12-2011

# On the Minimum Size of a Point Set Containing a 5-Hole and a Disjoint 4-Hole 

Bhaswar B. Bhattacharya<br>University of Pennsylvania<br>Sandip Das

Follow this and additional works at: https://repository.upenn.edu/statistics_papers
Part of the Applied Mathematics Commons, Business Commons, Mathematics Commons, and the Statistics and Probability Commons

## Recommended Citation

Bhattacharya, B. B., \& Das, S. (2011). On the Minimum Size of a Point Set Containing a 5-Hole and a Disjoint 4-Hole. Studia
Scientiarum Mathematicarum Hungarica, 48 (4), 445-457. http://dx.doi.org/10.1556/SScMath.2011.1173

For more information, please contact repository@pobox.upenn.edu.

# On the Minimum Size of a Point Set Containing a 5-Hole and a Disjoint 4-Hole 


#### Abstract

Let $H(k ; l), k \leq l$ denote the smallest integer such that any set of $H(k ; l)$ points in the plane, no three on a line, contains an empty convex $k$-gon and an empty convex l-gon, which are disjoint, that is, their convex hulls do not intersect. Hosono and Urabe [JCDCG, LNCS 3742, 117-122, 2004] proved that $12 \leq H(4,5) \leq 14$. Very recently, using a Ramseytype result for disjoint empty convex polygons proved by Aichholzer et al. [Graphs and Combinatorics, Vol. 23, 481-507, 2007], Hosono and Urabe [Kyoto CGGT, LNCS 4535, 90-100, 2008] improve the upper bound to 13. In this paper, with the help of the same Ramsey-type result, we prove that $H(4 ; 5)=12$.


## Keywords

primary 52C10, 52A10, convex hull, discrete geometry, empty convex polygons, Erdös-Szekeres theorem, Ramsey-type results

## Disciplines

Applied Mathematics $\mid$ Business $\mid$ Mathematics $\mid$ Statistics and Probability

# On the Minimum Size of a Point Set Containing a 5 -Hole and a Disjoint 4-Hole 

Bhaswar B. Bhattacharya ${ }^{1}$ and Sandip Das ${ }^{2}$<br>${ }^{1}$ Indian Statistical Institute, Kolkata, India, bhaswar.bhattacharya@gmail.com<br>${ }^{2}$ Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India, sandipdas@isical.ac.in


#### Abstract

Let $H(k, l)$ denote the smallest integer such that any set of $H(k, l)$ points in the plane, no three on a line, contains an empty convex $k$-gon and an empty convex $l$-gon, which are disjoint, that is, their convex hulls do not intersect. Hosono and Urabe [JCDCG, LNCS $3742,117-122,2004$ ] proved that $12 \leq H(4,5) \leq 14$. Very recently, using a Ramsey-type result for disjoint empty convex polygons proved by Aichholzer et al. [Graphs and Combinatorics, Vol. 23, 481-507, 2007], Hosono and Urabe [KyotoCGGT, LNCS 4535, 90-100, 2008] improve the upper bound to 13. In this paper, with the help of the same Ramsey-type result, we prove that $H(4,5)=12$.


Keywords. Convex hull, Discrete geometry, Empty convex polygons, Erdős-Szekeres theorem, Ramsey-type results.

## 1 Introduction

The famous Erdős-Szekeres theorem [7] states that for every positive integer $m$, there exists a smallest integer $E S(m)$, such that any set of at least $E S(m)$ points in the plane, no three on a line, contains $m$ points which lie on the vertices of a convex polygon. Evaluating the exact value of $E S(m)$ is a long standing open problem. A construction due to Erdős [8] shows that $E S(m) \geq 2^{m-2}+1$, which is also conjectured to be sharp. It is known that $E S(4)=5$ and $E S(5)=9$ [15]. Following a long computer search, Szekeres and Peters [19] recently proved that $E S(6)=17$. The value of $E S(m)$ is unknown for all $m>6$. The best known upper bound for $m \geq 7$ is due to Toth and Valtr [20]: $E S(m) \leq\binom{ 2 m-5}{m-3}+1$. For a more detailed description of the Erdős-Szekeres theorem and its numerous ramifications, see the surveys by Bárány and Károlyi [4] and Morris and Soltan [16].

In 1978 Erdős [6] asked whether for every positive integer $k$, there exists a smallest integer $H(k)$, such that any set of at least $H(k)$ points in the plane, no three on a line, contains $k$ points which lie on the vertices of convex polygon whose interior contains no points of the set. Such a subset is called an empty convex $k$-gon or a $k$-hole. Esther Klein showed $H(4)=5$ and Harborth [10] proved that $H(5)=10$. Horton [11] showed that it is possible to construct arbitrarily large set of points without a 7 -hole, thereby proving that $H(k)$ does not exist for $k \geq 7$. Recently, after a long wait, the existence of $H(6)$ has been proved by Gerken [9] and independently by Nicolás [17]. Later Valtr [22] gave a simpler version of Gerken's proof.

The problems concerning disjoint holes, that is, empty convex polygons with disjoint convex hulls, was first studied by Urabe [21] while addressing the problem of partitioning of planar point sets. For any set $S$ of points in the plane, denote by $C H(S)$ the convex hull of $S$. Given a set $S$ of $n$ points in the plane, no three on a line, a disjoint convex partition of $S$ is a partition of $S$ into subsets $S_{1}, S_{2}, \ldots S_{t}$, with $\sum_{i=1}^{t}\left|S_{i}\right|=n$, such that for each $i \in\{1,2, \ldots, t\}, C H\left(S_{i}\right)$ forms a $\left|S_{i}\right|$-gon and $C H\left(S_{i}\right) \cap C H\left(S_{j}\right)=\emptyset$, for any pair of indices
$i, j$. Observe that in any disjoint convex partition of $S$, the set $S_{i}$ forms a $\left|S_{i}\right|$-hole and the holes formed by the sets $S_{i}$ and $S_{j}$ are disjoint for any pair of distinct indices $i, j$. If $F(S)$ denote the minimum number of disjoint holes in any disjoint convex partition of $S$, then $F(n)=\max _{S} F(S)$, where the maximum is taken over all sets $S$ of $n$ points, is called the disjoint convex partition number for all sets of fixed size $n$. The disjoint convex partition number $F(n)$ is bounded by $\left\lceil\frac{n-1}{4}\right\rceil \leq F(n) \leq\left\lceil\frac{5 n}{18}\right\rceil$. The lower bound is by Urabe [21] and the upper bound by Hosono and Urabe [14]. The proof of the upper bound uses the fact that every set of 7 points in the plane contains a 3 -hole and a disjoint 4 -hole. Later, Xu and Ding [25] improved the lower bound to $\left\lceil\frac{n+1}{4}\right\rceil$.

Another class of related problems arise if the condition of disjointness is relaxed. Given a set $S$ of $n$ points in the plane, no three on a line, a empty convex partition of $S$ is a partition of $S$ into subsets $S_{1}, S_{2}, \ldots S_{t}$, with $\sum_{i=1}^{t}\left|S_{i}\right|=n$, such that for each $i \in\{1,2, \ldots, t\}$, $C H\left(S_{i}\right)$ forms a $\left|S_{i}\right|$-hole in $S$. In this case, $C H\left(S_{i}\right)$ and $C H\left(S_{j}\right)$ may intersect for some pair of distinct indices $i$ and $j$. If $G(S)$ denote the minimum number of holes in any empty convex partition of $S$, then the empty convex partition number for all sets of fixed size $n$ is $G(n)=\max _{S} G(S)$, where the maximum is taken over all sets $S$ of $n$ points. Urabe [21] proved that $\left\lceil\frac{n-1}{4}\right\rceil \leq G(n) \leq\left\lceil\frac{3 n}{11}\right\rceil$. Xu and Ding [25] improved the bounds to $\left\lceil\frac{n+1}{4}\right\rceil \leq$ $G(n) \leq\left\lceil\frac{5 n}{14}\right\rceil$. The upper bound bound was further improved to $\left\lceil\frac{9 n}{34}\right\rceil$ by Ding et al. [5].

In [14], Urabe defined the function $F_{k}(n)=\min _{S} F_{k}(S)$, where $F_{k}(S)$ is the maximum number of $k$-holes in a disjoint convex partition of $S$, and the the minimum being taken over all sets $S$ of $n$ points. Using the fact that the minimum size of a point set containing two disjoint 4-holes is 9 , they showed that $F_{4}(n) \geq\left\lfloor\frac{5 n}{22}\right\rfloor$. Recently, Wu and Ding [23] defined $G_{k}(n)=\min _{S} G_{k}(S)$, where $G_{k}(S)$ is the maximum number of $k$-holes in a empty convex partition of $S$, and the the minimum being taken over all sets $S$ of $n$ points. They proved that $G_{4}(n) \geq\left\lfloor\frac{9 n}{38}\right\rfloor$. The problem of obtaining non-trivial lower bounds on $F_{5}(n)$ and $G_{5}(n)$ remains open.

Hosono and Urabe [13] also introduced the function $H(k, l), k \leq l$, which denotes the smallest integer such that any set of $H(k, l)$ points in the plane, no three on a line, contains both a $k$-hole and a l-hole which are disjoint. Clearly, $H(3,3)=6$ and Horton's result [11] implies that $H(k, l)$ does not exist for all $l \geq 7$. Urabe [21] showed that $H(3,4)=7$, while Hosono and Urabe [14] showed that $H(4,4)=9$. Hosono and Urabe [13] also proved that $H(3,5)=10$ and $12 \leq H(4,5) \leq 14$. The results $H(3,4)=7$ and $H(4,5) \leq 14$ were later reconfirmed by Wu and Ding [24]. Very recently, using a Ramsey-type result for disjoint empty convex polygons proved by Aichholzer et al. [1], Hosono and Urabe [12] proved that $12 \leq H(4,5) \leq 13$, thus improving upon their earlier result.

In this paper, using the same Ramsey-type result, we evaluate the exact value of $H(4,5)$, thereby improving upon the result of Hosono and Urabe [12], as stated in the following theorem.

Theorem 1. $H(4,5)=12$.
While addressing the problem of pseudo-convex decomposition, Aichholzer et al. [1] proves the following theorem with the help of the order type data base ([2], [3]). Here, we use this result to prove Theorem 1.

Theorem 2. [1] Every set of 11 points in the plane, no three on a line, contains either a 6 -hole or a 5-hole and a disjoint 4-hole.

The outline of the proof of Theorem 1 is as follows. Consider a set $S$ of 12 points in the plane, no three on a line. Theorem 2 implies that $S$ always contains a 6 -hole or a 5 -
hole and a 4 -hole, which are disjoint. If $S$ contains a 5 -hole and a disjoint 4 -hole, we are done. Therefore, it suffices to assume that $S$ contains a 6 -hole. Next, we show that if $S$ contains a 7 -hole, then $S$ contains a 5 -hole and a disjoint 4 -hole. Thus, we assume that $S$ contains a 6 -hole, which cannot be extended to a 7 -hole. Then we consider a subdivision of the exterior of the 6 -hole and prove the existence a 5 -hole and a disjoint 4 -hole for all the different possible distributions of the remaining 6 points in the regions formed by the subdivision. The formal proof of Theorem 1 is presented in Section 3.

## 2 Definitions and Notations

We first introduce the definitions and notations required for the remaining part of the paper. Let $S$ be a finite set of points in the plane in general position, that is, no three on a line. Denote the convex hull of $S$ by $C H(S)$. The boundary vertices of $C H(S)$, and the points of $S$ in the interior of $C H(S)$ are denoted by $\mathcal{V}(C H(S))$ and $\mathcal{I}(C H(S))$, respectively. A region $R$ in the plane is said to be empty in $S$ if $R$ contains no elements of $S$ in its interior. Moreover, for any set $T,|T|$ denotes the cardinality of $T$.

By $P:=p_{1} p_{2} \ldots p_{k}$ we denote a convex $k$-gon with vertices $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ taken in anti-clockwise order. $\mathcal{V}(P)$ denotes the set of vertices of $P$ and $\mathcal{I}(P)$ the interior of $P$. The collection of all points $q \in \mathbb{R}^{2}$ such that $\{q\} \cup \mathcal{V}(P)$ form a convex $(k+1)$-gon is called the forbidden zone of $P$. The forbidden zone of the pentagon $P:=p_{1} p_{2} p_{3} p_{4} p_{5}$ is the shaded region as shown in Figure 1(a).

For any three points $p, q, r \in S, \mathcal{H}(p q, r)$ denotes the open halfplane bounded by the line $p q$ containing the point $r$. Similarly, $\overline{\mathcal{H}}(p q, r)$ is the open halfplane bounded by $p q$ not containing the point $r$. Moreover, if $\angle r p q<\pi, C o n e(r p q)$ denotes the interior of the angular domain $\angle r p q$. A point $s \in C o n e(r p q) \cap S$ is called the nearest angular neighbor of $\vec{p} \vec{q}$ in Cone (rpq) if Cone (spq) is empty in $S$. Similarly, for any convex region $R$ a point $s \in R \cap S$ is called the nearest angular neighbor of $\overrightarrow{p q}$ in $R$ if $\operatorname{Cone}(s p q) \cap R$ is empty in $S$. More generally, for any positive integer $k$, a point $s \in S$ is called the $k$-th angular neighbor of $\vec{p} \vec{q}$ whenever Cone $(s p q) \cap R$ contains exactly $k-1$ points of $S$ in its interior.


Fig. 1. (a) Forbidden zone of a pentagon $P$, (b) 11 points without a 5 -hole and a 4 -hole which are disjoint [13], and (c) Illustration of the proof of Observation 1.

## 3 Proof of Theorem 1

Urabe and Hosono [13] constructed a set of 11 points not containing an 4-hole and a disjoint 5 -hole, which is shown in Figure 1(b). This implies that $H(4,5) \geq 12$. Therefore, for proving the theorem it suffices to show that $H(4,5) \leq 12$.

Let $S$ be a set of 12 points in general position in the plane. We say $S$ is admissible whenever $S$ contains a 4 -hole and 5 -hole which are disjoint.

First, consider that $S$ does not contain a 6 -hole. Then Theorem 2 implies that $S$ must contain a 5 -hole and a disjoint 4 -hole. Therefore, assume that $S$ contains a 6 -hole.

We now have the following observation:

Observation 1 If $S$ contains a 7-hole, then $S$ is admissible.
Proof. Let $H:=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$ be a 7 -hole in $S$. For $i \in\{1,2, \ldots, 7\}$, let $Q_{i}$ denote the region Cone $\left(s_{i+3} s_{i} s_{i+4}\right) \backslash \mathcal{I}\left(s_{i+3} s_{i} s_{i+4}\right)$ (Figure 1(c)), with indices taken modulo 7. If $\mid Q_{1} \cap$ $S \mid=0$, then by the pigeon-hole principle either $\left|\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S\right| \geq 5$ or $\left|\overline{\mathcal{H}}\left(s_{1} s_{5}, s_{2}\right) \cap S\right| \geq 5$. Without loss of generality, let $\left|\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S\right| \geq 5$. Then $\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S$ contains a 4-hole, since $H(4)=5$. This 4 -hole is disjoint from the 5 -hole $s_{1} s_{4} s_{5} s_{6} s_{7}$. Therefore, whenever $\left|Q_{i} \cap S\right|=0$ for some $i \in\{1,2, \ldots, 7\}$, then $S$ is admissible. However, $\left|Q_{i} \cap S\right| \geq 1$ for all $i \in\{1,2, \ldots, 7\}$ implies, $\sum_{i=1}^{7}\left|Q_{i} \cap S\right| \geq 7>5=|S|-|\mathcal{V}(H)|$, which is a contradiction.


Fig. 2. The subdivision of the exterior of the 6 -hole $s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$.

Let $B:=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$ be a 6-hole in $S$. In light of Observation 1, it can be assumed that the forbidden zone of $B$ is empty in $S$, that is, $B$ cannot be extended to a 7 -hole. Hereafter, while indexing the points of $\mathcal{V}(B)$, we identify the indices modulo 6 .

We begin with a simple observation:
Observation 2 If for some $s_{i} \in \mathcal{V}(B),\left|\overline{\mathcal{H}}\left(s_{i} s_{i+1}, s_{i+2}\right) \cap S\right| \geq 4$, then $S$ is admissible.
Proof. If $\left|\overline{\mathcal{H}}\left(s_{i} s_{i+1}, s_{i+2}\right) \cap S\right| \geq 4$, then $\left(\overline{\mathcal{H}}\left(s_{i} s_{i+1}, s_{i+2}\right) \cap S\right) \cup\left\{s_{i}\right\}$ contains a 4-hole, as $H(4)=5$. This 4 -hole is disjoint from the 5 -hole formed by $\mathcal{V}(B) \backslash\left\{s_{i}\right\}$. Hence $S$ is admissible.

Consider the subdivision of the exterior of the hexagon $B$ into regions $R_{i}$ and $R_{i} R_{j}$, as shown in Figure 2. The regions of the type $R_{i}$ are disjoint from each other, but the regions of the type $R_{i} R_{j}$ may overlap with each other but are disjoint from regions of the type $R_{i}$. Observe that in Figure 2, the deeply shaded region $R$ is the intersection of the regions $R_{2} R_{3}$ and $R_{1} R_{12}$. $\left|R_{i}\right|$ or $\left|R_{i} R_{j}\right|$ denotes the number of points of $S$ in $R_{i}$ or $R_{i} R_{j}$, respectively. Also, let $s, s^{\prime}$ be two points on the extended line $s_{1} s_{4}$ as shown in Figure 2.


Fig. 3. Illustration of the proof of (a) Observation 3 and (b) Observation 4.

Note, Observation 2 implies that for all $s_{i} \in \mathcal{V}(B),\left|\overline{\mathcal{H}}\left(s_{i} s_{i+1}, s_{i+2}\right) \cap S\right| \leq 3$. In particular, $\left|R_{i}\right| \leq 3$ for all $i \in\{1,2, \ldots, 12\}$. Now, we have the following observations:

Observation $3 S$ is admissible, if $\left|R_{i}\right|=3$ for some $i \in\{1,2, \ldots, 12\}$.
Proof. Without loss of generality assume $\left|R_{2}\right|=3$. Let $s_{\alpha} \in S$ be the nearest angular neighbor of $\overrightarrow{s_{2} s_{1}}$ in $R_{2}$. Observation 2 implies that $S$ is admissible unless $\mid\left(\mathcal{H}\left(s_{1} s_{2}, s_{\alpha}\right) \backslash R_{2}\right) \cap$ $S\left|=\left|\left(\mathcal{H}\left(s_{1} s_{6}, s_{\alpha}\right) \backslash R_{2}\right) \cap S\right|=0\right.$.

Case 1: The forbidden zone of the 5-hole $s_{\alpha} s_{2} s_{3} s_{4} s_{1}$ is empty in $R_{2} \cap S$. Let $s_{\beta}$ and $s_{\gamma}$ be the other two points in $R_{2} \cap S$ such that $s_{\beta}$ is the nearest angular neighbor of $\overrightarrow{s_{2} s_{\alpha}}$
in $R_{2} \cap S$. If $s_{\gamma} \in \mathcal{H}\left(s_{\alpha} s_{\beta}, s_{1}\right)$, then $s_{1} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4 -hole which is disjoint from the 5 hole $s_{2} s_{3} s_{4} s_{5} s_{6}$ (see Figure 3(a)). Otherwise, $s_{\gamma} \in \mathcal{H}\left(s_{\alpha} s_{\beta}, s_{2}\right)$, and $s_{2} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4-hole disjoint from 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$.
Case 2: There exists $s_{\beta} \in R_{2} \cap S$ such that $s_{\alpha} s_{\beta} s_{2} s_{3} s_{4} s_{1}$ is a 6 -hole. If $\mid$ Cone $\left(s s_{1} s_{3}\right) \cap S \mid \geq 5$, $\operatorname{Cone}\left(s s_{1} s_{3}\right) \cap S$ contains a 4 -hole, since $H(4)=5$. This 4 -hole and the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$ are disjoint (see Figure 3(a)). Otherwise, $\mid$ Cone $\left(s_{1} s_{3}\right) \cap S \mid \leq 4$, and so $\mid \operatorname{Cone}\left(s_{6} s_{1} s_{3}\right) \cap$ $S \mid \geq 5$. This implies that the 4 -hole contained $\operatorname{Cone}\left(s_{6} s_{1} s_{3}\right) \cap S$ is disjoint from 5-hole $s_{\alpha} s_{\beta} s_{2} s_{3} s_{1}$.

Observation $4 S$ is admissible, if $\left|R_{i}\right|=2$ for some $i \in\{1,2, \ldots, 12\}$.
Proof. Without loss of generality assume $\left|R_{2}\right|=2$. Let $R_{2} \cap S=\left\{s_{\alpha}, s_{\beta}\right\}$, where $s_{\alpha}$ is the nearest angular neighbor of $\overrightarrow{s_{2} s_{1}}$ in $R_{2}$. There are two cases:

Case 1: $s_{\alpha}$ lies inside the triangle $s_{1} s_{2} s_{\beta}$. Let $s^{*}, t^{*}$ be as shown in Figure 3(b). If there exists a point $s_{\gamma} \in S \backslash\left\{s_{\alpha}, s_{\beta}\right\}$ in the halfplane $\mathcal{H}\left(s_{1} s_{2}, s_{\alpha}\right)$ or $\mathcal{H}\left(s_{1} s_{6}, s_{\alpha}\right)$, then either $s_{1} s_{\alpha} s_{\beta} s_{\gamma}$ or $s_{2} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4 -hole, and the admissibility of $S$ is immediate. Hence, assume that $s_{\alpha}$ and $s_{\beta}$ are the only points of $S$ in these two halfplanes. Observe that $\mid \operatorname{Cone}\left(s s_{1} s_{3}\right) \cap$ $S \mid \geq 3$. Since $H(4)=5$, Cone $\left(s s_{1} s_{3}\right) \cap S$ contains a 4-hole whenever $\mid \operatorname{Cone}\left(s s_{1} s_{3}\right) \cap$ $S \mid \geq 5$. This 4 -hole is then disjoint from 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$. Therefore, assume that $3 \leq \mid$ Cone $\left(s s_{1} s_{3}\right) \cap S \mid \leq 4$.

Case 1.1: $\left|\operatorname{Cone}\left(s s_{1} s_{3}\right) \cap S\right|=4$. This implies that $\left|\operatorname{Cone}\left(s_{2} s_{3} t^{*}\right) \cap S\right|=1$. Suppose, Cone $\left(s_{2} s_{3} t^{*}\right) \cap S=\left\{s_{\gamma}\right\}$. If $s_{\gamma} \in \operatorname{Cone}\left(s_{\beta} s_{\alpha} s_{2}\right)$, then $s_{\beta} s_{\alpha} s_{2} s_{\gamma}$ is a 4 -hole which is disjoint from the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$. Otherwise, $s_{2} s_{\alpha} s_{1} s_{3} s_{\gamma}$ is a 5 -hole which is disjoint from the 4 -hole contained in Cone $\left(s_{3} s_{1} s_{6}\right) \cap S$, since $\left|\operatorname{Cone}\left(s_{3} s_{1} s_{6}\right) \cap S\right| \geq 5$.
Case 1.2: $\mid$ Cone $\left(s s_{1} s_{3}\right) \cap S \mid=3$. If $\left|\mathcal{H}\left(s_{3} s_{5}, s_{4}\right) \cap S\right| \geq 5, H(4)=5$ immediately implies the admissibility of $S$. Hence, assume that $\left|\mathcal{H}\left(s_{3} s_{5}, s_{4}\right) \cap S\right|=\lambda \leq 4$. Now, since $\overline{\mathcal{H}}\left(s_{1} s_{2}, s_{4}\right) \cap S=\overline{\mathcal{H}}\left(s_{1} s_{6}, s_{4}\right) \cap S=\left\{s_{\alpha}, s_{\beta}\right\}$ and $\operatorname{Cone}\left(s_{2} s_{3} t^{*}\right) \cap S$ is empty, we have $\left|\overline{\mathcal{H}}\left(s_{3} s_{5}, s_{4}\right) \cap\left(R_{10} \cap S\right)\right|=5-\lambda$. Then there exists $s_{\gamma} \in \overline{\mathcal{H}}\left(s_{3} s_{5}, s_{4}\right) \cap\left(R_{10} \cap S\right)$ such that $s_{1} s_{2} s_{3} s_{\gamma} s_{6}$ is a 5 -hole which is disjoint from the 4 -hole contained in $\mathcal{H}\left(s_{3} s_{\gamma}, s_{4}\right)$.
Case 2: $s_{1}, s_{2}, s_{\beta}, s_{\alpha}$ are in convex position. Then $s_{1} s_{3} s_{4} s_{5} s_{6}$ and $s_{1} s_{\alpha} s_{\beta} s_{2} s_{3}$ are two 5holes sharing the edge $s_{1} s_{3}$. Now, since $\left|S \backslash\left\{s_{1}, s_{3}\right\}\right|=10$, by the pigeonhole principle either $\left|\mathcal{H}\left(s_{1} s_{3}, s_{2}\right) \cap S\right| \geq 5$ or $\left|\overline{\mathcal{H}}\left(s_{1} s_{3}, s_{2}\right) \cap S\right| \geq 5$. Therefore, the 4-hole contained in $\mathcal{H}\left(s_{1} s_{3}, s_{2}\right) \cap S$ or $\overline{\mathcal{H}}\left(s_{1} s_{3}, s_{2}\right) \cap S$ is disjoint from the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$ or $s_{1} s_{\alpha} s_{\beta} s_{2} s_{3}$, respectively.

Equipped with these three observations we proceed with the proof of Theorem 1. For every point $s_{i} \in \mathcal{V}(B)$, the diagonal $d:=s_{i} s_{i+3}$ is called a dividing diagonal of $B$. A dividing diagonal $d$ of $B$ is called an $(a, b)$ - splitter of $S$, where $a \leq b$ are integers, if either $\left|\mathcal{H}\left(s_{i} s_{i+3}, s_{i+1}\right) \cap S \backslash \mathcal{V}(B)\right|=a$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{i+3}, s_{i+1}\right) \cap S \backslash \mathcal{V}(B)\right|=b$, or $\mid \overline{\mathcal{H}}\left(s_{i} s_{i+3}, s_{i+1}\right) \cap$ $S \backslash \mathcal{V}(B) \mid=a$ and $\left|\mathcal{H}\left(s_{i} s_{i+3}, s_{i+1}\right) \cap S \backslash \mathcal{V}(B)\right|=b$.

From Observations 3 and 4 , we have $\left|R_{i}\right| \leq 1$ for all $i \in\{1,2, \ldots, 12\}$. Now, if some dividing diagonal of $B$, say $s_{1} s_{4}$, is a $(0,6)$-splitter of $S$ with $\left|\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S \backslash \mathcal{V}(B)\right|=6$, then from Observation 2, $\left|\overline{\mathcal{H}}\left(s_{2} s_{3}, s_{1}\right) \cap S\right| \leq 3$, and hence $\left|R_{2}\right|+\left|R_{7}\right| \geq 3$. Then, either $\left|R_{2}\right| \geq 2$ or $\left|R_{7}\right| \geq 2$, and the admissibility of $S$ is immediate from Observations 3 and 4 . Therefore, no dividing diagonal of $B$ is a $(0,6)$-splitter of $S$. The only cases which remain to be considered are:


Fig. 4. (a) $s_{1} s_{4}$ is a (1,5)-splitter of $S$ such that $\left|R_{2}\right|=\left|R_{7}\right|=1$, (b) $s_{1} s_{4}$ is a (2,4)-splitter of $S$ such that $\left|R_{2}\right|=1$.

Case 1: $s_{1} s_{4}$ is a $(1,5)$-splitter of $S$ with $\left|\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S \backslash \mathcal{V}(B)\right|=5$. Observations 2, 3, and 4 imply that $\left|R_{2}\right|=\left|R_{7}\right|=1$. Let $s^{\prime \prime}, s^{*}, u, v$ be as shown in Figure 4(a). Let $s_{\alpha} \in R_{2} \cap S$ and $s_{r} \in R_{7} \cap S$. Now, $\left|\mathcal{H}\left(s_{2} s_{3}, s_{1}\right) \cap S\right|=3$ and Observation 2 implies that either $\left|\operatorname{Cone}\left(u s_{2} s^{\prime \prime}\right) \cap S\right|=2$ or $\left|\operatorname{Cone}\left(v s_{3} s^{*}\right) \cap S\right|=2$. Without loss of generality assume, $\mid$ Cone $\left(u s_{2} s^{\prime \prime}\right) \cap S \mid=2$. Let $s_{\beta}, s_{\gamma} \in \operatorname{Cone}\left(u s_{2} s^{\prime \prime}\right) \cap S$, such that $s_{\beta}$ is the nearest angular neighbor of $\overrightarrow{s_{2} u}$ in Cone $\left(u s_{2} s^{\prime \prime}\right)$. If $s_{\alpha} \in \mathcal{I}\left(s_{2} s_{1} s_{\beta}\right)$, then either $s_{2} s_{\alpha} s_{\beta} s_{\gamma}$ or $s_{1} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4 -hole which is disjoint from the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$ or $s_{2} s_{3} s_{4} s_{5} s_{6}$, respectively. Otherwise, $s_{\alpha} \notin \mathcal{I}\left(s_{2} s_{1} s_{\beta}\right)$ and $s_{1} s_{\alpha} s_{\beta} s_{2}$ is a 4 -hole. It can be assumed that the forbidden zone of $s_{1} s_{\alpha} s_{\beta} s_{2}$ is empty in $\overline{\mathcal{H}}\left(s_{2} s_{3}, s_{1}\right) \cap S$. Then, $s_{\beta} \in \mathcal{I}\left(s_{2} s_{\alpha} s_{\gamma}\right)$ (see Figure 4(a)). If $s_{\delta} \in S$ is the remaining point in $\mathcal{H}\left(s_{2} s_{3}, s_{\gamma}\right) \cap S$, then either $s_{\alpha} s_{\beta} s_{\gamma} s_{\delta}$ or $s_{2} s_{\beta} s_{\gamma} s_{\delta}$ is a 4-hole disjoint from the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$.
Case 2: $s_{1} s_{4}$ is a (2,4)-splitter of $S$ with $\left|\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S \backslash \mathcal{V}(B)\right|=4$. Without loss of generality, suppose $\left|R_{2}\right|=1$. Let $s_{\alpha} \in R_{2} \cap S$. Refer to Figure 4(b). If $\left|R_{7}\right| \neq 0$, there exists $s_{\beta} \in R_{7} \cap S$ such that $s_{\alpha} s_{2} s_{3} s_{\beta} s_{4}$ is a 5 -hole which is disjoint from the 4 -hole contained in $\left(\mathcal{H}\left(s_{1} s_{4}, s_{5}\right) \cap S\right) \cup\left\{s_{1}\right\}$. Therefore, assume that $\left|R_{7}\right|=0$. Similarly, it can be shown that $S$ is admissible unless $\left|R_{1}\right|=\left|R_{8}\right|=0$. So, $\left|\overline{\mathcal{H}}\left(s_{5} s_{6}, s_{1}\right) \cap S\right|=2$. Let $\overline{\mathcal{H}}\left(s_{5} s_{6}, s_{1}\right) \cap S=\left\{s_{q}, s_{r}\right\}$. If $s_{5}, s_{6}, s_{q}, s_{r}$ are in convex position, then this 4 -hole is disjoint from the 5 -hole $s_{\alpha} s_{2} s_{3} s_{4} s_{1}$. Therefore, assume that $s_{q} \in \mathcal{I}\left(s_{5} s_{6} s_{r}\right)$. This implies that either $s_{q}, s_{r} \in \overline{\mathcal{H}}\left(s_{1} s_{6}, s_{4}\right)$ or $s_{q}, s_{r} \in \overline{\mathcal{H}}\left(s_{4} s_{5}, s_{1}\right)$. If $s_{q}, s_{r} \in \overline{\mathcal{H}}\left(s_{1} s_{6}, s_{4}\right)$, then $s_{\alpha} s_{6} s_{q} s_{r}$ is a 4 -hole which is disjoint from the 5 -hole $s_{1} s_{2} s_{3} s_{4} s_{5}$. Therefore, let $s_{q}, s_{r} \in \overline{\mathcal{H}}\left(s_{4} s_{5}, s_{1}\right) \cap S$ (see Figure 4(b)). Again, $S$ is admissible unless $R_{6} R_{7}$ is empty in $S$. If $\left|\operatorname{Cone}\left(s s_{1} s_{2}\right) \cap \overline{\mathcal{H}}\left(s_{2} s_{3}, s_{1}\right) \cap S\right| \geq 3$, then $\left|\overline{\mathcal{H}}\left(s_{1} s_{2}, s_{3}\right) \cap S\right| \geq 4$, and the admissibility of $S$ follows from Observation 2. Again, if $\left|\operatorname{Cone}\left(s s_{1} s_{2}\right) \cap \mathcal{H}\left(s_{2} s_{3}, s_{1}\right) \cap S\right| \leq 1$, then $\left|R_{5}\right|+\left|R_{6}\right| \geq 2$. From Observations 3 and 4 , it suffices to consider $\left|R_{5}\right|=\left|R_{6}\right|=1$. Then, $\left\{s_{1}, s_{2}, s_{3}, s_{6}\right\} \cup\left(R_{5} \cap S\right)$ forms a 5 -hole which is disjoint from the 4 -hole $s_{r} s_{q} s_{5} s_{4}$. Therefore, assume that $\mid$ Cone $\left(s s_{1} s_{2}\right) \cap \overline{\mathcal{H}}\left(s_{2} s_{3}, s_{1}\right) \cap S \mid=2$. Let $s_{\beta}, s_{\gamma} \in$ Cone $\left(u s_{2} s^{\prime \prime}\right) \cap S$, such that $s_{\beta}$ is the nearest angular neighbor of $\overrightarrow{s_{2} u}$ in Cone $\left(u s_{2} s^{\prime \prime}\right)$. Refer to Figure 4(a). If $s_{\alpha} \in \mathcal{I}\left(s_{2} s_{1} s_{\beta}\right)$, then either $s_{2} s_{\alpha} s_{\beta} s_{\gamma}$ or $s_{1} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4 -hole which is disjoint from the 5-hole $s_{1} s_{3} s_{4} s_{5} s_{6}$ or $s_{2} s_{3} s_{4} s_{5} s_{6}$, respectively. Otherwise, $s_{\alpha} \notin \mathcal{I}\left(s_{2} s_{1} s_{\beta}\right)$ and $s_{1} s_{\alpha} s_{\beta} s_{2}$ is a

4-hole. It can be assumed that the forbidden zone of $s_{1} s_{\alpha} s_{\beta} s_{2}$ is empty in $\overline{\mathcal{H}}\left(s_{2} s_{3}, s_{1}\right) \cap S$. Then, $s_{\beta} \in \mathcal{I}\left(s_{2} s_{\alpha} s_{\gamma}\right)$. If $s_{\delta} \in S$ is the remaining point in $\mathcal{H}\left(s_{2} s_{3}, s_{\gamma}\right) \cap S$, then either $s_{\alpha} s_{\beta} s_{\gamma} s_{\delta}$ or $s_{2} s_{\beta} s_{\gamma} s_{\delta}$ is a 4-hole disjoint from the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$.


Fig. 5. All the dividing diagonals of $B$ are (3,3)-splitters of $S$ : (a) Case 3.1, (b) Case 3.2

Case 3: All the dividing diagonals of the hexagon $B$ are $(3,3)$-splitters of $S$. Suppose $R_{1} \cap S$ is non-empty. Then, there exists $s_{\alpha} \in R_{1} \cap S$ such that $s_{\alpha} s_{1} s_{4} s_{5} s_{6}$ is a 5 -hole. This 5 -hole is disjoint from the 4 -hole contained in $\mathcal{H}\left(s_{1} s_{4}, s_{2}\right) \cap S$, since $H(4)=5$. Therefore, it can be assumed that $\left|R_{i}\right|=0$ for $i \in\{1,2, \ldots, 12\}$. Observation 2 and the fact that $|S \backslash \mathcal{V}(B)|=6$ now implies that for any point $s_{i} \in \mathcal{V}(B),\left|\overline{\mathcal{H}}\left(s_{i} s_{i+1}, s_{i+2}\right) \cap S\right|=3$. Therefore, regions in the exterior of the hexagon $B$, where the regions of the type $R_{i} R_{j}$ intersect must be empty in $S$. Now, we consider the following two cases:

Case 3.1: $\left|R_{i} R_{j}\right| \leq 2$ for all pair of indices $i, j$. Observe that either $\left|R_{2} R_{3}\right|+\left|R_{4} R_{5}\right| \geq 2$ or $\left|R_{4} R_{5}\right|+\left|R_{6} R_{7}\right| \geq 2$. Without loss of generality assume that $\left|R_{2} R_{3}\right|+\left|R_{4} R_{5}\right| \geq 2$. To begin with, suppose that $\left|R_{2} R_{3}\right|+\left|R_{4} R_{5}\right|=2$, with $\left(R_{2} R_{3} \cup R_{4} R_{5}\right) \cap S=\left\{s_{\alpha}, s_{\beta}\right\}$ and $R_{6} R_{7} \cap S=\left\{s_{\gamma}\right\}$. If the four points $s_{2}, s_{\alpha}, s_{\beta}, s_{\gamma}$ form a convex quadrilateral, $S$ is clearly admissible. Otherwise, let $s_{\beta} \in \mathcal{I}\left(s_{2} s_{\alpha} s_{\gamma}\right)$ and $R_{1} R_{12} \cap S=\left\{s_{\delta}\right\}$. Depending on the position of the point $s_{\delta}$, either $s_{2} s_{\beta} s_{\alpha} s_{\delta}$ or $s_{\delta} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4 -hole which is disjoint from the 5 -hole $s_{1} s_{3} s_{4} s_{5} s_{6}$ (see Figure 5(a)). Now, let $\left|R_{2} R_{3}\right|+\left|R_{4} R_{5}\right|=3$ and without loss of generality, assume $\left|R_{2} R_{3}\right|=2$ and $\left|R_{4} R_{5}\right|=1$. Then $\left|R_{1} R_{12}\right|=0$ and $\left|R_{10} R_{11}\right|=1$, since all three dividing diagonals of $B$ are $(3,3)$-splitters of $S$. From symmetry, it is the same case as before.
Case 3.2: $\left|R_{i} R_{j}\right|=3$ some pair of indices $i, j$. Without loss of generality assume that $\left|R_{1} R_{12}\right|=3$. This implies that $\left|R_{6} R_{7}\right|=3$. Let $s_{0}$ be as shown in Figure $5(\mathrm{~b})$ and $s_{\alpha}, s_{\beta}, s_{\gamma}$ be the first, second, and third angular neighbors of $\overrightarrow{s_{3} s_{0}}$ in $R_{6} R_{7}$, respectively. If $s_{\alpha} \in \mathcal{I}\left(s_{3} s_{4} s_{\beta}\right)$ the admissibility of $S$ follows from the fact that $s_{3} s_{\alpha} s_{\beta} s_{\gamma}$ or $s_{4} s_{\alpha} s_{\beta} s_{\gamma}$ is a 4 -hole which is disjoint from the 5 -hole $s_{1} s_{2} s_{4} s_{5} s_{6}$ or $s_{1} s_{2} s_{3} s_{5} s_{6}$, respectively. Otherwise, $s_{\alpha} \notin \mathcal{I}\left(s_{3} s_{4} s_{\beta}\right)$, and similarly $s_{\gamma} \notin \mathcal{I}\left(s_{2} s_{3} s_{\beta}\right)$.

Then, either $s_{1} s_{3} s_{\beta} s_{\alpha} s_{4}$ or $s_{1} s_{3} s_{\beta} s_{\gamma} s_{2}$ is a 5 -hole which is disjoint from the 4 -hole contained in $\left(R_{1} R_{12} \cap S\right) \cup\left\{s_{5}, s_{6}\right\}$.

## 4 Remarks and Conclusions

In this paper we proved that $H(4,5)=12$, that is, every set of 12 points in plane in general position contains a 4-hole and a disjoint 5-hole, thus improving a result of Hosono and Urabe [12]. The proof uses a Ramsey type result for 11 points proposed by Aichholzer et al. [1].

The most important case that remains to be settled is that of $H(5,5)$. Urabe and Hosono [13] proved that $16 \leq H(5,5) \leq 20$, and later improved the lower bound to 17 [12]. There is still a substantial gap between the upper and lower bounds of $H(5,5)$. We believe that a new Ramsey-type result similar to Theorem 2 might be useful in obtaining better bounds on $H(5,5)$.

However, we are still far from establishing non-trivial bounds on $H(6, l)$, for $0 \leq l \leq 6$, since the exact value of $H(6)=H(6,0)$ is still unknown. The best known bounds are, $30 \leq H(6) \leq E S(9) \leq 1717$. The lower bound is due to Overmars [18] and the upper bound due to Gerken [9].

## Acknowledgement

We are grateful to the anonymous referee for the valuable comments, which has helped us in improving the quality of the paper.

## References

1. O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C. D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics, Vol. 23, 481-507, 2007.
2. O. Aichholzer, F. Aurenhammer, H. Krasser, Enumerating order types for small point sets with applications, Order, Vol. 19, 265-281, 2002.
3. O. Aichholzer, H. Krasser, Abstract order type extensions and new results on the rectilinear crossing number, Proc. 21st Symposium on Computational Geometry, ACM Press, 91-98, 2005.
4. I. Bárány, G. Károlyi, Problems and results around the Erdős-Szekeres convex polygon theorem, $J C D C G$, LNCS 2098, 91-105, 2000.
5. Ren Ding, Kiyoshi Hosono, Masatsugu Urabe, Changqing Xu, Partitioning a planar point set into empty convex polygons, $J C D C G$, LNCS 2866, 129-134, 2002.
6. P. Erdős, Some more problems on elementary geometry, Australian Mathematical Society Gazette, Vol. 5, 52-54, 1978.
7. P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compositio Mathematica, Vol. 2, 463-470, 1935.
8. P. Erdős, G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 3/4, 53-62, 1960-61.
9. T.Gerken, Empty convex hexagons in planar point sets, Discrete and Computational Geometry, Vol. 39, 239-272, 2008.
10. H. Harborth, Konvexe Funfecke in ebenen Punktmengen, Elemente der Mathematik, Vol. 33(5), 116-118, 1978.
11. J.D. Horton, Sets with no empty convex 7 -gons, Canadian Mathematical Bulletin, Vol. 26, $482-484$, 1983.
12. K. Hosono, M. Urabe, A minimal planar point set with specified disjoint empty convex subsets, KyotoCGGT, LNCS 4535, 90-100, 2008.
13. K. Hosono, M. Urabe, On the minimum size of a point set containing two non-intersecting empty convex polygons, $J C D C G$, LNCS 3742, 117-122, 2004.
14. K. Hosono, M. Urabe, On the number of disjoint convex quadrilaterals for a planar point set, Computational Geometry: Theory and Applications, Vol. 20, 97 - 104, 2001.
15. J. D. Kalbfleisch, J. G. Kalbfleisch, R. G. Stanton, A combinatorial problem on convex regions, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La., Congr. Numer., Vol. 1, 180-188, 1970.
16. W. Morris, V. Soltan, The Erdős-Szekeres problem on points in convex position - A survey, Bulletin of the Amercian Mathematical Society, Vol. 37(4), 437 - 458, 2000.
17. C. M. Nicolás, The empty hexagon theorem, Discrete and Computational Geometry, Vol. 38, 389-397, 2007.
18. M. Overmars, Finding sets of points without empty convex 6-gons, Discrete and Computational Geometry, Vol. 29, 153-158, 2003.
19. G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM Journal, Vol. 48, 151-164, 2006.
20. G. Tóth, P. Valtr, The Erdős-Szekeres theorem: upper bounds and related results, in J. E. Goodman, J. Pach, and E. Welzl, Combinatorial and Computational Geometry, MSRI Publications 52, 557-568, 2005.
21. M. Urabe, On a partition into convex polygons, Discrete Applied Mathematics, Vol. 64, 179-191, 1996.
22. P. Valtr, On empty hexagons, in J. E. Goodman, J. Pach, R. Pollack, Surveys on Discrete and Computational Geometry, Twenty Years Later, AMS, 433-441, 2008.
23. L. Wu, R. Ding, On the number of empty convex quadrilaterals of a finite set in the plane, Applied Mathematics Letters Vol. 21, 966-973, 2008.
24. L. Wu, R. Ding, Reconfirmation of two results on disjoint empty convex polygons, CJCDGCGT, LNCS 4381, 216-220, 2005.
25. C. Xu, R. Ding, On the empty convex partition of a finite set in the plane, Chinese Annals of Mathematics, Vol. 23 (4), 487-494, 2002.
