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Model Selection Using Database Characteristics: Developing a
Classification Tree for Longitudinal Incidence Data

Abstract
When managers and researchers encounter a data set, they typically ask two key questions: (1) Which model
(from a candidate set) should I use? And (2) if I use a particular model, when is it going to likely work well for
my business goal? This research addresses those two questions and provides a rule, i.e., a decision tree, for data
analysts to portend the “winning model” before having to fit any of them for longitudinal incidence data. We
characterize data sets based on managerially relevant (and easy-to-compute) summary statistics, and we use
classification techniques from machine learning to provide a decision tree that recommends when to use
which model. By doing the “legwork” of obtaining this decision tree for model selection, we provide a time-
saving tool to analysts. We illustrate this method for a common marketing problem (i.e., forecasting repeat
purchasing incidence for a cohort of new customers) and demonstrate the method's ability to discriminate
among an integrated family of a hidden Markov model (HMM) and its constrained variants. We observe a
strong ability for data set characteristics to guide the choice of the most appropriate model, and we observe
that some model features (e.g., the “back-and-forth” migration between latent states) are more important to
accommodate than are others (e.g., the inclusion of an “off ” state with no activity). We also demonstrate the
method's broad potential by providing a general “recipe” for researchers to replicate this kind of model
classification task in other managerial contexts (outside of repeat purchasing incidence data and the HMM
framework).
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Model Selection Using Database Characteristics:
Developing a Classification Tree for Longitudinal Incidence Data

Abstract

When managers and researchers encounter a dataset, they typically ask two key questions: (1)
which model (from a candidate set) should I use? and (2) if I use a particular model, when is it
going to likely work well for my business goal? This research addresses those two questions,
and provides a rule, i.e., a decision tree, for data analysts to portend the “winning model” be-
fore having to fit any of them for longitudinal incidence data. We characterize datasets based on
managerially relevant (and easy-to-compute) summary statistics, and we use classification tech-
niques from machine learning to provide a decision tree that recommends when to use which
model. By doing the “legwork” of obtaining this decision tree for model selection, we provide
a time-saving tool to analysts. We illustrate this method for a common marketing problem
(i.e., forecasting repeat purchasing incidence for a cohort of new customers) and demonstrate
the method’s ability to discriminate among an integrated family of a hidden Markov model
(HMM) and its constrained variants. We observe a strong ability for dataset characteristics to
guide the choice of the most appropriate model, and we observe that some model features (e.g.,
the “back-and-forth” migration between latent states) are more important to accommodate than
others (e.g., the inclusion of an “off” state with no activity). We also demonstrate the method’s
broad potential by providing a general “recipe” for researchers to replicate this kind of model
classification task in other managerial contexts (outside of repeat purchasing incidence data and
the HMM framework).

Keywords: model selection, machine learning, data science, business intelligence, hidden
Markov models, classification tree, random forest, posterior predictive model checking, hi-
erarchical Bayesian methods, forecasting.



1 Introduction

The explosion in technology-enabled data collection has changed the focus of marketing

modelers away from aggregated data at the store- or market-level towards more granular, panel-

oriented, data structures and associated statistical methodologies. Companies have reduced

their reliance on “rolled up” data provided by syndicated vendors (e.g., IRI, Nielsen) and now

build more of their analytics around customer-level longitudinal patterns that they can obtain

from their own internal operations. But while this increased reliance on “site-centric” data

(Zheng et al. 2011) offers a number of meaningful benefits to the firm, it also comes with some

potential costs to the researcher.

First, site-centric data provides a detailed description of each customer’s stream of pur-

chases (and other actions that the firm can measure directly), but it often lacks information

about marketing variables, competitive tactics, and other potential “drivers” of the behavior(s)

of interest (Donkers et al. 2007; Schweidel et al. 2008) that are typically provided by a third-

party firm and often difficult to link to purchase data. So many firms are focusing their decision-

making efforts around the flow of incidence activities, i.e., the timing and nature of each trans-

action, which is very rich, but also quite different than the inputs used in more traditional

marketing-mix models (Hanssens et al. 2005).

Second, this detailed stream of incidence actions can be characterized by an ever-larger

swath of mathematical models. That is, increased granularity comes with the potential for in-

creased model complexity and hence a more difficult model selection problem than faced by

previous generations of researchers, who often relied on relatively standard model specifica-

tions (Cooper and Nakanishi 1988; Wittink et al. 1988) that were sufficient for the relatively

standard data structures that were made available by a small set of third-party data providers.

With this “data evolution” in mind, consider a business intelligence manager for an e-

commerce firm who is examining panel data from three recent product launches (Figure 1).

Her goal is to project repeat purchase patterns for each dataset, as her company’s production,

marketing, and customer relationship management (CRM) activities depend on an accurate

forecast. How should she choose which statistical model is most appropriate for each product’s

dataset? She could run a number of different panel-oriented incidence models and choose the
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one that fits each dataset best; but, a series of separate “model bake-offs” would be a highly

inefficient process and would offer no assurances that the chosen model(s) will be best-suited

for forecasting purposes of similar datasets. Instead, are there clues in each dataset that might

help her make the right choices without having to run an array of models over and over again

for each new dataset? Can we look at many datasets and model performance to extract general

rules about when to use which model? That is the goal of this paper: we want to help managers

choose among competing longitudinal incidence models, based only on observed dataset-level

summary statistics, i.e., database characteristics, before they need to run any models.

[INSERT FIGURE 1 ABOUT HERE]

We will create a “decision tree” that can guide the manager towards the most appro-

priate model specification for a given dataset, based only on observable (and easy to compute)

summary statistics on that dataset. In other words, we will do the “upfront work” so that the

decision tree is a time-saving tool for other analysts. We recognize that each dataset consists of

a mix of heterogeneous customers who may go through different kinds of dynamic purchasing

patterns over time, and we want to identify the most suitable model specification to capture

these within- and across-customer sources of variation. However, we do not use the database

characteristics directly in our models to predict future purchasing (i.e. we don’t treat them as X

variables in a statistical model), but instead we use them to help identify the best model (chosen

from a class of different latent-state model specifications), which can be used for forecasting

and other diagnostic purposes.

For instance, referring back to Figure 1, Dataset A’s steadily declining sales may in-

dicate that latent customer attrition is prevalent but occurs at different rates for different cus-

tomers, so a “buy till you die” model such as the Pareto/NBD (Schmittlein et al. 1987) or the

BG/BB (beta-geometric beta-binomial; Fader et al. 2010) might be appropriate. In contrast, the

sales for Dataset B seem to show a substantial rise towards the end of the observation period,

so a hidden Markov model (HMM), in which customers move back and forth between different

states of purchasing propensities (Liechty et al. 2003; Netzer et al. 2008), might be the best

model to employ for forecasting purposes. Finally, the sales curve for Dataset C is harder to

classify as a “buy till you die” or an HMM-type pattern - it seems to reflect elements of both
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specifications. Perhaps we need a hybrid version of these two models to capture and project it.

While there are innumerable models that could be viable candidates for this kind of

longitudinal incidence data, we choose a particular set that are tightly connected to each other

but still very flexible. The models we consider are the HMM and three different constrained

variants of it (including the BG/BB). Since they are part of an integrated family, they offer an

opportunity to detect when each underlying model component (in this case the presence of an

absorbing state and/or the need for a “no-purchase” state) is worth including or “turning off.”

This provides added insight to the analyst about the nature of their customer dynamics, above

and beyond simplified model implementation and improved model performance.

For this context (i.e., repeat-transaction incidence data; HMM and its constrained vari-

ants), we do all of the “leg work” for the analyst. We run an array of constrained and un-

constrained HMM models on dozens of synthetic datasets, generated to broadly represent the

kinds of patterns that are likely to occur in real-world settings. While this is computationally

expensive initially (a high “upfront cost” for us as the researcher), it yields significant savings

for the downstream user - the manager simply follows our advice and selects the most appro-

priate model given the nature of her dataset, and runs it, ”the winner” and not the entire class

of models.

The focal managerial criterion we use to select among models is the forecast error for

each cohort’s purchases; so the winning model has the minimum mean absolute error in a hold-

out period. We use well-established machine-learning methods known as classification and

regression trees (CART) and random forests, to derive general rules to suggest which model to

use under different circumstances, based entirely on observed (and managerially meaningful)

patterns in the customer-base data. The database characteristics that turn out to be most impor-

tant (in our setting) include the nature of the decline in cohort-level sales over time as well as

purchase concentration (e.g., the “80:20 rule”) across customers.

Since the development of the decision tree is our key contribution, the structure of the

paper centers around it. There are three “ingredients” for the classification approach, and we

devote a section of the paper to each one: the candidate models in Section 2, the database

characteristics in Section 3, and the performance criterion to determine the “winning” model
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for each dataset in Section 4. Putting these three ingredients together, we create the decision

tree in Section 5 and focus on its interpretation, validation, and managerial implications.

Although we perform our analysis for a specific data/modeling context (albeit an im-

portant one in today’s marketing environment), the same basic “recipe” developed here can be

applied to many other settings. Thus, we formalize our approach as a more general method-

ology in the Appendix, using the same ingredients outlined above: a set of models, database

characteristics, and a selection criterion (i.e., performance or error measure with loss function).

We now begin the process of laying out these elements to build our decision tree.

2 Which models to consider? The HMM and its constrained variants

The decision tree recommends which model to use for a given dataset, but we have

to provide a consideration set of models: the HMM and its constrained variants. Why do

we consider this class? First, they are appropriate for this popular context of understanding

and projecting repeat-purchase patterns of a cohort of customers using longitudinal incidence

data (Liechty et al. 2003; Montgomery et al. 2004; Montoya et al. 2010; Netzer et al. 2008;

Schweidel et al. 2011). Second, these models cover a wide range of underlying “stories” of

customer behavior leading to different observable data patterns. This helps us achieve the goal

of the paper: establish the link between dataset-level summaries and model performance.

Third, these models form an integrated family; that is, each model is a constrained

or unconstrained version of another in the set. Some of these are established yet seemingly

unrelated models, such as “buy till you die” and latent-class models, among others. But they

are all special cases of the HMM. These connections have only been partially explored and in

an ad-hoc manner in the previous literature, as we discuss below (Netzer et al. 2008; Schweidel

et al. 2011). However, the extra insight that we provide is that the four variants of the HMM

that we consider are described by two model components each with two levels (as seen in the

2×2 discussed in Figure 2). So the decision tree not only recommends a specific model, it also

emphasizes the presence/absence of more general model components, thereby adding more

insight and comparability across datasets.

The unconstrained HMM used here has two states, and the within-state purchase likeli-
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hoods are repeated Bernoulli trials by individuals who can begin the calibration period in State

1 or State 2. We allow for unobserved continuous heterogeneity for both the within-state pur-

chase propensities as well as the between-state transition probabilities. Formally, we let yit = 1

for day t if the customer i purchased and yit = 0 otherwise.1 Then,

yit ∼

 Bernoulli(p1i) if in State 1 , Zit = 1

Bernoulli(p2i) if in State 2 , Zit = 2 ,
(1)

where the latent-state variable, Zit, indicates which state a customer occupies on each day. The

individual-level parameters of the HMM are the within-state propensities, pi, and the transition

probability matrix, Θi. That is,

pi = (p1i, p2i) and Θi =

1− θ12i θ12i

θ21i 1− θ21i

 . (2)

We let the initial state membership be a population-level parameter, and any individual

can start in State 1 with probability π1 or State 2 with probability 1−π1. We assume independent

beta distributions to allow for heterogeneity across individuals for the components of pi and

Θi.2 Specifically, the prior distributions used are

p1i ∼ beta(µp1 , φp1), p2i ∼ beta(µp2 , φp2),

θ12i ∼ beta(µθ12 , φθ12), θ21i ∼ beta(µθ21 , φθ21), (3)

where µ = a/(a + b) is the mean and φ = 1/(a + b + 1) is the polarization index of the

beta distribution with shape parameters a and b (Sabavala and Morrison 1977). In general,

for S ≥ 2 states, each row r of the transition probability matrix is a vector (θr1i, . . . , θrSi) ∼

Dirichlet(αr1, . . . , αrS).3 We distinguish between states by referring to State 1 as having a

1Without loss of generality, we use “day” to refer to the unit of discrete time, and “purchase” as the observed
behavior of interest. It could be instead, for example, viewing online videos or not in a given week, donating or
not in a given quarter, etc.

2The initial state-membership probability is assumed to be a population-level parameter due to the definition
of a cohort of customers acquired at the same time. Additionally, the results are robust to using a logit-normal for
heterogeneity on all individual parameters, and for allowing correlations among them.

3We use highly uninformative hyperpriors on the population-level parameters of the beta (or Dirichlet) distri-
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within-state propensity at least as large as that of State 2, i.e., for each individual (i.e., p1i ≥ p2i

for all i). This prevents the label-switching problem known to exist with latent-state models

(Stephens 2000).

We highlight the off-diagonal entries of the transition probability matrix, since θ12i de-

notes the probability an individual moves “forward” (State 1 to 2) and θ21i represents the prob-

ability an individual moves “backward” (State 2 to 1). So not allowing backwards transitions

is equivalent to making State 2 absorbing.

[INSERT FIGURE 2 ABOUT HERE]

Given this formulation of the unconstrained HMM, the three nested models emerge as

we constrain either or both model components. To start, when we apply both constraints to

all individuals, so there is an “off”’ state (p2i = 0) and “backwards” transitions are prohibited

(θ21i = 0), the “buy till you die” BG/BB model emerges. 4

Then, as we think about how the BG/BB model and HMM differ along these two di-

mensions, we can consider each of those dimensions separately (i.e., either p2i = 0 or θ21i = 0).

These constraints determine the two dimensions of Figure 2. When applying each of the two

constraints separately, different models emerge (the off-diagonal cells of Figure 2), and each

tells a distinct story of customer behavior.

When only p2i = 0, the On And Off model (OF) emerges. Consumers can make back-

and-forth transitions between an “on” state of activity and an “off” state of inactivity. Like

the HMM, customers can make backwards transitions, but like the BG/BB, when in the “off”

state, customers have no chance of activity. This kind of model has been explored in papers on

Markov-modulated Poisson processes (Ma and Buschken 2011).

Alternatively, when only θ21i = 0, we get the Hot Then Cold model (HC). At any

time customers can be either in a “hot” state (higher propensity to purchase) or a “cold” state

(purchasing is less likely but still possible). Like the BG/BB, once the customer reaches the

“cold” state she remains there (no backwards transitions), and like the HMM, in the “cold”

butions. For more details about the distributions used in the sampling procedure, see the Appendix.
4Unlike the BG/BB as in Fader et al. (2010), which assumes that all individuals start in the “alive” state, in our

BG/BB specification we allow individuals to start in either state, according to initial state probability vector, π.
The model utilized here is more general.
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state purchasing is possible. The hot-then-cold ordering is informed by the prevalence of cus-

tomer attrition, or at least, slowing down of transactions (in aggregate) that is common in most

cohort-level datasets.5 Such behavior appears in queuing theory models, such as phase-type

distributions (Bladt and Neuts 2003; O’Cinneide 1990), and in marketing models (Fader et al.

2004; Schweidel and Fader 2009).

Past literature has noted how the latent-class model (Kamakura and Russell 1989) is a

special case of an HMM (θ12i = θ21i = 0), and other work often utilizes a nested model with

a “death” state (Netzer et al. 2008; Schweidel et al. 2011). However, the other links among the

HMM and its constrained models (e.g., BG/BB, HC, and OF) that we consider have not been

documented in full detail as an integrated framework with the 2×2 structure as described here.

Viewing the HMM and its constrained variants as an integrated family provides an

opportunity to detect when (i.e., for which types of datasets) each model component is worth

including. One may initially (but erroneously) think that the nested structure would guarantee

that the more flexible HMM would perform at least as well as any of its constrained versions

(with one or both model components shut off) on all model-performance criteria. But this is not

guaranteed in practice. We illustrate that when forecasting repeat transactions out-of-sample,

the more general model does not always beat its nested versions, and hence there is value in the

decision tree provided in this paper.

The decision tree answers our key question is: for what kinds of database characteristics

does each model perform best? To perform this classification, we need a range of different

datasets generated from the 2 × 2 framework. We generate 64 synthetic datasets, each with

T = 30 weeks of data in calibration (and 30 for holdout) and N = 500 customers, with

considerable variation by simulating them from unconstrained and constrained versions of the

HMM (i.e., to capture each of the sub-models as well as the full unconstrained HMM) with a

5For this reason, we do not consider a separate “Cold Then Hot” model, although the general HMM and OF
specifications allow individual-level purchasing to “speed up” over time.
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generous range of population-level parameters:

µp1 ∈ [0.05, 0.50] µp2 ∈ [0.00, 0.10] (4)

µθ12 ∈ [0.10, 0.35] µθ21 ∈ [0.00, 0.25]

φp1, φp2, φθ1, φθ2 ∈ [0.10, 0.45] π1 ∈ {0.50, 1.00}.

We discuss these synthetic datasets and the variability across them in the next section. How-

ever, after creating these datasets, we put aside the data-generating process and describe them

entirely by easy-to-compute and managerially relevant database characteristics, which we now

cover in detail.

3 Selecting database characteristics

The decision tree is a tool that predicts which specification is likely to be the “winning”

model by only looking at summary statistics of a particular database. So, just as we need

a set of reasonable models to choose from, we also need a set of database characteristics to

drive the choice process. But which database characteristics should we consider? We illustrate

our process of identifying relevant database characteristics by returning to one of the opening

examples, repeat purchasing for Dataset A. Before running any models, analysts frequently

examine two typical displays of a cohort’s purchasing behavior: a cross-sectional histogram

of customer-level transactions and a longitudinal tracking plot of cohort-level purchases over

time. These two graphs appear in Figure 3.

[INSERT FIGURE 3 ABOUT HERE]

What are the key features of each graph? We want to choose summaries that are both

managerially relevant and easy to compute directly from these aggregate plots. We identify

four summaries that offer a fairly complete characterization of each plot. For the histogram, we

propose summaries to capture the nature of the “head” and the “tail” of the distribution, as well

as its central tendency. For the tracking plot, we focus on the early and late trends in purchasing

as the cohort ages and the trend’s overall “bowed” shape, as well as the overall variability over

time.
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More specifically, Table 1 contains a listing of these measures, which we will use in our

subsequent empirical analysis. While there is not an exact science to selecting these measures,

we choose them here to represent central tendency (e.g., average frequency), higher moments

(e.g., top percentile, purchase concentration 80:20-type rule), and trend behavior (e.g., steep-

ness, shape, trend variability). We do not claim this list to be comprehensive, but these values

vary widely and in systematic ways across the datasets generated by the HMM and its con-

strained versions.

The variation in these measures across databases is essential: it allows us to explicitly

show the range of empirical patterns we consider here, and is required to obtain a meaningful

classification tree linking these summaries to the model selection process. We illustrate some

of this variation in values of these summary statistics for Datasets A, B, and C (Table 2).

[INSERT TABLE 2 ABOUT HERE]

It is interesting to see how the datasets are indistinguishable on some dimensions (e.g.,

frequency), quite distinct from each another on others (e.g., penetration), and occasionally

exhibit pairwise similarities (e.g., late trend for Datasets B and C).

In most empirical settings, we think about the amount of information as being related

to the number of observations within a dataset. But in this setting each dataset is reduced to

a single observation described along multiple dimensions, i.e., the database characteristics de-

scribed above. Thus, we construct a “dataset of datasets,” a collection of 64 simulated datasets

reflecting variation along the summary statistics and representing real-world datasets (Fader

et al. 2010; Netzer et al. 2008; Schweidel et al. 2011). Specifically, we generate datasets from

all possible combinations of the parameter values noted in Section 2 which allows us to reflect

both the structural variation as well as the “natural randomness” that arises from simulating the

purchases. Once the datasets are created, the true values of the population-level parameters are

no longer taken into consideration.

Figure 4 shows the large variability along the values of the database characteristics

across the simulated datasets. For instance, nearly half of the datasets have penetration rates

between 40% and 70%. About 40% of them have a very steep declining trend (steeper than a

drop in transactions equivalent to 15% of the cohort size), while others show some growth in
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purchases for the cohort over time. Thus, we believe that, by selecting and creating datasets in

this way, we will have avoided biasing our classification results to favor any particular model

specification.

[INSERT FIGURE 4 ABOUT HERE]

To ensure that our chosen characteristics are explaining most of the meaningful varia-

tion across the collection datasets, we ran a principal components analysis and an exploratory

factor analysis on an even larger set of summary statistics beyond the ones described earlier.

We do not present the detailed results but note a few highlights. The principal components

analysis indicates that 99% of the measured variation across the 64 datasets can be captured

by six independent components. The loadings of the principal components analysis and the

loadings of the exploratory factor analysis (with 5, 6, and 7 factors) all point to a very similar

set of summary statistics, such as central tendency, concentration, and variation over time.

We also recognize that a number of these database characteristics are naturally corre-

lated with each other. Some measures are quite independent (e.g., late trend and penetration,

r = 0.01), but other pairs have correlations that are large and significant (e.g., average fre-

quency and penetration, r = 0.86). While this kind of multicollinearity could be a serious

problem in a typical regression-like model, it does not affect the classification tree and random

forest approach since they are non-parametric methods designed specifically for (sequential)

variable selection (Breiman et al. 1984; Breiman 2001a).

4 Assessing model performance

The final ingredient that goes into the classification tree is a rule for declaring a winning

model for a given dataset. Here, we select a “winner” based on each model’s ability to predict

an important managerial quantity that is widely used for purchasing data due to its link to

customer lifetime value and other profit measures: aggregate incremental sales over a holdout

period. Specifically, we select an error measure that summarizes the time series of discrepan-

cies between the model and the observed sales for each “MCMC world.” We will look at the

variability of the errors across “worlds” and also average the errors across the “worlds” to ob-

tain a measure of the model’s error for that dataset that integrates over the posterior uncertainty.
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The error measure we use, mean absolute error (MAE), assumes a linear loss function and is

frequently used for time-series data. In the more general formulation of this procedure (see

Appendix), one can select any managerial quantity (replacing out-of-sample aggregate sales

over time) and error measure with a different loss function (to replace MAE). While we present

results using MAE for our context, our classification tree results are robust to alternative com-

mon summary error measures (e.g., mean absolute percent error, MAPE; root mean squared

error, RMSE).6

Formally, we quantify performance as the degree to which the model-based posterior

predictive distribution of out-of-sample aggregate sales is outlying with respect to the quantity’s

observed value. We assume the posterior distribution has been obtained using standard MCMC

procedures (detailed in the Appendix), yielding posterior draws g = 1, . . . , G. For dataset

k, yobs
kt is number of the observed incremental transactions at time period t and y

∗(g)
kmt is one

replicate from model m’s corresponding posterior predictive distribution for that quantity (i.e.,

incremental transactions). Then for each posterior replicate g, we compute the mean absolute

error,

d
(g)
km =

1

T

T∑
t=1

∣∣∣y∗(g)kmt − y
obs
kt

∣∣∣ . (5)

We will use the values of d(g)km in two ways. On the one hand, we will examine the aver-

age posterior MAE for all four models on each dataset to determine a single winner per dataset.

On the other hand, in order to provide a more nuanced set of findings, we characterize the

full posterior uncertainty of the MAE by computing the probability that each model has lowest

value (i.e., proportion of times each model is the winner across the G posterior replicates) as

we would not want to overly penalize a model which is a “close second,” for instance. We also

use the latter directly in our classification tree.

6We note that our choice of error measure for model selection is in contrast to commonly used likelihood-
based summary criteria, such as BIC and DIC (Montgomery et al. 2004; Montoya et al. 2010; Netzer et al. 2008;
Schweidel et al. 2011). We use an empirical quantity for model selection since many scholars caution against
using purely likelihood-based measures (Gelman and Rubin 1995), especially for latent-state models, such as
the HMM and its variants, because one must face issues with unstable estimators, computation of the posterior
distribution, and correction factors of the log-marginal likelihood (Chib 1995; Lenk 2009; Newton and Raftery
1994; Spiegelhalter et al. 2002).
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Now, armed with a set of models (the HMM and its constrained variants), the in-sample

database characteristics for each dataset (Table 1), and an error measure (out-of-sample MAE),

we have all of the ingredients for the decision tree, which is described next.

5 When to use which model? A classification tree

We classify datasets to reveal how we can select the model with the best out-of-sample

error by only using in-sample database characteristics. This enables us to answer the paper’s

central question: given a dataset’s summary statistics, which model best fits the data?

The winning model, mWinner(g)
k , for dataset k and posterior world g is determined by the

identifying the model with the minimum error d(g)km among all M models,

m
Winner(g)
k = argminm=1,...,M

{
d
(g)
km, . . . , d

(g)
kM

}
, (6)

We use a classification tree to relate the identity of the winning model, mWinner(g)
k , to the vector

of database characteristics, τ(Yobs
k ). Given the performance of all M models across all K

datasets and G posterior replicates, we explain variations in the model performance (i.e., which

model wins) as a function of the observed summaries of that dataset. Formally, we capture this

relationship as follows,

m̂
Winner(g)
k = Tree

[
τ(Yobs

k )
]
, (7)

where the function “Tree” denotes the classification tree predicting the winning model m̂Winner(g)
k

for each of the datasets k = 1, . . . , K and posterior world g = 1, . . . , G.

The classification tree provides cutoff values of the dataset-level summary statistics to

place entire datasets into “buckets.” This classifies datasets in an easy-to-interpret manner.

Each bucket of datasets has a similar profile of dataset-level summary statistics and similar pat-

terns of model performance. Therefore, when a new dataset is encountered, it can be classified

using this decision rule to identify which of the models will likely be most suited for it. This

allows us to uncover relationships between observed patterns in the data and model fit that are

easy to interpret while avoiding the need to make any additional assumptions about functional
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form or error distributions common to ordinary regression models.

Additionally, our classification tree approach goes one step further because it also

reflects the natural parameter and model uncertainty. We reflect that uncertainty since our

Bayesian modeling approach provides the full posterior distribution of performance for each

dataset-model pair. As a result, each case to be classified is unique to a particular posterior draw

from a model run on a dataset. This means that the data to be used to construct the classification

tree contains G = 100 model-based replicates of the K = 64 observed datasets. By using G

replicates of each set of observed dataset summaries (independent variables), we allow for G

different values of errors from each model-dataset pair, and hence each dataset has a distribu-

tion of different winning models (dependent variables), and therefore receives an appropriate

number of “votes.”

5.1 Classification tree

The classification tree in Figure 5 can be easily read by starting at the top and following

a series of “if/then” decisions down to a terminal node at the bottom of each branch. These

terminal nodes represent a group of datasets with the same observed summary statistic branch

values (predictor variables). Each node has a recommended winning model but also displays

the within-node winning percentages for each model (based on the number of posterior worlds

in which each model had the lowest forecast error). Note that the “N” values in the tree sum

up to 6,400 cases, reflecting the use of 100 posterior replicates for each of the 64 simulated

datasets.

[INSERT FIGURE 5 ABOUT HERE]

Four database characteristics were selected by the classification tree’s sequential vari-

able selection algorithm as being diagnostic: early trend, late trend, concentration, and trend

Gini (trend shape).

The early and late trend statistics reflect the change in transactions over each half of

the calibration period (15 days in each half) expressed as a percentage of the total customer

base (500 customers). The classification tree partitions early trend into three levels: very steep

(steeper than a drop in daily transactions equivalent to 11% of the customer base), moderately
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steep (a drop between 1% and 11%), and relatively flat or positive (a slope that is more positive

than -1%). Late trend is partitioned into two levels, which we label moderately steep (a drop

steeper than 3% of the total customer base) and relatively flat or positive (a slope that is more

positive than -3%). Next, the split for concentration has a remarkable resemblance to the 80/20

rule. A dataset is either highly concentrated (more than 82% of purchases are made by the top

20% of customers) or not highly concentrated.

The trend Gini summary statistic reflects the shape of the curve. How much does the

actual curve deviate from a line connecting the first and last days of the calibration period (i.e.,

how much area is there between curve and the trend line)? In other words, this measures the

degree to which the curve is “bowed.” The variable is split into a less bowed shape (close to

linear with value less than 5%) and a more bowed shape (value greater than 5%). Negative

values indicate that there is more area between the curve and the trend line that sits above the

trend line than below the trend line.

We illustrate the use of the tree by returning to our three introductory datasets. Recall

their database characteristics were shown in Table 2. We can trace how the tree classifies these

datasets to illustrate exactly how a manager can use our decision tree. For instance, Dataset

A exhibits a sales pattern that is downward sloping early on (steeper than -1%), not strongly

downward sloping later on (equal to -3%), and over 82% of the purchases are made by the

top 20% of customers. Thus, the classification tree recommends that it would be best modeled

using the BG/BB, since that model provides the best out-of-sample forecast for 40% of the

posterior replicates associated with the 15 different datasets that have similar values of database

characteristics. (And indeed, the BG/BB does provide the best forecast for Dataset A, as we

show below in Tables 3, 4, and 5.)

It is interesting to note the internal consistency of the tree. In particular, the precise

value of the late trend for Dataset A is exactly the classification tree’s cutoff value (-3%). So

even if the dataset’s late trend were just slightly less than that cutoff, the dataset would still fall

into a node dominated by the BG/BB model (i.e., in the leftmost terminal node of the tree, the

BG/BB is the best-performing model in 46% of posterior replicates).
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For datasets with a declining early trend and a flat or increasing late trend, but with-

out a high purchase concentration (fewer than 82% of the purchases made by the top 20% of

customers), a different pattern emerges. Datasets B and C are two such examples, so they

fall into two terminal nodes in this part of the tree. Datasets represented in this part of the

tree show a strong need to allow for back-and-forth transition (HMM and OF). But within the

back-and-forth pair, there is less certainty about which one wins.

Further splitting the datasets by trend Gini (trend shape) over the calibration period and

by early trend one more time allows the analyst to better discriminate when each model is likely

to perform better. For datasets with a more bowed shape (trend Gini greater than or equal to

5%) and a very steep early trend (steeper than 9%), such as Dataset B, the HMM wins with

45% of votes versus the OF with 32%. However, for others with a moderately steep early trend

(between a 1% and 9% drop) and a more bowed shape, such as Dataset C, the OF wins with

55% of votes versus the HMM with 32%. Datasets B and C are therefore best classified by the

HMM and OF, respectively.

The split on trend shape (trend Gini) and an additional split on early trend should be

intuitive as the HMM is a more general model than the OF. As a result, the HMM can generate

a wider range of patterns across datasets than the OF, due to the extra model flexibility (e.g.,

State 2 purchase probability is not necessarily zero). To understand this, keep in mind the

patterns common to the datasets in this part of tree: not highly concentrated purchasing and

flat or increasing late trend. On one hand, for less bowed-shaped curves, the OF has difficulty

capturing a nearly linear pattern since the “off” state induces a moderate steep early drop. On

the other hand, for markedly bow-shaped curves, the OF also has difficulty capturing both the

very steep early declining trends and flat or increasing later trend. Capturing such an interaction

among database characteristics is an advantage that CART methods has over traditional linear

regression approaches.

5.2 Uncertainty in model performance

As we take a deeper dive into particular branches of the decision tree, we examine the

uncertainty in model performance. That is, while the model with the lowest error is declared
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the “winner,” we describe how we one can utilize “votes” for each winning model by utilizing

the full posterior from the Bayesian model output.

As an illustration, we return to Datasets A, B, and C to look at the comparative perfor-

mance of the HMM and its variants from the 2× 2 framework. The average performance seen

in the plots of Figure 6 are quantified in Table 3.

[INSERT FIGURE 6 ABOUT HERE]

[INSERT TABLE 3 ABOUT HERE]

We summarize each model’s performance for a dataset using MAE, averaged over the

posterior uncertainty. For example, for Dataset A the BG/BB has the best average out-of-

sample prediction (MAE = 4.37, mean across replicates) closely followed by the HC (4.91).

For Dataset B, the HMM (8.35) clearly out-performs the other three models, and Dataset C is

best modeled by OF (7.09).

While those are posterior means of model performance, we also convey the degree of

uncertainty in these assessments, using replicated datasets associated with the full posterior

predictive distribution. To illustrate this uncertainty, we plot the predicted incremental sales for

each posterior replicate for Dataset A and the observed daily incremental sales (Figure 7). By

visual inspection of these tracking plots alone, it is difficult to detect whether the BG/BB truly

predicts better than the other three models.

[INSERT FIGURE 7 ABOUT HERE]

While we would like to declare a single winning model for each dataset, the high level

of uncertainty around the model predictions seems to raise a warning flag about making any

strong statements about differences among the models. Therefore, we want to quantify the

“shades of gray” in model performance by recognizing that when declaring a winning model

the “vote” need not be unanimous.

Thus, instead of only examining posterior mean of MAE, we characterize its full dis-

tribution. For the highlighted Datasets A, B, and C, we show the distribution of each model’s

MAE across all replicates (Figure 8). Table 4 displays the corresponding distribution sum-

maries (e.g., median and interquartile ranges of MAE across replicates).
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[INSERT FIGURE 8 ABOUT HERE]

[INSERT TABLE 4 ABOUT HERE]

Not surprisingly, the densities of the performance measure of the four models are some-

what overlapping. For example, in Dataset A, while most of the mass of the BG/BB density is

lower (better) than that of the HMM and HC densities, there is some probability that the HMM

or HC has a lower MAE than the BG/BB. This suggests there is not a unanimous winner. By

contrast, in Dataset C, for instance, there is much less overlap, suggesting that the OF has an

even higher chance of a lower MAE than the others.

But what is the probability that each model is the winning model for a dataset? We

take advantage of the Bayesian output to make this probability statement. Table 5 shows each

model’s winning percentage for Datasets A, B, and C. That winning percentage, or percent

of votes, is the proportion of posterior worlds in which each model has the lowest error. For

instance, the OF is quite clearly the winner for Dataset C, since it wins 81% of the time. For

Dataset A, while the BG/BB is the winner, the distributions of the error for three of the four

models overlap. So it is not surprising that they “split the votes,” and the BG/BB wins 45% of

the time compared to 27%, 6% and 22% for the HC, OF, and HMM, respectively.

[INSERT TABLE 5 ABOUT HERE]

5.3 Assessing the predictive value of the decision tree: in-sample

How accurate are the resulting recommendations from the tree? We answer this ques-

tion to assess the tree’s predictive value. First, we focus on the simple measure of the hit rate

of the classification tree. The hit rate is the number of times the tree recommends a model that

is in fact the best model to use on that dataset. Averaged across all models and iterations, the

hit rate is 46%. We put this hit rate in context by noting that from a purely operational stand-

point, the tree allows the analyst to run one model instead of four. In other words, by reducing

the work of an analyst by 75%, the tree makes a recommendation of which model to use that

is about twice as good as guessing (25% hit rate) randomly among the four models. This hit

rate also fares well when compared to tougher comparative yardsticks, such as the proportional
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chance criterion and maximum chance criterion (Morrison 1969), which yield benchmark hit

rates of 28% and 35%, respectively. The latter metric is often hard to beat in a discriminant

analysis setting. It assesses how much better our classifications are, compared to using the most

common actual winner (in this case the HMM) every time. So the decision tree clearly offers

some improvements over that simple (but often effective) approach.

However, this measure is purely an “in-sample” one: it uses the same 64 datasets for

calibration and classification purposes, so it may be subject to overfitting. We describe a pro-

cedure next, random forests, that will allow us to reflect the uncertain nature of the tree itself

and its application to holdout data.

5.4 Assessing the predictive value of the tree using random forests: out-of-sample

To answer the question about the value of the tree, using another “lens,” we turn to

another machine-learning method closely related to CART known as random forests (Breiman

2001a; Liaw and Wiener 2002). While the single classification tree we have described above

takes into account the parameter and model uncertainty, it does not take into account uncer-

tainty in the structure of the classification tree itself. The random forest captures extra variation

around the classification. This requires many classification trees, so the random forest algo-

rithm “grows” many trees (hence the “forest”).

What is special about the random forest is that it has a built-in monitoring system to

make sure it produces predictions that are likely to be validated on a holdout set and that are

utilizing important predictor variables, both to prevent overfitting (Breiman 2001a; Liaw and

Wiener 2002).

Fortunately, the random forest algorithm has a built in cross-validation procedure cal-

culating an n-fold cross validation, where the holdout sample size, n, is typically about 1/3

of the cases (Breiman 2001a). The holdout misclassification rate, in the language of machine

learning, is called the “out-of-bag” error rate, or the “generalized error rate,” since it is intu-

itively similar to cross-validation error, which indicates the ability of the predictive model to

generalize to cases outside of the given dataset.

The random forest out-of-sample error rates broken down by each model are in Table
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6, and the hit rate across all four models is 48%. This closely matches the in-sample hit rate

using one classification tree. It is encouraging to see that, even when a dataset is not used for

calibration, it can be classified correctly with a high level of accuracy.

[INSERT TABLE 6 ABOUT HERE]

Looking more carefully at the classification tree and random forest results, several dis-

tinctive patterns arise. First, it is clear that the BG/BB and HMM models have substantially

higher hit rates than the other two models. It seems that each of these polar opposite mod-

els (at least in terms of parameters and complexity) can serve as effective “representatives” to

characterize the entire family of HMM models covered here.

This result raises the question about which of the two constraints/dimensions associated

with our 2 × 2 framework is more important to capture - the presence of an “off” state or the

existence of an absorbing state? A closer inspection of Table 6 clearly reveals the answer: clas-

sifying whether or not the data requires an absorbing-state model or a back-and-forth model is

much more informative than the presence of an “off state.” There is a high degree of confusion

between the BG/BB and HC models, and likewise for HMM and OF, but relatively little con-

fusion between BG/BB and OF, or HMM and HC. In Table 7 we aggregate the classifications

across this single dimension, and see incredibly high hit rates (62% and 89%) when we ignore

the presence/absence of the “off state.”

[INSERT TABLE 7 ABOUT HERE]

While we have explored the predictive value of the decision tree, it is natural to ask

what is driving its good predictive ability. In order to better understand the drivers of our strong

classification capabilities, we now analyze the database characteristics’ diagnostic value.

5.5 Which database characteristics are most diagnostic?

The output of the random forests uncovers which variables are most important in ex-

plaining classification success. This not only validates the decision tree obtained via CART, but

it also quantifies variable importance. Variable importance in random forests is a measure of
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the average improvement in prediction accuracy of a tree when this variable is included (and its

values are intact) compared to when this variable’s values are meaningless (arbitrarily permuted

across observations).

Figure 9 displays each database characteristic’s variable importance. This analysis con-

firms what we see in the classification tree: early trend, late trend, trend Gini (trend shape), and

concentration are the four most important variables, and they are clearly separated out from the

others. Among the four, however, late trend is the most important. This makes intuitive sense

as the models differ in their abilities to generate decreasing or increasing patterns in aggregate

sales over time. For instance, for a dataset with a strongly increasing late trend, the BG/BB

and HC (due to their absorbing state) would not be able to capture it at all. This provides more

evidence that, even before running any models, an analyst could use these easy-to-compute

database characteristics to refine the decision about which model is likely to perform best.

[INSERT FIGURE 9 ABOUT HERE ]

5.6 How much value does the classification tree add?

What does the analyst gain by using our decision tree? From the above discussion, we

find the decision tree nearly doubles the hit rate compared to uninformed guessing about which

of the four models to run. And much of the remaining error rate is associated with the relatively

unimportant distinction between the presence/absence of an “off” state.

But while this information helps ease the task of choosing the right model, it also tells

us how well an analyst would do using the decision tree compared to running all four models

for every dataset. So it is reasonable to ask: how much error would the analyst suffer by using

only one model for all datasets? After all, this is the starting point for many analysts. Suppose

the analyst only used the BG/BB for all datasets she encountered. How poorly would she have

performed? We can compare the error incurred to the average performance if she always used

the truly winning model for each dataset. Table 8 summarizes this analysis.

Running the BG/BB on all datasets yields an error 52% worse than using the true win-

ning model (average MAE = 9.52 vs. 6.28). An analyst would do better by running only the

HMM, which yields an error 21% worse than the using winning model (average MAE = 7.63).
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By contrast, using the model recommended by decision tree for each dataset is the best option

as it greatly reduces error to only 12% worse than the winning model (average MAE = 7.05).

That is, in terms of relative error to the best model, only using the HMM is 75% worse than

using the decision tree. So using the decision tree is a win-win, it requires 75% less effort and

helps the analyst to avoid a 75% increase in relative error.

[INSERT TABLE 8 ABOUT HERE]

The value of the decision tree is even greater if we look beyond average performance

and consider the worst case scenario of model performance. When examining the variability in

performance, the 95% level of error for using any single model can be quite high. However, the

decision tree greatly controls that upper tail of error. In particular, the high end of possible error

for the HMM is 35% worse than the winner’s error, but the decision tree is only 12% (Table 8).

In short, our tree shows that an analyst should not use the same model for all occasions,

and clearly quantifies the cost of doing so.

6 General discussion and future directions

When researchers and managers regularly encounter a particular kind of data structure

and regularly choose among a standard set of models, they often develop good intuition about

when to use which model. Our approach rigorously quantifies and validates this kind of intu-

ition through a well-structured decision tree.

For the case of a database of repeat purchases over time for a cohort of customers,

we make specific recommendations about when to use the HMM and its constrained variants,

and which dataset-level summaries are important for that decision. We find that for datasets

exhibiting an early decreasing trend in aggregate sales, the BG/BB provides the best forecast

when the trend continues to decrease even later in the calibration period. But when it looks like

the trend has leveled off, the BG/BB frequently underpredicts and more complexity is often

warranted. An interesting exception to this rule, is the case of high purchase concentration

suggests that the “buy till you die” framework is still likely to provide the best forecast. This

may be reflective of the customers exhibiting high heterogeneity in purchase and churn rates

rather than a more complex back-and-forth state-switching process over time.
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In the case of the 2×2 framework, the models are classified with strong evidence along

one dimension (the presence of an absorbing state versus back-and-forth movement across

states), but the data offers weaker evidence to help discriminate datasets and models along the

other dimension (presence/absence of an “off state”). This may be surprising in light of many

papers that add a “death” state to an HMM-like model. But it may be the case that such models

work well mainly because of the constraint making that state absorbing and not necessarily

because the behavior is “turned off” within it. This finding could have important implications

for model builders and should be investigated more carefully in settings beyond this framework.

Beyond our HMM-based example, our proposed approach for empirical identification

is more broadly relevant. We explicitly test the characteristics of datasets that distinguish one

model from a related one. While this differs from a formal theoretical identification (e.g., using

economic principles), it is aligned with the calls for such activities that have been arising more

frequently in marketing (Hartmann et al. 2008).

The procedure that we propose is quite general: given the appropriate inputs (i.e.,

database characteristics), it can generate a decision tree prescribing which model should be

used for any given dataset and any given outcome/goal of interest. Understanding the interplay

between database characteristics and the relative performance of models (and model compo-

nents) is a useful contribution beyond the illustrative (yet common) context presented here.

While we illustrate it here with the HMM on forecasting incidence data (e.g., repeat purchas-

ing of a cohort), it is agnostic to these choices. In general, the recipe for this method requires the

following elements: (1) a consideration set of candidate models, (2) a set of predictor variables

consisting of observed summary statistics from each dataset, and (3) the outcome variable,

which is a choice of how to “pick the winner”; this requires a key managerial quantity and a

loss function for computing the error measure.

Classification and regression trees and random forests, while popular in machine learn-

ing and statistics, are still relatively new to the field of marketing, so we hope our work will call

more attention to this powerful and versatile tool. Furthermore, our application of it to the prob-

lem of model selection (as opposed to variable selection) is relatively uncommon even in the

statistics literature, but it is clearly a natural and important issue in many marketing contexts.
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Unlike traditional uses of classification methods, we add an extra twist by employing

them in a fully Bayesian framework, allowing us to leverage the full posterior distribution. This

differs from previous mixtures of Bayesian and classification methods, e.g. Bayesian CART

(Chipman et al. 1998), since we construct a decision tree from information that already in-

corporates a joint posterior distribution. Our mix of Bayesian approaches with classification

methods is a promising area of research for the interface of marketing, statistics, and machine

learning. The combination of the two approaches represents an exciting blurring of method-

ological boundaries, and marketing problems like the one examined here have a great deal to

offer in the debate between the “two cultures” of data modeling (statistics) and algorithmic

modeling (machine learning) put forward by (Breiman 2001b).

As computational costs decrease and access to grid/cloud computing increases, the pro-

cedure we propose here will be even easier to do in a variety of contexts. Of course, one could

argue that with greater computing power, there is less need to worry about selecting the sin-

gle best model a priori – just run a bunch of models and pick the best one. But this logic is

flawed for several reasons. First, our analysis focuses on performance in a holdout period, not

in-sample fit. Second, and related, there is great danger in choosing models that are overly

complex and excessively customized to every different dataset. And third, we believe strongly

in exploring and learning from the underlying patterns that are driving the observed data pat-

terns. This kind of “data science” will not only help analysts create and choose better models,

but will help managers make better tactical decisions to order to create and extract more value

from their customer relationships.
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Tables and Figures

Frequency How many active days of transactions are there per customer?
Penetration How many unique customers have made at least one transaction?
Concentration How is activity spread out among customers (i.e., what fraction of all

transactions was made by the top 20% of customers)?
Top 5% Level How much are the most active customers purchasing (i.e., what level of

transactions is the cutoff for the top 5% of most active customers)?
Early Trend What is the trend in the first half of the calibration period (i.e., drop

from first to middle day as a percentage of the size of the customer
base)?

Late Trend What is the trend in the second half of the calibration period (i.e., drop
from middle to last day as a percentage of the size of the customer
base)?

Trend Gini How much does the actual curve deviate from a line connecting the first
and last days (i.e., how much area is there below the trend line and the
curve, as percentage of the levels of the line, a la the Gini coefficient)?

Trend Variability How much day-to-day variation is present in the calibration period (i.e.,
standard deviation of incremental sales)?

Table 1: Database characteristics capture features of a longitudinal incidence dataset and can
be computed from summary plots (e.g., histogram and tracking plot).
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Dataset A B C

Frequency 11% 12% 11%
Penetration 48% 83% 68%
Concentration 84% 55% 63%
Top 5% Level 63% 40% 43%
Early Trend -17% -29% -7%
Late Trend -3% 1% 0%
Trend Shape 27% 46% 13%
Trend Variability 4% 6% 2%

Table 2: Database characteristics for the three highlighted datasets.
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Posterior Mean of MAE

A B C
BGBB 4.37 9.71 14.13

HC 4.91 10.16 17.29
OF 6.52 10.20 7.09

HMM 5.13 8.35 9.44

Table 3: For each dataset and each model’s posterior draw, the out-of-sample forecast is gener-
ated from the posterior predictive distribution and the mean absolute error (MAE) is computed.
The posterior mean of the MAE values for each model-dataset pair is shown here. The lowest
error value (i.e., winning model) for each dataset is in bold.
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Posterior Distribution of MAE
Dataset A Dataset B Dataset C

25% 50% 75% 25% 50% 75% 25% 50% 75%

BGBB 3.7 4.2 4.8 8.3 9.6 11.0 11.9 14.0 16.2
HC 4.0 4.6 5.5 8.9 10.1 11.4 15.4 17.3 19.1
OF 4.9 6.2 7.8 8.6 10.0 11.6 6.3 7.0 7.8
HMM 4.1 4.7 5.8 7.0 8.1 9.5 7.7 9.0 10.7

Table 4: For each dataset and each model’s posterior draw, the out-of-sample forecast is gen-
erated from the posterior predictive distribution. Mean absolute error (MAE) is computed for
each replicate dataset. The posterior quantiles (25%, 50%, and 75%) of the values across for
each dataset are shown here. The lowest value (i.e., winning model) for each dataset is in bold.
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Posterior Probability of Model Winning

Dataset BGBB HC OF HMM
A 45% 27% 6% 22%
B 20% 11% 16% 53%
C 1% 0% 81% 18%

Table 5: The posterior probabilities of each model “winning” are computed as the proportion
of replicated datasets (e.g., “MCMC worlds”) in which each model has the lowest MAE. These
winning percentages illustrate the uncertainty in declaring a winner.
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BGBB HC HMM OF Hit Rate

BGBB 840 151 215 114 64%
HC 372 247 145 154 27%

HMM 430 40 1056 677 48%
OF 259 7 742 951 49%

Table 6: This table shows the out-of-sample classification for each of the 6,400 cases (dataset-
world pairs) from the random forest. Rows indicate which model actually fit the data best.
Columns indicate which model was recommended by the random forest’s classification for that
dataset using a 2/3 sample for calibration (in-sample) and 1/3 sample for validation (out-of-
sample). The hit rate is the proportion of each type of dataset correctly classified out-of-sample
(i.e., the diagonal entries divided by row sums).
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Absorbing Back-and-Forth Hit Rate

Absorbing 1383 855 62%

Back-and-Forth 466 3696 89%

Table 7: This table combines cases of datasets and classifications into models with Absorbing
states (BG/BB and HC) and Back-and-Forth transitions (OF and HMM). That is, by ignoring
the presence/absense of an “off”/“death” state, the hit rates are quite high. Like Table 6, these
are out-of-sample classifications, so the hit rate is the proportion of cases correctly classified.
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BGBB HC OF HMM Tree Winner

Mean MAE 9.52 9.19 8.14 7.63 7.05 6.28
% Worse than Winner 52% 46% 30% 21% 12% –

95% MAE 22.34 18.97 16.70 15.63 13.00 11.57
% Worse than Winner 93% 64% 44% 35% 12% –

Table 8: This table shows the absolute and relative benefits of using the classification tree over
running each model for all datasets. The MAE values reflect performance of running each
model for all datasets compared to following the tree’s recommendation (Tree) and always
selecting the model with best out-of-sample fit for each dataset (Winner). The percentages
illustrate the loss compared to the best fitting model (Winner).
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1 - Penetration 

Frequency 

Top 5% Level

Early Trend

Late Trend

Trend 
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Concentration

Figure 3: The figure and annotations illustrate how the observed summary statistics arise nat-
urally from plots that managers typically examine when deciding which model(s) to run. The
histogram (left) shows how the number of transactions varies across customers in the observa-
tion period, while the tracking plot (right) shows incremental transactions of the cohort over
the same period.
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Figure 4: These histograms summarize the variability for each database characteristics across
all 64 datasets.
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Figure 5: The classification tree is estimated on 6,400 cases, using 100 posterior samples for
each of the 64 datasets. For any dataset, the tree should be read from top to bottom: the ovals
represent the partitions, the rectangles indicate the terminal nodes, and the listed model is the
recommended one for that particular combination of database characteristics. Also listed is a
vector summarizing the posterior winning percentage for all four models (left to right: BG/BB,
HC, OF, HMM). The highlighted Datasets A,B, and C appear where they are best classified.

39



D
ay

s

Number of Transactions

0
10

20
30

40
50

60

050100150200

A
A

ct
ua

l
B

G
/B

B
H

C
O

F
H

M
M

0
10

20
30

40
50

60

050100150200

B

0
10

20
30

40
50

60

050100150200

C

Fi
gu

re
6:

Th
e

th
re

e
ex

am
pl

e
da

ta
se

ts
ar

e
sh

ow
n

w
ith

th
e

pr
ed

ic
tio

ns
ar

is
in

g
fr

om
ea

ch
of

th
e

fo
ur

m
od

el
s.

Th
e

m
ea

n
of

ea
ch

m
od

el
’s

po
st

er
io

r
pr

ed
ic

tiv
e

di
st

ri
bu

tio
n

is
sh

ow
n.

40



0 10 20 30 40 50 60

0
50

10
0

15
0 BG/BB

0 10 20 30 40 50 60

0
50

10
0

15
0 HC

Days

N
um

be
r 

of
 T

ra
ns

ac
tio

ns

0 10 20 30 40 50 60

0
50

10
0

15
0 OF

0 10 20 30 40 50 60

0
50

10
0

15
0 HMM

Model Mean
Uncertainty
Actual

Figure 7: The four plots illustrate the range of variability in model prediction for Dataset A. The
observed data (solid line) is fit by each model. Each model’s posterior predictive mean (dashed
line) and its full distribution from 1,000 posterior draws (light gray shading) are displayed.
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Figure 9: This plot shows the relative importance of each database characteristic (predictor
variable) used in the classification trees obtained from the random forest. The most important
variables are those that provide the largest increase in out-of-sample (out-of-bag) classification
hit rate, averaged across all trees in the forest. The late trend, early trend, and concentration
are clearly the three most important, and confirmed by appearing in the classification tree
obtained via CART methods. The next most important variable is trend Gini (trend shape),
which also appears in the classification tree.
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Appendix 1. Hierarchical Bayes sampler details

We provide the computational details for the models that we ran. We provide the details
of the sampler for the general HMM with S states. It can be constrained for the two-state HMM
and each of its nested models, as described in Section 2.

The MCMC procedure generates draws from the joint posterior

[Zit,pi,Θi, ap,bp, α, π|Y] =
I∏
i=1

T∏
t=1

[Yit|Zit, pi][Zit|Zi,t−1,Θi, π]

[pi|ap,bp,Zi,Yi][Θi|α,Zi][ap,bp][α][π]

with constants (I individuals and T time periods), individual-level parameters (pi and Θi), and
population-level parameters (ap,bp, α, and π).

The procedure obtains these draws by alternating between the following conditional
distributions:

[Zi|Yi,Θi,pi, π] (8)
[pi|Yi,Zi, ap,bp]

[Θi|Zi, α]

[ap,bp|p]

[α|Θ]

[π|Z]

For each entry in the “dataset of datasets” described in Section 3, we estimate all four
models from the 2×2 framework. We use 64 datasets, 4 models per dataset, 2 chains per model,
resulting in 512 independent MCMC chains. We run each chain for at least 50,000 iterations
depending on the convergence criterion for that given model and chain. This requires over
1,000 days of computing time on a single core. Instead of using only one core, we distributed
the computational task to take advantage of the parallel structure of the task. On the Amazon
Elastic Computing Cloud, we used 64 nodes for 48 hours (“node-hours” ), where each node
contains 8 cores (thanks to a grant from Amazon Web Services). We ran each MCMC chain on
one of 512 cores, so we finished running all the models in just two days.

Each model is estimated using a version of the MCMC sampler for the HMM with cer-
tain components shut off or not. The code is available upon request. For each chain and for each
pair of chains for each model, we perform a set of within-chain diagnostics for convergence and
computation of effective sample size, and also across-chain diagnostics for post-convergence
mixing – all recommended now as standard practice (Gelman et al. 2004; Gelman and Rubin
1992; Geweke 1992; Plummer et al. 2006; Raftery and Lewis 1992).

The draws of model parameters, Ω, and latent states, Z∗, have been obtained using
a data-augmented Gibbs sampler (Tanner and Wong 1987) with an embedded Metropolis-
Hastings step. Below we describe how each subset of parameters was drawn from its cor-
responding conditional distribution in the MCMC procedures.

1. Generate Zi = (Zi1, . . . , ZiT ). The customer’s latent-state sequence is drawn via the
forward-backward algorithm. The latent states are sampled starting at t = T moving
backwards based on the probabilities defined recursively starting at t = 1 moving for-
wards using dynamic programming. For the case of S = 2, given the observed outcome
at t and the probability of being in either state at t − 1, each element δi,t,k is a sum of
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the two elements from t− 1 weighted by the probability of the corresponding transition
probabilities. Then the probability of drawing state k is

[Zit|Yi,Θi,pi, π] =
δi,t,k

δi,t,1 + . . .+ δi,t,S
,

δi,t,1 = pyit1i (1− p1i)1−yit (δi,t−1,1 · θ11i + . . .+ δi,t−1,S · θS1i)
... (9)

δi,t,S = pyitSi (1− pSi)
1−yit (δi,t−1,1 · θ1Si + . . .+ δi,t−1,S · θSSi) .

Once the sequences from 1, . . . , T are drawn for all individuals, then conditioning on
those sampled latent states, as if they were data (i.e., data augmentation), simplifies the
subsequent conditional distributions. Hence, we define a vector, Ni, where each ele-
ment counts the number of times an individual spent a day in each latent state, Nij =∑T

t=1 1{Zi,t−1 = j}. We also define a matrix, Nit, where each entry j, k counts the
number of transitions made between each pair of latent states, Nijk =

∑T
t=1 1{Zi,t−1 =

j}1{Zit = k}.

2. Generate pi = (p1i, . . . , pSi). The customer’s purchase probability vector is sampled
directly from a beta distribution. The use of independent beta priors for each probability
yields a beta posterior distributions (since the likelihoods have no covariates). For state
k, the prior and posterior are

[pki] = beta(apk, bpk)

[pki|Yi,Zi, µp, φp] = beta

(
apk +

T∑
t=1

yit1{Zit = k}, bpk +Nij −
T∑
t=1

yit1{Zit = k}

)
,

(10)

where apk and bpk are the shape parameters of the beta distribution, and µpk and φpk are
the mean and polarization index, as defined in Section 2. To ensure p1i ≥ p2i, we use
rejection sampling of the whole vector.

3. Generate Θi. The customer’s transition probability matrix must have its rows sum to
1, so it is a multinomial vector. Using independent Dirichlet priors on each row yields
Dirichlet posteriors. For the probability of moving from j to any other state 1, . . . , S, the
prior and posterior are

[θj,1:S,i] = Dirichlet(αj,1:S)

[θj,1:S,i|Zi, µθj, φθj] = Dirichlet ((αj,1 +Nij,1, . . . , αj,S +Nij,S)) , (11)

where the 1 : S indexes a vector of parameters and where rj is the vector of Dirich-
let shape parameters, which can be summarized by mean probability vector, µθj =

αj/
[∑S

k=1 αjk

]
, and polarization index φθj = 1/

[
1 +

∑S
k=1 αjk

]
.

4. Generate π. The initial latent-state membership probability vector depends on the latent
states across all individuals at t = 1. Defining N1k =

∑I
i=1 1{Zk1 = k}, the uniform
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hyperprior and the posterior are,

[π] = Dirichlet(1, . . . , 1)

[π|Z] = Dirichlet (1 +N11, . . . , 1 +N1S) (12)

5. Generate (ap, bp). There is a highly uninformative hyperprior for each shape parame-
ter of each beta distribution characterizing the heterogeneity of state-specific purchase
propensities. For state k, the hyperprior and posterior are

[apk, bpk] ∝ (apk + bpk)
−5/2

[apk,bpk|pk] ∝ Lbeta(pki, . . . , pkI)(apk + bpk)
−5/2, (13)

where Lbeta is the beta density function, and the prior distribution proportional to (a +
b)−5/2 is recommended by Gelman et al. (2004). That prior is uniform on the beta distri-
bution a/(a+b) and considered weakly informative on the polarization index (1+a+b)−1.
Since the posterior has no closed form expression, we use a Metropolis-Hastings step
with a log-Normal proposal density. Its tuning parameter, or variance, is set to 0.05 to
obtain an appropriate acceptance probability.

6. Generate α. The Dirichlet distribution shape parameters αj = (αj1, . . . , αjS) are gen-
erated by a generalization of the procedure used to generate the shape parameters of
the beta distributions. For state j (i.e., row j of the transition probability matrix), the
hyperprior and posterior are

[αj] = (
S∑
k=1

αjk)
−(2S+1)/2

[αj|θj,1:S] ∝ LDirichlet(θj,1:S,i, . . . θj,1:S,I)Lgamma(αj), (14)

where LDirichlet is the Dirichlet density function. Again, the prior distribution proportional
to (α1 + . . . + αS)−(2S+1)/2 is a generalization for the Dirichlet shape parameters of the
prior used for the beta shape parameters (Everson and Bradlow 2002). Since the posterior
has no closed form expression, we use a Metropolis-Hastings step with a log-Normal
proposal density. Its tuning parameter, or variance, is set to 0.05 to obtain an appropriate
acceptance probability.

Appendix 2. General Recipe: Developing a decision tree for model selection using database
characteristics

Although we perform our analysis for a specific data/modeling context, the same basic
“recipe” developed in this paper can be applied to many other settings. We formalize this recipe
as a general method for model evaluation and selection, involving the three basic ingredients:
the set of candidate models, the database characteristics, and the performance criterion. This
enables the analyst to answer the questions “Which model should I use for this this dataset?”
and “Given a dataset, how well will a given model perform?”

1. Models. Our procedure supposes that the analyst has a consideration set of models
1, . . . ,M . The models can all be run on datasets with the same structure. We also sup-
pose that model-based simulation can be done via Monte Carlo, or Markov Chain Monte
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Carlo, if needed. Our procedure assumes that an MCMC sampler has been run to obtain
draws g = 1, . . . , G from each model’s the joint posterior distribution,

[
Ωm|Yobs

]
.

2. Database characteristics. We characterize the database with a set of summary statistics.
These should be (1) easy-to-compute characteristics, (2) managerially relevant, and (3)
largely comprehensive and mutually exclusive. Formally, we denote these the dataset-
level summary statistics as a covariate vector, τ(Yobs

k ), for dataset k. These are to be
computed before running any models on the kth dataset, which itself is denoted by Yobs

k .
These are the independent variables of interest in the eventual classification.

3. Performance criterion. Assessing model performance for model selection is an important
step that should be driven by the business goal. We use an empirical validation approach
via posterior predictive distributions. We generate data, Y

∗(g)
m , from the model-based

predictive distribution,
[
Y∗m|Yobs

]
, where g indexes replications 1, ..., G.

For the performance measure feature, s, we summarise the generated data by, Ts(Y
∗(g)
m ).

We quantify performance as model errors: the degree to which the model-based posterior
predictive distribution of feature s is outlying with respect to the feature’s observed value,
Ts(Y

obs
k ).

Let D denote a loss function along a single dimension, that is, the distance between the
draws from the posterior predictive distribution and the single observed value of feature
of a dataset. This distance, dmks, summarizes model m’s performance on dataset k in
terms of feature s, utilizing all replicates g = 1, . . . , G,

dmks = D
(
Ts(Y

∗(1)
mk ), . . . , Ts(Y

∗(G)
mk );Ts(Y

obs
k )
)
. (15)

The choice of the function D should depend on the desired feature.

Regardless of which performance metric and error measure is chosen, a single metric
is obtained for each posterior replicate. For each replicate, we select the model with
the lowest error and consider it the “winning” model, which is the nominal categorical
outcome variable to be classified.

4. Classifying datasets by relating model performance to observed database characteristics.
Putting those three ingredients together, we create the decision tree to infer the relation-
ship between which model is best (outcome) and database characteristics (predictors).
We formalize the classification as its own predictive tool. The independent variables of
interest are the dataset-level summary statistics, τ(Yobs

k ), computed before running any
models on the kth dataset, denoted by Yobs

k . These values are the predictors of model
performance. The error measure, d(g)ksm, as defined above, is on a continuous scale. For
classification purposes, however, the dependent variable should be an indicator of the
“winning” model mWinner (g)

ks , a nominal categorical variable with M levels. For each
dataset k, feature s, and posterior replicate g,

mWinner (g)
ks = argminm∈(1,...,M)

{
d
(g)
ks1, ..., d

(g)
ksM

}
. (16)

We use a classification tree to relate the identity of the winning model, mWinner
k , to the

database characteristics, τ(Yobs
k ). Given the performance of all M models across all K

datasets for feature s, we explain variations in the model performance (i.e., which model
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wins) as a function of the observed summaries of that dataset. Formally, we capture this
relationship as follows,

m̂
Winner(g)
k = Tree

[
τ(Yobs

k )
]
, (17)

where “Tree” denotes the classification tree predicting the winning model m̂Winner(g)
k for

each of the datasets k = 1, . . . , K and replicates g = 1, . . . , G. The results will show
which dataset-level summaries are associated with differences in performance across the
models for the feature of interest. The exact same setup used for CART methods can be
used for implementing random forests. The same basic relationships are uncovered, but
different methods are used.

48


	University of Pennsylvania
	ScholarlyCommons
	2014

	Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data
	Eric M. Schwartz
	Eric T. Bradlow
	Peter S. Fader
	Recommended Citation

	Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data
	Abstract
	Keywords
	Disciplines


	tmp.1531496824.pdf.72bPn

