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On the Minimum Size of a Point Set Containing a 5-Hole and a Disjoint
4-Hole

Abstract
Let H(k; l), k ≤ l denote the smallest integer such that any set of H(k; l) points in the plane, no three on a line,
contains an empty convex k-gon and an empty convex l-gon, which are disjoint, that is, their convex hulls do
not intersect. Hosono and Urabe [JCDCG, LNCS 3742, 117–122, 2004] proved that 12 ≤ H(4, 5) ≤ 14. Very
recently, using a Ramseytype result for disjoint empty convex polygons proved by Aichholzer et al. [Graphs
and Combinatorics, Vol. 23, 481–507, 2007], Hosono and Urabe [Kyoto CGGT, LNCS 4535, 90–100, 2008]
improve the upper bound to 13. In this paper, with the help of the same Ramsey-type result, we prove that
H(4; 5) = 12.
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Abstract. Let H(k, l) denote the smallest integer such that any set of H(k, l) points in the
plane, no three on a line, contains an empty convex k-gon and an empty convex l-gon, which
are disjoint, that is, their convex hulls do not intersect. Hosono and Urabe [JCDCG, LNCS
3742, 117-122, 2004] proved that 12 ≤ H(4, 5) ≤ 14. Very recently, using a Ramsey-type result
for disjoint empty convex polygons proved by Aichholzer et al. [Graphs and Combinatorics,
Vol. 23, 481-507, 2007], Hosono and Urabe [KyotoCGGT, LNCS 4535, 90-100, 2008] improve
the upper bound to 13. In this paper, with the help of the same Ramsey-type result, we prove
that H(4, 5) = 12.

Keywords. Convex hull, Discrete geometry, Empty convex polygons, Erdős-Szekeres theorem,
Ramsey-type results.

1 Introduction

The famous Erdős-Szekeres theorem [7] states that for every positive integer m, there exists
a smallest integer ES(m), such that any set of at least ES(m) points in the plane, no three
on a line, contains m points which lie on the vertices of a convex polygon. Evaluating the
exact value of ES(m) is a long standing open problem. A construction due to Erdős [8]
shows that ES(m) ≥ 2m−2 + 1, which is also conjectured to be sharp. It is known that
ES(4) = 5 and ES(5) = 9 [15]. Following a long computer search, Szekeres and Peters [19]
recently proved that ES(6) = 17. The value of ES(m) is unknown for all m > 6. The best
known upper bound for m ≥ 7 is due to Toth and Valtr [20]: ES(m) ≤ (

2m−5
m−3

)
+ 1. For

a more detailed description of the Erdős-Szekeres theorem and its numerous ramifications,
see the surveys by Bárány and Károlyi [4] and Morris and Soltan [16].

In 1978 Erdős [6] asked whether for every positive integer k, there exists a smallest
integer H(k), such that any set of at least H(k) points in the plane, no three on a line,
contains k points which lie on the vertices of convex polygon whose interior contains no
points of the set. Such a subset is called an empty convex k-gon or a k-hole. Esther Klein
showed H(4) = 5 and Harborth [10] proved that H(5) = 10. Horton [11] showed that it is
possible to construct arbitrarily large set of points without a 7-hole, thereby proving that
H(k) does not exist for k ≥ 7. Recently, after a long wait, the existence of H(6) has been
proved by Gerken [9] and independently by Nicolás [17]. Later Valtr [22] gave a simpler
version of Gerken’s proof.

The problems concerning disjoint holes, that is, empty convex polygons with disjoint
convex hulls, was first studied by Urabe [21] while addressing the problem of partitioning
of planar point sets. For any set S of points in the plane, denote by CH(S) the convex hull
of S. Given a set S of n points in the plane, no three on a line, a disjoint convex partition
of S is a partition of S into subsets S1, S2, . . . St, with

∑t
i=1 |Si| = n, such that for each

i ∈ {1, 2, . . . , t}, CH(Si) forms a |Si|-gon and CH(Si)∩CH(Sj) = ∅, for any pair of indices



i, j. Observe that in any disjoint convex partition of S, the set Si forms a |Si|-hole and the
holes formed by the sets Si and Sj are disjoint for any pair of distinct indices i, j. If F (S)
denote the minimum number of disjoint holes in any disjoint convex partition of S, then
F (n) = maxS F (S), where the maximum is taken over all sets S of n points, is called the
disjoint convex partition number for all sets of fixed size n. The disjoint convex partition
number F (n) is bounded by dn−1

4 e ≤ F (n) ≤ d5n
18 e. The lower bound is by Urabe [21] and

the upper bound by Hosono and Urabe [14]. The proof of the upper bound uses the fact
that every set of 7 points in the plane contains a 3-hole and a disjoint 4-hole. Later, Xu and
Ding [25] improved the lower bound to dn+1

4 e.
Another class of related problems arise if the condition of disjointness is relaxed. Given a

set S of n points in the plane, no three on a line, a empty convex partition of S is a partition
of S into subsets S1, S2, . . . St, with

∑t
i=1 |Si| = n, such that for each i ∈ {1, 2, . . . , t},

CH(Si) forms a |Si|-hole in S. In this case, CH(Si) and CH(Sj) may intersect for some
pair of distinct indices i and j. If G(S) denote the minimum number of holes in any empty
convex partition of S, then the empty convex partition number for all sets of fixed size n
is G(n) = maxS G(S), where the maximum is taken over all sets S of n points. Urabe [21]
proved that dn−1

4 e ≤ G(n) ≤ d3n
11 e. Xu and Ding [25] improved the bounds to dn+1

4 e ≤
G(n) ≤ d5n

14 e. The upper bound bound was further improved to d9n
34 e by Ding et al. [5].

In [14], Urabe defined the function Fk(n) = minS Fk(S), where Fk(S) is the maximum
number of k-holes in a disjoint convex partition of S, and the the minimum being taken over
all sets S of n points. Using the fact that the minimum size of a point set containing two
disjoint 4-holes is 9, they showed that F4(n) ≥ b5n

22 c. Recently, Wu and Ding [23] defined
Gk(n) = minS Gk(S), where Gk(S) is the maximum number of k-holes in a empty convex
partition of S, and the the minimum being taken over all sets S of n points. They proved
that G4(n) ≥ b9n

38 c. The problem of obtaining non-trivial lower bounds on F5(n) and G5(n)
remains open.

Hosono and Urabe [13] also introduced the function H(k, l), k ≤ l, which denotes the
smallest integer such that any set of H(k, l) points in the plane, no three on a line, contains
both a k-hole and a l-hole which are disjoint. Clearly, H(3, 3) = 6 and Horton’s result [11]
implies that H(k, l) does not exist for all l ≥ 7. Urabe [21] showed that H(3, 4) = 7, while
Hosono and Urabe [14] showed that H(4, 4) = 9. Hosono and Urabe [13] also proved that
H(3, 5) = 10 and 12 ≤ H(4, 5) ≤ 14. The results H(3, 4) = 7 and H(4, 5) ≤ 14 were later
reconfirmed by Wu and Ding [24]. Very recently, using a Ramsey-type result for disjoint
empty convex polygons proved by Aichholzer et al. [1], Hosono and Urabe [12] proved that
12 ≤ H(4, 5) ≤ 13, thus improving upon their earlier result.

In this paper, using the same Ramsey-type result, we evaluate the exact value of H(4, 5),
thereby improving upon the result of Hosono and Urabe [12], as stated in the following
theorem.

Theorem 1. H(4, 5) = 12.

While addressing the problem of pseudo-convex decomposition, Aichholzer et al. [1]
proves the following theorem with the help of the order type data base ([2], [3]). Here, we
use this result to prove Theorem 1.

Theorem 2. [1] Every set of 11 points in the plane, no three on a line, contains either a
6-hole or a 5-hole and a disjoint 4-hole.

The outline of the proof of Theorem 1 is as follows. Consider a set S of 12 points in
the plane, no three on a line. Theorem 2 implies that S always contains a 6-hole or a 5-



hole and a 4-hole, which are disjoint. If S contains a 5-hole and a disjoint 4-hole, we are
done. Therefore, it suffices to assume that S contains a 6-hole. Next, we show that if S
contains a 7-hole, then S contains a 5-hole and a disjoint 4-hole. Thus, we assume that S
contains a 6-hole, which cannot be extended to a 7-hole. Then we consider a subdivision
of the exterior of the 6-hole and prove the existence a 5-hole and a disjoint 4-hole for all
the different possible distributions of the remaining 6 points in the regions formed by the
subdivision. The formal proof of Theorem 1 is presented in Section 3.

2 Definitions and Notations

We first introduce the definitions and notations required for the remaining part of the paper.
Let S be a finite set of points in the plane in general position, that is, no three on a line.
Denote the convex hull of S by CH(S). The boundary vertices of CH(S), and the points
of S in the interior of CH(S) are denoted by V(CH(S)) and I(CH(S)), respectively. A
region R in the plane is said to be empty in S if R contains no elements of S in its interior.
Moreover, for any set T , |T | denotes the cardinality of T .

By P := p1p2 . . . pk we denote a convex k-gon with vertices {p1, p2, . . . , pk} taken in
anti-clockwise order. V(P ) denotes the set of vertices of P and I(P ) the interior of P . The
collection of all points q ∈ R2 such that {q} ∪ V(P ) form a convex (k + 1)-gon is called the
forbidden zone of P . The forbidden zone of the pentagon P := p1p2p3p4p5 is the shaded
region as shown in Figure 1(a).

For any three points p, q, r ∈ S, H(pq, r) denotes the open halfplane bounded by the
line pq containing the point r. Similarly, H(pq, r) is the open halfplane bounded by pq not
containing the point r. Moreover, if ∠rpq < π, Cone(rpq) denotes the interior of the angular
domain ∠rpq. A point s ∈ Cone(rpq) ∩ S is called the nearest angular neighbor of −→pq in
Cone(rpq) if Cone(spq) is empty in S. Similarly, for any convex region R a point s ∈ R∩S
is called the nearest angular neighbor of −→pq in R if Cone(spq) ∩ R is empty in S. More
generally, for any positive integer k, a point s ∈ S is called the k-th angular neighbor of −→pq
whenever Cone(spq) ∩R contains exactly k − 1 points of S in its interior.
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Fig. 1. (a) Forbidden zone of a pentagon P , (b) 11 points without a 5-hole and a 4-hole which are disjoint
[13], and (c) Illustration of the proof of Observation 1.



3 Proof of Theorem 1

Urabe and Hosono [13] constructed a set of 11 points not containing an 4-hole and a disjoint
5-hole, which is shown in Figure 1(b). This implies that H(4, 5) ≥ 12. Therefore, for proving
the theorem it suffices to show that H(4, 5) ≤ 12.

Let S be a set of 12 points in general position in the plane. We say S is admissible
whenever S contains a 4-hole and 5-hole which are disjoint.

First, consider that S does not contain a 6-hole. Then Theorem 2 implies that S must
contain a 5-hole and a disjoint 4-hole. Therefore, assume that S contains a 6-hole.

We now have the following observation:

Observation 1 If S contains a 7-hole, then S is admissible.

Proof. Let H := s1s2s3s4s5s6s7 be a 7-hole in S. For i ∈ {1, 2, . . . , 7}, let Qi denote the
region Cone(si+3sisi+4)\I(si+3sisi+4) (Figure 1(c)), with indices taken modulo 7. If |Q1 ∩
S| = 0, then by the pigeon-hole principle either |H(s1s4, s2)∩S| ≥ 5 or |H(s1s5, s2)∩S| ≥ 5.
Without loss of generality, let |H(s1s4, s2)∩S| ≥ 5. Then H(s1s4, s2)∩S contains a 4-hole,
since H(4) = 5. This 4-hole is disjoint from the 5-hole s1s4s5s6s7. Therefore, whenever
|Qi ∩ S| = 0 for some i ∈ {1, 2, . . . , 7}, then S is admissible. However, |Qi ∩ S| ≥ 1 for all
i ∈ {1, 2, . . . , 7} implies,

∑7
i=1 |Qi ∩ S| ≥ 7 > 5 = |S| − |V(H)|, which is a contradiction. 2
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Fig. 2. The subdivision of the exterior of the 6-hole s1s2s3s4s5s6.



Let B := s1s2s3s4s5s6 be a 6-hole in S. In light of Observation 1, it can be assumed that
the forbidden zone of B is empty in S, that is, B cannot be extended to a 7-hole. Hereafter,
while indexing the points of V(B), we identify the indices modulo 6.

We begin with a simple observation:

Observation 2 If for some si ∈ V(B), |H(sisi+1, si+2) ∩ S| ≥ 4, then S is admissible.

Proof. If |H(sisi+1, si+2) ∩ S| ≥ 4, then (H(sisi+1, si+2) ∩ S) ∪ {si} contains a 4-hole, as
H(4) = 5. This 4-hole is disjoint from the 5-hole formed by V(B)\{si}. Hence S is admissible.

2

Consider the subdivision of the exterior of the hexagon B into regions Ri and RiRj , as
shown in Figure 2. The regions of the type Ri are disjoint from each other, but the regions
of the type RiRj may overlap with each other but are disjoint from regions of the type Ri.
Observe that in Figure 2, the deeply shaded region R is the intersection of the regions R2R3

and R1R12. |Ri| or |RiRj | denotes the number of points of S in Ri or RiRj , respectively.
Also, let s, s′ be two points on the extended line s1s4 as shown in Figure 2.

s1

s2

s3

s4

s5

s6

R2

R3

R6

R7 R8

R9

R10

R11

R12

R2R3 R1R12

R6R7 R8R9

R10R11R4R5

s

s′

R4

R5

R1

sα

sβ

(a)

sγ

s1

s2

s3

s4

s5

s6

R2

R3

R7 R8

R9

R11

R12

R2R3 R1R12

R6R7
R8R9

R10R11

s

s′

R4

R1

sα

sβ

t∗

(b)

R4R5

Fig. 3. Illustration of the proof of (a) Observation 3 and (b) Observation 4.

Note, Observation 2 implies that for all si ∈ V(B), |H(sisi+1, si+2)∩S| ≤ 3. In particular,
|Ri| ≤ 3 for all i ∈ {1, 2, . . . , 12}. Now, we have the following observations:

Observation 3 S is admissible, if |Ri| = 3 for some i ∈ {1, 2, . . . , 12}.

Proof. Without loss of generality assume |R2| = 3. Let sα ∈ S be the nearest angular
neighbor of −−→s2s1 in R2. Observation 2 implies that S is admissible unless |(H(s1s2, sα)\R2)∩
S| = |(H(s1s6, sα)\R2) ∩ S| = 0.

Case 1: The forbidden zone of the 5-hole sαs2s3s4s1 is empty in R2 ∩ S. Let sβ and sγ

be the other two points in R2 ∩ S such that sβ is the nearest angular neighbor of −−→s2sα



in R2 ∩ S. If sγ ∈ H(sαsβ, s1), then s1sαsβsγ is a 4-hole which is disjoint from the 5-
hole s2s3s4s5s6 (see Figure 3(a)). Otherwise, sγ ∈ H(sαsβ, s2), and s2sαsβsγ is a 4-hole
disjoint from 5-hole s1s3s4s5s6.

Case 2: There exists sβ ∈ R2∩S such that sαsβs2s3s4s1 is a 6-hole. If |Cone(ss1s3)∩S| ≥ 5,
Cone(ss1s3)∩S contains a 4-hole, since H(4) = 5. This 4-hole and the 5-hole s1s3s4s5s6

are disjoint (see Figure 3(a)). Otherwise, |Cone(ss1s3)∩S| ≤ 4, and so |Cone(s6s1s3)∩
S| ≥ 5. This implies that the 4-hole contained Cone(s6s1s3) ∩ S is disjoint from 5-hole
sαsβs2s3s1. 2

Observation 4 S is admissible, if |Ri| = 2 for some i ∈ {1, 2, . . . , 12}.

Proof. Without loss of generality assume |R2| = 2. Let R2 ∩ S = {sα, sβ}, where sα is the
nearest angular neighbor of −−→s2s1 in R2. There are two cases:

Case 1: sα lies inside the triangle s1s2sβ. Let s∗, t∗ be as shown in Figure 3(b). If there exists
a point sγ ∈ S\{sα, sβ} in the halfplane H(s1s2, sα) or H(s1s6, sα), then either s1sαsβsγ

or s2sαsβsγ is a 4-hole, and the admissibility of S is immediate. Hence, assume that sα

and sβ are the only points of S in these two halfplanes. Observe that |Cone(ss1s3) ∩
S| ≥ 3. Since H(4) = 5, Cone(ss1s3) ∩ S contains a 4-hole whenever |Cone(ss1s3) ∩
S| ≥ 5. This 4-hole is then disjoint from 5-hole s1s3s4s5s6. Therefore, assume that
3 ≤ |Cone(ss1s3) ∩ S| ≤ 4.

Case 1.1: |Cone(ss1s3) ∩ S| = 4. This implies that |Cone(s2s3t
∗) ∩ S| = 1. Suppose,

Cone(s2s3t
∗) ∩ S = {sγ}. If sγ ∈ Cone(sβsαs2), then sβsαs2sγ is a 4-hole which

is disjoint from the 5-hole s1s3s4s5s6. Otherwise, s2sαs1s3sγ is a 5-hole which is
disjoint from the 4-hole contained in Cone(s3s1s6)∩S, since |Cone(s3s1s6)∩S| ≥ 5.

Case 1.2: |Cone(ss1s3)∩S| = 3. If |H(s3s5, s4)∩S| ≥ 5, H(4) = 5 immediately implies
the admissibility of S. Hence, assume that |H(s3s5, s4) ∩ S| = λ ≤ 4. Now, since
H(s1s2, s4)∩S = H(s1s6, s4)∩S = {sα, sβ} and Cone(s2s3t

∗)∩S is empty, we have
|H(s3s5, s4)∩ (R10 ∩S)| = 5−λ. Then there exists sγ ∈ H(s3s5, s4)∩ (R10 ∩S) such
that s1s2s3sγs6 is a 5-hole which is disjoint from the 4-hole contained in H(s3sγ , s4).

Case 2: s1, s2, sβ, sα are in convex position. Then s1s3s4s5s6 and s1sαsβs2s3 are two 5-
holes sharing the edge s1s3. Now, since |S\{s1, s3}| = 10, by the pigeonhole principle
either |H(s1s3, s2) ∩ S| ≥ 5 or |H(s1s3, s2) ∩ S| ≥ 5. Therefore, the 4-hole contained in
H(s1s3, s2) ∩ S or H(s1s3, s2) ∩ S is disjoint from the 5-hole s1s3s4s5s6 or s1sαsβs2s3,
respectively. 2

Equipped with these three observations we proceed with the proof of Theorem 1. For
every point si ∈ V(B), the diagonal d := sisi+3 is called a dividing diagonal of B. A
dividing diagonal d of B is called an (a, b)− splitter of S, where a ≤ b are integers, if either
|H(sisi+3, si+1) ∩ S\V(B)| = a and |H(sisi+3, si+1) ∩ S\V(B)| = b, or |H(sisi+3, si+1) ∩
S\V(B)| = a and |H(sisi+3, si+1) ∩ S\V(B)| = b.

From Observations 3 and 4, we have |Ri| ≤ 1 for all i ∈ {1, 2, . . . , 12}. Now, if some
dividing diagonal of B, say s1s4, is a (0, 6)-splitter of S with |H(s1s4, s2) ∩ S\V(B)| = 6,
then from Observation 2, |H(s2s3, s1) ∩ S| ≤ 3, and hence |R2| + |R7| ≥ 3. Then, either
|R2| ≥ 2 or |R7| ≥ 2, and the admissibility of S is immediate from Observations 3 and 4.
Therefore, no dividing diagonal of B is a (0, 6)-splitter of S. The only cases which remain
to be considered are:
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Fig. 4. (a) s1s4 is a (1, 5)-splitter of S such that |R2| = |R7| = 1, (b) s1s4 is a (2, 4)-splitter of S such that
|R2| = 1.

Case 1: s1s4 is a (1, 5)-splitter of S with |H(s1s4, s2)∩S\V(B)| = 5. Observations 2, 3, and
4 imply that |R2| = |R7| = 1. Let s′′, s∗, u, v be as shown in Figure 4(a). Let sα ∈ R2∩S
and sr ∈ R7 ∩ S. Now, |H(s2s3, s1) ∩ S| = 3 and Observation 2 implies that either
|Cone(us2s

′′) ∩ S| = 2 or |Cone(vs3s
∗) ∩ S| = 2. Without loss of generality assume,

|Cone(us2s
′′)∩S| = 2. Let sβ, sγ ∈ Cone(us2s

′′)∩S, such that sβ is the nearest angular
neighbor of −→s2u in Cone(us2s

′′). If sα ∈ I(s2s1sβ), then either s2sαsβsγ or s1sαsβsγ is a
4-hole which is disjoint from the 5-hole s1s3s4s5s6 or s2s3s4s5s6, respectively. Otherwise,
sα /∈ I(s2s1sβ) and s1sαsβs2 is a 4-hole. It can be assumed that the forbidden zone of
s1sαsβs2 is empty in H(s2s3, s1) ∩ S. Then, sβ ∈ I(s2sαsγ) (see Figure 4(a)). If sδ ∈ S
is the remaining point in H(s2s3, sγ) ∩ S, then either sαsβsγsδ or s2sβsγsδ is a 4-hole
disjoint from the 5-hole s1s3s4s5s6.

Case 2: s1s4 is a (2, 4)-splitter of S with |H(s1s4, s2) ∩ S\V(B)| = 4. Without loss of
generality, suppose |R2| = 1. Let sα ∈ R2 ∩ S. Refer to Figure 4(b). If |R7| 6= 0, there
exists sβ ∈ R7 ∩ S such that sαs2s3sβs4 is a 5-hole which is disjoint from the 4-hole
contained in (H(s1s4, s5) ∩ S) ∪ {s1}. Therefore, assume that |R7| = 0. Similarly, it
can be shown that S is admissible unless |R1| = |R8| = 0. So, |H(s5s6, s1) ∩ S| = 2.
Let H(s5s6, s1) ∩ S = {sq, sr}. If s5, s6, sq, sr are in convex position, then this 4-hole
is disjoint from the 5-hole sαs2s3s4s1. Therefore, assume that sq ∈ I(s5s6sr). This
implies that either sq, sr ∈ H(s1s6, s4) or sq, sr ∈ H(s4s5, s1). If sq, sr ∈ H(s1s6, s4),
then sαs6sqsr is a 4-hole which is disjoint from the 5-hole s1s2s3s4s5. Therefore, let
sq, sr ∈ H(s4s5, s1)∩S (see Figure 4(b)). Again, S is admissible unless R6R7 is empty in
S. If |Cone(ss1s2)∩H(s2s3, s1)∩S| ≥ 3, then |H(s1s2, s3)∩S| ≥ 4, and the admissibility
of S follows from Observation 2. Again, if |Cone(ss1s2) ∩ H(s2s3, s1) ∩ S| ≤ 1, then
|R5| + |R6| ≥ 2. From Observations 3 and 4, it suffices to consider |R5| = |R6| = 1.
Then, {s1, s2, s3, s6}∪ (R5∩S) forms a 5-hole which is disjoint from the 4-hole srsqs5s4.
Therefore, assume that |Cone(ss1s2)∩H(s2s3, s1)∩S| = 2. Let sβ, sγ ∈ Cone(us2s

′′)∩S,
such that sβ is the nearest angular neighbor of −→s2u in Cone(us2s

′′). Refer to Figure 4(a).
If sα ∈ I(s2s1sβ), then either s2sαsβsγ or s1sαsβsγ is a 4-hole which is disjoint from the
5-hole s1s3s4s5s6 or s2s3s4s5s6, respectively. Otherwise, sα /∈ I(s2s1sβ) and s1sαsβs2 is a



4-hole. It can be assumed that the forbidden zone of s1sαsβs2 is empty inH(s2s3, s1)∩S.
Then, sβ ∈ I(s2sαsγ). If sδ ∈ S is the remaining point in H(s2s3, sγ) ∩ S, then either
sαsβsγsδ or s2sβsγsδ is a 4-hole disjoint from the 5-hole s1s3s4s5s6.
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Fig. 5. All the dividing diagonals of B are (3, 3)-splitters of S: (a) Case 3.1, (b) Case 3.2

Case 3: All the dividing diagonals of the hexagon B are (3, 3)-splitters of S. Suppose R1∩S
is non-empty. Then, there exists sα ∈ R1∩S such that sαs1s4s5s6 is a 5-hole. This 5-hole
is disjoint from the 4-hole contained in H(s1s4, s2) ∩ S, since H(4) = 5. Therefore, it
can be assumed that |Ri| = 0 for i ∈ {1, 2, . . . , 12}. Observation 2 and the fact that
|S\V(B)| = 6 now implies that for any point si ∈ V(B), |H(sisi+1, si+2) ∩ S| = 3.
Therefore, regions in the exterior of the hexagon B, where the regions of the type RiRj

intersect must be empty in S. Now, we consider the following two cases:

Case 3.1: |RiRj | ≤ 2 for all pair of indices i, j. Observe that either |R2R3|+ |R4R5| ≥ 2
or |R4R5|+ |R6R7| ≥ 2. Without loss of generality assume that |R2R3|+ |R4R5| ≥ 2.
To begin with, suppose that |R2R3|+ |R4R5| = 2, with (R2R3∪R4R5)∩S = {sα, sβ}
and R6R7∩S = {sγ}. If the four points s2, sα, sβ, sγ form a convex quadrilateral, S is
clearly admissible. Otherwise, let sβ ∈ I(s2sαsγ) and R1R12 ∩ S = {sδ}. Depending
on the position of the point sδ, either s2sβsαsδ or sδsαsβsγ is a 4-hole which is
disjoint from the 5-hole s1s3s4s5s6 (see Figure 5(a)). Now, let |R2R3|+ |R4R5| = 3
and without loss of generality, assume |R2R3| = 2 and |R4R5| = 1. Then |R1R12| = 0
and |R10R11| = 1, since all three dividing diagonals of B are (3, 3)−splitters of S.
From symmetry, it is the same case as before.

Case 3.2: |RiRj | = 3 some pair of indices i, j. Without loss of generality assume that
|R1R12| = 3. This implies that |R6R7| = 3. Let s0 be as shown in Figure 5(b)
and sα, sβ, sγ be the first, second, and third angular neighbors of −−→s3s0 in R6R7,
respectively. If sα ∈ I(s3s4sβ) the admissibility of S follows from the fact that
s3sαsβsγ or s4sαsβsγ is a 4-hole which is disjoint from the 5-hole s1s2s4s5s6 or
s1s2s3s5s6, respectively. Otherwise, sα /∈ I(s3s4sβ), and similarly sγ /∈ I(s2s3sβ).



Then, either s1s3sβsαs4 or s1s3sβsγs2 is a 5-hole which is disjoint from the 4-hole
contained in (R1R12 ∩ S) ∪ {s5, s6}. 2

4 Remarks and Conclusions

In this paper we proved that H(4, 5) = 12, that is, every set of 12 points in plane in general
position contains a 4-hole and a disjoint 5-hole, thus improving a result of Hosono and
Urabe [12]. The proof uses a Ramsey type result for 11 points proposed by Aichholzer et
al. [1].

The most important case that remains to be settled is that of H(5, 5). Urabe and Hosono
[13] proved that 16 ≤ H(5, 5) ≤ 20, and later improved the lower bound to 17 [12]. There
is still a substantial gap between the upper and lower bounds of H(5, 5). We believe that a
new Ramsey-type result similar to Theorem 2 might be useful in obtaining better bounds
on H(5, 5).

However, we are still far from establishing non-trivial bounds on H(6, l), for 0 ≤ l ≤ 6,
since the exact value of H(6) = H(6, 0) is still unknown. The best known bounds are,
30 ≤ H(6) ≤ ES(9) ≤ 1717. The lower bound is due to Overmars [18] and the upper bound
due to Gerken [9].
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