
University of Pennsylvania
ScholarlyCommons

Statistics Papers Wharton Faculty Research

2-2013

New Variations of the Maximum Coverage Facility
Location Problem
Bhaswar B. Bhattacharya
University of Pennsylvania

Subhas C. Nandy

Follow this and additional works at: https://repository.upenn.edu/statistics_papers

Part of the Business Administration, Management, and Operations Commons, Business
Analytics Commons, Management Information Systems Commons, Management Sciences and
Quantitative Methods Commons, Marketing Commons, Operations and Supply Chain
Management Commons, Real Estate Commons, and the Statistics and Probability Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/statistics_papers/651
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Bhattacharya, B. B., & Nandy, S. C. (2013). New Variations of the Maximum Coverage Facility Location Problem. European Journal of
Operational Research, 224 (3), 477-485. http://dx.doi.org/10.1016/j.ejor.2012.08.009

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/wharton_faculty?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1398?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1398?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/638?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/641?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.ejor.2012.08.009
https://repository.upenn.edu/statistics_papers/651
mailto:repository@pobox.upenn.edu

New Variations of the Maximum Coverage Facility Location Problem

Abstract
Consider a competitive facility location scenario where, given a set U of n users and a set F of m facilities in the
plane, the objective is to place a new facility in an appropriate place such that the number of users served by
the new facility is maximized. Here users and facilities are considered as points in the plane, and each user
takes service from its nearest facility, where the distance between a pair of points is measured in either L1 or
L2 or L∞ metric. This problem is also known as the maximum coverage (MaxCov) problem. In this paper, we
will consider the k-MaxCov problem, where the objective is to place k (⩾1) new facilities such that the total
number of users served by these k new facilities is maximized. We begin by proposing an O(nlogn) time
algorithm for the k-MaxCov problem, when the existing facilities are all located on a single straight line and
the new facilities are also restricted to lie on the same line. We then study the 2-MaxCov problem in the plane,
and propose an O(n2) time and space algorithm in the L1 and L∞ metrics. In the L2 metric, we solve the
2-MaxCov problem in the plane in O(n3logn) time and O(n2logn) space. Finally, we consider the 2-Farthest-
MaxCov problem, where a user is served by its farthest facility, and propose an algorithm that runs in
O(nlogn) time, in all the three metrics.

Keywords
reverse nearest neighbor, competitive location, computational geometry, facility location

Disciplines
Business | Business Administration, Management, and Operations | Business Analytics | Management
Information Systems | Management Sciences and Quantitative Methods | Marketing | Operations and Supply
Chain Management | Real Estate | Statistics and Probability

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/statistics_papers/651

https://repository.upenn.edu/statistics_papers/651?utm_source=repository.upenn.edu%2Fstatistics_papers%2F651&utm_medium=PDF&utm_campaign=PDFCoverPages

New Variations of the Maximum Coverage Facility Location
Problem?

Bhaswar B. Bhattacharya1, and Subhas C. Nandy2

1Department of Statistics, Stanford University, California, USA,bhaswar@stanford.edu
2Advanced Computing and Microelectronics Unit, Indian Statistical Institute,

Kolkata - 700108, India, nandysc@isical.ac.in

Abstract. Consider a competitive facility location scenario where, given a set U of n users
and a set F of m facilities in the plane, the objective is to place a new facility in an appropriate
place such that the number of users served by the new facility is maximized. Here users and
facilities are considered as points in the plane, and each user takes service from its nearest
facility, where the distance between a pair of points is measured in either L1 or L2 or L∞
metric. This problem is also known as the maximum coverage (MaxCov) problem. In this
paper, we will consider the k-MaxCov problem, where the objective is to place k (≥ 1) new
facilities such that the total number of users served by these k new facilities is maximized. We
begin by proposing an O(n logn) time algorithm for the k-MaxCov problem, when the existing
facilities are all located on a single straight line and the new facilities are also restricted to lie
on the same line. We then study the 2-MaxCov problem in the plane, and propose an O(n2)
time and space algorithm in the L1 and L∞ metrics. In the L2 metric, we solve the 2-MaxCov
problem in O(n3 logn) time and O(n2 logn) space. Finally, we consider the 2-Farthest-MaxCov
problem, where a user is served by its farthest facility, and propose an algorithm that runs in
O(n logn) time, in all the three metrics.

1 Introduction

The main objective in any facility location problem is to judiciously place a set of facilities,
serving a set of users, such that certain optimality criterion is satisfied. Facilities and users
are generally modeled as points in the plane. A facility can be attractive, like hospitals,
schools, and supermarkets; or obnoxious, like garbage dumps and chemical plants. On the
other hand, the set of users is either discrete, consisting of finitely many points, or continu-
ous, that is, a region where every point is considered to be a user. Provided all the facilities
are equally equipped in all respects, a user always avails the service from its nearest facility.
Consequently, each facility has its service zone, consisting of the set of users that are served
by it. For a set U of users, finite or infinite, and a set F of facilities, define for every f ∈ F ,
U(f,F) as the set of users in U that are served by the facility f . Many variations of facility
location problem in both the discrete and continuous user category, under several optimality
criteria, have been studied [13].

1.1 Competitive Facility Location: Prior Work

Competitive facility location is concerned with the favorable placement of facilities by com-
peting market players, and has been studied in several contexts [15, 16, 31]. In such a sce-
nario the optimization criteria is to maximize the cardinality or the area of the service zone
depending on whether the demand region is discrete or continuous, respectively.

? A preliminary version of this paper has appeared in the Proc. 22nd Canadian Conference on Computa-
tional Geometry (CCCG), Manitoba, Canada, 2010, 241-244.

For continuous demand region, Dehne et al. [12] addressed the problem of locating a
new facility q amidst a set F of n existing facilities, such that the area of the region served
by q is maximized. The problem reduces to placing a new point q amidst a set of n existing
points F such that the Voronoi region of q is maximized. Dehne et al. [12] showed that, when
the given points are in convex position, the area function has only a single local maximum
inside the region where the set of Voronoi neighbors do not change. For the same problem,
Cheong et al. [10] gave a near-linear time algorithm that locates the new optimal point
approximately, when the points in F are in general position. Variations of this problem,
involving maximization of the area of Voronoi regions of a set of points placed inside a
circle, have been recently considered by Bhattacharya [7].

The game-theoretic analogue of such competitive problems for continuous demand re-
gions is a situation where two players place two disjoint set of facilities in a demand region.
A player p is said to own a part of the demand region that is closer to the facilities owned by
p than to the other player, and the player which finally owns the larger area is the winner of
the game. The area a player owns at the end of the game is called the payoff of the player.
In the one-round game the first player places m facilities following which the second player
places another m facilities in the demand region. In the m-round game the two players place
one facility each alternately for m rounds in the demand region. Ahn et al. [3] studied a
one-dimensional Voronoi game, where the demand region is a line segment. The one-round
Voronoi game in R2 was studied by Cheong et al. [11], for a square-shaped demand region.
Fekete and Meijer [17] studied the two-dimensional one-round game played on a rectangular
demand region with aspect ratio ρ.

The version of these competitive problems in the discrete user case is the problem of
placing a new facility amidst a set of existing ones such that the number of users served
by the new facility is maximized. This problem has been recently addressed by Cabello et
al. [8], and this is referred to as the MaxCov problem. They showed that in the L1 and L∞
metrics, the problem can be solved in O(n log n) time. In the L2 metric, they proved that
if the number of existing facilities m ≥ 2, the MaxCov problem is 3SUM hard, and gave an
algorithm for finding the set of all possible optimal placements of the new facility in O(n2)
time. They also showed that for m = 1 the MaxCov problem in L2 metric can be solved in
O(n log n) time, and this is asymptotically optimal under the algebraic decision tree model.

1.2 The k-MaxCov Problem: Our Results

In this paper we consider a generalization of the MaxCov problem, where instead of plac-
ing one new facility, one may wish to place multiple facilities simultaneously such that
these facilities together serve the maximum number of users. This leads to the following
generalization of the MaxCov problem.

k-MaxCov Problem: Given a set U of n users, and a set F of m existing facilities with m < n,
find the placement of a set F ∗ of k (≥ 1) new facilities such that the total number of
users in U served by the facilities in F ∗ is maximized. In other words, we have to find
the placement of a set F ∗ of k (≥ 1) new facilities such that |⋃f∈F ∗ U(f,F ∪ F ∗)| is

maximized, for F ∗ ⊂ R2\F .

Clearly, the 1-MaxCov problem is nothing but the MaxCov problem as discussed by
Cabello et al. [8]. In this paper, we study the k-MaxCov problem. We begin with the case
where the set of users is any arbitrary finite subset of R2, but the existing facilities are
all on a single straight line, and the new facilities are to be placed on the same line such

that the number of users served by the new facilities is maximized. We give an O(n log n)
time algorithm for solving the k-MaxCov-problem on a line. We then proceed to study the 2-
MaxCov problem in the plane. The objective here is to place two new facilities f and f ′ such
that the total number of users in U served by f and f ′, that is, |U(f,F ∪{f, f ′})∪U(f ′,F ∪
{f, f ′})|, is maximized, for f, f ′ ∈ R2\F . We propose an algorithm for solving the 2-MaxCov
problem in the plane, in the L1 and L∞ metrics, which runs in O(n2) time and uses O(n2)
space. We also show that, in the L2 metric the 2-MaxCov problem when there is only one
existing facility, can be easily solved in O(n) time. For more than 2 existing facilities, an
O(n4) time algorithm for the 2-MaxCov problem is easy to get. Using a result of Katz and
Sharir [20], we improve the time and space complexities of the 2-MaxCov problem in L2

metric to O(n3 log n) and O(n2 log n), respectively, when there are more than 2 existing
facilities. Finally, we consider the 2-Farthest MaxCov problem, where an user takes services
from one of its farthest facilities, and obtain an O(n log n) time algorithm for solving it in
all the three different metrics.

1.3 Potential Applications

Competitive facility location addresses the problem of placing sites by competing market
players, and the expected income the new facility will generate depends on the market
share it will capture [15, 16, 27, 32]. In our situation, imagine that a set of already existing
facilities serves the users of a town. A new company, with the aim to compete with the
existing facilities, now wishes to establish k (≥ 1) outlets in the town simultaneously. The
problem of maximizing the profit of the company, in the sense that it serves the maximum
possible number of users, now reduces to the k-MaxCov problem.

One recent application of maximum coverage in competitive environment was considered
by Abellanas et al. [2]. They considered a problem in political economics with two opposing
parties. The goal of the parties is to capture the greatest number of voters of a discrete
population of elements, and the objective is to determine the optimum positions for the
party in terms of guaranteeing the maximum number of voters. More formally, the policy
plane consists of k political parties and the location of the n voters are represented by
points. A voter choses a party by proximity or affinity to its policy. Moreover, a party
can change its policy within a certain neighborhood with the objective of obtaining the
greatest possible number of voters. The objective considered by the authors was to obtain
the optimum situations for the party in this environment, that is, the positions such that
the region of corresponding Voronoi diagram contains the greatest number of voters. This
model was later extended to encompass more practical situations in a follow-up paper by
the Abellanas et al. [1]. These problems have roots in the maximum coverage problems
discussed in this paper, and are generally solved by computational geometric techniques.

The maximum coverage problem is also related to the discrete version of the Voronoi
game which is played on a given graph instead of on a continuous space. Given an undirected
graph G = (V,E) and k players, every player has to choose a vertex (facility) from V , and
every vertex (customer) is assigned to the closest facilities. A player’s payoff (utility) is the
number of vertices assigned to his facility. Dürr and Thang [14] showed that deciding the
existence of a Nash equilibrium for a given graph is NP-hard. More hardness results was
later proved by Teramoto et al. [30].

Moreover, as mentioned by Cabello et al. [8], the k-MaxCov problem, has relevance
in several problems of database management. Given a database, a reverse nearest neighbor
query retrieves those objects that have a query object as their nearest neighbor. This concept

was introduced by Korn et al. [21, 22], and has several applications in marketing and decision
support systems. The reverse nearest neighbor query has several variants ranging from
monochromatic or bi-chromatic versions to static or dynamic versions and has been widely
studied in the literature [5, 9, 23, 25, ?,29]. In the bichromatic case, the point set consists of
red and blue points, and the problem is to compute those points belonging to one of the two
colors for which a query point is a bichromatic nearest neighbor. The k-MaxCov problem is
a geometric optimization problem related to the planar bi-chromatic static variant of the
reverse nearest neighbor queries. The setup consists of two sets of point, some of which are
designated as facilities, and others as customers. In this setting, a reverse nearest neighbor
query asks for the set of customers affected by the opening of a set of k new facilities, with
the assumption that all customers choose the nearest facility.

Similarly, the k-Farthest MaxCov problem relates the reverse farthest neighbor query in
databases. A reverse farthest neighbor query is to retrieve the objects in an object set, whose
furthest neighbor is the query point. The monochromatic version of finding the set of all
reverse farthest neighbors for a query point under the L2 distance is known to be an open
problem [21, 32]. The k-Farthest MaxCov problem is the bi-chromatic version of reverse
farthest neighbor problem for a set of k query points. The bi-chromatic reverse farthest
neighbor problem and its application to spatial databases has been recently studied by Yao
et al. [33] and Liu et al. [24].

2 The k-MaxCov Problem on a Line

Let U = {u1, u2, . . . , un} be any fixed set of n users in R2, and F = {f1, f2, . . . , fm} be
the set of m existing facilities all lying on a straight line `. This variation of the k-MaxCov
problem asks for the placement of k (≥ 1) new facilities F ′ = {f ′1, f ′2, . . . , f ′k} on ` such that
the total number of users in U served by the facilities in F ′ is maximized.

Assume that the positions of the facilities along the line ` are distinct, that is, no two
points in F are coincident on `. Suppose f1 < f2 < . . . < fm be the sorted order of facilities
along the line `. Define auxiliary facilities f0 = −M and fm+1 = M , where M is such
that U ∪ F ⊂ [−M,M]× [−M,M]. For each user ui ∈ U , let the foot of the perpendicular
drawn from ui on ` be u′i. Let U ′ = {u′i|ui ∈ U}. Denote by `⊥i the line passing through fi
perpendicular to the line `. Let Si denote the open strip bounded by the parallel lines `⊥i
and `⊥i+1. (see Figure 1). Note that if a new facility f is placed on ` in the interior of the
interval Ji = [fi, fi+1], for some i ∈ {0, 1, . . . ,m}, then f can serve only the users in U ∩Si.
Moreover, observe that the users in U which lie on the perpendicular line `⊥i are always
served by the facility fi.

We now have the following simple observation:

Observation 1 For every fi ∈ F , two new facilities f and f ′ can be placed in the interior
of the interval [fi, fi+1], such that U(f,F ∪ {f, f ′}) ∪ U(f ′,F ∪ {f, f ′}) = U ∩ Si.

Proof. Let u′a and u′b be points in U ′ in the interior of the interval [fi, fi+1] nearest to the
facilities fi and fi+1, respectively. Note that if there is only one user in the interior of the
interval [fi, fi+1], then u′a = u′b. The result now follows from placing the two new facilities
f and f ′ at the midpoints of the segments [fi, u

′
a] and [u′b, fi+1], respectively. 2

This observation implies that two new facilities can be placed in the interior of an interval
Ji such that all the users in Si are served by the two new facilities. Therefore, no more users

f1
ℓ

f2 f3 f4f ′
1

S1

S0

f ′
4

S2

S3

S4

f ′
2

f ′
3

ℓ⊥3 ℓ⊥4ℓ⊥1 ℓ⊥2

Fig. 1. The k-MaxCov Problem on a line: f1, f2, f3, f4 are existing facilities and f ′1, f
′
2, f
′
3, f
′
4 are new facilities.

The users in the shaded vertical strips will be served by the new facilities f ′1, f
′
2, f
′
3, f
′
4.

can be served by placing more than two new facilities in the interior of some interval Ji, for
i ∈ {0, 1, . . . ,m}.

For every user ui ∈ U , we denote by Ri the interval on ` with midpoint at the point u′i
and length 2|d(u′i, φ(u′i))|, where φ(u′i) is the facility in F which is closest to u′i, and d(a, b)
is the distance between a pair of points a, b on `. Clearly, the interior of Ri does not contain
any other facility in F .

Now, associated with each interval Ji, we define the following two quantities:

ni: The number of users in U which lie in the region Si. That is, ni = |U ∩ Si|. Note that
two new facilities can be placed in the interior of the interval Ji such that together they
serve ni users of U (Observation 1).

γi: The maximum number of users a single new facility placed on ` can acquire from the strip
Si. Thus, γi is the maximum depth (i.e., the maximum number of mutually intersecting
intervals) in the arrangement Ri = {Rq|u′q ∈ Ji} = {Rq|uq ∈ Si}. Note that, γ0 = n0
and γm+1 = nm+1. The optimum position of a single new facility in the interior of the
interval Ji is a point in the region (cell) where the maximum depth is attained; at this
position the new facility serves γi users in U .

Let N = {ni|i ∈ {0, 1, . . . ,m+ 1}} and Γ = {γi|i ∈ {0, 1, . . . ,m+ 1}}. We now have the
following simple observation:

Observation 2 The values in the sets N and Γ in their respective sorted orders can be
computed in O(n log n) time.

Proof. The sorted order of the facilities in F , along the line `, can be obtained in O(m logm)
time. Once the sorted order of the facilities is known, it takes O(logm) time for a user u ∈ U
to determine in which one of the strips S0, S1, . . . , Sm it lies. Therefore, the values in N can
be computed in O(n logm) time. Once it is known in which strip Si a user ua ∈ U lies, it
takes constant time to find the interval Ra. Therefore, the n intervals R1, R2, . . . , Rn can be
computed in O(n logm) time, and the sorted order of their end points can be obtained in
O(n log n) time. Finally, a linear time scan of the end-points of R1, R2, . . . , Rn is required
to compute the value of γi for each strip Si. Thus, the overall time required to obtain the
sorted order of the values of N and Γ is O(n log n). 2

For every i ∈ {0, 1, . . . ,m+ 1}, let us denote δi = ni − γi; δ0 = δm+1 = 0. We now have
the following observation:

Observation 3 γi ≥ δi for every i ∈ {1, 2, . . . ,m}.
Proof. Since ni = γi + δi, to prove the above observation it suffices to show that γi ≥ ni/2.

Let us split the strip Si as S+
i = (fi,

fi+fi+1

2] × R and S−i = [fi+fi+1

2 , fi+1) × R. Observe
that either |U ∩ S+

i | ≥ ni/2 or |U ∩ S−i | ≥ ni/2. Without loss of generality, assume that
|U ∩ S+

i | ≥ ni/2. Let u′ ∈ U ′ be the point in (fi, fi+1) nearest to fi. If a new facility is

placed at f ′ = fi+u′

2 , then the number of users served by f ′ is clearly greater than ni/2, as
the Voronoi region of f ′ contains the set of all users in the strip S+

i . Now, since γi is the
maximum number of users that the new facility can acquire from the interval (fi, fi+1), it
follows that γi ≥ ni/2, and the result follows. 2

With this observation the problem of solving the k-MaxCov problem on a line now
becomes straightforward. Let ∆ = {δi|i ∈ {0, 1, . . . ,m + 1}}. Consider the sorted order
of the numbers in Γ ∪ ∆. Select the k largest numbers from this set. Since γi ≥ δi for
every i ∈ {0, 1, . . . ,m + 1}, it can be ensured that no δi is selected without selecting the
corresponding γi. If for some i ∈ {0, 1, . . . ,m+1} only γi is selected, then we place only one
new facility in the interior of the interval Ji at the region where the maximum depth of the
intervals in the set Ri = {Rq|u′q ∈ Ji} is attained. If for some i ∈ {0, 1, . . . ,m+ 1} both γi
and δi are selected, then we place two new facilities in the interior of the interval Ji (using
Observation 1), and these two facilities together serve all the ni users in the strip Si. Since
the sorted order of the elements in Γ ∪∆ can be found in O(m logm) time, it follows from
Observation 2 that the k-MaxCov problem on a line can be solved in O(n log n) time.

Theorem 1. The k-MaxCov-problem on a line can be solved in O(n log n) time. 2

3 The 2-MaxCov Problem in the Plane

In this section we present our results for solving the 2-MaxCov problem in the L1, L2, and
L∞ metrics in the plane. The distances between any two points p and q in the plane in
the L1, L2, and L∞ metrics are denoted by d1(p, q), d2(p, q), and d∞(p, q), respectively. Let
U = {u1, u2, . . . , un} be the set of users and F = {f1, f2, . . . , fm} be the set of existing
facilities. For every user ui ∈ U , we denote by φ(ui) the nearest facility of ui in F .

Definition 1. The nearest facility disk of a user ui is the region such that if another facility
f is placed in that region, φ(ui) will no longer remain the nearest facility for ui, and f
becomes the nearest facility of ui. We use Ri to denote the nearest facility disk of a user ui.

(a) (b) (c)

f

u

f

u

x

y

x

y

f

u

x

y

Fig. 2. Nearest facility disk for a user u and its nearest facility f in the (a) L1, (b) L2, and (c) L∞ metrics.

f1

f2

f3

f5

f4

f
f ′

User

Existing Facilities

New Facilities

cmax

Fig. 3. Demonstration of the 1-MaxCov and the 2-MaxCov problems in the L2 metric.

In L1 metric, Ri is a square of side-length 2d1(ui, φ(ui)), whose diagonals are axis-parallel
and intersect at the user ui (Figure 2(a)). In L2 metric, Ri is a circle with radius d2(ui, φ(ui))
centered at the point ui (Figure 2(b)). In L∞ metric,Ri is a square of side-length 2d∞(ui, φ(ui)),
whose edges are axis-parallel and the diagonals intersect at ui (Figure 2(c)). Clearly, the
interior of the nearest facility disk for each user in any metric does not contain any facility
point. Note that the nearest facility of a user may not be unique but the nearest facility
disk of a user is always unique. For the sake of convenience, we impose the restriction that a
new facility must be placed in the interior (not on the boundary) of a nearest facility disk.
This avoids the situation where a user has two equidistant facilities to choose from, one of
which is existing and one of which is new. In order to explain our algorithms, let us define
the following terms.

Definition 2. An arrangement A(R) is the subdivision of space induced by a collection
of geometric objects R, like rectangles or circles. Each subdivision is a maximal connected
region contained in a fixed subset of R and disjoint from the other subdivisions. These are
called the cells of the arrangement A(R). The depth of a cell is the number of objects R
that overlap on that cell.

For our purpose, R = {R1, R2, . . . , Rn} is the collection of n nearest facility disks and
A(R) is the arrangement induced by them. Note that if a new facility lies in the interior of
r nearest facility disks in R, then it serves exactly r users in U , for any r ∈ {0, 1, . . . , n}.
Therefore, the 1-MaxCov problem can be solved by finding the cell cmax of maximum depth
in the arrangement A(R). An instance of 1-MaxCov problem in L2 metric is demonstrated
in Figure 3. Here the solution is the shaded region cmax where the maximum number of
nearest facility disks intersect.

In the 2-MaxCov Problem, we have to place two new facilities f and f ′ such that |U(f,F∪
{f, f ′})∪U(f ′,F∪{f, f ′})| is maximized, for f, f ′ ∈ R2\F . Suppose one of the new facilities,
say f , is placed at some cell c of A(R) such that c =

⋂k
j=1Rij for some {i1, i2, . . . , ik} ⊂

{1, 2, . . . , n}. Then the best possible position for another facility f ′ is the region of maximum
depth in the arrangement of {R1, R2, . . . , Rn}\{Ri1 , Ri2 , . . . , Rik}, that is, where |U(f ′,F ∪
{f, f ′})| is maximized. Therefore, the optimum placement of the two facilities f and f ′ in
the 2-MaxCov problem can be obtained by checking each cell c ∈ A(R) as the possible
position of f , and then computing the best position of f ′ as mentioned above. In Figure

3, the optimal positions of f and f ′ are also shown using boxes (2). Note that neither f
nor f ′ are in the cell cmax. Moreover, the complexity of the arrangement of circles A(R) is
solely determined by the number of users n.

3.1 The 2-MaxCov Problem in L1 and L∞ Metrics

In the L∞ metric the nearest facility disks R1, R2, . . . , Rn are axis-parallel squares. In the
L1 metric, we can rotate the axes of the coordinate system by an angle 45o to make the
nearest facility disks axis-parallel. Thus, in both L1 and L∞ metrics, we may consider each
Ri ∈ R as an axis-parallel square with center (intersection of two diagonals) at ui. The
arrangement of these n squares (see Definition 2 may have O(n2) number of cells in the
worst case. However, the cell with maximum depth can be found in O(n log n) time [18,
26]. A naive approach for this version of the 2-MaxCov problem is as follows: Construct the
arrangement A(R) of the nearest facility disks; and consider each cell of the arrangement
A(R) for the placement of f . Then remove the disks R′ ⊂ R that overlap on that cell, and
find the cell with maximum depth in the revised arrangement of disks R \ R′. The time
complexity of this naive approach solves the problem in O(n3 log n) time. We now propose an
efficient algorithm for this problem by dynamically maintaining the revised arrangements.

The Hanan grid [19] for a finite set S of points in the plane is obtained by constructing
vertical and horizontal lines through each point in S. For the collection R of axis-parallel
rectangles, we consider the Hanan grid of the set of all the vertices of the rectangles in R.
This can be obtained by drawing vertical lines along the vertical edges, and horizontal lines
along the horizontal edges of all the members in R (see Figure 4). As there are n rectangles
in R, we have O(n2) grid cells in the Hanan grid. Note that each grid cell is a rectangle,
and we take the point of intersection of the diagonals of a grid cell as the representative
point of that cell and refer to it as site. By definition each site lies in at most one cell in
the arrangement A(R), and the sites are arranged in n horizontal lines. We consider each
site separately and repeat the steps (i) and (ii) as stated below until all the rectangles are
removed.

(i) observe the number n1 of rectangles in R that contain it,

(ii) delete all those rectangles from R,

(iii) find the site that is contained in maximum number n2 of rectangles in R, and then

(iv) insert all the rectangles deleted in Step (ii) again in R.

Finally, we report the site for which n1 +n2 is maximum. The algorithm for executing steps
(i) and (ii) and the necessary data structures are explained below.

We construct a leaf-search 2D tree T with the sites [6]. The leaf node of T contain
the sites, and internal nodes contain the discriminant values. Each leaf is attached with an
integer location χ indicating the number of rectangles containing that site. Each internal
node of T is attached with two integer fields max χ and θ and a pointer field max ptr; the
max χ of an internal node v contains the maximum χ-value of a leaf node in the subtree
rooted at v, and max ptr of v points to that leaf node. The role of θ field will be explained
later. Moreover, there is also an efficient point location structure in the Hanan grid whose
each cell points to the corresponding site (leaf) in T .

Note that, the counting problem (the number of points inside a rectangle) in a 2D tree
with n nodes can be solved in O(

√
n) time [6]. We use that algorithm as a preprocessing

step for computing the χ values of the O(n2) leaf nodes in T as follows:

x

y

R1

R2

R3

site

grid cell

Fig. 4. Constructing the Hanan grid from a collection of axis-parallel rectangles.

Initially set the χ values of all the leaf-nodes and the θ values of all the internal nodes
to zero. Consider each rectangle R ∈ R, and execute the algorithm for the counting query
in T [6]. On the search path,

(i) if a leaf is reached, its χ field is incremented by 1,

(ii) if a non-leaf node is observed such that all the sites in the subtree rooted at that node
lies inside the rectangle R, then its θ field is incremented by 1, and search does not
progress further in that subtree.

In the subsequent processing of some other rectangle R′ ∈ R, if the search visits a node u
having non-zero θ, it is (i) propagated to the θ or χ field of both the children of u depending
on whether the recipient nodes are non-leaf or leaf, (ii) added to the max χ field of both
the children of u if they are non-leaves, and then (iii) the θ-field of node u is set to zero.
After incrementing the θ or χ fields of the nodes on the search path up to the leaf level,
the same path is traced back to set the max χ and max ptr fields of the nodes on those
paths. Note that, after processing all the rectangles in R, there may exist some non-leaf
nodes in T having non-zero θ value. These are propagated towards the leaves by performing
a pre-order traversal in T . Finally, a post-order traversal of T is also required to adjust the
max χ and max ptr fields of all the non-leaf nodes in T .

Next, we execute the following procedure to solve the 2-MaxCov problem in L1 or L∞
metric by sweeping a horizontal line from top to bottom. At this point of time, we mention
that, we need to attach one more integer field χ∗ with each leaf. Similarly, each non-leaf
node is also attached with two more integer fields θ∗, max χ∗ and one more pointer field
max ptr∗. Initially, these integer fields of each node in T are set to 0.

During the horizontal line sweep, when it hits the top boundary of a member R ∈ R, it is
conceptually deleted from the floor. In other words, the χ-value of all the leaves inside R are
decremented by 1, and χ∗-value of those leaves are incremented by 1. During this process,
when the χ-value of a site s becomes zero, the subset of rectangles Rs ⊂ R containing s are
deleted. However, the χ∗ value of s contains its original χ-value (= |Rs|). Now, we need to
identify another site s′ having maximum χ-value after deleting the rectangles in Rs. When
the sweep line reaches the bottom boundary of a rectangle R ∈ R, it is inserted on the floor,

or in other words, the χ-value of all the leaves inside R are incremented by 1, and χ∗-value
of those leaves are decremented by 1.

As we did earlier for computing χ, here also, both incrementing and decrementing of
χ and χ∗ (during the deletion and insertion of rectangles in T) are done in an aggregative
manner using θ and θ∗ respectively. The role of max χ and max ptr remain the same as
earlier; max χ∗ of a node v contains the maximum χ∗ value of a leaf in the subtree rooted
at v and max ptr∗ points to that leaf node.

Instead of specifically observing the instances when the χ-value of a site becomes zero,
when the bottom boundary of a rectangle R ∈ R is reached, prior to inserting it on the
floor, the following actions are taken in order:

(i) Two leaves v and v∗ with maximum χ and χ∗ values are identified using max ptr and
max ptr∗ pointers of the root node. If the facilities are positioned at v and v∗, then the
total number of users can be served is (max χ+max χ∗). We maintain a global integer
counter MAX and two pointers π and π∗, where MAX stores the maximum value of
(max χ+max χ∗); π and π∗ store the corresponding leaves in T .

(ii) Then the χ-values of all the leaves in T that are inside R are incremented and χ∗ values
of all the leaves in T that are inside R are decremented in an aggregative manner using
θ and θ∗ fields respectively along the search path of R. The max ptr and max ptr∗ are
also set appropriately.

Though the number of sites is O(n2), the construction of T requires O(n2) time and
space, since the sites are arranged in n horizontal and n vertical lines. The reason is that,
at each internal node the discriminant value (partition line) can be obtained in O(1) time
without computing the median of the set of points with respect to their respective coor-
dinates (corresponding to the level of the tree). During the preprocessing for computing
the χ-values of the leaves in T , processing each rectangle R ∈ R needs O(

√
n2) = O(n)

time. Thus the entire preprocessing needs O(n2) time. Similarly, during the execution of
2-MaxCov algorithm, processing each boundary of each rectangle R ∈ R needs O(n) time.
Thus, this phase also takes O(n2) time in total.

Theorem 2. In the L1 and L∞ metrics, the 2-MaxCov problem can be solved in O(n2) time
and space. 2

3.2 2-MaxCov problem in L2 metric

In the L2 metric, the nearest facility disks are circles of different radii. The number of cells
in an arrangement of n circles can be O(n2), and the region where the maximum number of
circles overlap can also be computed in O(n2) time [8]. Thus, the naive approach for solving
the 2-MaxCov problem in L2 metric needs O(n4) time and O(n2) space. In the following,
we show that

(i) if the number of existing facilities is only one, then the 2-MaxCov problem can be easily
solved in linear time, and

(ii) if the number of existing facilities is more than one, then the 2-MaxCov problem can be
easily solved in O(n3 log n) time and O(n2 log n) space.

Theorem 3. The 2-MaxCov problem with one existing facility can be solved in O(n) time.

ℓf

f

H1(ℓf)

H2(ℓf)

u1

u2

q1
q2

ℓ1
ℓ2

ℓ′f

Fig. 5. Demonstration of 2-MaxCov problem with one facility in the L2 metric.

Proof. Consider a set U of n users and one existing facility f . Let `f be a line passing
through f which contains no point of the user set U , and `′f be the line perpendicular to
`f passing through the facility f . Denote by H1(`f) and H2(`f) the two open halfspaces
on the two sides of the line `f . Let u1 ∈ U ∩ H1(`f) be the point which is closest to the
line `f . Similarly, let u2 ∈ U ∩ H2(`f) be the point which is closest to the line `f . Denote
by `1 and `2 the lines through u1 and u2 respectively, which are parallel to `f (see Figure
5). If the lines `1 and `2 intersect `′f at the points q1 and q2, then it is easy to see that
|U(q1, {f, q1, q2})∪U(q2, {f, q1, q2})| = |U| = n. This implies that |U(f, {f, q1, q2})| = 0, and
the best location of the two new facilities are at the points q1 and q2. Since the nearest
neighbors u1 and u2 of `f in its two sides can be computed in O(n) time, the theorem
follows. 2

When there are more than one existing facilities, consider the arrangement A(R) of the
n nearest facility disks R = {R1, R2, . . . , Rn}. A geometric clique of the disks in R is a cell
c in the arrangement A(R) such that the depth of the cell c is greater than or equal to the
depth of all its neighboring cells. Observe that the optimum location of the two new facilities
must lie in two different geometric cliques of R. Since the dual graph of the arrangement
A(R) can be computed in O(n2) time [4], all the geometric cliques of R can be computed in
O(n2) time as well. Suppose we place a new facility at a geometric clique C of R, where C
is the intersection of the disks Ri1 , Ri2 , . . . , Rik . Then the best possible location of the next
new facility lies in a cell having maximum depth in the arrangement R\{Ri1 , Ri2 , . . . , Rik}.
As the maximum depth in an arrangement of circles can be found in O(n2) time and the
location of the first new facility needs to be checked for all the geometric cliques of R, the
2-MaxCov problem can be solved in O(Kn2) time, where K denotes the total number of
geometric cliques in R. Since K can be O(n2), the worst case running time of this algorithm
is O(n4), which is same as the complexity of the naive approach.

We shall now improve this by using a data-structure introduced by Katz and Sharir [20].
They proved that given a collection of n circles in the plane, it is possible to construct a
data structure in O(n2 log n) time and space, so that the set of circles containing a query
point in their interior can be reported in O(log n+B) time, where B is the number of circles
containing the query point.

User

Existing Facilities

1

2

3

4

5

6

7
8

9

R1

R2

R3

R4

10

11

13

12

(a)

1 2 3 4 5 6 7 8

9 10

11 12 13

(b)

R1 R2 R2R3

R3

R4 R1

R2 R3 R4

R2

Fig. 6. 2-MaxCov problem in the L2 metric: (a) An Eulerian walk in the arrangement of circles A(R), (b)
The corresponding segment tree T .

In the following, we recall the data-structure used by Katz and Sharir [20] and suitably
modify it for solving the 2-MaxCov problem in L2 metric. Consider the arrangement of the
n nearest facility disks R = {R1, R2, . . . , Rn}. The points of intersection between pairs of
circles in R are called the vertices of A(R). An edge of the arrangement A(R) is a maximal
connected portion of the boundary of a circle in R that does not contain any vertex of the
arrangement in its relative interior.

With these definitions, we present our algorithm for the 2-MaxCov problem in the L2

metric. The algorithm has three phases.

Phase 1: From the arrangement A(R) we construct the dual graph D(A(R)) of A(R). Take
a representative point in the proper interior of each cell of A(R). These are the nodes
of D(A(R)). Between a pair of nodes, there is an edge if the corresponding two cells
share an edge of A(R). Next, we compute a spanning tree of D(A(R)) and duplicate
each edge of the tree to obtain an Eulerian tour π of D(A(R)). The corresponding Euler
tour is shown in Figure 6(a). As the dual D(A(R)) is planar, it can have at most O(n2)
edges, and so, the overall number of edges in π is O(n2). Now, for every circle Ri ∈ R,
mark all the edges of π that cross the boundary of Ri. These marked edges partition π
into subsequences, so that each subsequence either lies completely inside or completely
outside Ri. Note that the number of edges of π crossing Ri is O(n); so the number of
subsequences of π inside Ri is also O(n) in the worst case. These will be considered as
segments of π inside Ri. The total number of segments generated for all the members
in R is O(n2) in the worst case.

Phase 2: In this phase, we build a balanced binary leaf-search tree T with the nodes in
π, in their order along π in its leaves. Each node v ∈ T is attached with a list L, two
integer fields χ and max χ, and a pointer field max ptr. For each Ri ∈ R, we insert all
the segments inside it in T as follows:

Let I be a segment inside Ri. We search T from its root with I to find a node v whose
discriminant value lies in I. This will be considered as the fork node, and Ri is stored
in the list L attached to v. From node v, the search proceeds towards left and right
with the two end points of I. At a node u on the left (resp. right) path, if the search
proceeds towards left (resp. right), then Ri is stored in the list L attached with the
right (resp. left) child of u. The reason is that all these nodes lie inside the interval
I.

Next, we perform a pre-order traversal in T to propagate the list L attached to each
node to the leaves of T rooted at that node. The χ, max χ and max ptr fields are set as
we have done for the 2-MaxCov problem in L1 and L∞ metrics in the previous section.

Phase 3: Now, we consider each leaf u ∈ T in order. Let Ru = {Ru1 , Ru2 , . . . , Rup} be the
set of disks stored in the list L attached to it. We consider each member of Ruj ∈ Ru,
j = 1, 2, . . . , p, and delete all the segments in Ruj from T . Let p′ = max χ value attached
to the root of T , and its max ptr points to a leaf u′, after the deletion. Now, if the new
facilities f and f ′ are positioned at u and u′, then it covers p+p′ users. u′ will be referred
to as the associate of u. Thus, we can identify an appropriate leaf u∗ such that it along
with its associate covers the maximum number of users. While processing the next node
w (adjacent to u) in π, either only one disk is inserted in or deleted from Ru to get Rw.
In other words, all the intervals attached to that disk are inserted/deleted in T . Since
insertion/deletion of an interval in T needs O(log n) time and the number of intervals
in a disk can be O(n) in the worst case, processing each leaf of T needs O(n log n) time
in the worst case.

Thus, we have the following result:

Theorem 4. In the L2 metric, for m ≥ 2, the 2-MaxCov problem can be solved in O(n3 log n)
time and O(n2 log n) space.

Proof. The construction of A(R), the dual graph D(A(R)), its spanning tree, and the
computation of the Eulerian cycle π needsO(n2 log n) time. The computation of the intervals
inside all the disks need O(n3) time since it needs traversal of π for each member inR. Thus,
Phase 1 needs O(n3) time. In Phase 2, we need to insert O(n2) intervals corresponding to
all the members in R. This needs O(n2 log n) time. Finally, in Phase 3, we need to consider
all the leaves of T in order. Since the time required for processing each leaf is O(n log n),
the time complexity result follows.

The space required for storing the tree T is O(n2). In Phase 2, the intervals attached
with each circle Ri ∈ R is inserted in T . Since the number of intervals in a circle is O(n),
and for each interval, Ri is stored in the list L of at most O(log n) nodes of T , the space
required for the list L of all the nodes in T is O(n2 log n) in the worst case. Finally, after
propagating the list L of an internal node v of T to the leaves of the subtree rooted at v, the
list L of v is deleted. Thus in this step of Phase 2, the space complexity does not increase.

n Phase 3, while processing the leaves of T , the insertion and deletion of segments
corresponding to a disk Ri in T does not affect the space complexity. 2

Remark 1: Given the solution of the 2-MaxCov problem, the k-MaxCov problem can be
solved inductively, for k ≥ 3. In the k-MaxCov Problem, we have to place k new facilities
F ′ = {f ′1, f ′2, . . . , f ′k} such that

⋃k
j=1 |U(f ′j ,F ∪ F ′)| is maximized, for F ′ ⊂ R2\F . Now,

suppose one of the new facilities, say f ′ ∈ F ′, is placed at some cell c of A(R) such that
c =

⋂r
j=1Rij for some {i1, i2, . . . , ir} ⊂ {1, 2, . . . , n}. Then the best possible position of the

remaining k−1 facilities F ′\{f ′} is obtained by solving the (k−1)-MaxCov problem for the
arrangement {R1, R2, . . . , Rn}\{Ri1 , Ri2 , . . . , Rir} of the nearest facility disks. Therefore,
the optimum placement of the k new facilities in the k-MaxCov problem can be obtained
by checking each cell c ∈ A(R) as the possible position of f ′, and then solving the (k − 1)-
MaxCov problem as mentioned above. Hence, Theorem 2 implies that the k-MaxCov problem
in the L1 and L∞ metrics can be solved in O(n2k−2) time and O(n2) space. Similarly,
from Theorem 4 it follows that the k-MaxCov problem in the L2 metric can be solved in
O(n2k−1 log n) time and O(n2 log n) space.

4 The Farthest MaxCov Problem

In the preceding sections, we assumed that every user avails the service from its nearest
facility. In this section we shall deal with the situation where each user is served by its
farthest facility. Such a situation may arise when the facilities are obnoxious, and a customer
no longer finds a facility desirable and wants to stay as far away from it as possible.

We are given a set U of n users and a set Fo of m obnoxious facilities. For every facility
f ∈ Fo let Uo(f,Fo) = {u ∈ U|d(u, f) ≥ d(u, f ′),∀ f ′ ∈ Fo\{f}}, where d(a, b) is the
distance measure in the desired metric between the points a and b. We now introduce the
farthest version of the k-MaxCov problem as follows:

k-Farthest MaxCov problem: Given a set U of n users, a set Fo of m existing obnoxious
facilities with m � n, inside a bounded region C ⊂ R2, find the placement of a set F ∗

of k (≥ 1) new facilities inside C such that |⋃f∈F ∗ Uo(f,Fo ∪ F ∗)| is maximized, for all
possible placements of F ∗ inside C avoiding the positions of the members in Fo.

The monochromatic version of finding the set of all reverse farthest neighbors for a query
point under the L2 distance is known to be an open problem [21, 32]. The k-Farthest MaxCov
problem is the bi-chromatic version of reverse farthest neighbor problem for a set of k query
points. For a practical perspective of bi-chromatic reverse farthest neighbor problem and
its application to spatial databases, refer to Yao et al. [33].

Cabello et al. [8] studied the 1-Farthest MaxCov problem. They referred to it as the
Farthest MaxCov problem and proved the following result:

Theorem 5. [8] Given a closed region C ⊂ R2 with constant complexity, containing a set
U of n users and a set Fo of m obnoxious facilities, the Farthest MaxCov problem in the L1,
L2, and L∞ metrics can be solved in O(n log n) time.

We study the 2-Farthest MaxCov problem in all the L1, L2, and L∞ metrics. For every
user ui ∈ U we denote by φo(ui) its farthest facility. Let Ri be the farthest facility disk with
center at the point ui and radius d(ui, φo(ui)). Let Ao(R) denote the arrangement produced
by the set of n such disks R = {R1, R2, . . . , Rn}.

Observation 4 If a new facility f∗ /∈ Fo is placed in the proper interior of some cell
Ai ∈ Ao(R), then the number of users that are served by f∗ is the number of disks that do
not contain the cell Ai. 2

Lemma 1. If the region C containing the set of users U and the set of existing facilities
Fo is bounded then both the new facilities f and f ′ of the 2-Farthest MaxCov problem will
lie on the boundary of C.

Proof. Observe that all the facilities in Fo are contained in every circle Ri; this implies
that

⋂n
i=1Ri contains all the facilities Fo. Let f and f ′ be any two points in C and α

be a point in
⋂n

i=1Ri. Now, as the rays
−→
αf and

−→
αf ′ progress, they exit from the disks

in R one by one. Therefore, as the two new facilities move along these rays, the number
of users that are served by these two facilities cannot decrease. If both the directed lines−→
αf and

−→
αf ′ intersect the boundary of C at the points a and b respectively, then we have

|Uo(a,Fo ∪ {a, b}) ∪ Uo(b,Fo ∪ {a, b})| ≥ |Uo(f,Fo ∪ {f, f ′}) ∪ Uo(f ′,Fo ∪ {f, f ′})|. 2

u4

f1

f2
f3

(a)

f

R1

R2 R3

R4

C

u2

u1

u3

f1

f2
f3

f

(b)

Ri

R2

R3

R4

- user

- existing facility

- new facility

C

u4

u1

u2
u3

Fig. 7. 2-Farthest MaxCov problem: (a) The facility f serves the users u3 and u4 and ∂C\(R1 ∪R2) 6= ∅, (b)
The facility f serves the user u4 and C ⊂

⋃3
i=1 Ri.

Now, suppose a new obnoxious facility f is already placed somewhere on the boundary
∂C of the region C. The circles Ri which do not contain the facility f , will correspond to the
users which will be served by f . Suppose the point f lies inside the circles Ri1 , Ri2 , . . . , Rip ,
for some {i1, i2, . . . , ip} ⊂ {1, 2, . . . , n}. Here the following two cases can arise:

∂C\⋃p
j=1Rij 6= ∅ : Here a region on ∂C exists where no circle of {Ri1 , Ri2 , . . . , Rip} over-

laps (see the bold portion of ∂C in Figure 7(a)). In this case, the best possible location
of the next new facility f ′, given the placement of f , is any point on ∂C\⋃p

j=1Rij , and
the facilities f and f ′ serve all the users in U .

∂C\⋃p
j=1Rij = ∅: Here f ∈ ⋂p

j=1Rij and C ⊂ ⋃p
j=1Rij (see Figure 7(b)). In other words,

every point on ∂C is covered by at least one of the circles in {Ri1 , Ri2 , . . . , Rip}. Here,
we need to place f ′ on ∂C where minimum number of members in {Ri1 , Ri2 , . . . , Rip}
overlap.

Note that ∂C is a closed curve of constant complexity s. We compute the points of
∂C intersected by Ri for i = 1, 2, . . . , n. Each edge of ∂C can intersect Ri in at most one
arc-segment (in each of the aforesaid three metrics). Therefore, the number of points where
Ri intersects ∂C is at most 2s. Thus, the total number of points of intersection on ∂C
by the set of circles R = {R1, R2, . . . , Rn} is at most 2sn. We have an arrangement of sn
arc-segments on ∂C, which has at most 2sn cells. Note that each cell is covered by at least
one circle, otherwise an obnoxious facility placed on an uncovered cell can serve all the users
in U . We need to find two cells for the placement of f and f ′ such that the total number of
distinct circles covering these two cells is minimum.

Consider a point q in the interior of C, and choose a halfline ` from q that does not
pass through any vertex of ∂C. Now, consider the arc-segments on ∂C that intersect the
line ` once, and split each of them into two arc-segments by the line `. Thus, we have a set
S of r = O(n) intervals along ∂C. The arrangement of S has at most 2r cells. We take a
representative point in each cell and sort the points along ∂C in the circular order starting
from the point of intersection of the line ` and ∂C in the counter-clockwise direction. We
construct a leaf-search height-balanced binary tree T with those representative points at
its leaves. The internal nodes contain the discriminant values such that none of them have

value same as that of any leaf node. Each leaf node is attached with an integer degree field
χ that indicates the number of arc-segments in S that do not contain that leaf node.

At first, we consider each arc-segment and increment the χ value of each leaf node that
lie inside that arc-segment by one in an aggregative manner as we did in Section 3.1 for
the 2-MaxCov problem in L∞ metric. This needs O(n log n) time. We attach a pointer field
min ptr and an integer field min χ with each internal node of T . For an internal node v in
T , min χ contains the minimum χ value of the nodes at the subtree rooted at v, and the
min ptr pointer points to a leaf having minimum degree in the sub-tree rooted at v.

Now, we consider each leaf u of T in order. Let Ru = {Ru1 , Ru2 , . . . , Rup} be the set
of disks not containing u. We delete the arc segments corresponding to these discs from T
and find the cell of minimum depth by updating the min χ and min ptr of the tree as was
done in Section 3.1. Since insertion/deletion of an arc-segment T needs O(log n) time and
the number of arc-segments not containing u can be O(n) in the worst case, processing the
first leaf of T needs O(n log n) time. While we move from one leaf to the next, a constant
number of arc-segment is inserted/deleted and so the update can be done O(log n) time. As
there are O(n) leaves in T , the entire process takes O(n log n) time in the worst case.

Theorem 6. The 2-Farthest MaxCov problem in any one of L1, L2 and L∞ metric can be
solved in O(n log n) time. 2

Remark 2: By similar inductive arguments as in Remark 1, Theorem 6 can be used to obtain
an O(nk−1 log n) time algorithm for the k-Farthest MaxCov problem in any one of L1, L2 or
L∞ metric.

5 Conclusions

In this paper, we study the k-MaxCov problem, which is the generalization of the MaxCov
problem introduced by Cabello et al. [8]. We show that the k-MaxCov problem on a line `
can be solved in O(n log n) time, where n is the number of users on the 2D plane and m
number of facilities already exist on the line `. We have also considered the nearest and
the farthest versions of the 2-MaxCov problem in the plane, in L1, L2 and L∞ metrics.
For the nearest 2-MaxCov problem in L1 and L∞ metrics, we proposed an algorithm that
needs O(n2) time and space. If the number of existing facilities is one, then the nearest 2-
MaxCov in the L2 metric can easily be solved in linear time. For arbitrary number of existing
facilities, we proposed an algorithm for the nearest 2-MaxCov problem in L2 metric, which
runs in O(n3 log n) time and uses O(n2 log n) space.

We have also shown that the farthest version of the 2-MaxCov problem can be solved in
O(n log n) time for each of the L1, L2 and L∞ metrics.

Obtaining efficient algorithms for both the nearest and the farthest k-MaxCov problems
in the plane, for k ≥ 3 is a natural problem for future research. Extending the results to
dimensions greater than 2 is another possible generalization.

Acknowledgment. The authors wish to thank Aritra Banik and Sandip Das of Indian Statistical Institute,
Kolkata for very useful discussions about maximum coverage problems in competitive facility location. The
authors wish to thank the anonymous referees for valuable comments which improved the quality and the
presentation of the paper.

References

1. M. Abellanas, M. Dolores López, and J. Rodrigo, Searching for equilibrium positions in a game of political
competition with restrictions, European Journal of Operational Research, Vol. 201 (3), 892–896, 2010.

2. M. Abellanas, I. Lillo, M. Dolores López, and J. Rodrigo, Electoral strategies in a dynamical democratic
system: Geometric models, European Journal of Operational Research, Vol. 175 (2), 870–878, 2006.

3. H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, and R. van Oostrum, Competitive facility location: the
Voronoi game, Theor. Comput. Sci., Vol. 310, 457–467, 2004.

4. N. M. Amato, M. T. Goodrich, and E. A. Ramos, Computing the arrangement of curve segments:
divide-and-conquer algorithms via sampling, Proc. 11th ACM-SIAM Sympos. Discrete Algorithms (SODA),
705–706, 2000.

5. R. Benetis, C.S. Jensen, G. Karčiauskas, and S. Šaltenis, Nearest neighbor and reverse nearest neighbor
queries for moving objects, The VLDB Journal, Vol. 15, 229–250, 2006.

6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkopf, Computational Geometry - Algorithms
and Applications, Springer, 1997.

7. B. B. Bhattacharya, Maximizing Voronoi regions of a set of points enclosed in a circle with applications
to facility location, J. Math. Model. Algor., Vol. 9(4), 375–392, 2010.

8. S. Cabello, J. Miguel Diáz-Báñez, S. Langerman, C. Seara, and I. Ventura, Facility location problems
in the plane based on reverse nearest neighbor queries, Eur. J. Operations Research, Vol. 202(1), 99–106,
2010.

9. O. Cheong, A. Vigneron, and J. Yon, Reverse nearest neighbor queries in fixed dimension,
arxiv:0905.4441, June 5, 2009.

10. O. Cheong, A. Efrat, and S. Har-Peled, On finding a guard that sees most and a shop that sells most,
Discrete Computational Geometry, Vol. 37, 545–563, 2007.

11. O. Cheong, S. Har-Peled, N. Linial, and J. Matouŝek, The one-round Voronoi game, Discrete and Com-
putational Geometry, Vol. 31(1), 125–138, 2004.

12. F. Dehne, R. Klein, and R. Seidel, Maximizing a Voronoi region: the convex case, Int. Journal of Com-
putational Geometry and Applications, Vol. 15, 463–475, 2005.

13. Z. Drezner and H. W. Hamacher (Eds.), Facility Location: Applications and Theory, Springer, 2002.
14. C. Dürr and N. K. Thang, Nash Equilibria in Voronoi Games on Graphs, Proc. European Symposium on

Algorithms (ESA), 17–28, 2007.
15. H. A. Eiselt and G. Laporte, Competitive spatial models, European Journal of Operational Research, Vol.

39, 231–242, 1989.
16. H. A. Eiselt, G. Laporte, and J. F. Thisse, Competitive location models: A framework and bibliography,

Transportation Science, Vol. 27, 44–54, 1993.
17. S. P. Fekete and H. Meijer, The one-round Voronoi game replayed, Comput. Geom. Theory Appl., Vol.

30 (2), 81–94, 2005.
18. H. Imai and T. Asano. Finding the connected components and a maximum clique of an intersection

graph of rectangles in the plane, Journal of Algorithms, Vol. 4(4), 310–323, 1983.
19. M. Hanan, On Steiner’s problem with rectilinear distance, SIAM J. in Appl. Math., Vol. 14, 255–265,

1966.
20. M. J. Katz and M. Sharir, An expander-based approach to geometric optimization, SIAM J. Comput.,

Vol. 26, 1384–1408, 1997.
21. F. Korn and S. Muthukrishnan, Influence sets based on reverse nearest neighbor queries, Proc. ACM

SIGMOD International Conference on Management of Data, SIGMOD Record, Vol. 29(2), 201–212, 2000.
22. F. Korn, S. Muthukrishnan, and D. Srivastava, Reverse nearest neighbor aggregates over data streams,

Proc. 28th VLDB Conference, 814–825, 2002.
23. K.-I. Lin, M. Nolen, and C. Yang, Applying bulk insertion techniques for dynamic reverse nearest neighbor

problems, Proc. 7th Int. Database Engineering and Applications Symposium, 290, 2003.
24. J. Liu, H. Chen, K. Furuse, and H. Kitagawa, An Efficient Algorithm for Arbitrary Reverse Furthest

Neighbor Queries, Proc. Asia-Pacific Web Conference (APWeb), 60–72, 2012.
25. A. Maheshwari, J. Vahrenhold, and N. Zeh, On reverse nearest neighbor queries, Proc. 14th Canadian

Conference on Computational Geometry, 128–132, 2002.
26. S. C. Nandy and B. B. Bhattacharya, A unified algorithm for finding maximum and minimum object

enclosing rectangles and cuboids, Computers and Mathematics with Applications, Vol. 29, 45–61, 1995.
27. F. Plastria, Static competitive location: An overview of optimisation approaches, European Journal of

Operational Research, Vol. 129, 461–470, 2001.
28. A. Singh, H. Ferhatosmanoglu and A. Aman Tosun, High dimensional reverse nearest neighbor queries,

Proc. 12th Int. Conf. on Information and Knowledge Management, 91–98, 2003.

29. Y. Tao, D. Papadias, and X. Lian, Reverse kNN search in arbitrary dimensionality, Proc. 30th VLDB
Conference, 744–755, 2004.

30. S. Teramoto, E. D. Demaine, and R. Uehara, The Voronoi game on graphs and its complexity, J. Graph
Algorithms Appl., Vol. 15(4), 485–501, 2011.

31. R. Tobin, T. Friesz, and T. Miller, Existence theory for spatially competitive network facility location
models, Annals of Operations Research, Vol. 18, 267–276, 1989.

32. Q. Wang, R. Batta, and C. M. Rump, Algorithms for a facility location problem with stochastic customer
demand and immobile servers, Annals of Operations Research, Vol. 111, 17–34, 2002.

33. B. Yao, F. Li, and P. Kumar, Reverse furthest neighbors in spatial databases, IEEE International Conference
on Data Engineering, 664–675, 2009.

	University of Pennsylvania
	ScholarlyCommons
	2-2013

	New Variations of the Maximum Coverage Facility Location Problem
	Bhaswar B. Bhattacharya
	Subhas C. Nandy
	Recommended Citation

	New Variations of the Maximum Coverage Facility Location Problem
	Abstract
	Keywords
	Disciplines

	tmp.1531434789.pdf.rt58s

