance			
12 5 10		24		
12.0.10	1/D -	2. 4 1 in		
	Spacing between			
	Not A			
		-ppiloable		
	DEMAND			
Appendix	From RISA =	1375 kg		
12.40	Capacity =	1470.7 kg	GOOD	
	VERTICAL MEMBER TO CH	ORD		
	Width of main member =	5.5 in		
NDS	Width of side member =	7.25 in		
Table 12F	Thickness of main member (t	m) = 1.5 in		
	Thickness of side member (ts) = 1.5 in		
	Eucalyptus Use G = 0.50 (SC	G similar to DF-L) Grade 3		
	Bolt diameter =	5/8 in		
	Zparallel (1 bolt) =	1310 lb		
	Number of bolts in connectior	1 = 2		
	CAPACITY			
	Zparallel' = (Zparallel)(Cd)(C	m)(Ct)(Cg)(C∆)(Ceg)(Cdi)(Ctn)		
	Cd =	1.25 Construction loading		
	Cm =	1 No moisture, dry conditio	ons	
	Ct =	1 No extreme temperatures	S	
Table	Cg:			
11.3.6A	As =	21.75 in^2		
	Am =	= 8.25 in^2		
	Ratio	0.38		
	Use	0.5 (conservative)		
	Cg =	0.99 from table		
	CΔ =	1		
	Ceg =	1 No end grain nailing		
	Cdi =	1 Not part of a diaphragm		
	Ctn =	1 Not a toenail		
	Zparallel' = 3242.3 lb	1470.7 kg		

ASYV Women's Cooperative Tia DeHarpport Reference Calculations Answers SPACING Table 12.5.1A 5D > 4D (conservative) 3 in Table 12.5.1B Parallel to grain loading 2.5 in Table 12.5.1C U U D EMAND Appendix 12.38 D EMAND I I I I I I I I I I I I I I I I I I I	Journeyman I	nternationa	al			Tanya Wohlfarth	
Reference Calculations Answers Table End distance 3 in Table Spacing of bolts in a row 3 in Table Spacing of bolts in a row 2.5 in Table Edge distance 2.5 in Table Edge distance 1in Spacing between rows Not Applicable Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD	ASYV Women	'V Women's Cooperative					
SPACING Table End distance 12.5.1A SD > 4D (conservative) 3 in 3 in Table Spacing of bolts in a row 12.5.1B Parallet b grain loading 2.5 in 1 Table Edge distance 12.5.1C VD = 2.4 1 1 Spacing between rows Not Applicable Perman Parallet Spacing between rows Not Applicable Not Applicable Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD	Reference	Calculations			Answers		
SPACING End distance 12.5.1A Spacing of bolts in a row 12.5.1B Parallel to grain loading 2.5.1B 12.5.1C Table Edge distance 12.5.1C VD = 2.4 1 1 Spacing between rows Not Applicable Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg							
I able End distance 12.5.1A 5D > 4D (conservative) 3 in 3 in Table Spacing of bolts in a row 12.5.1B Parallel to grain loading 2.5 in 2.5 in Table Edge distance 12.5.1C VD = 2.4 1 in Spacing between rows Not Applicable Not Applicable Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD	-	SPACING					
12.5.1A SD > 4D (conservative) 3 in 3 in Table Spacing of bolts in a row 12.5.1B Parallel to grain loading 2.5 in Edge distance 12.5.1C I/D = 2.4 1 in Spacing between rows Not Applicable DEMAND From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD			End distance				
3 in Table Spacing of bolts in a row 12.5.1B Parallel to grain toading 2.5 in 2.5 in Table Edge distance 12.5.1C i/D = 2.4 1 in Spacing between rows Not Applicable Not Applicable Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD	12.5.1A		5D > 4D (con	servative)			
12.5.1B Parallel to grain loading 2.5 in 2.5 in Table Edge distance 12.5.1C I/D = 2.4 1 in Spacing between rows Not Applicable Not Applicable DEMAND From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD	T - 1-1 -		3 ir	١			
12.5.15 Parallel to grain loading 2.5 in Table 12.5.1C IDEMAND Appendix From RISA = 303 kg 12.38 GOOD			Spacing of bolts in a row	the first strength of the			
Table Edge distance 12.5.1C I/D = 2.4 1 in Spacing between rows Not Applicable Not Applicable Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD	12.3.1D						
12.5.1C I/D = 2.4 1 in Spacing between rows Not Applicable DEMAND Appendix 12.38 From RISA = 303 kg Capacity = 1470.7 kg GOOD	Table		Z.3 II	1			
1 in Spacing between rows Not Applicable DEMAND Appendix 12.38 Appendix 12.38 Capacity = 1470.7 kg GOOD				2.4			
Appendix 12.38 DEMAND From RISA = 303 kg Capacity = 1470.7 kg GOOD GOOD Appendix 12.38 Capacity = 1470.7 kg GOOD	12.5.10		1/D -	2.4			
Appendix 12.38			Spacing between rows	1			
Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD			Not Applicabl	e			
DEMAND Appendix From RISA = 303 kg 12.38 Capacity = 1470.7 kg GOOD			Not Applicabl	0			
Appendix I:2.38 From RISA = 303 kg Capacity = 1470.7 kg GOOD		DEMAND					
12.38 Capacity = 1470.7 kg GOOD	Appendix		From RISA =	303 kg			
	12.38		Capacity =	1470.7 kg	GOOD		
				-			
1							
		1				I	

Journeyman In	ternational			Tanya Wohlfarth		
ASYV Women's	s Cooperative			Tia DeHarpport		
Reference	ference Calculations					
	Typical Building	A Beam Design - 3	<u>m Span</u>			
	Flexure Design:					
	Properties					
	b =	10 in				
	Span =	3 m =	9.84252 ft			
	h =	12 in				
	d =	9.5 in				
	f'c =	3000 psi				
	fy =	60 ksi				
	β1 =	0.85				
	Loading:					
	Pd =	226.767329 PLF				
	PI =	196.8504 PLF				
	Design found through use o	of structural analysis p	program Spslab:			
Appendix 12.2 12 3	Use (2) #3 reinforcing bars Use (2) #3 reinforcing bars	for top flexural reinfo for bottom flexural re	rcement inforcement	(2) #3 (T) (2) #3 (B)		
12.0	Shear Design:					
Appendix	Vu =	1.87 kins				
12.1	Av for #3 bar =	0.11 in^2				
	$\lambda =$	1				
	Shear Capacity Check:					
ACI 22.5.5.1	$Vc = 2\lambda * sart(f'c) * b * d =$	13.14534138 kips				
ACI 22.5.1.2	Vc + 8*sqrt(f'c)*b*d =	65.7267069 kips				
	Vu = 1.87 k ≤ 0.75*65.7 =	49.29503018 kips	√ ΟΚΑΥ			
	Spacing Calculation:					
	$s \leq Av^*fy^*d/[(Vu/\Phi)-Vc] =$	-11.7724282 in	USE MAX.			
	Maximum Spacing Checks:		SFACING REQS.			
ACI Table	Smax = min:	d/2 =	6 in			
7.6.2.2	Sinux – min.	24"	0 111			
	Use #3 2-legged stirrups sp	aced at 4" O.C. for she	ear reinf.	#3 @ 4" OC		
				• •		

Journeyman International Tanya Wohlfarth **ASYV Women's Cooperative** Tia DeHarpport Reference Calculations Answers Typical Building B Beam Design - 3 m Span Flexure Design: Properties 10 in b = 3 m = 9.84252 ft Span = h = 12 in d = 9.5 in f'c = 3000 psi fy = 60 ksi β1 = 0.85 Loading: Pd = 226.74865 PLF PI = 196.8504 PLF Design found through use of structural analysis program SP slab: Appendix Use (2) #3 reinforcing bars for top flexural reinforcement (2) #3 (T) 12.2 Use (2) #3 reinforcing bars for bottom flexural reinforcement (2) #3 (B) 12.3 Shear Design: Appendix Vu = 1.87 kips 12.1 Av for #3 bar = 0.11 in^2 λ= 1 Shear Capacity Check: $Vc = 2\lambda^* sqrt(f'c)^*b^*d =$ ACI 22.5.5.1 13.1453414 kips ACI 22.5.1.2 Vc + 8*sqrt(f'c)*b*d =65.7267069 kips $Vu = 1.87 \text{ k} \le 0.75*65.7 = 49.2950302 \text{ kips}$ √ OKAY Spacing Calculation: $s \le Av^{fy} d/[(Vu/\Phi)-Vc] = -11.772428$ in USE MAX. SPACING REQS. Maximum Spacing Checks: ACI Table Smax = min: 6 in d/2 =7.6.2.2 24" Use #3 2-legged stirrups spaced at 4" O.C. for shear reinf. #3 @ 4" OC

Journeyma	in International	Tanya Wohlfarth
ASYV WOM	Ien's Cooperative	
Reference		Allsweis
	Typical Exterior Column Design (Column A):	
	Loading: Trib. Area: $4.5 \text{ m}^2 =$ 48.4376 ft^2 Dead: 1.49 kips Live: 0.97 kips Load Combination: $1.2D + 1.6Lr =$ $3.33209 \text{ kips} \approx$	
Appendix 12.1	From SP beam output: M = 1.67 kips	
	Longitudinal Reinforcement: Try 10"x10" column w/ (4) #5 reinforcing bars	
Appendix 12.2 12.3	Check column capacity: Using SP column, demand is within boundaries of interaction diagram	10" x 10" x /
	Use to Xto column w/ (4) #3 remoting bars	(4) #5 reinf.
	Transverse Reinforcement:	
ACI 219	Pu = 3.33 kips 0.3*f'c*Ag 90 kips > Pu	
18.7.5	hx = 10"-(2)*2"-(2)*0.5"-0.62! 4.375 > hx max = 14"	
	Maximum Spacing: $1/4$ least column dimension = $10"/4 =$ 2.5 in min: 6db = 3.75 in So = $4+(14-hx)/3 =$ 7.21 in	
	Area of transverse ties: 0.3*(Ag/Ach - 1)*(f'c/fyt) 0.008438 in^2 max: 0.09*(f'c/f 0.0045 in^2	
	I	1

Journeyma	Tanya Wohlfarth			
Reference	Calculations	Answers		
	Spacing: s = Ash/bc*max spaci 6.77248677 Spacing @ 6" OC Use #4 two-legged stirrups @ 6" O.C.	#4 @ 6" OC		
	10" (4) #5 #4 @ 6" O.C. 2" COVER			
		4.2		

Journeyma ASYV Wom	in Internat ien's Coop	ional erative		Tanya Wohlfarth Tia DeHarpport
Reference		Calculations		Answers
	<u>Typical Ex</u> Loading: Trib. Area	t <u>erior Column Design:</u> 1: 4.5 m^2 = 48.4376 ft^2		
	Dead: Live: Load Com	1.48 kips 0.97 kips abination: 1.2D + 1.6I 3.331983 kips ≈	3 kips	
Appendix 12.1	From SP k M =	beam output: 1.67 kips		
	<u>Longitudi</u> Try 10"x1	nal_Reinforcement: 0" column w/ (4) #5 reinforcing bars		
Appendix 12.2 12.3	Check col Using SP	umn capacity: column, demand is within boundaries of interactio	n diagram	
	Use 10"x:	LO" column w/ (4) #5 reinforcing bars		10" x 10" w/ (4) #5 reinf.
	Transvers	e Reinforcement:		
	Pu = 0.3*f'c*A	3 kips g 90 kips > Pu		
18.7.5	hx =	10"-(2)*2"-(2)*0.5"-0. 4.375 > hx max = 14"		
	Maximum min: Area of tr max:	n Spacing: 1/4 least column dimension = 10"/4 = 6db = So = 4+(14-hx)/3 = ansverse ties: 0.3*(Ag/Ach - 1)*(f'c/ 0.008438 in^2 0.09*(f'c/f' 0.0045 in^2	2.5 in 3.75 in 7.21 in	
				43

CONCRETE COLUMN FOOTING KEY PLAN (BUILDING A)

Journeyma	n International	Tanya Wohlfarth
ASYV Wom	nen's Cooperative	Tia DeHarpport
Reference	Calculations	Answers
	Typical Exterior Column Footing Design (Footing A):	
	Loading (unfactored):	
	Service Dead Load = 38612.77 lbs	
	Service Live Load = 5809.536 lbs	
	Weight of soil = 130 pcf	
	Allowable Soil Pressure = 120 kN/m2 2506.25 psf	
	Column dimensions: 10" x 10"	
	<u>Base Area:</u> Aftg = P service/F bearing = 17.72 ft^2	
	Use 5' x 5' square footing (Aftg = 25 ft^2 > 17.7 ft^2)	
	<u>Loading (factored):</u> 1.2D + 1.6L = 55630.58 lbs = 56 kips	
	qs = Pu/Af = 2.23 ksf	
ACI 22.5.1	Shear Design:Assume 18" footing thickness $d = 18" - 3" - 0.5'*2$ 14 inAt =21 ft^2Vu = At*qs 46.72969 kipsbo =96 in $\beta =$ 1	
ACI	αs = 30 (exterior edge column; conservative for corner colu	imns)
22.6.5.3	Vc/Vf'c*bo*d = $2+4/\beta = 6$ min: α s*d/bo+2 : 6.375 4 = 4	
	ΦVc = 0.75*4*Vf'c*bo*d = 220.84174 kips > Vu = 46.72969 kips √ OK	
	<u>Wide Beam Action:</u> d = 14 in At = 21.66667 ft^2 Vu = qs*A1 48.21317 kips ΦVn = Φ(√f'c*bw*d): 69.01304 kips > Vu √OK	

Journeyma	an International	Tanya Wohlfarth
ASYV Worr	nen's Cooperative	Tia DeHarpport
Reference	Calculations	Answers
ACI 25.4.2.3	Calculations $Flexure Design:$ $Mu = 22.25223 k-ft$ $df = 0.9$ $fy = 60 ksi$ $j = 0.9$ $d = 14 in$ Required Steel: As,req = Mu/(Φ f*fy*j*d) = 0.3924556 in^2/ft Use #6 bar @ 12" O.C. Development Length: Ld = [(3/40)*(fy/Vfc)* Ψ t* Ψ e* Ψ s* λ /(cb/db)] = 10.5 in \sqrt{OK} Use (5) #6 reinforcing bars each way $10" \times 10" \text{ COLUMN}$ $24" \downarrow 0 0 (5) #6 @ 12" O.C. EA. WAY$ 5' SQUARE FTG.	Answers #6 @ 12" O.C. (5) #6 EA. WAY.

WORK SPACE/PINEAPPLE & MANGO HARVESTING

COMMUNITY CENTER

CONCRETE COLUMN FOOTING KEY PLAN (BUILDING B)
Journeyma	n International	Tanya Wohlfarth
ASYV Wom	en's Cooperative	Tia DeHarpport
Reference	Calculations	Answers
	Typical Exterior Column Footing Design (Footing A):	
	Loading (unfactored):	
	Service Dead Load = 38612.77 lbs	
	Service Live Load = 5809.536 lbs	
	Weight of soil = 130 pcf	
	Allowable Soil Pressure = 120 kN/m ² 2506.25 psf	
	Column dimensions: 10" x 10"	
	Base Area: Aftg = P service/F bearing = 17.72 ft^2	
	Use 5' x 5' square footing (Aftg = 25 ft^2 > 17.7 ft^2)	
	Loading (factored): 1.2D + 1.6L = 55630.58 lbs = 56 kips	
	qs = Pu/Af = 2.23 ksf	
ACI 22.5.1	Shear Design:Assume 18" footing thickness $d = 18" - 3" - 0.5'*2$ 14 inAt =21 ft^2Vu = At*qs46.72969 kipsbo =96 in $\beta =$ 1	
ACI	αs = 30 (exterior edge column; conservative for corner colum	ns)
22.6.5.3	$Vc/Vf'c*bo*d = 2+4/\beta = 6$	
	min: $\alpha s^* d/bo+2 = 6.375$	
	4 = 4	
	ΦVc = 0.75*4*vf'c*bo*d = 220.8417 kips > Vu = 46.72969 kips √ OK	
	<u>Wide Beam Action:</u> d = 14 in At = 21.66667 ft^2 Vu = qs*At 48.21317 kips ΦVn = Φ(vf'c*bw*d) = 69.01304 kips > Vu √OK	

ASTV WOME	n's cooperative	
Reference	Calculations	Answers
	BUILDING A AND B SLAB ON GRADE DESIGN:	
	Slab on grade to be constructed as follows, based on typical	
	slab on grade construction and minimum reinforcing:	
	Use 5" thick with #3 @ 18" on center each way.	5" thick w/ #3 @ 18" OC EW
I		1

Reference	Calculations	Answers
	BUILDING A LATERAL LOAD CALCULATIONS	
	SEISMIC INPUT VALUESSds = 0.44 g Sd1 = 0.17 g	
ASCE 12.2-1	R = 1.5 (Ordinary Plain Masonry Shear Wall)	
ASCE 1.5-2	I = 1 (Risk Category II Building)	
	WIND INPUT VALUES	
	Vel 110 mph 49.17 m/s	
Sec 26.7	Exposure B category	
Sec 26.8	Kzt 1 flat site	
	Aopenings 83 m ²	
	Enclosure classificati Partially	
Sec. 26.2	on Enclosed	
Table 27.6-1	ph = po 16.7 psf conservative 81.54 kg/m^2	
Table 27.6-2	pz 23.7 psf conservative 115.7 kg/m^2	
	GENERAL INPUT VALUES	
	hldg length $49,2126$ ft = 15 m	
	W 305.19 k 138430.677 kg	
	LOADING WIND LOADING	
	Pnet 0.0237 ksf	
	Vw 17.21959012 k	
	SEISMIC LOADING	
	Cs min 0.01936 Cs max 0.75236581	
	Cs 0.293333333 GOOD	
	Vs 89.52 k 40596.5 kg	
	SEISMIC GOVERNS	

Journeyman International ASYV Women's Cooperative

Reference				Са	lculations				Answers
		DIAPHRAGM	FORCE	CALCULATION	S				
	Vs =	89.52 k		40596	.5 kg				
		Н	ORIZONT	AL SEISMIC LO	OAD DIST'N (ROC	DF)			
		DIRECTI							
	WALL	ON	L (m)	H/L	Rc	d (m)	Rd	Rd^2	
Rc values	A	Х	6	0.50	5	11.7	58.63	687.57	
from	В	Х	3	1.00	1.429	11.7	16.76	196.51	
Appendix	С	X	3	1.00	1.429	11.7	16.76	196.51	
12.4	1	Y	3	1.00	1.429	4.5	6.43	28.94	
12.4	2	Y	3	1.00	1.429	4.5	6.43	28.94	
12.5	3	Y	3	1.00	1.429	4.5	6.43	28.94	
	4	Y	3	1.00	1.429	4.5	6.43	28.94	
		Sum:	24	150			Sum:	1190.34	
	Weight of one	e 3m length of v	vall =	150	54 Kg				
	Xcr	4.5 m		Xcm	4 5	m			
	Ycr	11.7 m		Ycm	10.5	m			
	EAST/WEST								
	e max	1.98 m			е	0.45	m		
	e min	min 0.48 m		Mtor		18268.4	kg-m		
	Mtor	80245.0 kg	-m		V1 max	397.3	kg		
	Va max	4694.1 kg			V1 min	299.1	kg		
	Va min	761.2 kg			V2 max	397.3	kg		
	Vb max	1341.6 kg			V2 min	299.1	kg		
	Vb min	217.6 kg			V3 max	397.3	kg		
	Vc max	1341.6 kg			V3 min	299.1	kg		
	Vc min	217.6 kg			V4 max	397.3	kg		
					V4 min	299.1	kg		

ASYV Women's Cooperative	

Reference	Calculations								
	BUILDING B LATERAL LOAD CALCULATIONS								
	SEISMIC INP								
	Sds =	0.44 a							
	Sd1 =	0.17 g							
ASCE 12.2-1	R =	1.5 (Ordinal	rv Plain Masonry Shear Wall)						
ASCE 1.5-2	1 =	1 (Risk Ca	ategory II Building)						
	אוופווד								
	Vel	110 mph	49.17 m/s						
Sec 26.7	Exposure category	В							
Sec 26.8	Kzt	1 flat site							
	Aopenings	83 m^2							
Sec. 26.2	Enclosure classification	Partially Enclosed							
Table 27.6-1	ph = po	16.7 psf	conservative						
		81.54 kg/m^2							
Table 27.6-2	pz	23.7 psf	conservative						
		115.7 kg/m^2							
	GENERAL IN	PUT VALUES							
	h	14.7638 ft =	4.5 m						
	bldg length	49.2126 ft =	15 m						
	w	148.72 k	67460.6 kg						
	LOADING								
	WIND LOADI	NG							
	Pnet	0.0237 ksf							
	Vw	17.2196 k							
	SEISMIC LOA	ADING							
	Та	0.15064 sec							
	Cs min	0.01936							
	Cs max	0.75237							
	Cs	0.29333 GOOD							
	Vs	43.63 k	40596.5 kg						
	SEISMIC GO	VERNS							
	•			'					

Reference				Calcu	llations			Answe				
	DIAPHRAG	DIAPHRAGM FORCE CALCULATIONS										
	Vs	43.63	k	40596.	5 kg							
	Workspace											
		HORIZOI	NTAL SE		AD DIST'N (F	ROOF)						
		DIRECTI										
	WALL	ON	L (m)	H/L	Rc	d (m)	Rd	Rd^2				
	А	Х	3	1.00	1.429	2.9	4.20	12.32				
	В	Х	3	1.00	1.429	2.9	4.20	12.32				
	С	Х	9	0.33	8.82	2.9	25.90	76.07				
	1	Y	3	1.00	1.429	6.00	8.57	51.44				
	2	Y	3	1.00	1.429	6.00	8.57	51.44				
	3	Y	3	1.00	1.429	6.00	8.57	51.44				
		Sum:	24				Sum:	255.05				
	Weight of or	ne 3m length	n of wall =	= 156	4 kg							
	Xcr	6.00	m	Xcm	5.06	m						
	Ycr	2.9	m	Ycm	5.44	m						
	E	AST/WEST			NO	RTH/SOUT	Ή					
	e max	3.40	m		e max	1.39) m					
	e min	1.60	m		e min	0.49) m					
	Mtor	138056.3	kg-m		Mtor	56328	3 kg-m					
	Va max	2302.8	kg		V1 max	1978.6	ð kg					
	Va min	31.2	kg		V1 min	85.0) kg					
	Vb max	2302.8	kg		V2 max	1978.6	δ kg					
	Vb min	31.2	kg		V2 min	85.0) kg					
	Vc max	14213.3	kg		V3 max	1978.6	δ kg					
	Vc min	192.6	ka		V3 min	85.0) ka					

Journeyman International

А

Poforonco		-		Calcu	lations				Answore
Reference				Calcu	liations				Answers
	CON	IMUNITY CE	INTER	HORIZON	TAL SEISMIC		ST'N (ROC	OF)	
		DIRECTI							
	WALL	ON	L (m)	H/L	Rc	d (m)	Rd	Rd^2	
Rc values	A	Х	6	0.50	5	11.8	59.06	697.62	
from	В	Х	6	0.50	5	11.8	59.06	697.62	
Appendix	С	Х	3	1.00	1.429	11.8	16.88	199.38	
12.4	1	Y	3	1.00	1.429	7.00	10.00	70.01	
12.5	2	Y	6	0.50	5	7.00	35.00	244.97	
		Sum:	24				Sum:	1909.61	
	Weight of or	ne 3m length	of wall	= 156	4 kg				
	Xcr	7 00	m	Xcm	4 31	m			
	Vor	11.8	m	Vcm	10 31	m			
		1110		1 oni	10.01				
	EAST/WEST				NORTH/SOUTH				
	e max	2.40	m		e max	3.14	1 m		
	e min	0.60	m		e min	2.24	1 m		
	Mtor	97413.6	kg-m		Mtor	127352.0	∂ kg-m		
	Va max	3848.2	kg		V1 max	1091.	5 kg		
	Va min	835.4	kg		V1 min	424.	5 kg		
	Vb max	3848.2	kg		V2 max	3819.2	2 kg		
	Vb min	835.4	kg		V2 min	1485.2	2 kg		
	Vc max	1099.8	kg						
	Vc min	238.8	kg						
			-						

Tanya Wohlfarth

Journeyman International

ASYV	Women	's Coo	perative
------	-------	--------	----------

ASYV Womer	n's Cooperat	ive						Tia [DeHarpport		
Reference				Calcu	lations				Answers		
	PINEA	PPLE/MANC	90 BLD	g horizo	ONTAL SEISM	IC LOAD	DIST'N (RO	DOF)			
		DIRECTI	L (m)	ЦЛ	De	d (m)	Dd				
Develues	VVALL A	V V	L (III) 3	⊓/L 1.00	1 / 20	u (III) 3 7	F.U 5.22	10.08			
from	B	X	6	0.50	5	3.7	18 27	66 76			
Annendiv	C	X	9	0.00	8 82	3.7	32.23	117 77			
	1	Y	6	0.50	5	2.00	10.00	20.01			
12.4	2	Ŷ	3	1.00	1.429	2.00	2.86	5.72			
12.5	_	Sum:	27				Sum:	229.34			
	Weight of o	ne 3m length	of wall	= 156	4 kg						
	Xcr	2.00	m	Xcm	4.50	m					
	Ycr	3.7	m	Ycm	5.83	m					
	F	Λςτ/\λ/εςτ			NORTH/SOUTH						
	le max	3.08	m		e max	2.9	5 m				
	e min	1.28	m		e min	2.0	5 m				
	Mtor	125004.4	ka-m		Mtor	119740.	7 ka-m				
	Va max	2867.6	kq		V1 max	5400.0	6 kg				
	Va min	21.5	kq		V1 min	178.4	4 kg				
	Vb max	10033.7	kg		V2 max	1543.	5 kg				
	Vb min	75.2	kg		V2 min	51.0) kg				
	Vc max	17699.4	kg				0				
	Vc min	132.7	kg								
	Largest Fo	rce in East/	West W	/alls	17699.4	kg					
	Largest Fo	rce in North	/South	Walls	5400.6	kg					
									7.6		

Tanya Wohlfarth

Journeyman Interna	ational			Tanya Wohlfarth			
ASYV Women's Coo	operative			Tia DeHarpport			
Reference	Calcu	Answers					
	Building A Confined	Masonry Wall Design	ı.				
	building // commed	wasonry wan besign	<u></u>				
Conf. Masonry	LATERAL WALL DENSITY						
Design Guide	Required Wall Density = 1% fo	r following building cond	ditions:				
	1 story building						
	Moderate Seismic Hazard						
	Solid Clay Bricks						
	N/S DIRECTION						
	Assuming 2 wythes of 120 mm	brick:					
	Floor area, Ap =	135 m^2					
	Wall area, Aw =	1.44 m^2					
	Wall density, d =	1.07 % > 1.0%	GOOD				
	E/W DIRECTION						
	Assuming 2 wythes of 120 mm						
	Floor area, Ap =						
	Wall area, Aw =	2.16 m^2					
	Wall density, d =	1.60 % > 1.0%	GOOD				
Conf. Masonry	GRAVITY WALL DENSITY						
Design Guide	Fr = strength reduction factor =	0.6					
	Fc = load factor for gravity load	1.4					
	Fs = Fc / Fr = gravity loading s	2.33					
	COMPRESSIVE STRENGTH,						
	σR = Fe (fm' + 4) =	11.4 kg/cm^2					
	WALL DENSITY INDEX, Σd						
	Σd ≥ Fc*w/σR						
	Fc*w/σR =	0.9241 %					
	Σd =	2.67 % > 0.924%	GOOD				
	Wall density for one direction	0.462 %					
	d =	1.60 % > 0.462%	GOOD				
	MAXIMUM WALL DISTANCE/						
	$B/t \le \sigma R/(Fs^*D^*w) =$	927.55					
	B/t = 3 m / 240 mm =	12.5 ≤ 927.55	GOOD				
	CONCLUSION			WALLS ARE			
	Provided confined masonry	walls are sufficient.		SUFFICIENT			
1				8.1			

Journeyman Interna	ational	Tanya Wohlfarth
Reference	Calculations	Answers
Conf. Masonry Design Guide	<u>TIE-COLUMNS:</u> LOCATIONS Reinforced concrete tie columns shall be provided at each 3 meter increment, at wall intersections, and at each door opening location.	
	DIMENSIONS Tie-column sizes shall be 25 cm x 25 cm (10" x 10") square. REINFORCING (4) 12-mm diameter (#4) bars shall be provided per recommendation of prescriptive confined masonry design guide.	25 x 25 cm COLUMNS (4) #4 PROV.
	1 cm diameter (#3) transverse two-legged stirrups with 135° hooked ends, spaced at 200 mm, with 50 mm (2") minimum cover, shall be provided at all locations.	#3 STIRRUPS @ 200 mm
Conf. Masonry Design Guide	<u>TIE-BEAMS:</u> LOCATIONS Reinforced concrete tie-beams shall be provided at the top of each wall.	
	DIMENSIONS Tie-beams shall be 25 cm wide by 30 cm (10" x 12") deep. REINFORCING (4) 12-mm diameter (#4) longitudinal bars shall be provided with 5 cm (2") cover per recommendation of prescriptive confined masonry design guide.	25 x 30 cm TIE BEAMS PROVIDE 5 cm COVER
	1 cm diameter (#3) transverse two-legged stirrups with 135° hooked ends, spaced at 200 mm, with 50 mm (2") minimum cover, shall be provided at all locations. <u>DEVELOPMENT LENGTH:</u> To ensure the effectiveness of tie-beams in resisting earthquake loads, longitudinal bars should have a 90° hooked anchorage at intersections	#3 STIRRUPS @ 200 mm
		8.2

Journeyman Interna	Tanya Wohlfarth			
ASTV Women's Coo	Calculations			
Reference	Calculations			Answers
	Building B Typical Confin	ed Masonry Wall Design		
Conf. Masonry	LATERAL WALL DENSITY			
Design Guide	Required Wall Density = 1% for	or following building conditior	ns:	
	1 story building			
	Moderate Seismic Hazard			
	Solid Clay Bricks			
	N/S DIRECTION			
	Assuming 2 wythes of 120 mm	n brick:		
	Floor area, Ap =	126 m^2		
	Wall area, Aw =	1.44 m^2		
	Wall density, d =	1.14 % > 1.0%		
	E/W DIRECTION			
	Assuming 2 wythes of 120 mm			
	Floor area, Ap =	126 m^2		
	Wall area, Aw =	2.16 m^2		
	Wall density, d =	1.71 % > 1.0%		
Conf. Masonry	GRAVITY WALL DENSITY			
Design Guide	Fr = strength reduction factor =	=	0.6	
	Fc = load factor for gravity load	ding	1.4	
	Fs = Fc / Fr = gravity loading s	afety factor =	2.33	
	COMPRESSIVE STRENGTH,	σR		
	σR = Fe (fm' + 4) =	11.4 kg/cm^2		
	WALL DENSITY INDEX, Σd			
	Σd ≥ Fc*w/σR			
	Fc*w/σR =	0.924 %		
	Σd =	2.86 % > 0.924%		
	Wall density for one direction	0.462 %		
	d =	1.14 % > 0.462%		
	MAXIMUM WALL DISTANCE/THICKNESS (B/t) RATIO			
	$B/t \le \sigma R/(Fs^*D^*w) =$	927.67		
	B/t = 3 m / 240 mm =	12.5 ≤ 927.67		
	CONCLUSION			WALLS ARE
	Provided confined masonry	walls are sufficient.	l	SUFFICIENT 8.3

Journeyman Intern	ational	Tanya Wohlfarth Tia DeHarpport
Reference	Calculations	Answers
Conf. Masonry Design Guide	<u>TIE-COLUMNS:</u> LOCATIONS Reinforced concrete tie columns shall be provided at each 3 meter incriment, at wall intersections, and at each door opening location.	
	DIMENSIONS Tie-column sizes shall be 25 cm x 25 cm (10" x 10") square. REINFORCING (4) 12-mm diameter (#4) bars shall be provided per recommendation of prescriptive confined masonry design guide.	25 x 25 cm COLUMNS (4) #4 PROV.
	1 cm diameter (#3) transverse two-legged stirrups with 135° hooked ends, spaced at 200 mm, with 50 mm (2") minimum cover, shall be provided at all locations.	#3 STIRRUPS @ 200 mm
Conf. Masonry Design Guide	<u>TIE-BEAMS:</u> LOCATIONS Reinforced concrete tie-beams shall be provided at the top of each wall.	
	DIMENSIONS Tie-beams shall be 25 cm wide by 30 cm (10" x 12") deep. REINFORCING (4) 12-mm diameter (#4) longitudinal bars shall be	25 x 30 cm TIE BEAMS PROVIDE
	provided with 5 cm (2") cover per recommendation of prescriptive confined masonry design guide. 1 cm diameter (#3) transverse two-legged stirrups with 135° hooked ends, spaced at 200 mm, with 50 mm (2") minimum cover, shall be provided at all locations.	5 cm COVER #3 STIRRUPS @ 200 mm
Conf. Masonry Design Guide	<u>DEVELOPMENT LENGTH:</u> To ensure the effectiveness of tie-beams in resisting earthquake loads, longitudinal bars should have a 90° hooked anchorage at intersections.	
		84

CONFINED MASONRY WALL FOUNDATION KEY PLAN (BUILDING A)

Journeyman Ir	nternational	Tanya Wohlfarth	
ASTV Women	Coloulations		
Reference	Calculations	Answers	
	N/S Masonry Wall Foundations - 1 & 2		
	Loads:		
	$P_D = 52018.0 \text{ kg}$		
	$V_L = (488 \text{kg/m}^2)(1.5\text{m})(9\text{m}) = 0588 \text{kg}$		
	$r_E = $		
	Service Load Combinations:		
ASCE 7-10	5&6b: (1.0+0.14Sds)D+0.75L+0.7E		
12.2.4.3	=(1.0+0.14*0.44)*52018+(0.75*6588)+(0.7*794.6)		
	60719.5 kg		
	8: 0.6D+0.7E		
	=(0.6*52018)+(0.7*794.6)		
	31767.0 kg		
1005 7 10			
ASCE 7-10	Mot = $=0.75(0.7)(3m)(794.6kg)$		
Sec. 12.13.4	Mot = 1251 kg-m		
	Try Footing 18m long x 2m wide x 2m deep:		
	Length = 18 m		
	Width = 2 m		
	Depth = 2 m		
	Wall length = 15 m		
	$P_{footing} = (2402.8 kg/m^3)(18m)(2m)(2m)$		
	Pfooting = 86500.8 kg		
	Pdead = 52018.0 kg		
	$\Sigma Pd =$ 138519 kg 63 k		
	Load Case 1 (0.6D + 0.7E):		
	Pu = 0.6 (138519kg) = 83111 kg		
	Mr = (83111kg)(18m/2) = 748002 kg-m GOOD		
	x = (748002kg-m - 1251kg-m)(1/138519kg)		
	x = 5.39 m		
	l = 3x = 16.17 m		
	fbearing = 2(138519 kg)/(16.17m*2m) = 8565 kg/m^2		
	fallowseismic = (1.33)(12236.6kg/m^2) 16274.68 kg/m^2		
	GOOD		

Journeyman Ir	nternational	Tanya Wohlfarth
ASYV women	s Cooperative	
Reference	Calculations	Answers
	Load Case 2 ((1.0+0.14Sds)D+0.75L+0.7E):	
	Pu = (1.0+0.14*0.44)*138519+0.75*17568 = 151993	
	Mr = (151993kg)(18m/2) = 1367933 kg-m GOOD	
	x = (1367933kg-m - 1251kg-m)(1/172070kg)	
	x = 9.87 m	
	I = 3x = 29.60 m	
	fbearing = 2(138519 kg)/(29.6m*2m) = 4679.82 kg/m^2	
	fallowseismic = (1.33)(12236.6kg/m^2) 16274.678 kg/m^2 GOOD	
	Load Case 1 Governs	
	Factored Design:	
ASCE 7-10	Load Combo: 0.9D + 1.0E	
12.4.2.3	Pu = (0.9/0.6)(214119kg) = 207778 kg	
	Check Footing Shear: $\Phi = 0.75$ $\alpha = 2$ f'c = 3000 psi	
	$\Phi Vc = \Phi \alpha(f'c)^{0.5}(Acv) = 509384$ lb	
	231052 kg	
	GOOD	USE 18 m x
		2 m x 2 m
	Longitudinal Flexural Reinforcing:	FOOTING
	x = 5.39 m	
	l = 3x = 16.17 m	
	fbrg = 8565 kg/m^2	
	TRIANGULAR LOAD	
	fx = 7770.5 kg/m^2	
	Pu = 27704 kg	
	Moment arm = 2.50 m Mu =Pu*moment arm= 69259 kg-m	
	Try (6) #5 (B) LONG. REINF.	
		I. I

Journeyman I	nternational			Tanya Wohlfarth
ASTV Women		Calcula	tions	
Reference		Calcula	LIONS	Answers
	# bars =	6		
	bar diameter	0.625 in		
	bar area =	0.31 in^2		
	fy =	60 ksi		
	f'c =	3 ksi		
	Beta =	0.85		
	cover =	3 in		
	T =	111.6 k		
	a =	0.56 in		
	c =	0.65 in		
	εs =	0.34		
	φ =	0.9		
	φMn =	7488.7 k-in	86279.3 kg-m GOOD	
	USE (6) #5 (B) I	LONG. REINF.		(6) #5 (B)
				LONG. REINF.
	Transverse Fle	xural Reinforcing:		
	wu =	12847.3 kg/m^2		
	Mu =	14453 kg-m		
	Try #6 @ 12" c	o/c		
	bar diameter	0.75 in		
	bar area =	0.44 in^2		
	fy =	60 ksi		
	φMn =	1745.5 k-in	20109.84 kg-m	
			GOOD	
	USE #6 @ 12"	O/C TRANSVERSE REII	NF. (B)	#6 @ 12"
	Longitudinal T	on Reinforcing [.]		O.C. TRANS (B)
		op nemorenig.		
	wu =	1.38 ksf		
	Mu =	109.49 k-ft	15136.4 kg-m	
				$\cap A$

SYV Women	's Cooperative			Tia DeHarppo
eference		Calcula	itions	Answers
	Asmin =	11.16 in^2		
	Asmintop =	5.58 in^2		
	Try (8) #8			
	# bars =	8		
	bar diameter	1 in		
	bar area =	0.79 in^2		I
	As =	6.32 in^2	GOOD	
	a =	1.89 in		
	c =	2.22 in		
	εs =	0.098		
	φ =	0.9		
	φMn =	2098.756 k-ft	290153 kg-m	
			GOOD	
	USE (8) #8 LON	NGITUDINAL REINF. (T	.)	(8) #8 LONG.
			,	REINF. (T)
	<u>TransverseTop</u>	Reinforcing:		
	wu =	1.38 ksf		
	Mu =	16.69 k-ft/ft	2306.8 kg-m	
	Asmintop =	50.22 in^2		
	Try #8 @ 12" d	p/c		
	bar diameter	1 in		
	bar area =	0.79 in^2		
	T =	2322.6 k		
	a =	1.29 in		
	c =	1.51 in		
	εs =	0.145		
	φ =	0.9		
	φMn =	263.42 k-ft	36417 kg-m	
			GOOD	
	USE #8 @ 12"	o/c TRANSVERSE REII	NF. (T)	#8 @ 12" OC
				TRANS. (T)

Journeyman Ir	nternational	Tanya Wohlfarth
ASTV WOMEN	Calculations	
Reference	Calculations	Allswers
	N/S Masonry Wall Foundations - 3 & 4	
	Loads: $P_{\rm r}$ = 52018.0 kg	
	$P_{L} = (488 \text{kg/m}^2)(3\text{m})(3\text{m}) = 4392 \text{ kg}$ $V_{E} = 397.3 \text{ kg}$	
	fallowseismic = 120kN/m^2 12236.6 kg/m^2	
	Service Load Combinations:	
ASCE 7-10	5&6b: (1.0+0.14Sds)D+0.75L+0.7E	
12.2.4.3	=(1.0+0.14*0.44)*52018+(0.75*4392)+(0.7*397.3) 58794.4 kg	
	8: 0.6D+0.7E	
	=(0.6*52018)+(0.7*397.3)	
	31400.9 Kg	
ASCE 7-10	Mot = = =0.75(0.7)(3m)(397.3kg)	
Sec. 12.13.4	Mot = 626 kg-m	
	Try Footing 6m long x 2m wide x 2m deep:	
	Length = 6 m	
	Width = 3.5 m	
	Depth = 2 m	
	Wall length = 3 m	
	Pfooting = (2402.8kg/m^3)(6m)(2m)(2m)	
	Pfooting = 100917.6 kg	
	Pdead = 52018.0 kg	
	Σ Pd = 152936 kg 70 k	
	<u>Load Case 1 (0.6D + 0.7E):</u>	
	Pu = 0.6 (172070kg) = 91761 kg	
	Mr = (103242kg)(7m/2) = 275284 kg-m GOOD	
	x = (361347kg-m - 2195kg-m)(1/172070kg)	
	x = 1.80 m	
	I = 3x = 5.39 m	
	fbearing = 2(172070 kg)/(6.26m*2m) = 16221 kg/m^2	
	fallowseismic = (1.33)(12236.6kg/m^2) 16274.68 kg/m^2 GOOD	

Journeyman I	nternational	Tanya Wohlfarth
Ast women	Calculations	
Reference	Calculations	Allswers
	Load Case 2 ((1.0+0.14Sds)D+0.75L+0.7E):	
	Pu = (1.0+0.14*0.44)*172070+0.75*17568 = 165650	
	Mr = (195845kg)(7m/2) = 496951 kg-m GOOD x = (685459kg-m - 2195kg-m)(1/172070kg)	
	x = 3.25 m	
	I = 3x = 9.74 m	
	fbearing = 2(172070 kg)/(11.91m*2m) = 8976.17 kg/m^2 fallowseismic = (1.33)(12236.6kg/m^2) 16274.678 kg/m^2	
	GOOD	USE 6 m x
	Load Case 1 Governs	2 m x 2 m
		FOOTING
	Factored Design:	
ASCE 7 10	Load Combo: $0.0D \pm 1.0E$	
12 4 2 3	$P_{11} = (0.9/0.6)(214119 \text{kg}) = 229403.4 \text{ kg}$	
12.7.2.3	1 u = (0.3/0.0)(21+113kg) = 223+03.4 kg	
	Check Footing Shear:	
	Φ = 0.75	
	α = 2	
	f'c = 3000 psi	
	$\Phi Vc = \Phi \alpha(f'c)^0.5(Acv) = 846137.035$ lb	
	383801.0 kg	
	GOOD	
	Longitudinal Flexural Reinforcing:	
	x = 1.80 m	
	l = 3x = 5.39 m	
	fbrg = 16221 kg/m^2	
	TRIANGULAR LOAD	
	fx = 11704.6 kg/m^2	
	Pu = 30587 kg	
	Moment arm = 0.40 m	
	Mu =Pu*moment arm= 12165 kg-m	
	Try (4) #4 (B) LONG. REINF.	

Journeyman I	nternational 's Cooperative			Tanya Wohlfarth
Reference		Calcula	tions	
Reference		Calcula	10115	Tanya Wohlfarth Tia DeHarpport Answers
	# bars =	4		
	bar diameter	0.5 in		
	bar area =	0.2 in^2		
	fy =	60 ksi		
	f'c =	3 ksi		
	Beta =	0.85		
	cover =	3 in		
	T =	48 k		
	a =	0.14 in		
	c =	0.16 in		
	εs =	1.40		
	φ =	0.9		
	φMn =	3244.5 k-in	37380.2 kg-m	
			GOOD	
	USE (4) #4 (B) I	LONG. REINF.		(4) #4 (B)
				LONG. REINF.
	Transverse Flex	<u>xural Reinforcing:</u>		
		24220.0 1		
	WU =	24330.8 kg/m ²		
	IVIU =	2/3/2 kg-m		
	Trv #8 @ 12" o	/c		
	,	, -		
	bar diameter	1 in		
	bar area =	0.79 in^2		
	fy =	60 ksi		
	φMn =	3142.8 k-in	36209.32 kg-m	
			GOOD	
	USE #6 @ 12" (O/C TRANSVERSE REII	NF. (B)	#6 @ 12"
				O.C. TRANS (B)
	Longitudinal To	op Reinforcing:		
		1.20 4.5		
	wu =	1.38 KST		
	iviu =	191.00 K-IL	26488.6 Kg-M	
				1

SYV Women	's Cooperative			Tia DeHarppo
eference		Calculat	tions	Answers
	Asmin =	19.53 in^2		
	Asmintop =	9.765 in^2		
	Try (8) #10			
	# bars =	8		
	bar diameter	1.27 in		
	bar area =	1.27 in^2		
	As =	10.16 in^2	GOOD	
	a =	1.73 in		
	c =	2.04 in		
	εs =	0.106		
	φ =	0.9		
	ժMn =	3365 118 k-ft	465228 kg-m	
	φινιτι –	5505.110 K-II		
			0000	
	USE (8) #10 LC	NGITUDINAL REINF. (1	Г)	(8) #10 LONG
				REINF. (T)
	<u>Transverse To</u>	p Reinforcing:		
	wu =	1.38 ksf		
	Mu =	16.69 k-ft/ft	2306.8 kg-m	
	Asmintop =	16.74 in^2		
	Try #8 @ 12" d	p/c		
	bar diameter	1 in		
	bar area =	0.79 in^2		
	T =	900.6 k		
	a =	1.50 in		
	c =	1.76 in		
	εs =	0.124		
	φ =	0.9		
	φMn =	263.04 k-ft	36366 kg-m	
			GOOD	
	USE #8 @ 12"	o/c TRANSVERSE REIN	F. (T)	#8 @ 12" OC
		-	. /	TRANS. (T)

Journeyman In	ourneyman International				
ASYV Women's	Cooperative	Tia DeHarpport			
Reference	Calculations	Answers			
	E/W Masonry Wall Foundations - A, B, & C				
	<u>Loads:</u> P_D = 52018.0 kg P_L = (488kg/m^2)(7.5m)(9m) = 32940 kg V_E = 4694.1 kg				
	fallowseismic = 120kN/m ² 12236.6 kg/m ²				
ASCE 7-10 12.2.4.3	<u>Service Load Combinations:</u> 5&6b: (1.0+0.14Sds)D+0.75L+0.7E =(1.0+0.14*0.44)*52018+(0.75*32940)+(0.7*4694.1) 83213.2 kg				
	8: 0.6D+0.7E =(0.6*52018)+(0.7*4694.1) 34496.7 kg				
ASCE 7-10 Sec. 12.13.4	Mot = =0.75(0.7)(3m)(4694.1kg) Mot = 7393 kg-m				
	Try Footing 18m long x 2m wide x 2m deep:				
	Length =18 mWidth =2 mDepth =2 mWall length =15 m				
	Pfooting = $(2402.8 \text{kg/m}^3)(18 \text{m})(2 \text{m})(2 \text{m})$ Pfooting =86500.8 kgPdead =52018.0 kgΣ Pd =138519 kg63 k				
	$\frac{\text{Load Case 1 (0.6D + 0.7E):}}{\text{Pu} = 0.6 (172070\text{kg}) = 83111 \text{ kg}}$ $Mr = (83111)(18m/2) = 748002 \text{ kg-m} \text{GOOD}$ $x = (748002\text{kg-m} - 7393\text{kg-m})(1/172070\text{kg})$ $x = 5.35 \text{ m}$ $I = 3x = 16.04 \text{ m}$ $fbearing = 2(172070 \text{ kg})/(6.26\text{m}^2\text{m}) = 8636 \text{ kg/m}^2$ $fallowseismic = (1.33)(12236.6\text{kg/m}^2) \qquad 16274.68 \text{ kg/m}^2$				

Journeyman li	nternational 's Cooperative	Tanya Wohlfarth	
Reference	Calculations		
ASCE 7-10 12.4.2.3	Calculations Load Case 2 ((1.0+0.14Sds)D+0.75L+0.7E): Pu = (1.0+0.14*0.44)*172070+0.75*17568 = 171757 Mr = (195845kg)(7m/2) = 1545809 kg-m GOOD x = (685459kg-m - 2195kg-m)(1/172070kg) x = 11.11 m I = 3x = 33.32 m fbearing = 2(172070 kg)/(11.91m*2m) = 4157.41 kg/m^2 fallowseismic = (1.33)(12236.6kg/m^2) 16274.678 kg/m^2 GOOD Load Case 1 Governs Factored Design: Load Combo: 0.9D + 1.0E Pu = (0.9/0.6)(214119kg) = 207778.241 kg Check Footing Shear: $\Phi = 0.75$ $\alpha = 2$ f'c = 3000 psi $\Phi Vc = \Phi\alpha(f'c)^{0.5}(Acv) = 483506.877$ lb 219314.9 kg	USE 18 m x 2 m x 2 m	
	Longitudinal Flexural Reinforcing: $x = 5.35 m$ $I = 3x = 16.04 m$ fbrg = 8636 kg/m^2 TRIANGULAR LOAD fx = 7828.3 kg/m^2 Pu = 27704 kg Moment arm = 2.50 m Mu = Pu*moment arm = 69259 kg-m Try (6) #6 (B) LONG. REINF.		

Journeyman I	nternational			Tanya Wohlfarth
ASYV Women	Tia DeHarpport			
Reference		Calculat	ions	Answers
	# bars =	6		
	bar diamete	0.75 in		
	bar area =	0.44 in^2		
	ty =	60 ksi		
	t'c =	3 ksi		
	Beta =	0.85		
	cover =	3 in		
	T =	158.4 k		
	a =	0.79 in		
	c =	0.93 in		
	ES =	0.24		
	φ =	0.9		
	φMn =	10578.1 k-in	121872.8 kg-m	
	USE (6) #6 (B)	LONG REINE		(6) #6 (B)
	002 (0) 110 (0)			LONG REINE
	Transverse Flo	exural Reinforcing:		
	wu =	12953.9 kg/m^2		
	Mu =	14573 kg-m		
	Try #6 @ 12"	o/c		
	bar diamete	0.75 in		
	bar area =	0.44 in^2		
	fy =	60 ksi		
	φMn =	1742.7 k-in	20077.94 kg-m GOOD	
				#C @ 12"
	USE #6 @ 12	O/C TRAINSVERSE RE	INF. (B)	#6 @ 12 О.С. (В)
	Longitudinal	Top Reinforcing:		
	wu =	1.38 ksf		
	Mu =	109.49 k-ft	15136.4 kg-m	
1				I 0.40

SYV Women	s cooperative			i la DeHarppo
Reference		Calculat	ions	Answers
	Asmin =	11.16 in^2		
	Asmintop =	5.58 in^2		
	Try (8) #8			
	# bars =	8		
	bar diamete	1 in		
	bar area =	0.79 in^2		
	As =	6.32 in^2	GOOD	
	a =	1.89 in		
	c =	2.22 in		
	εs =	0.098		
	φ =	0.9		
	φMn =	2098.756 k-ft	290153 kg-m	
	·		GOOD	
	USE (8) #810	NGITUDINAL REINE.	(T)	(8) #8 I ONG
	002 (0) 110 20			REINF. (T)
	<u>TransverseTc</u>	pp Reinforcing:		
	wu =	1.38 ksf		
	Mu =	16.69 k-ft/ft	2306.8 kg-m	
	Asmintop =	50.22 in^2		
	Try #8 @ 12"	o/c		
	bar diamete	1 in		
	bar area =	0.79 in^2		
	T =	2322.6 k		
	a =	1.29 in		
	с =	1.51 in		
	εs =	0.145		
	φ =	0.9		
	φMn =	263.42 k-ft	36417 kg-m	
			GOOD	
	USE #8 @ 12	" o/c TRANSVERSE RF	INF. (T)	#8 @ 12" O(
	002 10 @ 12			TRANS. (T)

CONFINED MASONRY WALL FOUNDATION KEY PLAN (BUILDING B)

Reference	Calculations	Answers
	N/S Masonry Wall Foundations - 1, 2, & 3	
	Loads: $P_D = 60417.8 \text{ kg}$ $P_L = (488 \text{kg/m}^2)(1.5 \text{m})(9 \text{m}) = 26352 \text{ kg}$ $V_E = 5400.6 \text{ kg}$	
	fallowseismic = 120kN/m ² 12236.6 kg/m ²	
ASCE 7-10 12.2.4.3	<u>Service Load Combinations:</u> 5&6b: (1.0+0.14Sds)D+0.75L+0.7E =(1.0+0.14*0.44)*60417.8+(0.75*26352)+(0.7*5400.6) 87684.0 kg	
	8: 0.6D+0.7E =(0.6*60417.8)+(0.7*5400.6) 40031.1 kg	
ASCE 7-10 Sec. 12.13.4	Mot = $= 0.75(0.7)(3m)(5400.6kg)$ Mot = 8506 kg-m	
	Try Footing 20m long x 2.5m wide x 2.5m deep:	
	Length = 20 m Width = 2.5 m Depth = 2.5 m Wall length = 18 m	
	Pfooting = $(2402.8 \text{kg/m}^3)(20 \text{m})(2.5 \text{m})(2.5 \text{m})$ Pfooting =120140 kgPdead =60417.8 kg Σ Pd =180558 kg82 k	
	Load Case 1 (0.6D + 0.7E): Pu = 0.6 (180558) = 108335 kg Mr = (108335kg)(20m/2) = 1083347 kg-m GOOD x = (1083347kg-m - 8506kg-m)(1/172070kg) x = 5.95 m I = 3x = 17.86 m fbearing = 2(180558 kg)/(17.86m*2.5m) = 8088 kg/m^2 fallowseismic = (1.33)(12236.6kg/m^2) 16274.68 kg/m^2	
	GOOD	

Reference	Calculations	Answers
	Load Case 2 ((1.0+0.14Sds)D+0.75L+0.7E):	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	GOOD Load Case 1 Governs	
	Factored Design:	
ASCE 7-10 12.4.2.3	Load Combo: 0.9D + 1.0E Pu = (0.9/0.6)(214119kg) = 270836.737 kg	
	Check Footing Shear:	USE 20 m x 2.5 m x 2.5 m FOOTING
	$x =$ 5.95 m $I = 3x =$ 17.86 m fbrg = 8088 kg/m^2 TRIANGULAR LOAD fx = 7635.4 kg/m^2 Pu = 36112 kg	
	Moment arm = 2.00 m Mu =Pu*moment arm= 72223 kg-m	
	Try (6) #6 (B) LONG. REINF.	
		0.4

Reference	Calculations				Answers		
		_					
	# bars =	6					
	bar diameter	0.75	in 				
	bar area =	0.44	in^2				
	ty =	60	KSI				
		3	KSI				
	Beta =	0.85	in				
	cover =	3	111				
	т =	158.4	k				
	a =	0.63	in				
	c =	0.74	in				
	εs =	0.38					
	φ =	0.9					
	φMn =	13406.9	k-in	154463.9	kg-m		
				GOOD			
	USE (6) #6 (B) L	ONG. REIN	IF.			(6) #6 (B)	
	Transverse Flex	ural Reinfo	rcing:			LONG. REINF	
	wu =	12132.4	ka/m^2				
	Mu =	6066	kg-m				
	Try #6 @ 12" o/	c					
	har diameter	0.75	in				
	bar area =	0.44	in^2				
	fv =	60	ksi				
	- 7						
	φMn =	2212.3	k-in	25488.19 GOOD	kg-m		
	USE #6 @ 12" ()/C TRANS	VERSE REI	NF. (B)		#6 @ 12"	
	Longitudinal To	o Reinforcii	ng:			O.C. (B)	
	wu =	1.72	ksf				
	Mu =	76.03	k-ft	10511.4	kg-m		
					J		
							9 1

Journeyman International ASYV Women's Cooperative

Reference		Calculations			Answers	
	Asmin =	17.4375	in^2			
	Asmintop =	8.71875	in^2			
	Try (10) #9					
	# bars =	10				
	bar diameter	1.125	in			
	bar area =	1	in^2			
	As =	10	in^2	GOOD		
	a =	2.39	in			
	c =	2.81	in			
	εs =	0.098				
	φ =	0.9				
	φMn =	4189.72304	k-ft	579229	kg-m	
	4			GOOD	··· o	
				- -		
	USE (8) #8 LO	NGITUDINAL	. REINF. (T)		(8) #8 LONG.	
					REINF. (T)	
	<u>TransverseTo</u>	<u>p Reinforcing</u>	<u>:</u>			
	wu =	1.72	ksf			
	Mu =	9.27	k-ft/ft	1281.6	kg-m	
	Asmintop =	69.75	in^2			
	Try #8 @ 12"	o/c				
	bar diameter	1	in			
	bar area =	0.79	in^2			
	T _	2222.0	k			
	=	2322.0	ĸ			
	a =	1.10	111 in			
	υ = 		111			
	ES =	0.205				
	φ =	0.9				
	φMn =	333.63	k-ft	46124 GOOD	kg-m	
	USE #8 @ 12"	' o/c TRANSV	ERSE REINF	. (T)	#8 @ 12" OC	
					TRANS. (T)	
					. ,	
						9.1

Reference	Calculations					
	E/W Masonry Wall Foundations - A, B, & C					
	<u>Loads:</u> $P_D = 35793.8 \text{ kg}$ $P_L = (488 \text{kg/m}^2)(3\text{m})(9\text{m}) = 13176 \text{ kg}$ $V_E = 17699.4 \text{ kg}$ fallowseismic = 120 kN/m^2 12236.6 kg/m^2					
ASCE 7-10 12.2.4.3	<u>Service Load Combinations:</u> 5&6b: (1.0+0.14Sds)D+0.75L+0.7E =(1.0+0.14*0.44)*35793.8+(0.75*13176)+(0.7*17699.4) 60270.3 kg					
	8: 0.6D+0.7E =(0.6*35793.8)+(0.7*17699.4) 33865.9 kg					
ASCE 7-10 Sec. 12.13.4	Mot = = =0.75(0.7)(3m)(17699.4kg) Mot = 27877 kg-m					
	Try Footing 10m long x 2m wide x 2m deep:					
	Length =10 mWidth =2 mDepth =2 mWall length =9 m					
	Pfooting =(2402.8kg/m^3)(10m)(2m)(2m)Pfooting =48056 kgPdead =35793.8 kgΣ Pd =83850 kg38 k					
	Load Case 1 (0.6D + 0.7E):					
	Pu = 0.6 (83850kg) =50310 kg $Mr = (50310kg)(10m/2) =$ 251549 kg-mGOOD $x = (251549kg-m - 27877kg-m)(1/172070kg)$ $x =$ 2.67 m $I = 3x =$ 8.00 m					
	fbearing = 2(83850 kg)/(8m*2m) = 10478 kg/m^2 fallowseismic = (1.33)(12236.6kg/m^2) 16274.68 kg/m^2 GOOD					

Reference	Calculations	Answers
	Load Case 2 ((1.0+0.14Sds)D+0.75L+0.7E):	
	Pu = (1.0+0.14*0.44)*172070+0.75*17568 =98897 $Mr = (195845kg)(7m/2) =$ 494485 kg-mGOOD $x = (685459kg-m - 2195kg-m)(1/172070kg)$ $x =$ 5.56 m	
	I = 3x = 16.69 m fbearing = 2(172070 kg)/(11.91m*2m) = 5022.62 kg/m^2 fallowseismic = (1.33)(12236.6kg/m^2) 16274.678 kg/m^2 GOOD	USE 10 m x
	Load Case 1 Governs	2 m x 2 m
	Factored Design:	
ASCE 7-10 12.4.2.3	Load Combo: 0.9D + 1.0E Pu = (0.9/0.6)(214119kg) = 125774.737 kg	
	Check Footing Shear: $\Phi = 0.75$ $\alpha = 2$ f'c = 3000 psi Φ Vc = $\Phi\alpha$ (f'c)^0.5(Acv) = 483506.877 lb 219314.9 kg GOOD	
	Longitudinal Flexural Reinforcing:	
	$x =$ 2.67 m $I = 3x =$ 8.00 m fbrg = 10478 kg/m^2 TRIANGULAR LOAD fx = 9823.1 kg/m^2 Pu = 16770 kg	
	Moment arm = 2.50 m Mu =Pu*moment arm= 41925 kg-m	
	Try (6) #6 (B) LONG. REINF.	
		0.0

Journeyman Inte ASYV Women's (rnational Cooperative			Tanya Wohlfarth Tia DeHarpport
Reference		Calculations		Answers
		-		
	# bars =	6		
	bar diameter	0.75 in		
	bar area =	0.44 in^2		
	fy =	60 KSI		
	T C =	3 KSI		
	Beta =	0.85		
	cover =	3 m		
	T =	158.4 k		
	a =	0.79 in		
	c =	0.93 in		
	εs =	0.24		
	φ =	0.9		
	φMn =	10578.1 k-in	121872.8 kg-m	
	USE (6) #6 (B)	LONG. REINF.		(6) #6 (B)
				LONG. REINF
	Transverse Flex	kural Reinforcing:		
	wu =	15716.7 kg/m^2		
	Mu =	1965 kg-m		
	Try #6 @ 12" o	/c		
	bar diameter	0.75 in		
	bar area =	0.44 in^2		
	fy =	60 ksi		
	φMn =	1742.7 k-in	20077.94 kg-m GOOD	
				#C @ 12"
	USE #6 @ 12	U/C TRAINSVERSE REI	INF. (B)	#6 @ 12 O.C. (B)
	Longitudinal To	p Reinforcing:		
	wu =	1.38 ksf		
	Mu =	12.17 k-ft	1681.8 kg-m	
				9.21

Journeyman Inter ASYV Women's C	mational Cooperative			Tanya Wohlfarth Tia DeHarpport
Reference		Calculations		Answers
	Asmin =	11.16 in^2		
	Asmintop =	5.58 in^2		
	Try (8) #8			
	# bars =	8		
	bar diameter	1 in		
	bar area =	0.79 in^2		
	As =	6.32 in^2	GOOD	
	a =	1.89 in		
	c =	2.22 in		
	es =	0.098		
	φ =	0.9		
	φMn =	2098.75591 k-ft	290153 kg-m GOOD	
	USE (8) #8 LC	NGITUDINAL REINF. (⁻	Г)	(8) #8 LONG.
	<u>TransverseTo</u>	p Reinforcing:		REINF. (T)
	wu =	1.38 ksf		
	Mu =	1.85 k-ft/ft	256.3 kg-m	
	Asmintop =	27.9 in^2		
	Try #8 @ 12"	o/c		
	bar diameter	1 in		
	bar area =	0.79 in^2		
	T =	2322.6 k		
	a =	2.31 in		
	c =	2.72 in		
	ES =	0.079		
	φ =	0.9		
	φMn =	261.59 k-ft	36165 kg-m GOOD	
	USE #8 @ 12	" o/c TRANSVERSE REI	NF. (T)	#8 @ 12" OC
				TRANS. (T)

Journeyman International ASYV Women's Cooperative

Reference Calculations Answers WORST CASE DIAPHRAGM CALCULATIONS (BASED ON BLDG A): DIAPHRAGM FORCES: Fp = Vs =89.52 kips Fp min = 0.2*Sds*Ie*Wpx = 26.86 kips Fp max = 0.4*Sds*Ie*Wpx = 53.71 kips **ROOF ACCELERATION:** 0.293 a = Fp/W =g DIAPHRAGM DESIGN: **N/S DIRECTION** Wp = a*Wroof : 1291.09 plf E/W DIRECTION Wp = a*Wroof : 1291.09 plf -194 PLF $W_P = 1291$ plf K-FT 1b 83 # 0 plf 121 4-67 Wp = 1291 ٤ Ś 1 1 719 6896 44 3m 9 m Зm > > 5 19.4 K 12.9 K V -12.9 K -19.4 K 388 PLF 258 PLF $\sqrt{}$ 258 PLF 388 PLF 1.29K-FT 2.91 K-FT 1.29 K-FT Μ N/S DIRECTION **SHEAR DESIGN:** NDS SPDWS 3/8" Sheathing (unblocked) Table 4.2C Assume using 8d nails

Panel Case 3
Journeyman International

ASYV Women's Cooperative

Tia DeHarpport

Reference	Calculations	Answers
	Unit Shear = v = 0.7*vu = 0.7*388 plf = 272 plf	
	v allowable = 430 plf > v = 272 plf	
	Provide 3/8" sheathing w/ 8d nails @ 6" at boundaries, 6" at edges, and 12" at faces in N/S direction	3/8" SHTG. 8d NAILS
	CHORD FORCES: T/C Chord = 388 plf*4.5 m*1/2 = 2910 #	
	0.7*(T/C Chord) = 0.7*2910 # = 2037 #	T/C CHORD = 2037
	COLLECTOR FORCES:	
	P = 0 #	
	CHORD FORCES GOVERN	
	E/W DIRECTION	
NDS SPDWS Table 4.2C	SHEAR DESIGN:	
	3/8" Sheathing (unblocked)	
	Assume using 8d nails	
	Panel Case 3	
	Unit Shear = v = 0.7*vu = 0.7*194 plf = 136 plf	

Journeyma	an Internat	ional					Tanya Wohlfarth
ASYV Worr	nen's Coop	erative					Tia DeHarpport
Reference				Calculatio	ns		Answers
	WOR	<u>i A):</u>					
		Assume fs	= (50 ksi			
		fy =	60.0	00 ksi			
		f'c =	3.0	00 ksi			
		N/S DIREC	TION:				
		As =	0.8	in^2			
	、	Mu =	2.91	k-ft			
		b =	10	in			
		d =	12	in			
ACI 318-14	d = 12" - 1.!	5"cover - 0.3	75" stirrups =	10.125	in		
T20.6.1.3.1	a = d - sqrt((-2*Mu/φ*0	.85*f'c*b)+d^	-2) =	0.15	in	
	As = 0.85*f	'c*b*a/fy =	0.06	in^2 <	0.8	in^2	
	USE (2) #4 I	BARS T&B W,	/ As = 0.8 in^2	2 >0.06	in^2		(2) #4 T&B
	ΕΙ ΕΧΙΙΒΔΙ Ι						
	$T = \Delta s^* f v =$	48	kins				
	$C = a/\beta 1 =$	40 0.1	L8 in				
	εs = 0.003	*(d-c)/c =	0.10	58 in/in > εγ	√steel y	ields	
	Mn = T(d-a,	/2) =	40.1971	79 kip-ft			
	ΦMn = 0.7	′5*(Mn) =	30.147884	43 kip-ft > Mu	=	2.91 k-ft	
Appendix 12.2 12.3		Analysis cc	onfirmed thro	ugh SPcolumr	n results		
		E/W DIREC	TION:				
		As =	4.00	in^2			
	、	Mu =	121.00	k-ft			
		b =	12	in			
		h =	18	in			
ACI 318-14	d = h" - 1.5'	"cover - 0.37	5" stirrups =	16.125	in		
T20.6.1.3.1	a = d - sqrt((-2*Mu/φ*0	.85*f'c*b)+d^	-2) =	3.69	in	

Journeyman International

Tanya Wohlfarth Tia DeHarpport

ASYV Wom	nen's Cooperative	Tia DeHarp
Reference	Calculations	Answers
	As = 0.85*f'c*b*a/fy = 1.88 in^2 < 4.0 in^2 USE (2) #8 BARS T&B W/ As = 2.4 in^2 > 1.88 in^2	(2) #8 T&B
	FLEXURAL DESIGN:	
	T = $As^*fy =$ 240 kips C = $a/\beta 1 =$ 4.34 in	
	$\epsilon s = 0.003^{*}(d-c)/c = 0.0081 \text{ in/in} > \epsilon y \sqrt{\text{steel yields}}$	
	Mn = T(d-a/2) = 285.58 kip-ft $\Phi Mn = 0.75^{*}(Mn) = 214.18 \text{ kip-ft} > Mu = 121.00 \text{ k-ft}$	
Appendix 12.2 12.3	Analysis confirmed through SPcolumn results	

Answers

Licensed 1:\Users	5.00 © St to: Cal \tdeharpp	ructurePoi Poly Unive \Downloads	nt raity, Lic \InteriorF	ense ID: 6 loorBeam.s	4929-10: 1b	10704-4-2	356E-24FI	7			04-28-20	18, 01:4	8:36 PM Page 1
			000000 00 0 00 00000 00 00 00 00000	000000 00 00 00 00 000000 00	00000 00 00 00 00 00 00	0 0 00 00 00 00 00 00 00 00 00	000 000 00 00 00 00 00	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0000 00 00 00 0000	TM)			
		A	Computer Reinforced Co	Program fo Concrete pyright O	sp5lar r Analys Beans, (2003-201 il right	v5.00 (is, Designe-way and 5, STRUCT	TM) gn, and I nd Two-wa TUREPOINT ed	nvestiga y Slab S , LLC	tion of ystems				
	Licensee be respu- for proc any warn by the s program analysis STRUCTUS analysis program.	stated msible fo resaing by anty expre pSlab prog is not an t, design t, design	above r either the spS seed nor ram. Alth d cannot and sclaims al or enginee	acknowledg the accu- lab compu- implied wi ough STRUC be certi- enginear i respons ring docum	es the racy o ther pro- th resp fied in fied in ing do tibility wents pro-	at STRUM ogram, Pr sect to WT has en failible ocuments in conti spared in	CTUREPOIN acy of irthermor the corr ndeavored . The fi is ract, neg n connect	7 (SP) the mat e, STRU ectness to prod nal and the ligence ion wit	is arial s CTUREPOI of the ice spS only licensee or othe a the u	not au upplied NT nei output lab erro respons 's. A r tort se of t	nd cannu as inpu prepar- or free th thility for coordingli for an the spSh	ot es ed he or y, ny ab	
2] DESI	GN RESULT	'5											
Op Rein	forcement	ft), Maax	lk-fts. Xm	ax (ft), I	(in^2)	. Sp (in)	1						
Span	Zone	Width	Mnax	Xnax	AsMin	AsMax	AsReq	SpProv	Bars				
+ NOTES +3 -	Midspan Right Design go	0.83 0.83 0.83 werned by	0.92 0.00 0.92 ninimum re	5.000 9.583 inforcemen	0.137 0.000 0.137	1.329 1.329 1.329	0.021 0.000 0.021	4.753 0.000 4.753	2-#3	+3			
Top Bar	Details	(**)											
Span	Bars	Length	Bars Leng	th Bas	tinuous s Lengt	h Bai	F rs Lengt	ight h Bar	a Lengt	h			
lop Bar	2-#3 Developme	1,98 int Lengths		10		2-4	1.5	8	1				
Span	Bars 2-#3	Left_Left_	Bars DevL	en Bar	tinuous s DevLe	m Bai	FS DevLa	ight n Bar	a DevLe	n			
lottom P	einforces	went											
Units Span	: Width Width	ft), Mmax Mmax	(k-ft), Xm Xmax	ax (ft), A AsMin	is (in^2) AsMax	, Sp (in AsReq	SpProv	Bars					
1 NOTES *3 -	0,83 1 Design go	3.00 werned by	5.124 ninimum re	0.137 inforcemen	1.329 t.	0.068	4.753	2+#3	•3				
ottom B	ar Detail	<u>s</u>											
Span	E Start Lo Bars 2-#3	ft), Lengt ng Bars Start Le	h (ft) ngth Ba	Short Bar rs Start	sLengtl								
Units	ar Develo : DevLen Long B	(in)	ths	annai 6 71									
1	2-#3	12,00		-									

Calculations

Tanya Wohlfarth Tia DeHarpport

Calculations	Answer
Design Results for Typical Beam (Continued):	
spSlab v5.00 © StructureFoint 04-28-2018, 01:48:36 FM Ilcensed to: Cal Poly Thiversity, License ID: 64929-1050704-4-2356E-24FD7 C:\Users\tdeharpp\Downloads\InteriorFloorBeam.slb Page 2	
Flexural Capacity	
Units: x (ft), As (in'2), PhiMn, Mu (k-ft) Top Swan y KeTon Bh(Mn, Mu, Comb Bat Status BaBat Bh(Mn), Muk Comb Bat Status	
1 0.000 0.22 -9.46 -1.67 U2 All 0.22 9.46 0.00 UI All OK	
0.417 0.22 -9.46 -0.92 UZ A11 OK 0.22 9.46 0.00 UL A11 OK 0.978 0.22 -9.46 -0.06 UI A11 OK 0.22 9.46 0.04 UL A11 OK	
1.978 0.00 0.00 0.00 UI All OK 0.22 9.46 1.29 UZ All OK 3.625 0.00 0.00 0.00 UI All OK 0.22 9.46 2.65 UZ All OK	
5,000 0,00 0,00 0,00 01 All OK 0.22 9,46 3,00 02 All OK 5,124 0,00 0,00 0,00 01 All OK 0,22 9,46 3,00 02 All OK	
613/3 0.00 0.00 0.00 01 A11 0A 0.22 9,46 2.69 02 A11 0A 8.022 0.00 0.00 0.00 01 A11 0A 0.22 9.46 1.29 U2 A11 0A 8.022 0.22 - 9.46 - 0.21 11 0A	
9.583 0.22 -9.46 -0.92 UZ All OK 0.22 9.46 0.00 UL All OK 10.000 0.22 -9.46 -1.67 UZ All 0.72 9.46 0.00 UL All OK	
Longitudinal Beam Transverse Reinforcement Demand and Capacity	
Section Properties	
Units: d (in), Av/s (in^2/in), PhiVc (kip)	
span d (Av/s)min FhiVo	
4 9.04 U.UVD3 0.UB Beam Transtorne Beinfornement Demand	
Units: Start, End, Xu (in), Vu (tt), Av/s (kin/in*2)	
Span Start End Xu Vu Comp/Patt Av/s Av/s	
1 0.667 2.310 1.234 1.41 U2/A11 0.0000 0.0000	
2,310 3,386 2,310 1.00 U2/Al1 0.0000 0.0000 3,386 4,462 3,386 0,60 U2/Al1 0.0000 0.0000	
4.462 5.538 4.462 0.20 U2/A11 0.0000 0.0000 5.538 6.614 6.614 0.60 U2/A11 0.0000 0.0000	
6.614 7.690 7.690 1.00 UZ/A11 0.0000 0.0000 7.690 9.333 8.766 1.41 UZ/A11 0.0000 0.0000	
Beam Transverse Reinforcement Details	
Units: spacing & distance (in). Span Size Stivung (2 less each unless otherwise noted)	
1 45 None	
Beam Transverse Reinforcement Capacity	
Units: Start, End, Xu (ft), Vu, PhiVh (kip), Av/s (in^2/in), Av (in^2), Sp (in)	
Span Start End Xu Vu Comb/Fatt Av/s Av Sp Av/s PhiVn	
1 0,000 10,000 1.234 1.41 U2/A11 0.0000 4.03	
Slab Shear Capacity	
Units: b, d (in), Xu (ft), PhiVo, Vu(kip) Span b d Vratio PhiVo Vn Nn	
1 Not checked	
Material Takeoff	
Reinforcement in the Direction of Analysis	
Top Bars: 3.0 lb <=> 0.30 lb/ft <=> 0.357 lb/ft*2	
BOLTOM BAIS: 7.5 1D <=> 0.75 1D/TT <=> 0.902 1D/TT 2 Stirrups: 0.0 1b <=> 0.00 1b/fT <=> 0.000 1b/fT 2	
Concrete: B.3 ft ⁻³ <=> 0.83 ft ⁻³ /ft <=> 1.00 ft ⁻³ /ft ⁻²	

Calculations

Answers

Aribution of Horizontal Forces Fixed Wall or Pier $\Delta_F = Deflection of wall or pier fixed top and bottom. \Delta_F = \frac{P}{E_m t} \left[\left(\frac{h}{d} \right)^3 + 3 \left(\frac{h}{d} \right) \right] \Delta_F = 0.1 \left(\frac{h}{d} \right)^3 + 0.3 \left(\frac{h}{d} \right)$	The first of Horizontal Forces $\Delta_F = \text{Deflection of wall or pier}$ $\Delta_F = \frac{P}{E_m t} \left[\left(\frac{h}{d} \right)^3 + 3 \left(\frac{h}{d} \right) \right]$ $\Delta_F = 0.1 \left(\frac{h}{d} \right)^3 + 0.3 \left(\frac{h}{d} \right)$	orizontal Forces Wall or Pier $\Delta_F = \text{Deflection of wall or pier}$ fixed top and bottom. $\Delta_F = \frac{P}{E_m t} \left[\left(\frac{h}{d} \right)^3 + 3 \left(\frac{h}{d} \right) \right]$ $\Delta_F = 0.1 \left(\frac{h}{d} \right)^3 + 0.3 \left(\frac{h}{d} \right)$	Pier Pier ed top and bottom. $\frac{b}{ct}\left[\left(\frac{h}{d}\right)^3 + 3\left(\frac{h}{d}\right)\right]$ $\frac{b}{dt}\left(\frac{h}{d}\right)^3 + 0.3\left(\frac{h}{d}\right)$ Piniting of fund	s of wall or pier and bottom. $P + 3\left(\frac{h}{d}\right)$ $0.3\left(\frac{h}{d}\right)$	Horpier p then p then p then p then p then p then p then p then p then p th				Canti	lever $\Delta_c = \Delta_c = \Delta_c = \Delta_c$	Wall or Deflect wall or $\frac{P}{E_m t} \left[4 \right]$	Pier ion of c: pier. $\left(\frac{h}{d}\right)^3 +$ $\left(\frac{h}{d}\right)^3 + 0.3$	antileven $3\left(\frac{h}{d}\right) \\ \left(\frac{h}{d}\right)$	nple 4-F
P $R_F = \frac{1}{\Delta_F}$ Rigidity of fixed	$ P_{F} = \frac{1}{\Delta_{F}} \text{ Rigidity of fixed} $ wall or pier.	$R_F = \frac{1}{\Delta_F} \text{ Rigidity of fixed} \qquad \pm$	_ Rigidity of fixed <u></u> wall or pier.	ity of fixed <u>j</u> r pier.	ixed _	t			P	<i>R</i> _{<i>C</i>} =	$\frac{1}{\Delta_C}$ wa	gidity of Il or pie	f cantile er.	ver
· P	. P	P	P	P	' = 10	0,000 p	ounds; t	= 1"; E	m = 1,00	0,000	psi			
A _F A	Δ	c	R _F	R _c	h/d	Δ _F	Δ _c	R _F	R _c	h/d	Δ _F	_∆ _c	R _F	R _c
	0.030	0.030	33.223	32.895	0.45	0.144	0.171	6.939	5.833	0.80	0.291	0.445	3.434	2.248
2	0.036	0.034	27.645	27.254	0.40	0.148	0.183	6.606	5.479	0.82	0.290	0.456	3.321	2.195
13	0.039	0.040	25.497	25.076	0.48	0.155	0.188	6.449	5.312	0.83	0.306	0.478	3.266	2.093
14	0.042	0.043	23.655	23.203	0.49	0.159	0.194	6.299	5.153	0.84	0.311	0.489	3.213	2.045
15	0.045	0.046	22.057	21.575	0.50	0.163	0.200	6.154	5.000	0.85	0.316	0.501	3.160	1.997
16	0.048	0.050	20.657	20.146	0.51	0.166	0.206	6.014	4.853	0.86	0.322	0.512	3.109	1.952
18	0.055	0.056	18.321	17.752	0.53	0.174	0.219	5.751	4.576	0.88	0.332	0.537	3.011	1.864
.19	0.058	0.060	17.335	16.738	0.54	0.178	0.225	5.626	4.445	0.89	0.337	0.549	2.963	1.822
0.20	0.061	0.063	16.447	15.823	0.55	0.182	0.232	5.505	4.319	0.90	0.343	0.562	2.916	1.781
0.21	0.064	0.067	15.643	14.992	0.56	0.186	0.238	5.389	4.197	0.91	0.348	0.574	2.871	1.741
0.23	0.070	0.070	14.242	13.538	0.57	0.190	0.245	5.168	3.968	0.92	0.354	0.587	2.820	1.665
0.24	0.073	0.078	13.627	12.898	0.59	0.198	0.259	5.062	3.859	0.94	0.365	0.614	2.739	1.628
0.25	0.077	0.081	13.061	12.308	0.60	0.202	0.266	4.960	3.754	0.95	0.371	0.628	2.697	1.592
).26	0.080	0.085	12.538	11.760	0.61	0.206	0.274	4.861	3.652	0.96	0.376	0.642	2.656	1.558
0.27	0.083	0.089	12.053	11.252	0.62	0.210	0.281	4.766	3.555	0.97	0.382	0.656	2.616	1.524
0.29	0.089	0.097	11.181	10.335	0.64	0.218	0.297	4.583	3.369	0.99	0.394	0.685	2.538	1.460
0.30	0.093	0.101	10.787	9.921	0.65	0.222	0.305	4.495	3.280	1.00	0.400	0.700	2.500	1.429
0.31	0.096	0.105	10.419	9.531	0.66	0.227	0.313	4.410	3.195	1.01	0.406	0.715	2.463	1.398
0.32	0.099	0.109	10.073	9.165	0.67	0.231	0.321	4.328	3.112	1.02	0.412	0.730	2.426	1.369
0.34	0.103	0.118	9.440	8.495	0.68	0.235	0.330	4.169	2.955	1.03	0.418	0.746	2.391	1.340
35	0.109	0.122	9,150	8,187	0.70	0.244	0.347	4.093	2,880	1.05	0.431	0.779	2,321	1,285
.36	0.113	0.127	8.876	7.895	0.71	0.249	0.356	4.019	2.808	1.06	0.437	0.794	2.288	1.259
.37	0.116	0.131	8.616	7.618	0.72	0.253	0,365	3.948	2.737	1.07	0.444	0.811	2.255	1.233
.38	0.119	0.136	8.369	7.356	0.73	0.258	0.375	3.877	2.669	1.08	0.450	0.828	2.222	1.208
	0.123	0.141	0.133	7.100	0.74	0.203	0.304	0.009	2.004	1.09	0.45/	0.040	2.191	1.163
.40	0.126	0.146	7.911	6.868	0.75	0.267	0.394	3.743	2.540	1.10	0.463	0.862	2.159	1.160
0.42	0.133	0.156	7.496	6.425	0.77	0.277	0.414	3.615	2.418	1.12	0.476	0.898	2.099	1.114
.43	0.137	0.161	7.302	6.219	0.78	0.281	0.424	3.553	2.359	1.13	0.483	0.916	2.069	1.092
. 1	~ · · · ·	0 166	7 117	6 0 2 1	0 70	0 286	0434	3 493	2 303	1 1 4	0.490	0.935	2040	1 0 70

Calculations

Page 2 06/05/18 02:25 PM

Building A N/S Bond Beam Data (continued)

STRUCTUREPOINT - spColumn v5.5 Licensed to: Cal Poly Universi untitled.col	0 (TM) ty. License ID	: 64929-1050	703-4-2356E	-24A41		
General Information: File Name: untitled.col Project: ASYV Women's Co-Op Column: N/S Bond Bm Code: ACI 318-14	e U	ngineer: TD nits: Englis)	1			
Run Option: Investigation Run Axis: X-axis	s	lenderness: 1 olumn Type: 5	Not conside Structural	red		
Material Properties: Concrete: Standard f'c = 3 ksi Ec = 3122.02 ksi fc = 2.55 ksi Eps_u = 0.003 in/in Betal = 0.85	S f E E	teel: Standar y = 60 k; s = 29000 ps_yt = 0.002	rd si) ksi 206897 in/i	n		
Section:						
Rectangular: Width = 10 in	D	epth = 12 in				
Gross section area, Ag = 12 Ix = 1440 in^4 rx = 3.4641 in Xo = 0 in Reinforcement:	20 in^2 r Y	y = 1000 in' y = 2.88675 o = 0 in	in			
Bar Set: ASTM A615 Size Diam (in) Area (in^2)	Size Diam (in) Area (in^2)	Size Di	.am (in)	Area ((in^2)
# 3 0.38 0.11 # 6 0.75 0.44 # 9 1.13 1.00 # 14 1.69 2.25	# 4 0.5 # 7 0.8 # 10 1.2 # 18 2.2	0 0.20 8 0.60 7 1.2 6 4.00) # 5) # 8 7 # 11	0.63 1.00 1.41		0.31 0.79 1.56
Confinement: Tied; #3 ties v phi(a) = 0.8, phi(b) = 0.9,	vith #10 bars, phi(c) = 0.6	#4 with larg	ger bars.			
Layout: Rectangular Pattern: All Sides Equal (C Total steel area: As = 0.80 Minimum clear spacing = 5.25	Cover to transv in^2 at rho = i in	erse reinford 0.67% (Note:	cement) rho < 1.0%)		
4 #4 Cover = 1.5 in	b Correspondin	g Capacities				
Pu Mi	ix PhiMnx	PhiMn/Mu NA	depth Dt o	lepth	eps_t	Phi
1 2.04 2.4	1 18.45	6.341	1n 1.66	9.88 0	01483	0.900

*** End of output ***

Journeyman International ASYV Women's Cooperative

Reference

Calculations

Tanya Wohlfarth Tia DeHarpport

Answers

Page 2 06/05/18 02:57 PM

Building A E/W Bond Beam Data (continued)

Confinem phi(a) = Layout: 1 Pattern: Total st Minimum 4 #9 Cc Factored L4	Rectangular All Sides E eel area: As clear spacin over = 1.5 i oads and Mom Pu kip	Equal (C ; = 4.00 ig = 5.99 .n ments wit	cover to in^2 at in ch Corre	transve rho = 1 sponding PhiMnx k-ft	erse rein .85% g Capacit PhiMn/Mu	forcem ies: NA de	ent) pth Dt in	dept 1	h n	eps_t	Phi
Confinem phi(a) = Layout: 1 Pattern: Total str Minimum 4 #9 Co Factored Lo	Rectangular All Sides E eel area: As clear spacin over = 1.5 i pads and Mom	Qual (C = 4.00 ug = 5.99 .n eents wit	over to in^2 at in th Corre	transve rho = 1 sponding	erse rein 1.85% g Capacit	forcem ies:	ent)				
Confinem phi(a) = Layout: H Pattern: Total ste Minimum 4 #9 Co	Rectangular All Sides E eel area: As clear spacin over = 1.5 i	Qual (C = 4.00 ig = 5.99 n	cover to in^2 at in	transve rho = 1	erse rein 1.85%	forcem	ent)				
Confinemy phi(a) = Layout: 1 Pattern: Total sta Minimum o	Rectangular All Sides E eel area: As clear spacin	Qual (C = 4.00 g = 5.99	over to in^2 at in	transve rho = 1	erse rein 1.85%	forcem	ent)				
Confinem phi(a) = Layout: 1 Pattern: Total sto	Rectangular All Sides E eel area: As	qual (C = 4.00	over to in^2 at	transve rho = 1	erse rein 1.85%	forcem	ent)				
Confineme phi(a) = Layout: 1 Pattern:	Rectangular All Sides E	qual (C	over to	transve	erse rein	forcem	ent)				
Confinem phi(a) =	ores but to										
Confinem			To the Loc								
	ent: Tied; #	3 ties w	phi(c	bars, = 0.6	#4 with	larger	bars.				
# 14	1.69	2.25	# 18	2.20	5	4.00					
# 9	1.13	1.00	# 10	1.2	1	1.27	# 11		1.41		1.56
# 3 # 6	0.38	0.11	# 4 # 7	0.50	3	0.20	# 5 # 8		0.63		0.31
Size Diam	m (in) Area	(in^2)	Size D	iam (in)	Area (i	n^2)	Size	Diam	(in)	Area	(in^2)
Bar Set:	ASTM A615										
Reinforcem	ent:										
XO = 0	in			Y	0 = 0 1n						
rx = 5.	19615 in			ry	= 3.46	41 in					
Gross see IX = 58	ction area, 32 in^4	Ag = 21	.6 in^2	I	7 = 2592	in^4					
			2 20125								
Rectangu	lar: Width =	12 in		De	oth = 18	in					
Section:											
Betal = (0.85										
Eps u =	0.003 in/in										
EC = . fc = .	3122.02 KS1 2.55 ksi			E: Et	s = 2 s vt = 0	9000 K	S1 897 in	/in			
f'c =	3 ksi			fy	= 6) ksi	1				
Concrete	: Standard			st	eel: Star	ndard					
Material P:	roperties:										
Run Axis	: X-axis			CC	Jumn Type	e: Str	uctura	1			
Run Optic	on: Investig	jation		SI	endernes	s: Not	consi	dered			
Code:	ACI 318-14	15		01	iits: Eng	LISN					
Column:	EW Bond Bm	A		EI	gineer:	TD					
	ASYV Women	col 1's Co-On	ŝ								
Project:											
File Nam	formation:										
General In File Nam Project:											
General In: File Name Project:											
General In: File Name Project:	ol car poly	oniversi	.cy. Dic	ense iv.	04919-1	000703	-4-235	05-11	4101		

*** End of output ***

DEAD LOAD

ROOF LIVE LOAD

D/C RATIOS PER MEMBER

Wood Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [mm2]	lyy [mm4]	lzz [mm4]	J [mm4]
1	Chord	2-2X8	Beam	None	Eucalyptus	Typical	14032.286	6.79e+6	3.965e+7	2.01e+7
2	Web	2X6	Beam	None	Eucalyptus	Typical	5322.591	6.439e+5	8.656e+6	2.133e+6
3	Top Chord	2-2X8	Beam	None	Eucalyptus	Typical	14032.286	6.79e+6	3.965e+7	2.01e+7
4	Edge	2X6	Beam	None	Eucalyptus	Typical	5322.591	6.439e+5	8.656e+6	2.133e+6

Joint Coordinates and Temperatures

	Label	X [m]	Y [m]	Z [m]	Temp [F]	Detach From Diap
1	J1	1.5	0	0	0	
2	J2	4.5	0	0	0	
3	J3	7.5	0	0	0	
4	J4	9	0	0	0	
5	J5	10.5	0	0	0	
6	J6	13.5	0	0	0	
7	J7	16.5	0	0	0	
8	J8	.5	1.5	0	0	
9	J9	1.5	1.38	0	0	
10	J10	4.5	1.03	0	0	
11	J11	7.5	.676	0	0	
12	J12	9	.5	0	0	
13	J13	10.5	.676	0	0	
14	J14	13.5	1.03	0	0	
15	J15	16.5	1.38	0	0	
16	J16	17.5	1.5	0	0	
17	J17	3	0	0	0	
18	J18	6	0	0	0	
19	J19	12	0	0	0	
20	J20	15	0	0	0	
21	J21	3	1.205	0	0	
22	J22	6	.85	0	0	
23	J23	12	.85	0	0	
24	J24	15	1.205	0	0	
25	J25	1.3	0	0	0	
26	J26	1.7	0	0	0	
27	J27	4.3	0	0	0	
28	J28	4.7	0	0	0	
29	J29	7.3	0	0	0	
30	J30	7.7	0	0	0	
31	J31	10.3	0	0	0	
32	J32	10.7	0	0	0	
33	J33	13.3	0	0	0	
34	J34	13.7	0	0	0	
35	J35	16.3	0	0	0	
36	<u>J3</u> 6	16.7	0	0	0	
37	J37	15.2	1.23	0	0	
38	N38	14.8	1.18	0	0	
39	N39	2.8	1.23	0	0	
40	N40	3.2	1.18	0	0	
41	N41	5.8	.876	0	0	
42	N42	6.2	.83	0	0	
43	N43	8.8	.524	0	0	
44	N44	9.2	.524	0	0	
45	N45	11.8	.83	0	0	
46	N46	12.2	.876	0	0	
-						

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	ALL			Reaction			
2	J1	Reaction	Reaction	Reaction			
3	J7		Reaction				
4	J2	Reaction	Reaction	Reaction			
5	J6		Reaction				

Wood Design Parameters

	Label	Shape	Length[le2[m]	le1[m]	le-bend to	le-bend bo	Kyy	Kzz	CV	Cr	y sway	z sway
1	M1	Chord	7.7	1.5	1.5	Lbyy							_
2	M2	Chord	7.7	1.5	1.5	Lbyy							
3	M3	Top Chord	8.559	.69	.69	Lbyy							
4	M4	Top Chord	8.559	.69	.69	Lbyy							
5	M6	Edge	1.38			Lbyy							
6	M7	Web	1.03			Lbyy							
7	M8	Web	.676			Lbyy							
8	M9	Web	.5			Lbyy							
9	M10	Web	.676			Lbyy							
10	M11	Web	1.03			Lbyy							
11	M12	Edge	1.38			Lbyy							
12	M13	Edge	1.7			Lbyy							
13	M14	Web	1.65			Lbyy							
14	M15	Web	1.406			Lbyy							
15	M16	Web	1.218			Lbyy							
16	M17	Web	1.218			Lbyy							
17	M18	Web	1.406			Lbyy							
18	M19	Web	1.65			Lbyy							
19	M20	Web	1.7			Lbyy							
20	M21	Web	1.205			Lbyy							
21	M21A	Web	1.613			Lbyy							
22	M22	Web	.85			Lbyy							
23	M23	Web	1.378			Lbyy							
24	M24	Web	1.205			Lbyy							
25	M25	Web	1.613			Lbyy							
26	M26	Web	.85			Lbyy							
27	M27	Web	1.378			Lbyy							

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead Load	DĽ	-					2		· ·
2	Roof Live Load	RLL						2		

Load Combinations

	Description	Sol	.PD	.SR	BLC	Fact	BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact
1	IBC 16-8	Yes			DL	1																		
2	IBC 16-9	Yes			DL	1	LL	1	LLS	1														
3	IBC 16-10	.Yes			DL	1	RLL	1																
4	IBC 16-10	.Yes			DL	1																		
5	IBC 16-11	.Yes			DL	1	LL	.75	LLS	.75	RLL	.75												

Member Distributed Loads (BLC 1 : Dead Load)

	Member Label	Direction	Start Magnitude[kg/m.	End Magnitude[kg/m,	. Start Location[m,%]	End Location[m,%]
1	M3	Y	-143	-143	0	0
2	M4	Y	-143	-143	0	0

Member Distributed Loads (BLC 2 : Roof Live Load)

	Member Label	Direction	Start Magnitude[kg/m	End Magnitude[kg/m,	. Start Location[m,%]	End Location[m,%]
1	M3	Y	-293	-293	0	0
2	M4	Y	-293	-293	0	0

Envelope Joint Reactions

	Joint		X [kg]	LC	Y [kg]	LC	Z [kg]	LC	MX [kg-m]	LC	MY [kg-m]	LC	MZ [kg-m]	LC
1	J1	max	-302.244	1	205.814	3	0	1	0	1	0	1	0	1
2		min	-921.529	3	67.503	1	0	1	0	1	0	1	0	1
3	J2	max	921.529	3	3533.306	3	0	1	0	1	0	1	0	1
4		min	302.244	1	1158.86	1	0	1	0	1	0	1	0	1
5	J3	max	0	1	0	1	0	1	0	1	0	1	0	1
6		min	0	1	0	1	0	1	0	1	0	1	0	1
7	J4	max	0	1	0	1	0	1	0	1	0	1	0	1
8		min	0	1	0	1	0	1	0	1	0	1	0	1
9	J5	max	0	1	0	1	0	1	0	1	0	1	0	1
10		min	0	1	0	1	0	1	0	1	0	1	0	1
11	J6	max	0	1	3495.606	3	0	1	0	1	0	1	0	1
12		min	0	1	1146.495	1	0	1	0	1	0	1	0	1
13	J7	max	0	1	228.391	3	0	1	0	1	0	1	0	1
14		min	0	1	74.908	1	0	1	0	1	0	1	0	1
15	J8	max	0	1	0	1	0	1	0	1	0	1	0	1
16		min	0	1	0	1	0	1	0	1	0	1	0	1
17	J9	max	0	1	0	1	0	1	0	1	0	1	0	1
18		min	0	1	0	1	0	1	0	1	0	1	0	1
19	J10	max	0	1	0	1	0	1	0	1	0	1	0	1
20		min	0	1	0	1	0	1	0	1	0	1	0	1
21	J11	max	0	1	0	1	0	1	0	1	0	1	0	1
22		min	0	1	0	1	0	1	0	1	0	1	0	1
23	J12	max	0	1	0	1	0	1	0	1	0	1	0	1
24		min	0	1	0	1	0	1	0	1	0	1	0	1
25	J13	max	0	1	0	1	0	1	0	1	0	1	0	1
26		min	0	1	0	1	0	1	0	1	0	1	0	1
27	J14	max	0	1	0	1	0	1	0	1	0	1	0	1
28		min	0	1	0	1	0	1	0	1	0	1	0	1
29	J15	max	0	1	0	1	0	1	0	1	0	1	0	1
30		min	0	1	0	1	0	1	0	1	0	1	0	1
31	J16	max	0	1	0	1	0	1	0	1	0	1	0	1
32		min	0	1	0	1	0	1	0	1	0	1	0	1
33	J17	max	0	1	0	1	0	1	0	1	0	1	0	1
34		min	0	1	0	1	0	1	0	1	0	1	0	1
35	J18	max	0	1	0	1	0	1	0	1	0	1	0	1
36		min	0	1	0	1	0	1	0	1	0	1	0	1
37	J19	max	0	1	0	1	0	1	0	1	0	1	0	1
38		min	0	1	0	1	0	1	0	1	0	1	0	1
39	J20	max	0	1	0	1	0	1	0	1	0	1	0	1
40		min	0	1	0	1	0	1	0	1	0	1	0	1
41	J21	max	0	1	0	1	0	1	0	1	0	1	0	1
42		min	0	1	0	1	0	1	0	1	0	1	0	1
43	J22	max	0	1	0	1	0	1	0	1	0	1	0	
44		min	0	1	0	1	0	1	0	1	0	1	0 12.	16

Envelope Joint Reactions (Continued)

	Joint		X [kg]	LC	Y [kg]	LC	Z [kg]	LC	MX [kg-m]	LC	MY [kg-m]	LC	MZ [kg-m]	LC
45	J23	max	0	1	0	1	0	1	0	1	0	1	0	1
46		min	0	1	0	1	0	1	0	1	0	1	0	1
47	J24	max	0	1	0	1	0	1	0	1	0	1	0	1
48		min	0	1	0	1	0	1	0	1	0	1	0	1
49	J25	max	0	1	0	1	0	1	0	1	0	1	0	1
50		min	0	1	0	1	0	1	0	1	0	1	0	1
51	J26	max	0	1	0	1	0	1	0	1	0	1	0	1
52		min	0	1	0	1	0	1	0	1	0	1	0	1
53	J27	max	0	1	0	1	0	1	0	1	0	1	0	1
54		min	0	1	0	1	0	1	0	1	0	1	0	1
55	J28	max	0	1	0	1	0	1	0	1	0	1	0	1
56		min	0	1	0	1	0	1	0	1	0	1	0	1
57	J29	max	0	1	0	1	0	1	0	1	0	1	0	1
58		min	0	1	0	1	0	1	0	1	0	1	0	1
59	J30	max	0	1	0	1	0	1	0	1	0	1	0	1
60		min	0	1	0	1	0	1	0	1	0	1	0	1
61	J31	max	0	1	0	1	0	1	0	1	0	1	0	1
62		min	0	1	0	1	0	1	0	1	0	1	0	1
63	J32	max	0	1	0	1	0	1	0	1	0	1	0	1
64		min	0	1	0	1	0	1	0	1	0	1	0	1
65	J33	max	0	1	0	1	0	1	0	1	0	1	0	1
66		min	0	1	0	1	0	1	0	1	0	1	0	1
67	J34	max	0	1	0	1	0	1	0	1	0	1	0	1
68		min	0	1	0	1	0	1	0	1	0	1	0	1
69	J35	max	0	1	0	1	0	1	0	1	0	1	0	1
70		min	0	1	0	1	0	1	0	1	0	1	0	1
71	J36	max	0	1	0	1	0	1	0	1	0	1	0	1
72		min	0	1	0	1	0	1	0	1	0	1	0	1
73	J37	max	0	1	0	1	0	1	0	1	0	1	0	1
74		min	0	1	0	1	0	1	0	1	0	1	0	1
75	N38	max	0	1	0	1	0	1	0	1	0	1	0	1
76		min	0	1	0	1	0	1	0	1	0	1	0	1
77	N39	max	0	1	0	1	0	1	0	1	0	1	0	1
78		min	0	1	0	1	0	1	0	1	0	1	0	1
79	N40	max	0	1	0	1	0	1	0	1	0	1	0	1
80		min	0	1	0	1	0	1	0	1	0	1	0	1
81	N41	max	0	1	0	1	0	1	0	1	0	1	0	1
82		min	0	1	0	1	0	1	0	1	0	1	0	1
83	N42	max	0	1	0	1	0	1	0	1	0	1	0	1
84		min	0	1	0	1	0	1	0	1	0	1	0	1
85	N43	max	0	1	0	1	0	1	0	1	0	1	0	1
86		min	0	1	0	1	0	1	0	1	0	1	0	1
87	N44	max	0	1	0	1	0	1	0	1	0	1	0	1
88		min	0	1	0	1	0	1	0	1	0	1	0	1
89	N45	max	0	1	0	1	0	1	0	1	0	1	0	1
90		min	0	1	0	1	0	1	0	1	0	1	0	1
91	N46	max	0	1	0	1	0	1	0	1	0	1	0	1
92		min	0	1	0	1	0	1	0	1	0	1	0	1
93	Totals:	max	0	1	7463.118	3	0	1						
94		min	0	3	2447.766	1	0	1						

Member Section Forces

1 1 M1 1 22.842 -42.829 0 0 0 0 0 0 2 2 -15.317 -27.768 0 0 0 0 -11.12.17		LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
2 2 -15.317 -27.768 0 0 0 -1. 12 17	1	1	M1	1	22.842	-42.829	0	0	0	0
	2			2	-15.317	-27.768	0	0	0	-1: 12 17

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
3			3	154.052	30.472	0	0	0	9.691
4			4	154.052	-47.678	0	0	0	35.043
5			5	-929.929	-56.162	0	0	0	136
6	1	M2	1	-929.929	55.64	0	0	0	136
7			2	136.898	46.698	0	0	0	34.25
8			3	136.898	-29.402	0	0	0	9.042
9			4	275.333	26.482	0	0	0	-10.4
10			5	23.126	43.361	0	0	0	0
11	1	M3	1	-27.69	39.866	0	0	0	0
12			2	-22.633	-3.111	0	0	0	-55.667
13			3	-785.329	-6.945	0	0	0	14.833
14			4	513.076	-78.284	0	0	0	-47.942
15			5	916.707	166.895	0	0	0	-52.894
16	1	M4	1	917.348	-161.45	0	0	0	-52.905
17			2	523,832	78,099	0	0	0	-47,759
18			3	-765.373	6.319	0	0	0	14.662
19			4	-22 578	6.017	0	0	0	-52 895
20			5	-28 034	-40.362	0	0	0	- 003
21	1	M6	1	262 697	0	0	0		
22	-	mo	2	262.607	0	0	0		τ τ τ τ τ τ
22			3	262.607	0	0	0		IN VERTICAL
24			1	262.007	0	0	0		2014
24	-		5	262.097	0	0			2010
25	1	N/7	1	202.097	0	0	0	-uuu	m
20		IVI /	1	71.702	0		0	0	0
21			2	71.702	0		0	0	0
28			3	71.782	0	0	0	0	0
29			4	/1./82		0	0	0	0
30	4	140	5	<u>Y1.Y8X</u>		0	0	0	0
31	1	NI8		297.704		0	0	0	0
32			2	29/XUA		0	0	0	0
33			3	297.704	0	0	0	0	0
34			4	297.704	0	0	0	0	0
35			5	297.704	0	0	0	0	0
36	1	M9	1	-111.802	0	0	0	0	0
37			2	-111.802	0	0	0	0	0
38			3	-111.802	0	0	0	0	0
39			4	-111.802	0	0	0	0	0
40			5	-111.802	0	0	0	0	0
41	1	M10	1	298.394	0	0	0	0	0
42			2	298.394	0	0	0	0	0
43			3	298.394	0	0	0	0	0
44			4	298.394	0	0	0	0	0
45			5	298.394	0	0	0	0	0
46	1	M11	1	72.856	0	0	0	0	0
47			2	72.856	0	0	0	0	0
48			3	72.856	0	0	0	0	0
49			4	72.856	0	0	0	0	0
50			5	72.856	0	0	0	0	0
51	1	M12	1	259.272	0	0	0	0	0
52			2	259.272	0	0	0	0	0
53			3	259.272	0	0	0	0	0
54			4	259.272	0	0	0	0	0
55			5	259.272	0	0	0	0	0
56	1	M13	1	48,539	0	0	Ő	Ő	0
57			2	48.539	0	0	0	0	0
58			3	48 539	Õ	0	0	0	^
59			4	48 539	0	0	0	0	12.18
	1		т	+0.000		, v	V	v	

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
60	4	N444	5	48.539	0	0	0	0	0
61		IN114	1	-396.158	0	0	0	0	0
62			2	-396.158	0	0	0	0	0
63			3	-390.158	0	0	0	0	0
64			4	-396.158	0	0	0	0	0
65	4		5	-396.158	0	0	0	0	0
66		INT5	1	801.158	0	0	0	0	0
67			2	801.158	0	0	0	0	0
60			3	801.158	0	0	0	0	0
69			4	801.158	0	0	0	0	0
70	4	MAC	5	801.158	0	0	0	0	0
71		INTO	1	475.758	0	0	0	0	0
72			2	475.758	0	0	0	0	0
73			3	475.758	0	0	0	0	0
74			4	475.758	0	0	0	0	0
75	4	1447	5	475.758	0	0	0	0	0
76	1	M17	1	463.902	0	0	0	0	0
11			2	463.902	0	0	0	0	0
/8			3	463.902	0	0	0	0	0
79			4	463.902	0	0	0	0	0
08	-		5	463.902	0	0	0	0	0
81	1	M18	1	/9/.65/	0	0	0	0	0
82			2	<u>/9/.65/</u>	0	0	0	0	0
83			3	/9/.65/	0	0	0	0	0
84			4	/9/.65/	0	0	0	0	0
85			5	/9/.65/	0	0	0	0	0
86	1	M19	1	-378.339	0	0	0	0	0
87			2	-378.339	0	0	0	0	0
88			3	-378.339	0	0	0	0	0
89			4	-378.339	0	0	0	0	0
90			5	-378.339	0	0	0	0	0
91	1	M20	1	49.143	0	0	0	0	0
92			2	49.143	0	0	0	0	0
93			3	49.143	0	0	0	0	0
94			4	49.143	0	0	0	0	0
95			5	49.143	0	0	0	0	0
96	1	M21	1	85.042	0	0	0	0	0
97			2	85.042	0	0	0	0	0
98			3	85.042	0	0	0	0	0
99			4	85.042	0	0	0	0	0
100			5	85.042	0	0	0	0	0
101	1	<u>M21A</u>	1	724.228	0	0	0	-	
102			2	724.228	0	0	0		
103			3	724.228	0	0	0		
104			4	724.228	0	0	0	\rightarrow MEMBER = 8	ZUKG
105			5	724.228	0	0	0	د د د د د د ک	
106	1	M22	1	78.15	0	0	0		
107			2	78.15	0		0	0	0
108			3	78.15	0	0	0	0	0
109			4	78.15		0	0	0	0
110			5	78,15	0	0	0	0	0
111	1	M23	1	<mark>-819.87</mark> 2	<mark>م ٥</mark>	0	0	0	0
112			2	-819.872	0	0	0	0	0
113			3	-819.872	0	0	0	0	0
114			4	-819.872	0	0	0	0	0
115			5	-819.872	0	0	0	0	îo 40
116	1	M24	1	80.771	0	0	0	0	12.19
RIS	A-30) Version 15.0.4	[U]	1 Senior F	Proiect\Trus	ss A final	eucalvotus.r3d]	Page 6

LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
117		2	80.771	0	0	0	0	0
118		3	80.771	0	0	0	0	0
119		4	80.771	0	0	0	0	0
120	1405	5	80.771	0	0	0	0	0
121 1	M25	1	712.059	0	0	0	0	0
122		2	712.059	0	0	0	0	0
123		3	712.059	0	0	0	0	0
124		4	/12.059	0	0	0	0	0
125	N100	5	712.059	0	0	0	0	0
126 1	M26	1	76.1	0	0	0	0	0
127		2	76.1	0	0	0	0	0
128		3	76.1	0	0	0	0	0
129		4	/6.1	0	0	0	0	0
130	1.107	5	/6.1	0	0	0	0	0
131 1	M27	1	-811.792	0	0	0	0	0
132		2	-811.792	0	0	0	0	0
133		3	-811.792	0	0	0	0	0
134		4	-811.792	0	0	0	0	0
135		5	-811.792	0	0	0	0	0
136 2	M1	1	22.842	-42.829	0	0	0	0
137		2	-15.317	-27.768	0	0	0	-12.039
138		3	154.052	30.472	0	0	0	9.691
139		4	154.052	-47.678	0	0	0	35.043
140		5	-929.929	-56.162	0	0	0	136
141 2	M2	1	-929.929	55.64	0	0	0	136
142		2	136.898	46.698	0	0	0	34.25
143		3	136.898	-29.402	0	0	0	9.042
144		4	275.333	26.482	0	0	0	-10.4
145		5	23.126	43.361	0	0	0	0
146 2	M3	1	-27.69	39.866	0	0	0	0
147		2	-22.633	-3.111	0	0	0	-55.667
148		3	-785.329	-6.945	0	0	0	14.833
149		4	513.076	-78.284	0	0	0	-47.942
150		5	916.707	166.895	0	0	0	-52.894
151 2	M4	1	917.348	-161.45	0	0	0	-52.905
152		2	523.832	78.099	0	0	0	-47.759
153		3	-765.373	6.319	0	0	0	14.662
154		4	-22.578	6.017	0	0	0	-52.895
155		5	-28.034	-40.362	0	0	0	003
156 2	M6	1	262.697	0	0	0	0	0
15/		2	262.697	0	0	0	0	0
158		3	262.697	0	0	0	0	0
159		4	262.697	0	0	0	0	0
160	N 47	5	262.697	0	0	0	0	0
161 2	IVI /	1	71.782	0	0	0	0	0
162		2	71.782	0	0	0	0	0
163		3	71.782	0	0	0	0	0
164		4	71.782	0	0	0	0	0
105	MO	5	/1./82	0	0	U	0	0
166 2	8IVI	1	297.704	0	0	0	0	0
167		2	297.704	0	0	U	0	0
168		3	297.704	0	0	0	0	0
169		4	297.704	0	0	0	0	0
170	MO	5	297.704	0	0	0	0	0
1/1 2	INI9	1	-111.802	0	0	0	0	0
172		2	-111.802	0	0	0	0	12 20
1/3		3	-111.802	U	U	U	U	

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
174			4	-111.802	0	0	0	0	0
175			5	-111.802	0	0	0	0	0
176	2	M10	1	298.394	0	0	0	0	0
177			2	298.394	0	0	0	0	0
178			3	298.394	0	0	0	0	0
179			4	298.394	0	0	0	0	0
180			5	298.394	0	0	0	0	0
181	2	M11	1	72.856	0	0	0	0	0
182			2	72.856	0	0	0	0	0
183			3	72.856	0	0	0	0	0
184			4	72.856	0	0	0	0	0
185			5	72.856	0	0	0	0	0
186	2	M12	1	259.272	0	0	0	0	0
187			2	259.272	0	0	0	0	0
188			3	259.272	0	0	0	0	0
189			4	259.272	0	0	0	0	0
190			5	259.272	0	0	0	0	0
191	2	M13	1	48.539	0	0	0	0	0
192			2	48.539	0	0	0	0	0
193			3	48.539	0	0	0	0	0
194			4	48.539	0	0	0	0	0
195			5	48.539	0	0	0	0	0
196	2	M14	1	-396.158	0	0	0	0	0
197			2	-396.158	0	0	0	0	0
198			3	-396.158	0	0	0	0	0
199			4	-396.158	0	0	0	0	0
200			5	-396,158	0	0	0	0	0
201	2	M15	1	801.158	0	0	0	0	0
202			2	801.158	0	0	0	0	0
203			3	801.158	0	0	0	0	0
204			4	801.158	0	0	0	0	0
205			5	801.158	0	0	0	0	0
206	2	M16	1	475.758	0	0	0	0	0
207			2	475.758	0	0	0	0	0
208			3	475.758	0	0	0	0	0
209			4	475.758	0	0	0	0	0
210			5	475.758	0	0	0	0	0
211	2	M17	1	463.902	0	0	0	0	0
212			2	463.902	0	0	0	0	0
213			3	463.902	0	0	0	0	0
214			4	463.902	0	0	0	0	0
215			5	463.902	0	0	0	0	0
216	2	M18	1	797.657	0	0	0	0	0
217			2	797.657	0	0	0	0	0
218			3	797.657	0	0	0	0	0
219			4	797.657	0	0	0	0	0
220			5	797.657	0	0	0	0	0
221	2	M19	1	-378.339	0	0	0	0	0
222	_		2	-378.339	0	0	0	0	0
223			3	-378.339	0	0	0	0	0
224			4	-378,339	0	Ő	0	0	0
225			5	-378 339	0	0	0	0	0
226	2	M20	1	49,143	0	Ő	0	0	0
227	-		2	49,143	0	Ő	0	0	0
228			3	49,143	0	Ő	0	0	0
229			4	49 143	0	0	0	0	2
230			5	49 143	0	0	0	0	12.21
200			5	- - 3.14 3	U	U	U	0	

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
231	2	M21	1	85.042	0	0	0	0	0
232			2	85.042	0	0	0	0	0
233			3	85.042	0	0	0	0	0
234			4	85.042	0	0	0	0	0
235			5	85.042	0	0	0	0	0
236	2	M21A	1	724.228	0	0	0	0	0
237			2	724.228	0	0	0	0	0
238			3	724.228	0	0	0	0	0
239			4	724.228	0	0	0	0	0
240			5	724.228	0	0	0	0	0
241	2	M22	1	78.15	0	0	0	0	0
242			2	78.15	0	0	0	0	0
243			3	78.15	0	0	0	0	0
244			4	78.15	0	0	0	0	0
245			5	78.15	0	0	0	0	0
246	2	M23	1	-819.872	0	0	0	0	0
247			2	-819.872	0	0	0	0	0
248			3	-819.872	0	0	0	0	0
249			4	-819.872	0	0	0	0	0
250			5	-819.872	0	0	0	0	0
251	2	M24	1	80.771	0	0	0	0	0
252			2	80.771	0	0	0	0	0
253			3	80.771	0	0	0	0	0
254			4	80.771	0	0	0	0	0
255			5	80.771	0	0	0	0	0
256	2	M25	1	712.059	0	0	0	0	0
257			2	712.059	0	0	0	0	0
258			3	712.059	0	0	0	0	0
259			4	712.059	0	0	0	0	0
260			5	712.059	0	0	0	0	0
261	2	M26	1	76.1	0	0	0	0	0
262			2	76.1	0	0	0	0	0
263			3	76.1	0	0	0	0	0
264			4	76.1	0	0	0	0	0
265			5	76.1	0	0	0	0	0
266	2	M27	1	-811.792	0	0	0	0	0
267			2	-811.792	0	0	0	0	0
268			3	-811.792	0	0	0	0	0
269			4	-811.792	0	0	0	0	0
270	-		5	-811.792	0	0	0	0	0
271	3	M1	1	69.644	-130.582	0	0	0	0
272			2	-46.699	-84.663	0	0	0	-36.706
273			3	469.698	92.907	0	0	0	29.547
274			4	469.698	-145.367	0	0	0	106.846
275		-	5	-2835.307	-171.236	0	0	0	415
276	3	M2	1	-2835.307	169.643	0	0	0	415
277			2	417.397	142.38	0	0	0	104.427
278			3	417.397	-89.645	0	0	0	27.568
279			4	839.477	80.742	0	0	0	-31.708
280			5	70.51	132.206	0	0	0	0
281	3	M3	1	-84.424	121.55	0	0	0	0
282			2	-69.008	-9.486	0	0	0	-169.725
283			3	-2394.431	-21.176	0	0	0	45.225
284			4	1564.343	-238.685	0	0	0	-146.174
285		-	5	2794.996	508.853	0	0	0	-161.272
286	3	M4	1	2796.949	-492.252	0	0	0	-16 12 22
287			2	1597.137	238.121	0	0	0	-14 12.22

	<u>C Me</u>	ember Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
288			3	-2333.585	19.265	0	0	0	44.705
289	_		4	-68.838	18.345	0	0	0	-161.275
290	_		5	-85.474	-123.062	0	0	0	008
291 3	3	M6	1	800.949	0	0	0	0	0
292			2	800.949	0	0	0	0	0
293	_		3	800.949	0	0	0	0	0
294			4	800.949	0	0	0	0	0
295	_		5	800.949	0	0	0	0	0
296 3	3	M7	1	218.86	0	0	0	0	0
297			2	218.86	0	0	0	0	0
298			3	218.86	0	0	0	0	0
299			4	218.86	0	0	0	0	0
300			5	218.86	0	0	0	0	0
301 3	3	M8	1	907.686	0	0	0	0	0
302			2	907.686	0	0	0	0	0
303			3	907.686	0	0	0	0	0
304			4	907.686	0	0	0	0	0
305			5	907.686	0	0	0	0	0
306 3	3	M9	1	-340.879	0	0	0	0	0
307			2	-340.879	0	0	0	0	0
308			3	-340.879	0	0	0	0	0
309			4	-340.879	0	0	0	0	0
310			5	-340.879	0	0	0	0	0
311 3	3	M10	1	909.789	0	0	0	0	0
312		-	2	909.789	0	0	0	0	0
313			3	909.789	0	0	0	0	0
314			4	909,789	0	0	0	0	0
315			5	909.789	0	0	0	0	0
316 3	3	M11	1	222.133	0	0	0	0	0
317			2	222.133	0	0	0	0	0
318			3	222,133	0	0	0	0	0
319			4	222.133	0	0	0	0	0
320			5	222.133	0	0	0	0	0
321 3	3	M12	1	790.507	0	0	0	0	0
322			2	790.507	0	0	0	0	0
323			3	790.507	0	0	0	0	0
324			4	790.507	0	0	0	0	0
325			5	790.507	0	0	0	0	0
326 3	3	M13	1	147.993	0	0	0	0	0
327	-		2	147.993	0	0	0	0	0
328			3	147.993	0	0	0	0	0
329			4	147.993	0	0	0	0	0
330			5	147.993	0	0	0	0	0
331 3	3	M14	1	-1207.867	0	0	0	0	0
332	-		2	-1207.867	0	0	0	0	0
333			3	-1207.867	0	0	0	0	0
334			4	-1207.867	0	0	0	0	0
335			5	-1207 867	0	0	0	0	0
336 3	3	M15	1	2442 692	0	0	0	0	0
337			2	2442 692	0	0	0	0	0
338			3	2442 692	0	0	0	0	0
339			4	2442 692	0	0	0	0	0
340			5	2442 692	0	0	0	0	0
341 3	3	M16	1	1450 562	0	0	0	0	0
342			2	1450 562	0	0	0	0	0
343			3	1450 562	0	0	0	0	~
344			4	1450 562	0	0	0	0	12.23
			-	1-00.002	0	0	U	0	

Member Section Forces (Continued)

345	LC	Member Label	Sec 5	Axial[kg] 1450.562	y Shear[kg] 0	z Shear[kg] 0	Torque[kg-m] 0	<u>y-y Moment[kg-m]</u> 0	z-z Moment[kg-m] 0
346	3	M17	1	1414.413	0	0	0	0	0
347			2	1414.413	0	0	0	0	0
348			3	1414.413	0	0	0	0	0
349			4	1414.413	0	0	0	0	0
350			5	1414.413	0	0	0	0	0
351	3	M18	1	2432.017	0	0	0	0	0
352			2	2432.017	0	0	0	0	0
353			3	2432.017	0	0	0	0	0
354			4	2432.017	0	0	0	0	0
355			5	2432.017	0	0	0	0	0
356	3	M19	1	-1153.536	0	0	0	0	0
357			2	-1153.536	0	0	0	0	0
358			3	-1153.536	0	0	0	0	0
359			4	-1153.536	0	0	0	0	0
360			5	-1153.536	0	0	0	0	0
361	3	M20	1	149.833	0	0	0	0	0
362			2	149.833	0	0	0	0	0
363			3	149.833	0	0	0	0	0
364			4	149.833	0	0	0	0	0
365			5	149.833	0	0	0	0	0
366	3	M21	1	259.29	0	0	0	0	0
367			2	259.29	0	0	0	0	0
368			3	259.29	0	0	0	0	0
369			4	259.29	0	0	0	0	0
370			5	259.29	0	0	0	0	0
371	3	M21A	1	2208.136	0	0	0	0	0
372			2	2208.136	0	0	0	0	0
373			3	2208.136	0	0	0	0	0
374			4	2208.136	0	0	0	0	0
375			5	2208.136	0	0	0	0	0
376	3	M22	1	238.274	0	0	0	0	0
377			2	238.274	0	0	0	0	0
378			3	238.274	0	0	0	0	0
379			4	238.274	0	0	0	0	0
380			5	238.274	0	0	0	0	0
381	3	M23	1	-2499.749	0	0	0	0	0
382			2	-2499.749	0	0	0	0	0
383			3	-2499.749	0	0	0	0	0
384			4	-2499.749	0	0	0	0	0
385			5	-2499.749	0	0	0	0	0
386	3	M24	1	246.266	0	0	0	0	0
387			2	246.266	0	0	0	0	0
388			3	246.266	0	0	0	0	0
389			4	246.266	0	0	0	0	0
390			5	246.266	0	0	0	0	0
391	3	M25	1	2171.032	0	0	0	0	0
392			2	2171.032	0	0	0	0	0
393			3	21/1.032	0	0	0	0	0
394			4	21/1.032	0	0	0	0	0
395	-	1400	5	21/1.032	0	0	0	0	0
396	3	M26	1	232.025	0	0	0	0	0
397			2	232.025	0	0	0	0	0
398			3	232.025	0	0	0	0	0
399			4	232.025	0	0	0	0	0
400	-	1407	5	232.025	0	0	0	0	12 24
401	3	M2/	1	-24/5.113	<u> </u>	0	0	0	

Ξ

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
402			2	-2475.113	0	0	0	0	0
403			3	-2475.113	0	0	0	0	0
404			4	-2475.113	0	0	0	0	0
405			5	-2475.113	0	0	0	0	0
406	4	M1	1	22.842	-42.829	0	0	0	0
407			2	-15.317	-27.768	0	0	0	-12.039
408			3	154.052	30.472	0	0	0	9.691
409			4	154.052	-47.678	0	0	0	35.043
410			5	-929.929	-56.162	0	0	0	136
411	4	M2	1	-929.929	55.64	0	0	0	136
412			2	136.898	46.698	0	0	0	34.25
413			3	136.898	-29.402	0	0	0	9.042
414			4	275.333	26.482	0	0	0	-10.4
415		140	5	23.126	43.361	0	0	0	0
416	4	IM3	1	-27.69	39.866	0	0	0	0
417			2	-22.633	-3.111	0	0	0	-55.667
418			3	-785.329	-6.945	0	0	0	14.833
419			4	513.076	-/8.284	0	0	0	-47.942
420	4		5	916.707	100.895	0	0	0	-52.894
421	4	IVI4		917.348	-101.45	0	0	0	-52.905
422			2	323.832	78.099	0	0	0	-47.759
423			3	-705.373	0.319	0	0	0	14.002
424			4	-22.378	0.017	0	0	0	-52.895
425	Λ	Me	<u> </u>	-28.034	-40.362	0	0	0	003
420	4	IVIO	1	202.097	0	0	0	0	0
421			2	202.097	0	0	0	0	0
420			3	202.097	0	0	0	0	0
429			4	262.097	0	0	0	0	0
430	1	MZ	1	71 792	0	0	0	0	0
431	4	IVI /	2	71.702	0	0	0	0	0
432			2	71.702	0	0	0	0	0
433			1	71.702	0	0	0	0	0
435			5	71 782	0	0	0	0	0
436	4	M8	1	297 704	0	0	0	0	0
437		1010	2	297 704	0	0	0	0	0
438			3	297 704	0	0	0	0	0
439			4	297 704	0	0	0	0	0
440			5	297 704	0	0	0	0	0
441	4	M9	1	-111.802	0	0	0	0	0
442			2	-111.802	0	0	0	0	0
443			3	-111.802	0	0	0	0	0
444			4	-111.802	0	0	0	0	0
445			5	-111.802	0	0	0	0	0
446	4	M10	1	298.394	0	0	0	0	0
447			2	298.394	0	0	0	0	0
448			3	298.394	0	0	0	0	0
449			4	298.394	0	0	0	0	0
450			5	298.394	0	0	0	0	0
451	4	M11	1	72.856	0	0	0	0	0
452			2	72.856	0	0	0	0	0
453			3	72.856	0	0	0	0	0
454			4	72.856	0	0	0	0	0
455			5	72.856	0	0	0	0	0
456	4	M12	1	259.272	0	0	0	0	0
457			2	259.272	0	0	0	0	10.05
458			3	259.272	0	0	0	0	12.23

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
459			4	259.272	0	0	0	0	0
460			5	259.272	0	0	0	0	0
461	4	M13	1	48.539	0	0	0	0	0
462			2	48.539	0	0	0	0	0
463			3	48.539	0	0	0	0	0
464			4	48.539	0	0	0	0	0
465			5	48.539	0	0	0	0	0
466	4	M14	1	-396.158	0	0	0	0	0
467			2	-396.158	0	0	0	0	0
468			3	-396.158	0	0	0	0	0
469			4	-396.158	0	0	0	0	0
470	-	1445	5	-396.158	0	0	0	0	0
4/1	4	M15	1	801.158	0	0	0	0	0
472			2	801.158	0	0	0	0	0
473			3	801.158	0	0	0	0	0
4/4			4	801.158	0	0	0	0	0
475		1440	5	801.158	0	0	0	0	0
476	4	M16	1	4/5./58	0	0	0	0	0
4//			2	475.758	0	0	0	0	0
478			3	4/5./58	0	0	0	0	0
479			4	475.758	0	0	0	0	0
480			5	4/5./58	0	0	0	0	0
481	4	<u>M1/</u>	1	463.902	0	0	0	0	0
482			2	463.902	0	0	0	0	0
483			3	463.902	0	0	0	0	0
484			4	463.902	0	0	0	0	0
485			5	463.902	0	0	0	0	0
486	4	M18	1	797.657	0	0	0	0	0
487			2	/9/.65/	0	0	0	0	0
488			3	<u>/9/.65/</u>	0	0	0	0	0
489			4	797.657	0	0	0	0	0
490	-		5	/9/.65/	0	0	0	0	0
491	4	M19	1	-378.339	0	0	0	0	0
492			2	-378.339	0	0	0	0	0
493			3	-378.339	0	0	0	0	0
494			4	-378.339	0	0	0	0	0
495	4	1400	5	-378.339	0	0	0	0	0
496	4	M20	1	49.143	0	0	0	0	0
497			2	49.143	0	0	0	0	0
498			3	49.143	0	0	0	0	0
499			4	49.143	0	0	0	0	0
500	4	1404	5	49.143	0	0	0	0	0
501	4	M21	1	85.042	0	0	0	0	0
502			2	85.042	0	0	0	0	0
503			3	85.042	0	0	0	0	0
504			4	85.042	0	0	0	0	0
505	4	MOAA	5	85.042	0	0	0	0	0
506	4	MZTA	1	724.228	0	0	0	0	0
507			2	724.228	0	0	0	0	0
508			3	724.228	0	0	0	0	0
509			4	724.228	0	0	0	0	0
510	1	MOO	5	70.45	0	0	0	0	0
510	4	IVIZZ		70.10	0	0	0	0	0
512			2	70.10	0	0	0	0	0
513			3	70.10	0	0	0	0	0
514			4	70.10	0	0	0	0	12 26
010			5	/0.15	U	U	U	U	

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
516	4	M23	1	-819.872	0	0	0	0	0
517			2	-819.872	0	0	0	0	0
518			3	-819.872	0	0	0	0	0
519			4	-819.872	0	0	0	0	0
520			5	-819.872	0	0	0	0	0
521	4	M24	1	80.771	0	0	0	0	0
522			2	80.771	0	0	0	0	0
523			3	80.771	0	0	0	0	0
524			4	80.771	0	0	0	0	0
525			5	80.771	0	0	0	0	0
526	4	M25	1	712.059	0	0	0	0	0
527			2	712.059	0	0	0	0	0
528			3	712.059	0	0	0	0	0
529			4	712.059	0	0	0	0	0
530			5	712.059	0	0	0	0	0
531	4	M26	1	76.1	0	0	0	0	0
532			2	76.1	0	0	0	0	0
533			3	76.1	0	0	0	0	0
534			4	76.1	0	0	0	0	0
535			5	76.1	0	0	0	0	0
536	4	M27	1	-811.792	0	0	0	0	0
537			2	-811.792	0	0	0	0	0
538			3	-811.792	0	0	0	0	0
539			4	-811.792	0	0	0	0	0
540			5	-811.792	0	0	0	0	0
541	5	M1	1	57.943	-108.644	0	0	0	0
542			2	-38.854	-70.439	0	0	0	-30.539
543			3	390,786	77.298	0	0	0	24,583
544			4	390.786	-120.945	0	0	0	88.895
545			5	-2358.962	-142.467	0	0	0	346
546	5	M2	1	-2358.962	141.142	0	0	0	346
547			2	347.272	118.459	0	0	0	86.883
548			3	347.272	-74.584	0	0	0	22.936
549			4	698.441	67.177	0	0	0	-26.381
550			5	58.664	109.995	0	0	0	0
551	5	M3	1	-70.24	101.129	0	0	0	0
552	-		2	-57.414	-7.892	0	0	0	-141.21
553			3	-1992.156	-17.619	0	0	0	37.627
554			4	1301.526	-198.584	0	0	0	-121.616
555			5	2325.424	423.364	0	0	0	-134.177
556	5	M4	1	2327.049	-409.551	0	0	0	-134.206
557			2	1328.81	198.116	0	0	0	-121.151
558			3	-1941.532	16.028	0	0	0	37.194
559			4	-57.273	15.263	0	0	0	-134.18
560			5	-71.114	-102.387	0	0	0	007
561	5	M6	1	666.386	0	0	0	0	0
562			2	666.386	0	0	0	0	0
563			3	666.386	0	0	0	0	0
564			4	666.386	0	0	Ő	0	0
565			5	666.386	0	0	0	0	0
566	5	M7	1	182.09	0	0	0	0	0
567	-		2	182.09	0	0	0	0	0
568			3	182.09	0	0	0	0	0
569			4	182.09	0	0	0	0	0
570			5	182.09	0 0	Õ	0	0	0
571	5	M8	1	755 191	0	0	0	0	<u>^</u>
572	<u> </u>	MO	2	755 191	0	0	0 0	0	12.27
512			2	100.191	0	U	U	0	

	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
573			3	755.191	0	0	0	0	0
574			4	755.191	0	0	0	0	0
575	_		5	755.191	0	0	0	0	0
5/6	5	M9	1	-283.61	0	0	0	0	0
577			2	-283.61	0	0	0	0	0
578			3	-283.61	0	0	0	0	0
579			4	-283.61	0	0	0	0	0
580	_		5	-283.61	0	0	0	0	0
581	5	M10	1	756.94	0	0	0	0	0
582			2	756.94	0	0	0	0	0
583			3	756.94	0	0	0	0	0
584			4	756.94	0	0	0	0	0
585	_		5	756.94	0	0	0	0	0
586	5	M11	1	184.814	0	0	0	0	0
587			2	184.814	0	0	0	0	0
588			3	184.814	0	0	0	0	0
589			4	184.814	0	0	0	0	0
590	_		5	184.814	0	0	0	0	0
591	5	M12	1	657.698	0	0	0	0	0
592			2	657.698	0	0	0	0	0
593			3	657.698	0	0	0	0	0
594			4	657.698	0	0	0	0	0
595			5	657.698	0	0	0	0	0
596	5	M13	1	123.129	0	0	0	0	0
597			2	123.129	0	0	0	0	0
598			3	123.129	0	0	0	0	0
599			4	123.129	0	0	0	0	0
600			5	123.129	0	0	0	0	0
601	5	M14	1	-1004.94	0	0	0	0	0
602			2	-1004.94	0	0	0	0	0
603			3	-1004.94	0	0	0	0	0
604			4	-1004.94	0	0	0	0	0
605			5	-1004.94	0	0	0	0	0
606	5	M15	1	2032.309	0	0	0	0	0
607			2	2032.309	0	0	0	0	0
608			3	2032.309	0	0	0	0	0
609			4	2032.309	0	0	0	0	0
610			5	2032.309	0	0	0	0	0
611	5	M16	1	1206.861	0	0	0	0	0
612			2	1206.861	0	0	0	0	0
613			3	1206.861	0	0	0	0	0
614			4	1206.861	0	0	0	0	0
615			5	1206.861	0	0	0	0	0
616	5	M17	1	1176.785	0	0	0	0	0
617			2	1176.785	0	0	0	0	0
618			3	1176.785	0	0	0	0	0
619			4	1176.785	0	0	0	0	0
620			5	1176.785	0	0	0	0	0
621	5	M18	1	2023.427	0	0	0	0	0
622			2	2023.427	0	0	0	0	0
623			3	2023.427	0	0	0	0	0
624			4	2023.427	0	0	0	0	0
625			5	2023.427	0	0	0	0	0
626	5	M19	1	-959.737	0	0	0	0	0
627			2	-959.737	0	0	0	0	0
628			3	-959.737	0	0	0	0	10.00
629			4	-959.737	0	0	0	0	12.28
	_		_						

Member Section Forces (Continued)

620	LC	Member Label	Sec	Axial[kg]	y Shear[kg]	z Shear[kg]	Torque[kg-m]	y-y Moment[kg-m]	z-z Moment[kg-m]
621	E	MOO	2 1	-909.707	0	0	0	0	0
622	5	IVIZU	2	124.001	0	0	0	0	0
633			2	124.001	0	0	0	0	0
634			1	124.001	0	0	0	0	0
635			5	124.001	0	0	0	0	0
636	5	M21	1	215 728	0	0	0	0	0
637	5		2	215.720	0	0	0	0	0
638			3	215.720	0	0	0	0	0
639			4	215 728	0	0	0	0	0
640			5	215 728	0	0	0	0	0
641	5	M21A	1	1837 159	0	0	0	0	0
642		1012 17 (2	1837 159	0	0	0	0	0
643			3	1837 159	0	0	0	0	0
644			4	1837 159	0	0	0	0	0
645			5	1837 159	0	0	0	0	0
646	5	M22	1	198 243	0	0	0	0	0
647			2	198.243	0	0	0	0	0
648			3	198.243	0	0	0	0	0
649			4	198.243	0	0	0	0	0
650			5	198.243	0	0	0	0	0
651	5	M23	1	-2079.78	0	0	0	0	0
652	-		2	-2079.78	0	0	0	0	0
653			3	-2079.78	0	0	0	0	0
654			4	-2079.78	0	0	0	0	0
655			5	-2079.78	0	0	0	0	0
656	5	M24	1	204.892	0	0	0	0	0
657			2	204.892	0	0	0	0	0
658			3	204.892	0	0	0	0	0
659			4	204.892	0	0	0	0	0
660			5	204.892	0	0	0	0	0
661	5	M25	1	1806.288	0	0	0	0	0
662			2	1806.288	0	0	0	0	0
663			3	1806.288	0	0	0	0	0
664			4	1806.288	0	0	0	0	0
665			5	1806.288	0	0	0	0	0
666	5	M26	1	193.043	0	0	0	0	0
667			2	193.043	0	0	0	0	0
668			3	193.043	0	0	0	0	0
669			4	193.043	0	0	0	0	0
670			5	193.043	0	0	0	0	0
671	5	M27	1	-2059.283	0	0	0	0	0
672			2	-2059.283	0	0	0	0	0
673			3	-2059.283	0	0	0	0	0
674			4	-2059.283	0	0	0	0	0
675			5	-2059.283	0	0	0	0	0

Envelope Wood Code Checks

	Member	Shape	Code	.Loc[LC	Shear	.Loc[Dir	LC	Fc' [k	Fť [kg	.Fb1' [. Fb2' [Fv' [k	RB	CL	CP	Eqn
1	M1	2-2X8	2.005	3.208	3	1.149	3.048	v	3	.306	.343	.542	.637	.158	15.627	.978	.428	3.9-3
2	M2	2-2X8	1.964	4.492	3	1.128	4.572	y	3	.306	.343	.542	.637	.158	15.627	.978	.428	3.9-3
3	M3	2-2X8	1.637	5.26	3	.926	5.617	V	3	.41	.343	.54	.637	.158	16.475	.975	.573	3.9-1
4	M4	2-2X8	1.615	3.299	3	.918	2.942	V	3	.41	.343	.54	.637	.158	16.475	.975	.573	3.9-1
5	M6	2X6	.720	0	3	.000	0	Z	1	.209	.371	.593	.69	.114	11.524	.989	.279	3.6.3
6	M7	2X6	.119	0	3	.000	0	z	1	.345	.371	.595	.69	.114	9.956	.992	.461	12.29

	Company	:	
	Designer	:	
	Job Number	:	
IIKIJA	Model Name	:	Truss A

Envelope Wood Code Checks (Continued)

	Member	Shape	Code	Loc[LC	Shear	.Loc[.Dir	LC	Fc' [k	Ft' [kg	.Fb1' [Fb2' [<u>. Fv' [k</u>	RB	CL	CP	Eqn
7	M8	2X6	.298	0	3	.000	0	z	1	.571	.371	.597	.69	.114	8.066	.995	.763	3.6.3
8	M9	2X6	.172	0	3	.000	0	z	1	.665	.371	.598	.69	.114	6.937	.996	.888.	3.9-1
9	M10	2X6	.299	0	3	.000	0	z	1	.571	.371	.597	.69	.114	8.066	.995	.763	3.6.3
10	M11	2X6	.121	0	3	.000	0	Z	1	.345	.371	.595	.69	.114	9.956	.992	.461	3.6.3
11	M12	2X6	.710	0	3	.000	0	Z	1	.209	.371	.593	.69	.114	11.524	.989	.279	3.6.3
12	M13	2X6	.196	0	3	.000	0	Ζ	1	.142	.371	.591	.69	.114	12.791	.986	.189	3.6.3
13	M14	2X6	.611	0	3	.000	0	z	1	.15	.371	.592	.69	.114	12.602	.986	.2	3.9-1
14	M15	2X6	5.159	0	3	.000	0	Z	1	.202	.371	.593	.69	.114	11.633	.989	.27	3.9-3
15	M16	2X6	1.090	0	3	.000	0	Z	1	.261	.371	.594	.69	.114	10.829	.99	.348	3.9-3
16	M17	2X6	1.036	0	3	.000	0	Ζ	1	.261	.371	.594	.69	.114	10.829	.99	.348	3.9-3
17	M18	2X6	5.114	0	3	.000	0	Ζ	1	.202	.371	.593	.69	.114	11.633	.989	.27	3.9-3
18	M19	2X6	.584	0	3	.000	0	Z	1	.15	.371	.592	.69	.114	12.602	.986	.2	3.9-1
19	M20	2X6	.198	0	3	.000	0	Z	1	.142	.371	.591	.69	.114	12.791	.986	.189	3.6.3
20	M21	2X6	.183	0	3	.000	0	Z	1	.266	.371	.594	.69	.114	10.769	.991	.355	3.6.3
21	M21A	2X6	7.019	0	3	.000	0	Z	1	.157	.371	.592	.69	.114	12.46	.987	.209	3.9-3
22	M22	2X6	.099	0	3	.000	0	z	1	.454	.371	.596	.69	.114	9.044	.994	.606	3.6.3
23	M23	2X6	1.265	0	3	.000	0	Ζ	1	.21	.371	.593	.69	.114	11.516	.989	.28	3.9-1
24	M24	2X6	.174	0	3	.000	0	Z	1	.266	.371	.594	.69	.114	10.769	.991	.355	3.6.3
25	M25	2X6	6.785	0	3	.000	0	Z	1	.157	.371	.592	.69	.114	12.46	.987	.209	3.9-3
26	M26	2X6	.096	0	3	.000	0	Z	1	.454	.371	.596	.69	.114	9.044	.994	.606	3.6.3
27	M27	2X6	1.252	0	3	.000	0	z	1	.21	.371	.593	.69	.114	11.516	.989	.28	3.9-1

TRUSS B LAYOUT

DEAD LOAD

ROOF LIVE LOAD

Wood Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [mm2]	lyy [mm4]	lzz [mm4]	J [mm4]
1	Chord	2-2X10	Beam	None	Eucalyptus	Typical	17903.262	8.663e+6	8.236e+7	2.758e+7
2	Web	2X8	Beam	None	Eucalyptus	Typical	7016.143	8.487e+5	1.983e+7	2.952e+6
3	Top Chord	2-2X10	Beam	None	Eucalyptus	Typical	17903.262	8.663e+6	8.236e+7	2.758e+7
4	Edge	2X8	Beam	None	Eucalyptus	Typical	7016.143	8.487e+5	1.983e+7	2.952e+6

Joint Coordinates and Temperatures

	Label	X [m]	Y [m]	Z [m]	Temp [F]	Detach From Diap
1	J1	1	0	0	0	
2	J2	4	0	0	0	
3	J3	7	0	0	0	
4	J4	8.5	0	0	0	
5	J5	0	1.5	0	0	
6	J6	1	1.4	0	0	
7	J7	4	1.1	0	0	
8	J8	7	.8	0	0	
9	J9	8.5	.65	0	0	
10	J10	2.5	0	0	0	
11	J11	5.5	0	0	0	
12	J12	2.5	1.25	0	0	
13	J13	5.5	.95	0	0	
14	J14	.8	0	0	0	
15	J15	1.2	0	0	0	
16	J16	3.8	0	0	0	
17	J17	4.2	0	0	0	
18	J18	6.8	0	0	0	
19	J19	7.2	0	0	0	
20	J20	2.3	1.27	0	0	
21	J21	2.7	1.23	0	0	
22	J22	5.3	.97	0	0	
23	J23	5.7	.93	0	0	
24	J24	8.3	.67	0	0	
25	J25	8.7	.63	0	0	
26	J26	9.8	0	0	0	
27	J27	10	0	0	0	
28	J30	10	.5	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	ALL			Reaction			
2	J1	Reaction	Reaction	Reaction			
3	J27	Reaction	Reaction	Reaction			

Wood Design Parameters

	Label	Shape	Length[le2[m]	le1[m]	le-bend to	le-bend bo	Kyy	Kzz	CV	Cr	y sway	z sway
1	M1	Chord	9.2	1.5	1.5	Lbyy							-
2	M2	Top Chord	10.05	.69	.69	Lbyy							
3	M3	Edge	1.4			Lbyy							
4	M4	Web	1.1			Lbyy							
5	M5	Web	.8			Lbyy							
6	M6	Web	.65			Lbyy							
7	M7	Edge	1.7			Lbyy						-	2 35

Wood Design Parameters (Continued)

	Label	Shape	Length[le2[m]	le1[m]	le-bend to	le-bend bo	Kyy	Kzz	CV	Cr	y sway	z sway
8	M8	Web	1.68			Lbyy							
9	M9	Web	1.467			Lbyy							
10	M10	Web	1.288			Lbyy							
11	M11	Web	1.25			Lbyy							
12	M12	Web	1.65			Lbyy							
13	M13	Web	.95			Lbyy							
14	M14	Web	1.44			Lbyy							
15	M16	Web	.5			Lbyy							
16	M17	Web	1.268			Lbyy							

Member Distributed Loads (BLC 1 : Dead Load)

	Member Label	Direction	Start Magnitude[kg/m	End Magnitude[kg/m,	Start Location[m,%]	End Location[m,%]
1	M2	Y	-143	-143	0	0

Member Distributed Loads (BLC 2 : Roof Live Load)

	Member Label	Direction	Start Magnitude[kg/m	.End Magnitude[kg/m,	. Start Location[m,%]	End Location[m,%]
1	M2	Y	-293	-293	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead Load	DĽ						1	,	,
2	Roof Live Load	RLL						1		

Load Combinations

	Description	Sol	PD	.SRI	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact
1	IBC 16-8	Yes			DL	1																		
2	IBC 16-9	Yes			DL	1	LL	1	LLS	1														
3	IBC 16-10	.Yes			DL	1	RLL	1																
4	IBC 16-10	.Yes			DL	1																		
5	IBC 16-11	.Yes			DL	1	LL	.75	LLS	.75	RLL	.75												

Envelope Joint Reactions

	Joint		X [kg]	LC	Y [kg]	LC	Z [kg]	LC	MX [kg-m]	LC	MY [kg-m]	LC	MZ [kg-m]	LC
1	J1	max	3249.376	3	2434.303	3	0	1	0	1	0	1	0	1
2		min	1065.736	1	798.407	1	0	1	0	1	0	1	0	1
3	J2	max	0	1	0	1	0	1	0	1	0	1	0	1
4		min	0	1	0	1	0	1	0	1	0	1	0	1
5	J3	max	0	1	0	1	0	1	0	1	0	1	0	1
6		min	0	1	0	1	0	1	0	1	0	1	0	1
7	J4	max	0	1	0	1	0	1	0	1	0	1	0	1
8		min	0	1	0	1	0	1	0	1	0	1	0	1
9	J5	max	0	1	0	1	0	1	0	1	0	1	0	1
10		min	0	1	0	1	0	1	0	1	0	1	0	1
11	J6	max	0	1	0	1	0	1	0	1	0	1	0	1
12		min	0	1	0	1	0	1	0	1	0	1	0	1
13	J7	max	0	1	0	1	0	1	0	1	0	1	0	1
14		min	0	1	0	1	0	1	0	1	0	1	0	1
15	J8	max	0	1	0	1	0	1	0	1	0	1	0	1
16		min	0	1	0	1	0	1	0	1	0	1	0	1
17	J9	max	0	1	0	1	0	1	0	1	0	1	0 12	36

Envelope Joint Reactions (Continued)

	Joint		X [kg]	LC	Y [kg]	LC	Z [kg]	LC	MX [kg-m]	LC	MY [kg-m]	LC	MZ [kg-m]	LC
18		min	0	1	0	1	0	1	0	1	0	1	0	1
19	J10	max	0	1	0	1	0	1	0	1	0	1	0	1
20		min	0	1	0	1	0	1	0	1	0	1	0	1
21	J11	max	0	1	0	1	0	1	0	1	0	1	0	1
22		min	0	1	0	1	0	1	0	1	0	1	0	1
23	J12	max	0	1	0	1	0	1	0	1	0	1	0	1
24		min	0	1	0	1	0	1	0	1	0	1	0	1
25	J13	max	0	1	0	1	0	1	0	1	0	1	0	1
26		min	0	1	0	1	0	1	0	1	0	1	0	1
27	J14	max	0	1	0	1	0	1	0	1	0	1	0	1
28		min	0	1	0	1	0	1	0	1	0	1	0	1
29	J15	max	0	1	0	1	0	1	0	1	0	1	0	1
30		min	0	1	0	1	0	1	0	1	0	1	0	1
31	J16	max	0	1	0	1	0	1	0	1	0	1	0	1
32		min	0	1	0	1	0	1	0	1	0	1	0	1
33	J17	max	0	1	0	1	0	1	0	1	0	1	0	1
34		min	0	1	0	1	0	1	0	1	0	1	0	1
35	J18	max	0	1	0	1	0	1	0	1	0	1	0	1
36		min	0	1	0	1	0	1	0	1	0	1	0	1
37	J19	max	0	1	0	1	0	1	0	1	0	1	0	1
38		min	0	1	0	1	0	1	0	1	0	1	0	1
39	J20	max	0	1	0	1	0	1	0	1	0	1	0	1
40		min	0	1	0	1	0	1	0	1	0	1	0	1
41	J21	max	0	1	0	1	0	1	0	1	0	1	0	1
42		min	0	1	0	1	0	1	0	1	0	1	0	1
43	J22	max	0	1	0	1	0	1	0	1	0	1	0	1
44		min	0	1	0	1	0	1	0	1	0	1	0	1
45	J23	max	0	1	0	1	0	1	0	1	0	1	0	1
46		min	0	1	0	1	0	1	0	1	0	1	0	1
47	J24	max	0	1	0	1	0	1	0	1	0	1	0	1
48		min	0	1	0	1	0	1	0	1	0	1	0	1
49	J25	max	0	1	0	1	0	1	0	1	0	1	0	1
50		min	0	1	0	1	0	1	0	1	0	1	0	1
51	J26	max	0	1	0	1	0	1	0	1	0	1	0	1
52		min	0	1	0	1	0	1	0	1	0	1	0	1
53	J27	max	-1065.736	1	1947.443	3	0	1	0	1	0	1	0	1
54		min	-3249.376	3	638.725	1	0	1	0	1	0	1	0	1
55	J30	max	0	1	0	1	0	1	0	1	0	1	0	1
56		min	0	1	0	1	0	1	0	1	0	1	0	1
57	Totals:	max	0	5	4381.746	3	0	1						
58		min	0	1	1437.132	1	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[kg]	LC	y Shear[kg]	LC	z Shear[kg]	LC	Torque[k	LC	y-y Mome	LC	z-z Mome	. LC
1	M1	1	max	109.82	3	-67.535	1	0	1	0	1	0	1	0	1
2			min	36.019	1	-205.912	3	0	1	0	1	0	1	0	1
3		2	max	1393.538	3	-35.52	1	0	1	0	1	0	1	88.735	3
4			min	457.055	1	-108.298	3	0	1	0	1	0	1	29.103	1
5		3	max	-420.2	1	-85.538	1	0	1	0	1	0	1	8.543	3
6			min	-1281.168	3	-260.8	3	0	1	0	1	0	1	2.802	1
7		4	max	-126.787	1	-16.162	1	0	1	0	1	0	1	-10.864	1
8			min	-386.567	3	-49.278	3	0	1	0	1	0	1	-33.123	3
9		5	max	3249.376	3	-590.547	1	0	1	0	1	0	1	0	1
10			min	1065.736	1	-1800.55	3	0	1	0	1	0	1	0	1
11	M2	1	max	-42.56	1	193.963	3	0	1	0	1	0	1	0 12	.37

Envelope Member Section Forces (Continued)

	Member	Sec	Axial[kg]	LC	y Shear[kg]	LC	z Shear[kg]	LC	Torque[k	LC	y-y Mome	. LC	z-z Mome	. LC
12			min -129.764	3	63.616	1	0	1	0	1	0	1	0	1
13		2	max 1702.63	3	1806.416	3	0	1	0	1	0	1	13.882	3
14			min 558.431	1	592.471	1	0	1	0	1	0	1	4.553	1
15		3	max 3394.976	3	-62.965	1	0	1	0	1	0	1	21.23	3
16			min 1113.49	1	-191.976	3	0	1	0	1	0	1	6.963	1
17		4	max 4656.307	3	286 818	3	0	1	0	1	0	1	-48 366	1
18		<u> </u>	min 1527.183	1	94 071	1	Ő	1	0	1	0	1	-147 466	3
10		5	max 14 616	3	-47 939	1	0	1	0	1	0	1	0	1
20			min 4 794	1	-146 163	3	0	1	0	1	0	1	0	1
21	M3	1	may 2/0 02/	3	0	1	0	1	0	1	0	1	0	1
21	1015		min 81 071	1	0	1	0	1	0	1	0	1	0	1
22		2	max 240 024	3	0	1	0	1	0	1	0	1	0	1
20		2	min 81 071	1	0	1	0	1	0	1	0	1	0	1
24		3	max 240 024	3	0	1	0	1	0	1	0	1	0	1
20		5	min 91 071	1	0	1	0	1	0	1	0	1	0	1
20		4	111111 01.97 1 many 240 024	2	0	1	0	1	0	1	0	1	0	1
21		4	max 249.924	3	0	4	0		0		0	1	0	
28		-	min 81.9/1		0		0		0		0	1	0	4
29		5	max 249.924	3	0	1	0	1	0	1	0	1	0	1
30		4	min 81.9/1	1	0	1	0	1	0	1	0	1	0	
31	1/14	1	max 800.271	3	0		0		0		0	1	0	
32		-	min 262.474		0			Y		YY	$\gamma\gamma\gamma$	Y	0	
33		2	max 800.271	3	0	1								1
34			min 262.474	1	0	1						└╶⋌	0	1
35		3	max 800.271	3	0	_1_	<u>с</u> м	EMB	SER = 30)3KG	6	~	0	
36			min 262.474	1	0			x x		× .			0	1
37		4	max 800.271	3	0	1		\frown	\sim			\sim	0	
38			min 262.474	1	0	1	0	1	0	1	0	1	0	1
39		5	max 800.271	3	0	1	0	1	0	1	0	1	0	
40			min 262.474	1	0	1	0	1	0	1	0	1	0	1
41	M5	1	max 921.679	3	0	1	0	1	0	1	0	1	0	1
42			min 302.294	4	0	1	0	1	0	1	0	1	0	1
43		2	max 921.679	3	0	1	0	1	0	1	0	1	0	1
44			min 302.294	1	0	1	0	1	0	1	0	1	0	1
45		3	max 921.679	3	0	1	0	1	0	1	0	1	0	1
46			min 302.294	1	0	1	0	1	0	1	0	1	0	1
47		4	max 921.679	3	0	1	0	1	0	1	0	1	0	1
48			min 302.294	1	0	1	0	1	0	1	0	1	0	1
49		5	max 921.679	3	0	1	0	1	0	1	0	1	0	1
50			min 302.294	1	0	1	0	1	0	1	0	1	0	1
51	M6	1	max -108.605	1	0	1	0	1	0	1	0	1	0	1
52			min -331,132	3	0	1	0	1	0	1	0	1	0	1
53		2	max -108.605	1	0	1	0	1	0	1	0	1	0	1
54			min -331,132	3	0	1	0	1	Ő	1	0	1	0	1
55		3	max -108.605	1	0	1	0	1	Ő	1	Ő	1	0	1
56			min -331 132	3	0	1	0	1	Ő	1	0	1	0	1
57		4	max -108 605	1	0	1	0	1	0	1	0	1	0	1
58		-	min -331 132	3	0	1	0	1	0	1	0	1	0	1
59		5	max -108 605	1	0	1	0	1	0	1	0	1	0	1
60			min -331 132	3	0	1	0	1	0	1	0	1	0	1
61	M7	1	max 233 367	3	0	1	0	1	0	1	0	1	0	1
62	1117		min 76.54	1	0	1	0	1	0	1	0	1	0	1
63		2	max 233 367	2	0	1	0	1	0	1	0	1	0	1
64		2	min 76.54	1	0	1	0	1	0	1	0	1	0	1
65		2	may 233 367	2	0	1	0	1	0	1	0	1	0	1
66		5	min 76.54	1	0	1	0	1	0	1	0	1	0	1
67		Λ	max 222 267	2	0	1	0	1	0	1	0	1	0	4
69		4	min 76.54	1	0	1	0	1	0	1	0	1		.38
00			11111 70.34		U		U		U		U		0	

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[kg]	LC	y Shear[kg]	LC	z Shear[kg]	LC	Torque[k	LC	y-y Mome	. LC	z-z Mome	LC
69		5	max	233.367	3	0	1	0	1	0	1	0	1	0	1
70			min	76.54	1	0	1	0	1	0	1	0	1	0	1
71	M8	1	max	3002.362	3	0	1	0	1	0	1	0	1	0	1
72		0	min	984.72	1	0	1	0	1	0	1	0	1	0	1
73		2	max	004.70	1	0	1	0	1	0	1	0	1	0	
74		3	may	3002 362	3	0	1	0	1	0	1	0	1	0	1
76		5	min	984 72	1	0	1	0	1	0	1	0	1	0	1
77		4	max	3002.362	3	0	1	0	1	0	1	0	1	0	
78			min	984.72	1	0	1	0	1	0	1	0	1	0	1
79		5	max	3002.362	3	0	1	0	1	0	1	0	1	0	1
80			min	984.72	1	0	1	0	1	0	1	0	1	0	1
81	M9	1	max	1561.949	3	0	1	0	1	0	1	0	1	0	1
82			min	512.291	1	0	1	0	1	0	1	0	1	0	1
83		2	max	1561.949	3	0	1	0	1	0	1	0	1	0	1
84			min	512.291	1	0	1	0	1	0	1	0	1	0	1
85		3	max	1561.949	3	0	1	0	1	0	1	0	1	0	1
86			min	512.291	1	0	1	0	1	0	1	0	1	0	1
87		4	max	1561.949	3	0	1	0	1	0	1	0	1	0	1
88		-	min	512.291	1	0	1	0	1	0	1	0	1	0	1
89		5	max	1561.949	3	0	1	0	1	0	1	0	1	0	1
90	M10	1	min	202 020	1	0	1	0	1	0	1	0	1	0	
91	IVITU		max	-393.938	2	0	1	0	1	0	1	0	1	0	1
92		2	may	303 038	1	0	1	0	1	0	1	0	1	0	1
93		2	min	-1201.097	3	0	1	0	1	0	1	0	1	0	1
95		3	max	-303 038	1	0	1	0	1	0	1	0	1	0	1
96			min	-1201.097	3	0	1	0	1	0	1	0	1	0	1
97		4	max	-393.938	1	0	1	0	1	0	1	0	1	0	1
98			min	-1201.097	3	0	1	0	1	0	1	0	1	0	1
99		5	max	-393.938	1	0	1	0	1	0	1	0	1	0	1
100			min	-1201.097	3	0	1	0	1	0	1	0	1	0	1
101	M11	1	max	-59.915	1	0	1	0	1	0	1	0	1	0	1
102			min	-182.677	3	0	1	0	1	0	1	0	1	0	1
103		2	max	-59.915	1	0	1	0	1	0	1	0	1	0	1
104			min	-182.677	3	0	1	0	1	0	1	0	1	0	1
105		3	max	-59.915	1	0	1	0	1	0	1	0	1	0	1
106		4	min	-182.6//	3	0	1	0	1	0	1	0	1	0	
107		4	min	192 677	2	0	1	0	1	0	1	0	1	0	1
100		5	may	-50 015	1	0	1	0	1	0	1	0	1	0	
110			min	-182 677	3	0	1	0	1	0	1	0	1	0	1
111	M12	1	max	-739 581	1	0	1	0	1	0	1	0	1	0	
112			min	-2254.946	3	0	1	0	1	0	1	0	1	0	1
113		2	max	-739.581	1	0	1	0	1	0	1	0	1	0	1
114			min	-2254.946	3	0	1	0	1	0	1	0	1	0	1
115		3	max	-739.581	1	0	1	0	1	0	1	0	1	0	1
116			min	-2254.946	3	0	1	0	1	0	1	0	1	0	1
117		4	max	-739.581	1	0	1	0	1	0	1	0	1	0	1
118			min	-2254.946	3	0	1	0	1	0	1	0	1	0	1
119		5	max	-739.581	1	0	1	0	1	0	1	0	1	0	1
120	1440	4	min	-2254.946	3	0	1	0	1	0	1	0	1	0	1
121	M13	1	max	-130.366	1	0	1	0	1	0	1	0	1	0	1
122		0	min	-397.479	3	0	1	0	1	0	1	0	1	0	1
123		2	max	307 470	2	0	1	0	1	0	1	0	1	0	
124		2	may	-391.419	1	0	1	0	1	0	1	0	1		2.39
120		<u> </u>	μπαλ	-100.000		v		U	- 1	U		U		U	-

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[kg]	LC	y Shear[kg]	LC	z Shear[kg]	LC	Torque[k	LC	y-y Mome	. LC	z-z Mome.	<u>. LC</u>
126			min	-397.479	3	0	1	0	1	0	1	0	1	0	1
127		4	max	-130.366	1	0	1	0	1	0	1	0	1	0	1
128			min	-397.479	3	0	1	0	1	0	1	0	1	0	1
129		5	max	-130.366	1	0	1	0	1	0	1	0	1	0	1
130			min	-397.479	3	0	1	0	1	0	1	0	1	0	1
131	M14	1	max	-56.347	1	0	1	0	1	0	1	0	1	0	1
132			min	-171.799	3	0	1	0	1	0	1	0	1	0	1
133		2	max	-56.347	1	0	1	0	1	0	1	0	1	0	1
134			min	-171.799	3	0	1	0	1	0	1	0	1	0	1
135		3	max	-56.347	1	0	1	0	1	0	1	0	1	0	1
136			min	-171.799	3	0	1	0	1	0	1	0	1	0	1
137		4	max	-56.347	1	0	1	0	1	0	1	0	1	0	1
138			min	-171.799	3	0	1	0	1	0	1	0	1	0	1
139		5	max	-56.347	1	0	1	0	1	0	1	0	1	0	1
140			min	-171.799	3	0	1	0	1	0	1	0	1	0	1
141	M16	1	max	146.892	3	0	1	0	1	0	1	0	1	0	1
142			min	48.178	1	0	1	0	-1-		1		1	0	1
143		2	max	146.892	3	0	1	d t	X Y	T T T	<i>x x</i>	X X X	・ア	0	1
144			min	48.178	1	0	1	MA U	λ¥ F	ORCE I	N DI	AGONA	L J	0	1
145		3	max	146.892	3	0	1	C MF	-MR	FR = 13	75K	G)	0	1
146			min	48.178	1	0	\bigwedge					Ŭ	1	0	1
147		4	max	146.892	3	0	1		$\overline{\mathbf{\lambda}}$		γ	\mathcal{V}	\mathcal{A}	0	1
148			min	48.178	1	0	1	0	1	0	1	0	1	0	1
149		5	max	146.892	3	0	1	0	1	0	1	0	1	0	1
150			min	48.178	1	0	1	0	1	0	1	0	1	0	1
151	M17	1	max	4190.046	3	0	1	0	1	0	1	0	1	0	1
152			min	1374.258	<u>ل</u> ا	0	1	0	1	0	1	0	1	0	1
153		2	max	4190,046	3	0	1	0	1	0	1	0	1	0	1
154			min	1374.258	1	0	1	0	1	0	1	0	1	0	1
155		3	max	4190.046	3	0	1	0	1	0	1	0	1	0	1
156			min	1374.258	1	0	1	0	1	0	1	0	1	0	1
157		4	max	4190.046	3	0	1	0	1	0	1	0	1	0	1
158			min	1374.258	1	0	1	0	1	0	1	0	1	0	1
159		5	max	4190.046	3	0	1	0	1	0	1	0	1	0	1
160			min	1374.258	1	0	1	0	1	0	1	0	1	0	1

X. APPENDIX B:

STRUCTURAL DRAWINGS

CRITERIA:

1. STRUCTURAL DRAWINGS SHALL BE REVIEWED BY AN IN-COUNTRY ENGINEER PRIOR TO CONSTRUCTION. THESE DRAWINGS ARE NOT FOR CONSTRUCTION.

2. STRUCTURAL DRAWINGS SHALL BE USED IN CONJUNCTION WITH ARCHITECTURAL DRAWINGS FOR BIDDING AND CONSTRUCTION. CONTRACTOR SHALL VERIFY DIMENSIONS AND CONDITIONS FOR COMPATIBILITY AND SHALL NOTIFY ARCHITECT OF ANY DISCREPANCIES PRIOR TO CONSTRUCTION.

3. CONTRACTOR SHALL PROVIDE TEMPORARY BRACING FOR THE STRUCTURE AND STRUCTURAL COMPONENTS UNTIL ALL FINAL CONNECTIONS HAVE BEEN COMPLETED IN ACCORDANCE WITH THE PLANS.

4. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL SAFETY PRECAUTIONS AND THE METHODS, TECHNIQUES, SEQUENCES, OR PROCEDURES REQUIRED TO PERFORM HIS WORK. THE STRUCTURAL ENGINEER HAS NO OVERALL AUTHORITY OR ACTUAL AND/OR DIRECT RESPONSIBILITY FOR THE SPECIFIC WORKING CONDITIONS AT THE SITE AND/OR FOR ANY HAZARDS RESULTING FROM THE ACTIONS OF ANY TRADE CONTRACTOR. THE STRUCTURAL ENGINEER HAS NO DUTY TO INSPECT, SUPERVISE, NOTE, CORRECT, OR REPORT ANY HEALTH OR SAFETY DEFICIENCIES OF THE OWNER, CONTRACTORS, OR OTHER ENTITIES OR PERSONS AT THE PROJECT SITE.

6. CONTRACTOR-INITIATED CHANGES SHALL BE SUBMITTED IN WRITING TO THE ARCHITECT AND STRUCTURAL ENGINEER FOR APPROVAL PRIOR TO FABRICATION OR CONSTRUCTION. CHANGES SHOWN ON SHOP DRAWINGS ONLY WILL NOT SATISFY THIS REQUIREMENT.

7. DRAWINGS INDICATE GENERAL AND TYPICAL DETAILS OF CONSTRUCTION. WHERE CONDITIONS ARE NOT SPECIFICALLY INDICATED, BUT ARE OF SIMILAR CHARACTER TO DETAILS SHOWN, SIMILAR DETAILS OF CONSTRUCTION SHALL BE USED, SUBJECT TO REVIEW AND APPROVAL BY THE ARCHITECT AND THE STRUCTURAL ENGINEER.

8. SHOP DRAWINGS FOR REINFORCING STEEL (FOR BOTH CONCRETE AND MASONRY CONSTRUCTION), OPEN WEB WOOD TRUSSES, AND METAL DECKING SHALL BE SUBMITTED TO THE ARCHITECT AND STRUCTURAL ENGINEER FOR REVIEW PRIOR TO FABRICATION OF THESE ITEMS.

QUALITY ASSURANCE/INSPECTION:

1. CONCRETE CONSTRUCTION, MASONRY CONSTRUCTION, METAL DECK INSTALLATION, EXPANSION BOLTS AND THREADED EXPANSION INSERTS SHALL BE SUPERVISED IN ACCORDANCE WITH CHAPTER 17 OF THE INTERNATIONAL BUILDING CODE AND THE PROJECT SPECIFICATIONS BY A QUALIFIED TESTING AGENCY DESIGNATED BY THE ARCHITECT. THE ARCHITECT AND STRUCTURAL ENGINEER SHALL BE FURNISHED WITH COPIES OF ALL INSPECTION REPORTS AND TEST RESULTS.

STRUCTURAL OBSERVATION:

1. STRUCTURAL OBSERVATION: AS NOTED IN SECTION 1709 OF THE INTERNATIONAL BUILDING CODE, STRUCTURAL OBSERVATION IS REQUIRED FOR THIS PROJECT. STRUCTURAL OBSERVATION MEANS THE VISUAL OBSERVATION OF THE STRUCTURAL SYSTEM, INCLUDING BUT NOT LIMITED TO, THE ELEMENTS AND CONNECTIONS AT SIGNIFICANT CONSTRUCTION STAGES AND THE COMPLETED STRUCTURE FOR GENERAL CONFORMANCE TO THE APPROVED PLANS AND SPECIFICATIONS. STRUCTURAL OBSERVATION DOES NOT INCLUDE OR WAIVE THE RESPONSIBILITY OF THE INSPECTIONS REQUIRED BY SECTIONS 108 AND CHAPTER 17 OF THE INTERNATIONAL BUILDING CODE.

THE BUILDING OFFICIAL ALSO RECOGNIZES THAT STRUCTURAL REVIEW IS A TECHNIQUE EMPLOYED TO MINIMIZE THE RISK OF PROBLEMS ARISING DURING CONSTRUCTION. STRUCTURAL OBSERVATION BY THE DESIGN PROFESSIONAL DOES NOT CONSTITUTE WARRANTY OR GUARANTEE OF ANY TYPE. IN ALL CASES, THE CONTRACTOR SHALL RETAIN RESPONSIBILITY FOR THE QUALITY OF WORK AND FOR ADHERENCE OF THE APPROVED PLANS AND SPECIFICATIONS.

EARTHWORK AND FOUNDATIONS:

1. FOUNDATION NOTES: SUBGRADE PREPARATION, INCLUDING DRAINAGE, EXCAVATION, COMPACTION, AND FILLING REQUIREMENTS, SHALL CONFORM STRICTLY WITH RECOMMENDATIONS GIVEN IN THE SOILS REPORT OR AS DIRECTED BY THE SOILS ENGINEER. FOOTINGS SHALL BEAR ON SOLID UNDISTRIBUTED EARTH (CONTROLLED, COMPACTED STRUCTURAL FILL OR BOTH) BELOW LOWEST ADJACENT FINISHED GRADE. FOOTING DEPTHS/ELEVATIONS SHOWN ON PLANS (OR IN DETAILS) ARE MINIMUM AND FOR GUIDANCE ONLY; THE ACTUAL ELEVATIONS OF FOOTINGS MUST BE ESTABLISHED BY THE CONTRACTOR IN THE FIELD WORKING WITH THE TESTING LAB AND SOILS ENGINEER. BACKFILL BEHIND ALL RETAINING WALLS WITH FREE DRAINING GRANULAR FILL AND PROVIDE FOR SUBSURFACE DRAINAGE AS NOTED IN THE SOILS REPORT.

2. GEOTECHNICAL REPORT: SOILS REPORT NUMBER 13671-4 HAS BEEN CREATED BY BODEN UND WASSER ON 10/01/2014. MAINTAIN AT SITE A COPY OF REPORT AND ADDENDA.

CONCRETE:

1. APPLICABLE STANDARD: ACI 318-14. PORTLAND CEMENT: ASTM C150, TYPE II. MAXIMUM AGGREGATE SIZES: 1-1/2 INCHES AT FOUNDATIONS AND SLABS ON GRADE AND 1 INCH ELSEWHERE. NORMAL WEIGHT CONCRETE (145 pcf): ASTM C33 FOR AGGREGATES OF NATURAL SAND AND ROCK. CONCRETE TO ATTAIN THE FOLLOWING DAY MINIMUM COMPRESSIVE STRENGTH (fc). UNLESS NOTED OTHERWISE:

CONTINUOUS FOOTINGS	3000 psi
COLUMNS	3000 psi
SPREAD FOOTINGS	3000 psi
STRUCTURAL SLABS AND BEAMS	3000 psi
SLABS ON GRADE	3000 psi

2. CONCRETE MIX DESIGN AND TESTING SHALL MEET THE REQUIREMENTS OF IBC SECTIONS 1705 AND 1903, ACI 318 CHAPTER 19 & 26, AND THESE SPECIFICATIONS. CEMENT TO BE IN ACCORDANCE WITH ASTM C150 TYPE II. AGGREGATE TO MEET ASTM C33. FLY ASH TO MEET ASTM C618 CLASS F. SUBMIT MIX DESIGN AND SUPPORTING DOCUMENTATION IN ACCORDANCE WITH ACI 318 FOR REVIEW PRIOR TO PLACEMENT.

3. CONCRETE MIX DESIGN FOR INTERIOR SLABS ON GRADE TO HAVE 25% TO 35% CLASS F FLY ASH SUBSTITUTED FOR CEMENT AT A POUND-FOR-POUND RATE. REPLACE 200 POUNDS OF SAND WITH 200 POUNDS I"(-) AGGREGATE TO REDUCE TOTAL SAND.

4. REINFORCING STEEL SHALL CONFORM TO ASTM A706 GRADE 60.

5. SLABS, BEAMS, AND COLUMNS MADE OF CONCRETE CONCRETE SHALL BE KEPT CONTINUOUSLY WET FOR 48 HOURS, AFTER PLACEMENT, AND SHALL BE KEPT DAMP FOR 7 DAYS AFTER PLACEMENT. SLABS SHALL HAVE CURE/SEALER APPLIED IMMEDIATELY AFTER FINISHING IF OTHER FINISHES ARE NOT AFFECTED. WHEN CURE SEALER CAN NOT BE APPLIED, SLAB SHALL BE KEPT CONTINUOUSLY WET OR COVERED WITH CURING PAPER. CURE SHALL BE OF A TYPE THAT WILL NOT BE DETRIMENTAL TO SEALERS TO BE APPLIED LATER.

REINFORCING STEEL:

1. REINFORCING STEEL SHALL CONFORM TO ASTM A615 (INCLUDING SUPPLEMENTS S1), GRADE 60, fy = 60,000 PSI.

LONGITUDINAL REINFORCEMENT IN DUCTILE FRAME MEMBERS AND IN WALL BOUNDARY MEMBERS SHALL COMPLY WITH ASTM A706. ASTM A615 GRADES 40 AND 60 REINFORCEMENT ARE ALLOWED IN THESE MEMBERS IF (A) THE ACTUAL YIELD STRENGTH BASED ON MILL TESTS DOES NOT EXCEED THE SPECIFIED YIELD STRENGTH BY MORE THAN 18,000 PSI (RETESTS SHALL NOT EXCEED THIS VALUE BY MORE THAN AN ADDITIONAL 3,000 PSI), AND (B) THE RATIO OF THE ACTUAL ULTIMATE TENSILE STRESS TO THE ACTUAL TENSILE YIELD STRENGTH IS NOT LESS THAN 1.25.

2. SPLICE LOCATIONS: AS SHOWN ON DRAWINGS. IF LOCATIONS CANNOT BE DETERMINED, VERIFY WITH STRUCTURAL ENGINEER PRIOR TO DEVELOPING SHOP DRAWINGS.

3. LAP LENGTHS: AS SHOWN ON DRAWINGS. IF LAP LENGTHS CANNOT BE DETERMINED, VERIFY WITH STRUCTURAL ENGINEER PRIOR TO DEVELOPING SHOP DRAWINGS.

4. BENDING: BEND COLD UNLESS OTHERWISE ACCEPTED BY STRUCTURAL ENGINEER. DO NOT FIELD-BEND REINFORCING STEEL BARS EMBEDDED IN CONCRETE UNLESS OTHERWISE SHOWN ON CONTRACT DOCUMENTS OR PRE-APPROVED BY STRUCTURAL ENGINEER.

WOOD:

1. PREFABRICATED OPEN WEB WOOD TRUSSES SHALL BE DESIGNED BY THE MANUFACTURER FOR THE SPANS AND CONDITIONS SHOWN ON THE PLANS AND SHALL BE FURNISHED AND INSTALLED IN CONFORMANCE WITH THE MANUFACTURER'S PUBLISHED SPECIFICATIONS. ALL NECESSARY BRIDGING, BLOCKING, PRE-NOTCHED PLATES, ETC. SHALL BE DETAILED AND FURNISHED BY THE MANUFACTURER. SUBMIT SHOP DRAWINGS AND DESIGN CALCULATIONS (COMPLETE WITH STRESS DIAGRAMS) TO THE ARCHITECT AND STRUCTURAL ENGINEER FOR REVIEW PRIOR TO FABRICATION. DESIGN SUBMITTALS SHALL BEAR THE STAMP AND SIGNATURE OF A REGISTERED PROFESSIONAL ENGINEER, STATE OF WASHINGTON. PERMANENT AND TEMPORARY BRIDGING SHALL BE INSTALLED IN CONFORMANCE WITH MANUFACTURER'S SPECIFICATIONS.

2. WOOD TRUSSES SHALL UTILIZE APPROVED CONNECTOR PLATES (GANG NAIL OR EQUAL). SUBMIT SHOP DRAWINGS AND DESIGN CALCULATIONS TO THE ARCHITECT AND STRUCTURAL ENGINEER FOR REVIEW PRIOR TO FABRICATION. SUBMITTED DOCUMENTS SHALL BEAR THE STAMP AND SIGNATURE OF A REGISTERED PROFESSIONAL ENGINEER. PROVIDE FOR SHAPES, BEARING POINTS, INTERSECTIONS, HIPS, VALLEYS, ETC. SHOWN ON THE DRAWINGS. EXACT COMPOSITION OF SPECIAL HIP, VALLEY, AND INTERSECTION AREAS (USE OF GIRDER TRUSSES, JACK TRUSSES, STEP-DOWN TRUSSES, ETC.) SHALL BE DETERMINED BY THE MANUFACTURER UNLESS SPECIFICALLY INDICATED ON THE PLANS. PROVIDE ALL TRUSS TO TRUSS AND TRUSS TO GIRDER TRUSS CONNECTION DETAILS AND REQUIRED CONNECTION MATERIALS. PROVIDE FOR ALL TEMPORARY AND PERMANENT TRUSS BRACING AND BRIDGING.

3. IF A DIFFERENT SYSTEM IS PROPOSED THAT REQUIRES REVISIONS TO PRESENT STRUCTURAL FRAMING OR DETAILS, SUCH SYSTEM SHALL BE CONSIDERED SUBJECT TO THE APPROVAL OF THE OWNER, ARCHITECT, AND STRUCTURAL ENGINEER.

E	AR HATLE	I					
Licensed S. DRAWINGS COUNTRY A DRAWINGS CONSTRUC	E. Seal: TO BE REVIE ARCHITECT/EN NOT FOR TION	WED BY IN- NGINEER					
Project Title ASYV CON W These dra service Journeyma and informa drawings ar indicated a	MUNITY CEN OMENS CO-O awings are instr and are the pro n International. ation represent e exclusively fo nd shall not be	TER AND P uments of pperty of The design ed on these r the project transferred					
or otherwise reproduced without express written permission of Journeyman International Copyright 2018							
No.	Desc.	Date					
Sheet Name Ger	: neral No	otes					
Sheet Name Ger Date:	neral No	otes 04/05/2018					
Sheet Name Ger Date: Drawn By:	neral No	04/05/2018 Author					
Sheet Name Ger Date: Drawn By: Scale:	neral No	04/05/2018 Author					

E		I
Licensed S. DRAWINGS COUNTRY A DRAWINGS CONSTRUC	E. Seal: TO BE REVIE ARCHITECT/E NOT FOR TION	EWED BY IN- NGINEER
Project Title ASYV COI W	MUNITY CEN	NTER AND
These dra service Journeyma and inform drawings ar indicated a or otherwise written pe Interna	awings are inst and are the pr n International ation represen e exclusively fi nd shall not be reproduced w ermission of Jc ational Copyrig	ruments of operty of . The design ted on these or the project e transferred ithout express ourneyman ht 2018
	Revisions	1
No.	Desc.	Date
Sheet Name	ical De	tails
Date:		04/05/2018
		Author
Drawn By:		
Drawn By: Scale:		As indicated

E	TERNAT LO	I					
Licensed S. DRAWINGS COUNTRY A DRAWINGS CONSTRUC Project Title ASYV CON W These dra service Journeyma and inform drawings ar indicated a or otherwise written pp Interna	E. Seal: TO BE REVIE ARCHITECT/E NOT FOR TION MUNITY CEN OMENS CO-CO awings are inst and are the pr n International ation represent e exclusively fr and shall not be reproduced wis rrmission of Jo	WED BY IN- NGINEER NTER AND pP ruments of operty of . The design ted on these or the project transferred thout express urneyman th 2018					
International Copyright 2018							
No.	Desc.	Date					
Sheet Name	: :						
I yp	ical De	04/05/2018					
Drawn By:		Author					
Scale:		As indicated					
Sheet Num	ber:						

E	JERNATUS	HIN A
Licensed S DRAWINGS COUNTRY DRAWINGS CONSTRUC	.E. Seal: TO BE REVIE ARCHITECT/E NOT FOR CTION	WED BY IN- NGINEER
Project Titl ASYV CO W	e: MMUNITY CEN /OMENS CO-C	NTER AND
These dr service Journeyma and inform drawings au indicated a or otherwise written p Intern	awings are inst and are the pr an International lation represen re exclusively fi and shall not be e reproduced wi ermission of Jo ational Copyrig	ruments of operty of . The design ted on these or the project that express ourneyman ht 2018
	Revisions	
No.	Desc.	Date
Sheet Name Typ	≝ bical De	tails
Sheet Name Typ Date:	bical De	tails 04/05/2018
Sheet Name Typ Date: Drawn By:	bical De	tails 04/05/2018 Author
Sheet Name Typ Date: Drawn By: Scale:	bical De	tails 04/05/2018 Author As indicated
Sheet Name Typ Date: Drawn By: Scale: Scale:	ical De	tails 04/05/2018 Author As indicated

E	URHEY A	HIN HIN					
Licensed S.E. Seal: DRAWINGS TO BE REVIEWED BY IN- COUNTRY ARCHITECT/ENGINEER DRAWINGS NOT FOR CONSTRUCTION							
Project Title ASYV CON W	IMUNITY CEN OMENS CO-C	NTER AND					
These drawings are instruments of service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright 2018							
Revisions							
No.	Desc.	Date					
Sheet Name Typ	: ical De	tails					
Date:		04/05/2018					
Drawn By:		Author					
Scale:		As indicated					
Sheet Num	per:						

DRAWINGS TO BE REVIEWED BY IN-COUNTRY ARCHITECT/ENGINEER ASYV COMMUNITY CENTER AND WOMENS CO-OP These drawings are instruments of service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright 2018 Revisions Desc. Date Foundation Plan 04/05/2018 Author 1:50 S1.1

FOUNDATION PLAN NOTES:

1. FOR GENERAL NOTES SEE SHEET S0.1 2. SLAB ON GRADE CONSTRUCTION: 15 CM THICK CONCRETE SLAB W/ #3 @ 18" O/C EACH WAY 3. CENTER COLUMNS ON GRID LINES UNLESS SHOWN OTHERWISE. CENTER FOOTINGS UNDER COLUMNS UNLESS SHOWN OTHERWISE. 4. PROVIDE CONSTRUCTION JOINTS AND WEAKSWEED SHOWS

PROVIDE CONSTRUCTION JOINTS AND WEAKENED PLANE JOINTS
IN SLAB ON GRADE.
"FX" INDICATES A SPREAD FOOTING MARK PER SCHEDULE THIS

SHEET. 6. "CX" INDICATES A GRAVITY COLUMN MARK PER SCHEDULE THIS SHEET.

7. CONFINED BRICK MASONRY WALLS SHALL BE CONSTRUCTED WITH TWO WYTHES OF 120 MM THICK CLAY BRICKS.

LEGEND	
	INDICATES CONCRETE COLUMN
	INDICATES EDGE OF SLAB
	INDICATES GRIDLINE
	INDICATES CONCRETE FOOTING
$\langle X X X \rangle$	INDICATES CONFINED MASONRY WALL

FOOTING SCHEDULE										
MARK	SIZE	THICKNESS	REINFORCING							
F1	150 x 150 CM	60 CM	(5) #6 @ 12" O.C. EA							
F2	20 x 2.5 M	2.5 M	LONG: (6) #6 BOT., (8 TOP; TRANS: #6 @ 1 BOT., #8 @12" O.C. T							
F3	10 x 2 M	2 M	LONG: (6) #6 BOT., (8 TOP; TRANS: #6 @ 1 BOT., #8 @12" O.C. T							

COMMUNITY CENTER

	COLUMN S	CHEDULE
MARK	SIZE	REINFOR
C1	30 x 30 CM	(4) #4 B
C2	30 x 30 CM	(4) #5 B

1:50

WAY #8 " O.C. DP		UN HEVA	II II II II
#8 " O.C.)P	Licensed S. DRAWINGS COUNTRY / DRAWINGS CONSTRUC	E. Seal: TO BE REVIE ARCHITECT/EI NOT FOR TION	WED BY IN- NGINEER
CING RS RS	Project Title ASYV COI W These dra service Journeyma and inform drawings ar indicated a or otherwise written po Interna	MUNITY CEN OMENS CO-C awings are instr and are the pr and are the pr and are the pr and shall not be e exclusively for nd shall not be reproduced wi ermission of Jo attional Copyrigi	ITER AND P ruments of operty of The design ed on these or the project transferred transferred thout express urneyman ht 2018
		Revisions	
	No.	Desc.	Date
	Sheet Name	:	
	Four	ndation	Plan
	Four	ndation	Plan
	Four Date:	ndation	Plan 04/05/2018
	Four Date: Drawn By:	ndation	Plan 04/05/2018 Author
	Four Date: Drawn By: Scale:	ndation	Plan 04/05/2018 Author 1 : 50

SIUR REV PRATIUMS				
Licensed S.	E. Seal:			
DRAWINGS COUNTRY A DRAWINGS CONSTRUC	NOT FOR TION	EWED BY IN- ENGINEER		
Project Title	:			
ASYV CON W	MUNITY CE	NTER AND OP		
These dra service Journeyma and informa drawings ar indicated a or otherwise written pe Interna	awings are ins and are the p n Internationa ation represen e exclusively f nd shall not be reproduced w ermission of Jo ational Copyrig	truments of roperty of I. The design ted on these for the project e transferred <i>i</i> thout express ourneyman ght 2018		
	Revisions	1		
No.	Desc.	Date		
Sheet Name	Roof Pla	an		
Date:		04/05/2018		
Drawn By:		Author		
Scale:		1 : 50		
Sheet Numl	oer:			

E	AN ATTO	II II
Licensed S.	E. Seal:	
DRAWINGS COUNTRY A DRAWINGS CONSTRUC	NOT FOR	NGINEER
Project Title	.	
ASYV CON	MMUNITY CEN OMENS CO-O	TER AND P
These dra service Journeyma and inform drawings ar indicated a or otherwise written pe Interna	awings are instr and are the pro n International. ation represent e exclusively fo nd shall not be reproduced wit ermission of Jou ational Copyrigh	uments of operty of The design ed on these r the project transferred hout express urneyman ht 2018
	Revisions	
No.	Desc.	Date
Sheet Name	Roof Pla	n
		04/05/2018
Date:		Author
Date: Drawn By:		
Date: Drawn By: Scale:		1 : 50
Date: Drawn By: Scale: Sheet Numl	ber:	1 : 50

XI. APPENDIX C:

SENIOR PROJECT PRESENTATION

KWITUNGA: WOMEN'S COOPERATIVE AND OPPORTUNITY CENTER

BY TIA DEHARPPORT AND TANYA WOHLFARTH THURSDAY JUNE 7TH, 2018

INTRODUCTION

- A bout Journeyman International
- Project Description
- A manda's T hesis V ideo
- Structural Design
- Challenges
- Travel Experience

WHAT IS JOURNEYMAN INTERNATIONAL?

- Non-profit company started in 2009
- Coordinates the design and construction of international humanitarian projects
- Students complete work minimizes overall project cost

OUR PROJECT TEAM

- Two architectural engineering students (us)
- One architecture student (in the audience!)
- One construction management student

PROJECT LOCATION

- Rubona, Rwanda (30 km east of Kigali)

AMANDA'S THESIS VIDEO

PROJECT DESCRIPTION

- 4 one story buildings
 - Mango and pineapple harvesting building
 - Community center
 - Women's sewing cooperative
 - Storefront

STRUCTURAL DESIGN

MATERIALS

- Plywood diaphragm
- Timber trusses
- Confined masonry walls
- Concrete footings

STRUCTURAL DESIGN

- Lateral system:
 - Plywood diaphragm
 - Confined masonry walls w/ bond beams
- Gravity system:
 - Timber trusses
 - Confined masonry bearing walls
 - Concrete slab on grade
 - R einforced concrete footings

CONFINED MASONRY

- Masonry is confined by concrete to resist in-plane shear forces
- Common construction method in developing nations

Load bearing wall

DELIVERABLES: CALCULATIONS

- Building A
 - Storefront
- Building B
 - Women's sewing cooperative
 - Community center
 - Pineapple and mango cooperative

DELIVERABLES: DRAWINGS - BUILDING A

DELIVERABLES: DRAWINGS - BUILDING B

CHALLENGES: BUILDING MATERIALS

- Sizes of building materials (metric vs. imperial)
- Availability of building materials
- Transportation of building materials

CHALLENGES: CONFINED MASONRY

- Unreinforced masonry construction not allowed in U.S.
- Prescriptive design guide by EERI and IAEE was used

TRAVEL EXPERIENCE

- 10 days traveling around R wanda
 - Spent time in multiple towns
 - V isited project site and tourist destinations

TRAVEL EXPERIENCE: SITE VISIT

- Spent time taking measurements and looking at our project site
- Met the women who will be using the buildings we are designing

CONCLUSION

ANY QUESTIONS?

