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Abstract. Given a set S of n static points and a mobile point p in R2, we study the variations
of the smallest circle that encloses S ∪ {p} when p moves along a straight line `. In this work,
a complete characterization of the locus of the center of the minimum enclosing circle (MEC)
of S ∪{p}, for p ∈ `, is presented. The locus is a continuous and piecewise differentiable linear
function, and each of its differentiable pieces lies either on the edges of the farthest-point
Voronoi diagram of S, or on a line segment parallel to the line `. Moreover, the locus has O(n)
differentiable pieces, which can be computed in linear time, given the farthest-point Voronoi
diagram of S.

1 Introduction

Many 2D facility location problems mandate that a facility be placed amidst a set of users in
the plane such that the maximum distance of the facility from the users is minimized. When
the distance between a pair of points is measured in the L2 metric (Euclidean metric), this
gives rise to the notion of the Euclidean 1-center and the minimum enclosing circle (MEC) of
a set of points. The Euclidean 1-center of a set of fixed points S is the center of the smallest
circle that encloses all the points of S. More formally, if the Euclidean distance between any
two points a and b in R2 is denoted by d(a, b), then for a finite set S in R2, the Euclidean
1-center of S is the point E(S) in R2 that minimizes the function λ(q) = maxpi∈S d(pi, q)
over all points q ∈ R2. The value of λ(E(S)) is the radius of the MEC of S and is denoted
by r(S). These definitions can be naturally extended to higher dimensions as well.

It is believed that the question of finding the smallest circle enclosing a triangle was first
posed by Archimedes [9]. However, the general question of finding the MEC of a set of n
points in the plane was first posed by Sylvester in 1857 [12]. Thereafter, several algorithms
for computing the MEC of a set of n points in the plane have been proposed. Finally,
Megiddo [11] gave a deterministic Θ(n) time linear programming solution for the problem
in R2. This result was extended to Rd in O(dO(d)n) time by Agarwal et al. [2] and Chazelle
and Matoušek [7], and this is asymptotically optimal when d is fixed. A simpler randomized
algorithm with O(n) expected time in Rd for any fixed d, was proposed by Welzl [13].

Motivated by recent advances in mobile computing, telecommunication, navigation, and
geographic information system these questions have been posed in the mobile setting, where
the points in the plane, which correspond to the users, move along some trajectories (see
Durocher [9] for a survey on the various applications of mobile facility location problems).
The problem of studying the variations of the Euclidean 1-median under continuous motion
of points was initiated by Bereg et al. [4, 5]. They showed that for any v ≥ 0 there is a set
of three points s1, s2, s3 in Rd with d ≥ 2, such that a unit velocity motion of two of the

? The conference version of this paper has appeared in the Proc. 5th International Workshop on Algorithms
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points induces an instantaneous velocity greater than v of the Euclidean 1-center, i.e., the
velocity of the mobile Euclidean 1-center is unbounded in Rd for d ≥ 2. This motivated the
problem of approximating the Euclidean 1-center by other center functions having bounded
velocities [9]. Durocher also showed that under bounded continuous motion of the points in
the plane, the Euclidean 1-center moves continuously in Rd, for d ≥ 1. Recently, Bitner et al.
[3] studied the minimum separating circle problem, which is a bi-chromatic generalization
of the MEC problem. Kinetic variantions of this problem were later studied by Cheung et
al. [8].

In this paper, we provide a complete characterization of the locus of the Euclidean 1-
center for a set S of n fixed points and one mobile point moving along a straight line `.
Choosing a coordinate system such that the line ` coincides with the x-axis, we define the
center function ψ : R→ R2, where ψ(p) denotes the center of the MEC of S ∪{p} in R2, for
any point p = (p, 0) on `. We show that the center function ψ is a continuous and piecewise
differentiable linear function, and each of its differentiable pieces lies either on the boundary
of the farthest-point Voronoi diagram of S, or on a line parallel to the line `. Moreover, we
prove that the combinatorial complexity of ψ, that is, number of the differentiable pieces
in ψ is O(n). Based on this result, we give a simple O(n) time algorithm for computing ψ,
given the farthest-point Voronoi diagram of S.

Associated with the center function, one can define a radius function ϑ : R→ R, where
ϑ(p) is the radius of the MEC of S ∪ {p}, for p = (p, 0) ∈ `. We show that if the line `
does not intersect the MEC of S, then there exits a point p⊥ ∈ ` such that ϑ is strictly
decreasing when p ≤ p⊥, and strictly increasing when p ≥ p⊥. We prove a similar result
when ` intersects the MEC of S.

2 Preliminaries

We begin by introducing the notations and definitions used in the rest of the paper. For
any two points a, b in the plane, we denote by [a, b] the line segment joining the points a
and b. For a set of points Z in the plane, the center of the MEC for the point set Z will be
denoted by E(Z) and its radius by r(Z). It is easy to see that the MEC of Z is unique and
it will be denoted by Cmin(Z).

We now summarize some of the important properties of the MEC, which will be used
in the subsequent sections:

Fact 1 The center of the MEC of a set of three points lying on the vertices of a right-angled
triangle is the mid-point of the hypotenuse.

Fact 2 An enclosing circle for a set of points S passing through three points of S will
be a MEC of S if and only if the triangle formed by the three points is acute-angled or
right-angled.

Fact 3 An enclosing circle for a set of points S passing through two points of S will be
a MEC of S if and only if the line segment joining the two points is a diameter of the
enclosing circle of S.

A set S = {p1, p2, . . . , pn} of n distinct points (sites) in the plane is said to be in general
position if no four points of S are co-circular. The farthest-point Voronoi diagram of S, to
be denoted by FV(S), is the subdivision of the plane into n disjoint cells {FV (pi, S)|pi ∈
S}, excepting the boundaries, where FV (pi, S) is the set of all points q ∈ R2 such that



d(q, pi) ≥ d(q, pj), for all i 6= j. The region FV (pi, S) is called the farthest-point Voronoi
cell of the point pi ∈ S. The farthest-point Voronoi diagram of set of n points in R2 can be
computed in O(n log n) time [6].

The mobile version of the Euclidean 1-center problem addressed in this paper consists
of a set S = {p1, p2, . . . , pn} of n fixed points in the plane and a line `, not passing through
any point of S, along which another point moves. Note that for all points p on ` not lying
in the interior of the MEC of S, the MEC of S ∪ {p} always passes through the point p.
Moreover, for points p on ` that lie in the interior of the MEC of S, the MEC of S ∪ {p} is
the MEC of S itself.

Without loss of generality, choose a coordinate system in which the line ` coincides with
the horizontal axis. Associate with the real number p, the point p = (p, 0) on the line `.
Then we define center function ψ : R → R2, as ψ(p) = E(S ∪ {p}) and the radius function
ϑ : R → R, as ϑ(p) = r(S ∪ {p}). Therefore, the graph of the center function traces out
the locus of the MEC of S ∪ {p} as the point p moves over `. For any subset Q of R, let
ψ(Q) = {ψ(p)|p ∈ Q} and ϑ(Q) = {ϑ(p)|p ∈ Q}.

As mentioned earlier, the motion of the center of the MEC under continuous motion
of the points was studied in the context of mobile facility location [9]. Durocher [9] proved
that under continuous and bounded velocity motion of the points in the plane the center of
the MEC moves continuously. An immediate consequence of this result is the following:

Fact 4 The center function ψ is continuous.

Using these facts, in the following sections we prove that the function ψ is a continuous
and piecewise differentiable linear function. Other properties of the center function ψ and
the radius function ϑ are also discussed.

3 Characterizing the Center Function

In this section the characteristics of the center function ψ as the point p = (p, 0) movies
along the line `, which is identified with the horizontal axis, are studied. We begin with the
following observation when the given set S contains a single point.

Observation 1 If S contains a single point q = (a, b) then the function ψ maps onto the
line y = b

2 in R2.

Proof. For any point p = (p, 0) on `, E(S ∪ {p}) is the midpoint of the line segment [q, p].
As p varies over R the point E(S ∪ {p}) varies over the line y = b

2 in R2.

Now, we proceed to characterize the locus of the center of the MEC for a set S =
{p1, p2, . . . , pn} of n points in the plane. Denote the circle with the line segment [pi, pj ] as
diameter by C(pi, pj), and the circle passing through pi and pj and tangent to ` as C`(pi, pj).
The point where the circle C`(pi, pj) touches the line ` will be denoted by ν(pi, pj) =
(ν(pi, pj), 0). The center of the circles C(pi, pj) and C`(pi, pj) will be denoted by c(pi, pj)
and c`(pi, pj), respectively.

The following lemma characterizes the center function when the set S contains only two
fixed points:

Lemma 1. For S = {p1, p2} the center function ψ is a piecewise differentiable linear func-
tion, and each of its differentiable pieces either lies on the perpendicular bisector of [p1, p2]
or on a line parallel to `.



Proof. Begin by assuming that the circle C(p1, p2) does not intersect `. Let `1(p1, p2) and
`2(p1, p2) be the points where the perpendiculars to the line segment [p1, p2] passing through
p1 and p2, respectively, intersect the line ` (refer to Fig. 1(a)). Note that for any point p ∈
[`1(p1, p2), `2(p1, p2)], the triangle pp1p2 is acute-angled or right-angled. Fact 2 then implies
that the MEC of S∪{p} is the circumcircle of the triangle pqr. Therefore, E(S∪{p}) must lie
on the perpendicular bisector of the line segment [p1, p2]. Suppose the perpendicular bisector
for the line segment [p1, p2] intersects the line segments [`2(p1, p2), p1] and [p2, `1(p1, p2)] at
the points a(p1, p2) and b(p1, p2), respectively. Note that, when p is at `1(p1, p2), E(S ∪{p})
is at b(p1, p2), and when p is at ν(p1, p2), E(S ∪ {p}) = a(p1, p2) (Fact 1). As the point p
moves along ` from `1(p1, p2) to ν(p1, p2), ∠p1pp2 increases and the radius of the circumcircle
of triangle p1pp2 decreases. As a result, E({p, p1, p2}) moves towards the point c`(p1, p2).
Therefore, for any point p ∈ [`1(p1, p2), ν(p1, p2)] the function ψ maps onto the line segment
[b(p1, p2), c`(p1, p2)]. Similarly, when p ∈ [ν(p1, p2), `2(p1, p2)] the function ψ maps onto the
line segment [c(p1, p2), a(p1, p2)].

Now, observe that for all points p on ` with p < `1(p1, p2), ∠p2p1p is greater than π/2.
So the MEC of {p1, p2, p} is the circle with the lines segment [p, p2] as diameter. Hence,
ψ(p) for all p < `1(p1, p2) is the midpoint of the segment [p, p2]. Therefore, for p < `1(p1, p2)
the function ψ maps onto the half-line `p2 , which is the line parallel to ` emanating from
the point b(p1, p2) lying in the farthest-point Voronoi cell of the point p2 (Observation 1).
Similarly, for p > `2(p1, p2) the function ψ maps onto the half-line lp1 , which is the line
parallel to ` emanating from a(p1, p2) and lying in the farthest-point Voronoi cell of the
point p1.

Thus, the line ` can be divided into three intervals, on two of which it maps the function
to a line parallel to ` and on the third, it maps on to the perpendicular bisector of [pi, pj ]. The
entire function is known to be continuous and on each of these intervals it is differentiable.
This completes the proof of the Lemma when ` does not intersect C(p1, p2).

ℓ

Cℓ(p1, p2)

p1

a(p1, p2)

p2cℓ(p1, p2)

b(p1, p2)

ν(p1, p2)ℓ1(p1, p2) ℓ2(p1, p2)
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ℓp2
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ℓ
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ℓp2

ℓp1
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Fig. 1. Locus of the center of the MEC for two fixed points p1 and p2: (a) C(p1, p2) does not intersect `, (b)
C(p1, p2) intersects `.

Next, consider the case where the line ` intersects C(p1, p2) at the points u and v (see Fig.
1(b)). For any point p ∈ [u, v], the MEC of S∪{p} is C itself, and ψ(p) = c(p1, p2). Therefore,
from the same arguments as before it follows that ψ([`1(p1, p2), u]) = [b(p1, p2), c(p1, p2)],
ψ([u, v]) = c(p1, p2), and ψ([v, `2(p1, p2)]) = [c(p1, p2), a(p1, p2)]. When p < `1(p1, p2) or
p > `2(p1, p2), ψ maps onto a line parallel to ` as described in the previous case.



Using the above lemma, the center function ψ for a set S = {p1, p2, . . . , pn} of n points
in the plane in general position can be characterized. We denote the farthest point Voronoi
vertex equidistant from the site points pi, pj and pk by vijk and the farthest point Voronoi
edge equidistant from the site points pi and pj by eij . Note that the points a(pi, pj), and
b(pi, pj) lie on the edge eij .

Theorem 1. The center function ψ is a continuous and piecewise differentiable linear func-
tion. Moreover, each of the differentiable pieces of function ψ lies either on the boundary of
farthest point Voronoi diagram of S or on a line parallel to the line `.

Proof. From Fact 4 we know that ψ is continuous. For all p ∈ ` the MEC of S∪{p} can pass
through at most three points of S, since points of S are assumed to be in general position.
Depending on this we can decompose the line ` into intervals `1, `2, . . . , `m with ` =

⋃m
i=1 `i,

such that for all p ∈ `i the MEC of S ∪ {p} passes through a fixed number of points of S.
In each interval `i one of the following three cases might occur:

Case 1: For all p ∈ `i, the MEC of S ∪ {p} passes through some three points pi, pj , pk ∈
S. Then for all p ∈ `i the point E(S ∪ {p}) remains fixed at the farthest-point Voronoi
vertex vijk.

Case 2: For all p ∈ `i, the MEC of S ∪ {p} passes through two points pi, pj ∈ S. In this
situation the problem reduces to the case described in Lemma 1. Thus, ψ(p), for p ∈ `i,
maps to a subset of the edge eij .

Case 3: For all p ∈ `i, the MEC of S ∪ {p} passes through one point pi ∈ S. Therefore, for
p ∈ `i, the function ψ(p) lies on the midpoint on the line segment [pi, p]. Therefore, ψ is
mapped to a line parallel to ` emanating from a vertex or an edge of FV(S) (Observation
1).

From the analysis of these three cases and the continuity of ψ, the theorem follows.

The locus of the center of the MEC of a set of 5 fixed points and a moving point is
shown in Figure 3. A natural combinatorial problem is to determine the complexity of the
number of different linear differentiable pieces of the center function ψ.

We begin addressing this problem with the following observations:

Observation 2 Let p and q be two points on the line ` with p < q. Suppose, the MEC of
S ∪{p} and the MEC of S ∪{q} are the circles with diameter [pi, p] and [pi, q], respectively,
for some fixed pi ∈ S. Then for all points r ∈ [p, q], the MEC of S ∪ {r} is the circle with
diameter [pi, r].

Proof. Denote the circles with diameters [pi, p] and [pi, q] by C(pi, p) and C(pi, q), respec-
tively. Let f(pi) be the foot of the perpendicular from the point pi on the line `. These
two circles intersect at the points pi and f(pi), since ∠pf(pi)pi = ∠qf(pi)pi = π/2 (Fig.
2(a)). Observe that all the points in S must lie in the region where the two circles C(pi, p)
and C(pi, q) overlap. For any point r ∈ [p, q], the circle C(pi, r) with diameter [pi, r] passes
through pi and r, since ∠rf(pi)pi = π/2, and is also an enclosing circle of S ∪ {r} (see Fig.
2(a)). Fact 3 now implies that the circle C(pi, r) is the MEC for S ∪ {r}.

The following observation can now be proved similarly (see Fig. 2(b)):

Observation 3 Let p and q be two points on the line `, with p < q. Suppose, for some
fixed pi, pj ∈ S, the MEC of S ∪ {p} and the MEC of S ∪ {q} are the circumcircles of
triangles pipjp and pipjq, respectively. Then for all points r ∈ [p, q], the MEC of S ∪ {r} is
the circumcircle of triangle pipjr.
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Fig. 2. (a) Illustration for the proof of Observation 2, (b) Illustration for the proof of Observation 3.
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`

Fig. 3. Locus of the center of the MEC of a set of 5 fixed points and a point moving along the line `.

Using these two observations we now prove the following result about the number of
differentiable pieces in ψ:

Theorem 2. The function ψ can have at most O(n) differentiable pieces.

Proof. Theorem 1 implies that the line ` can be decomposed into intervals `1, `2, . . . , `m
such that ` =

⋃m
i=1 `i, and for all points p ∈ `i, E(S ∪ {p}) is either on a line parallel to `,

or on some edge of FV(S). Observation 2 implies the number of line segments in ψ that
are parallel to ` is O(|S|) = O(n). Similarly, Observation 3 implies that for any fixed edge
eij of FV(S) there is at most one interval `ij on ` such that whenever p ∈ `ij , the function
ψ(p) lies on eij . In every such interval, the function ψ can have at most 2 differentiable
pieces. Therefore, the number differentiable pieces in ψ lying on FV(S) is at most twice
the number of edges in FV(S). Since the number of edges in FV(S) is O(n) [6], the result
follows.



4 Computation of the Center Function

We now present the algorithm for computing the center function ψ, given the farthest-point
Voronoi diagram of S. In order to find the function ψ explicitly, the line sweep technique
is used. The points on ψ where the function changes from one line segment to the another
are considered as event points.

Let pmin be the point in S having the minimum x-coordinate. Suppose p∞ is the point
on ` with the least x-coordinate such that for all p > p∞, the MEC of S ∪ {p} is the circle
with [p, pmin] as diameter. Moreover, for any point pi = (a, b) ∈ S denote the line y = b

2 by
`(pi). The algorithm can now be described as follows:

We begin by computing pmin and the intersection point δ between `(pmin) and the
boundary of FV (pmin, S). We insert δ into the event queue. After initialization, depending
upon the type of the present event point and the nature of the locus, the next event point
is determined as follows:

Case 1: The current locus is at `(pi) and it intersects with the Voronoi edge eij . Compute
the intersection point δ between `(pj) and eij . The next event point is either δ or a
farthest point voronoi vertex vijk, depending upon which one is nearer to the current
event point.

Case 2: The current locus is a segment of Voronoi edge eij and the current event point
is the intersection point of eij and `(pi). Then, the next event point is the intersection
point between `(pi) and the boundary of FV (pi, S).

Case 3: The current event point is a vertex vijk. We compute the edge eij that ψ follows
hereafter. The next event point can be computed as in Case 1.

In the third case described above, we need to find the edge that ψ will follow when the
current event point is at some vertex vijk. In the following lemma we show that this can be
done in constant time.

Lemma 2. If the sweep line reaches a farthest point Voronoi vertex vijk by an edge then it
takes constant time to locate the next edge.

Proof. Let p be the point on ` such that the center of the MEC of S ∪ {p}, say Cp, is at
a vertex vijk of FV(S). Consider the diameter of Cp passing through p. As Cp is minimum
enclosing, exactly two of the three points pi, pj and pk will be on the one side of the diameter
through p. Without loss of generality, assume that these two points are pj and pk (see figure
4(a)). As ∠pjpkp is not acute, for any point pε sufficiently close to p, ∠pjpkpε is also not
acute. Hence, depending on the direction of the sweep line either it will reach vertex vijk
by eij and leave by eik or vice versa.

Using this lemma we can now prove the following theorem:

Theorem 3. The algorithm described above for computing the center function ψ runs in
O(n) time.

Proof. Note that pmin and p∞ can be computed in linear time. Lemma 2 ensures that when
at a vertex, the next edge that ψ follows can be determined in constant time. Now, to
find the intersection point of the `(pi), for some pi ∈ S, with the boundary of FV (pi, S),
we need O(|Ei|) time, where |Ei| is the number of edges bounding FV (pi, S). Since each
edge is in the boundary of at most two farthest point Voronoi cells and ψ can lie on each



`(pi) at most once (Lemma 2), the process repeated over all points in S takes at most
O(2|E|) = O(n) time, where |E| is the number of edges in FV(S). Therefore, given FV(S),
the center function ψ can be computed in O(n) time.

Remark: A polyline of complexity m is a connected series of m line segments. Observe that
all the above results can be generalized to the case where the point moves along a polyline
Pm of complexity m. Given a set S of n points and a polyline Pm the locus of the MEC of
S∪{p} as p varies over Pm is a continuous and piecewise differentiable linear curve, and each
of its differentiable piece lies either on the boundary of the farthest-point Voronoi diagram
of S, or on a line segment parallel to a line segment of Pm. Moreover, as in Theorem 2
the locus can have at most O(mn) differentiable pieces and thus can be computed easily in
O(mn) time, given the farthest-point Voronoi diagram of S.

5 Properties of the Radius Function

The center function traces the path of the center of the MEC as a point moves along the
line `. Analogously, we can analyze the radius of the MEC as the point moves along the line
`. In this section, the properties of the radius of the MEC of S ∪ {p} as the point p moves
along the line `, is studied. For a set S of n points {p1, p2, . . . , pn} in general position, the
radius function ϑ : R→ R is defined as ϑ(p) = r(S∪{p}), where p = (p, 0) ∈ `. Note that as
the center function ψ is continuous, the radius of the MEC of S ∪{p} changes continuously
as the point E(S ∪ {p}) moves along the graph of the function ψ. This immediately implies
that the function ψ is continuous.

The MEC of S will be denoted by C(S), and depending on whether the line ` intersects
C(S) two cases are considered.

5.1 C(S) ∩ ` = ∅

Let p⊥ be the point on ` such that the MEC of S ∪ {p⊥} is tangent to ` at the point `.
Note that there is exactly one such point on ` satisfying this property. Denote the minimum
enclosing circle of S ∪ {p⊥} by Cp⊥ . We shall prove that in this case the radius function ϑ

has a unique minimum at the point p⊥. In fact, ϑ is strictly decreasing when p ≤ p⊥, and
strictly increasing when p ≥ p⊥.

For any three points a, b, c ∈ R2, define H(ab, c) to be the open half-space bounded by
the line passing through the points a and b, and containing the point c. We now have the
following lemma:

Lemma 3. For all points p ∈ ` the MEC of S ∪ {p} either passes through or contains the
point p⊥.

Proof. Suppose there exists a point p = (p, 0) on ` such the MEC of S ∪ {p} does not
contain `. Without loss of generality assume that p ≤ p⊥. Denote the minimum enclosing
circle of S ∪ {p} by Cp, and q, q′ be the points where the circles Cp⊥ and Cp intersect (refer

to Fig.4(b)). Let p⊥0 be the point on the boundary of Cp⊥ diametrically opposite to p⊥. If q

is in the open half-plane H(p⊥p⊥0 , p), then no point of S lies on the boundary of the circle
Cp⊥ on one side of the diameter p⊥p⊥0 . This contradicts the fact that Cp⊥ is the MEC of

S ∪ {p⊥} (Fact 2). Let p0 be the diametrically opposite point of p0. Now, if q is in the open
half-plane H(pp0, p

⊥) then there will be no point of S on the boundary of Cp on one side of
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Fig. 4. (a) Illustration for the proof of Lemma 2, (b) Illustration for the proof of Lemma 3.

a diameter pp0. Therefore, q /∈ H(p⊥p⊥0 , p)∪H(pp0, p
⊥). This implies that the circle Cp with

diameter [p, p0] always contains the point p⊥, which contradicts our initial assumption, and
the result follows.

Proposition 1. If C(S) ∩ ` = ∅, the radius function ϑ is strictly decreasing when p ≤ p⊥,
and strictly increasing when p ≥ p⊥.

Proof. Consider any two points pa < pb < p⊥ on `, and denote the MEC of S ∪ {pa} by
Ca and the MEC of S ∪ {pb} by Cb. As Ca contains p⊥ (Lemma 3), it also contains the
line segment [pa, pb]. Therefore, Ca is an enclosing circle for S ∪ {pb}. This implies that
ϑ(pa) = r(S ∪ {pa}) > r(S ∪ {pb}) = ϑ(pb), where the inequality is strict because the MEC
of S ∪ {pb} always passes through the point pb and it is unique. Note that if pa < pb = p⊥

then Ca contains the line segment [pa, p
⊥]. However, the MEC Cp⊥ of S ∪ {p⊥} is tangent

to ` at the point p⊥. The uniqueness of the MEC again implies that ϑ(pa) > ϑ(p⊥). This
proves that the radius function ϑ is strictly decreasing when p ≤ p⊥.

Similarly, we can show that the radius function ϑ is strictly increasing when p ≥ p⊥.

5.2 C(S) ∩ ` 6= ∅

In this section, we consider the case where the MEC of S (C(S)) intersects the line `. Let
C(S) intersects ` at points p′ and p′′, with p′ < p′′.

Analogous to Lemma 3, the following result can be proved similarly.

Lemma 4. For all points p < p′ the MEC of S ∪ {p} either passes through or contains the
point p′ and for all point p > p′′ the MEC of S ∪ {p} either passes through or contains the
point p′′.

Using this lemma, we prove the following proposition for the case where the line ` does
not intersect the MEC of S.

Proposition 2. If C(S) ∩ ` = ∅, the radius function ϑ is strictly decreasing when p < p′,
and strictly increasing when p > p′′ and constant when p′ ≤ p ≤ p′′.

Proof. Consider any two points pa < pb < p′ on `, and denote the MEC of S ∪ {pa} by
Ca and the MEC of S ∪ {pb} by Cb. As Ca contains p′ (Lemma 3), it also contains the
line segment [pa, pb]. Therefore, Ca is an enclosing circle for S ∪ {pb}. This implies that



ϑ(pa) = r(S ∪ {pa}) > r(S ∪ {pb}) = ϑ(pb), where the inequality is strict because the MEC
of S ∪{pb} always passes through the point pb and it is unique. This proves that the radius
function ϑ is strictly decreasing when p < p′.

Similarly, we can show that the radius function ϑ is strictly increasing when p > p′′.
Finally, when p′ ≤ p ≤ p′′, the point p lies on the chord [p′, p′′] of the MEC of S, and

the MEC of S ∪ {p} is same as the MEC of S. Hence, for all p ∈ [p′, p′′], ϑ(p) = r(S).

Acknowledgement: The authors are indebted to the anonymous referees for valuable comments which im-
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