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Constructed Second Control Groups and Attenuation of Unmeasured
Biases

Abstract
The informal folklore of observational studies claims that if an irrelevant observed covariate is left
uncontrolled, say unmatched, then it will influence treatment assignment in haphazard ways, thereby
diminishing the biases from unmeasured covariates. We prove a result along these lines: it is true, in a certain
sense, to a limited degree, under certain conditions. Alas, the conditions are neither inconsequential nor easy
to check in empirical work; indeed, they are often dubious, more often implausible. We suggest the result is
most useful in the computerized construction of a second control group, where the investigator can see more
in available data without necessarily believing the required conditions. One of the two control groups controls
for the possibly irrelevant observed covariate, the other control group either leaves it uncontrolled or forces
separation; therefore, the investigator views one situation from two angles under different assumptions. A pair
of sensitivity analyses for the two control groups is coordinated by a weighted Holm or recycling procedure
built around the possibility of slight attenuation of bias in one control group. Issues are illustrated using an
observational study of the possible effects of cigarette smoking as a cause of increased homocysteine levels, a
risk factor for cardiovascular disease. Supplementary materials for this article are available online.
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Constructed second control groups and

attenuation of unmeasured biases

Samuel D. Pimentel, Dylan S. Small, Paul R. Rosenbaum1

University of Pennsylvania, Philadelphia

Abstract. The informal folklore of observational studies claims that if an irrelevant observed

covariate is left uncontrolled, say unmatched, then it will influence treatment assignment in

haphazard ways, thereby diminishing the biases from unmeasured covariates. We prove a result

along these lines: it is true, in a certain sense, to a limited degree, under certain conditions.

Alas, the conditions are neither inconsequential nor easy to check in empirical work; indeed,

they are often dubious, more often implausible. We suggest the result is most useful in the

computerized construction of a second control group, where the investigator can see more in

available data without necessarily believing the required conditions. One of the two control

groups controls for the possibly irrelevant observed covariate, the other control group either

leaves it uncontrolled or forces separation; therefore, the investigator views one situation from

two angles under di↵erent assumptions. A pair of sensitivity analyses for the two control groups

is coordinated by a weighted Holm or recycling procedure built around the possibility of slight

attenuation of bias in one control group. Issues are illustrated using an observational study

of the possible e↵ects of cigarette smoking as a cause of increased homocysteine levels, a risk

factor for cardiovascular disease.

Keywords: Attenuation of unmeasured biases; causal inference; observational study; sensitivity

analysis; second control group.
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1 Introduction: background; motivating example

1.1 Is it advantageous to omit adjustments for some measured covariates?

In an observational study of treatment e↵ects, treatments are not randomly assigned to

individuals, so treated and control groups are often visibly di↵erent in terms of measured

pretreatment covariates x, and may di↵er in terms of unmeasured covariates u. Di↵ering

outcomes in treated and control groups after treatment may reflect the lack of comparability

of these groups before treatment, rather than an e↵ect caused by the treatment. It is

common to adjust for the observed covariates x, perhaps by matching individuals with the

same x, and to examine the sensitivity of conclusions to assumptions about unobserved

covariates u.

It is sometimes argued informally that parts of xmay be irrelevant, and that there would

be less bias from u if adjustments were not made for the parts of x that are irrelevant; see

Brooks and Ohsfeldt (2013) and Sanni Ali et al. (2014) for two general perspectives on

this issue, and see Walker (2013) and Zubizarreta et al. (2012) for discussion of a specific

situations. The intuitive idea is that it is desirable that something irrelevant decides

treatment assignment — that is similar to what happens in a randomized experiment

— and if one removes every irrelevant aspect of treatment assignment, one is left with

biases from u deciding treatment assignment. Under what circumstances does this line of

reasoning have a rigorous basis?

1.2 Motivating example: Does smoking increase homocysteine levels?

To permit a tangible discussion, consider an interesting study by Bazzano et al. (2003)

concerned with the possibility that cigarette smoking causes an increase in homocysteine

levels, a possible risk factor for cardiovascular disease. Bazzano et al. (2003) compared

smokers and nonsmokers in NHANES adjusting for certain covariates, x, that might have
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a direct biological connection with homocysteine levels, such as age, race and body mass

index. They did not adjust for income and education, ex, two covariates strongly related

to smoking. In the US today, smoking is much less common among more educated, higher

income individuals than among less educated, lower income individuals. Should one adjust

for (x, ex) jointly or is it better to adjust for x alone? One might argue that income and

education have no known direct biological e↵ect on homocysteine levels, so it makes sense

to compare poor, less educated smokers to wealthier, better educated nonsmokers, because

then something irrelevant has decided whether an individual smokes or not. Conversely,

one might argue that one should adjust for all of (x, ex) because education and income

are associated with many aspects of daily life that could a↵ect homocysteine levels, from

exercise to diet to the quality of health care. Our goal is to shed some light on this decision

and related options for study design and analysis.

Figure 1 displays 1536 distinct individuals in I = 512 matched triples containing one

daily smoker and two nonsmokers from NHANES 2005-2006. Smokers smoked every day

for the last 30 days and reported smoking at least 10 cigarettes per day (median = 20).

Nonsmokers did not smoke at all in the last 30 days and had smoked fewer than 100

cigarettes in their lives. All controls were matched to smokers for biological covariates, x,

including age, gender, race (black/other), (Hispanic/other), and body mass index (BMI).

Controls labeled M were also matched for two socioeconomic (SES) measures, ex, namely

education on a five point scale (with 1 meaning < 9th grade, 3 meaning high school

graduate, and 5 meaning at least a BA degree) and income recorded as the ratio of income

to the poverty level capped at 5 times poverty. Controls labeled P were pushed apart in

terms of ex, that is, they had high levels of education and income. Notably in Figure 1,

the three groups are similar in terms of biological covariates, the smokers and M-controls

are similar in terms of SES, and the P-controls have higher education and income than the

3



smokers. There is an obvious sense in which the M-controls are better than the P-controls:

they are similar to smokers in terms of SES. Is there any sense in which the P-controls

are better than the M-controls?

Section 2 reviews definitions and notation from existing literature. Section 3 considers

the possibility that ignoring an irrelevant covariate ex attenuates bias from an unmeasured

covariate u, concluding that it is possible, but the assumptions required are heroic and

even then the magnitude of the attenuation is meaningful but not large. Also discussed is

the possibility that forcing separation on e
x can produce greater attenuation. Section §3.2

examines the relationship between an irrelevant covariate ex and an instrumental variable

that might be used with the Wald estimator to estimate a complier-average-causal-e↵ect

(CACE). The remainder of the paper concerns the construction and analysis of two control

groups, one controlling for all of (x, ex), the other controlling for x and allowing or forcing

separation on e
x. In particular, a form of simultaneous inference is proposed in which two

sensitivity analyses are conducted for the two control groups, but the power loss for the

controls matched for (x, ex) is small, so the second analysis adjusted for x comes at little

cost. The example uses data from NHANES 2005-2006 to examine the e↵ects of smoking

on homocysteine levels, in parallel with Bazzano et al. (2003) who used data from an

earlier NHANES.

2 Review of notation and definitions

2.1 Treatment assignments and treatment e↵ects

There are L individuals ` = 1, . . . , L randomly sampled from an infinite population. In-

dividual ` is described by (r
T `

, r
C`

, Z
`

,x
`

, ex
`

, u
`

), ` = 1, . . . , L, where (x
`

, ex
`

) are observed

covariates, u
`

is an unobserved covariate, and individual ` exhibits response r
T `

if assigned

to treatment, denoted Z
`

= 1, or response r
C`

if assigned to control, denoted Z
`

= 0, so the
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observed response from individual ` is R
`

= Z
`

r
T `

+ (1� Z
`

) r
C`

, and the e↵ect r
T `

� r
C`

caused by the treatment is not observed for any individual `; see Neyman (1923), Welch

(1937) and Rubin (1974). Fisher’s (1935) sharp null hypothesis of no treatment e↵ect

H
0

asserts that r
T `

= r
C`

for all `. When referring to probability distributions in the

population, the subscript ` is omitted. Following Dawid (1979), conditional independence

of A and B given C is written A | | B
��� C.

When does it su�ce to adjust for covariates v in causal inference? When may a portion

of v safely be omitted from adjustments? We recall two definitions from the literature.

Definition 1 (Rosenbaum and Rubin 1983). Treatment assignment Z is said to be strongly

ignorable given covariates v if

(r
T

, r
C

) | | Z
��� v, and 0 < Pr (Z = 1 |v) < 1, for all v. (1)

For brevity and without further mention, the word ignorable is used in place of the

term “strongly ignorable.” If treatment assignment is ignorable given covariate v, and if v

were observed, then one can estimate causal e↵ects such as E (r
T

� r
C

) or E (r
T

� r
C

|v) or

the average e↵ect of the treatment on the treated, namely E (r
T

� r
C

|Z = 1), by adjusting

for v, for instance by matching or stratification; see Rosenbaum and Rubin (1983).

Definition 2 (Heller, Rosenbaum and Small 2010). Covariates v

2

in v = (v
1

,v
2

) are

said to be innocuous given v

1

if

(r
T

, r
C

) | | (Z, v
2

)
��� v

1

. (2)

It is straightforward to show that if treatment assignment Z is ignorable given v =

(v
1

,v
2

) and if v

2

is innocuous, then treatment assignment is also ignorable given v

1
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alone. If v = (v
1

,v
2

) were a measured covariate, if treatment assignment Z were ig-

norable given v = (v
1

,v
2

), and if v
2

were innocuous given v

1

, then causal parameters,

such as E (r
T

� r
C

), could be consistently estimated adjusting for v
1

, ignoring v

2

.

If (1) and (2) both hold, then causal inference need not include adjustments for v
2

. Is

there a benefit — not merely absence of harm — from not adjusting for v

2

? Claims of

benefit in the literature refer to a situation with an unobserved covariate u that cannot

be controlled by adjusting for observed covariates, whether (x, ex) or x. If treatment

assignment were ignorable given v = (x, ex, u) but not given (x, ex) or x, then causal e↵ects

could not be estimated by matching for (x, ex) or x because u is not controlled. In this

case, ask: Is it advantageous to ignore e
x and adjust for x alone? Informal discussions

(e.g., Brooks and Ohsfeldt 2013; Sanni Ali et al. 2014) debate the possibility that if

an innocuous ex is left unmatched then it decreases the role that u plays in determining

treatment assignment, thereby reducing the bias created by our inability to adjust for an

unmeasured covariate u. Is this true in any formal sense?

2.2 Quantifying the impact of an unobserved covariate on treatment assignment

If x is some observed covariate, perhaps x = (x, ex) or x = x, then one model for sensitivity

to unmeasured bias from u is expressed in terms of the potential influence of u on the odds

Pr (Z = 1 |x, u) / {1� Pr (Z = 1 |x, u)} of treatment; see Rosenbaum (1987a, 2002, §4;

2007). This model quantifies bias in treatment assignment in terms of how the propensity

score might be di↵erent if it took account of the unobserved u in addition to the observed

x. Consider two subjects with treatment assignments Z and Z 0 and unobserved covariates

u and u0 but the same value of the observed covariate, x = x

0, so these two subjects might

be matched when matching for x. Then the odds ratio (for Z given x and u) or density

ratio (for u given x and Z) linking treatment Z and the unobserved covariate u for these
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two subjects is:

!
�
x, u, u0

�
=

Pr (Z = 1 |x, u) Pr (Z 0 = 0 |x, u0)

Pr (Z = 0 |x, u) Pr (Z 0 = 1 |x, u0)
=

Pr (u |x, Z = 1) Pr (u0 |x, Z 0 = 0)

Pr (u |x, Z = 0) Pr (u0 |x, Z 0 = 1)
,

(3)

where the second equality follows from Bayes theorem. The sensitivity model says that

the impact of failing to control u is at most � � 1 in the sense that

1

�
 !

�
x, u, u0

�
 � for all x, u, u0; (4)

that is, two subjects with the same x may di↵er in their odds of treatment by at most a

factor of � because they di↵er in terms of u. Because ! (x, u, u0) = 1/! (x, u0, u), equation

(4) is actually redundant, and it is equivalent to write

!
�
x, u, u0

�
 � for all x, u, u0. (5)

Typically, one would match a treated subject to a control with the same x, so Z+Z 0 = 1,

but they might di↵er in terms of u 6= u0. Conditionally given Z + Z 0 = 1, the probability

of (Z,Z 0) = (1, 0) is

Pr (Z = 1 |x, u) Pr (Z 0 = 0 |x, u0)

Pr (Z = 1 |x, u) Pr (Z 0 = 0 |x, u0) + Pr (Z = 0 |x, u) Pr (Z 0 = 1 |x, u0)
=

! (x, u, u0)

! (x, u, u0) + 1
,

so that (4) or (5) implies % (x, u, u0) = Pr (Z = 1 |x, u, u0, Z + Z 0 = 1) is bounded by

1

1 + �
 %

�
x, u, u0

�


�

1 + �
, for all x, u, u0. (6)

The one parameter � may be interpreted or amplified into an equivalent formulation in

terms of two parameters, ⇤ and �, where ⇤ controls the relationship between treatment
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assignment Z and u, � controls the relationship between response under control r
C

and

u, and one sensitivity analysis at � is exactly equivalent to an infinite curve of sensitivity

analyses with � = (⇤�+ 1) / (⇤+�); see Rosenbaum and Silber (2009) for a precise

statement using the semiparametric model introduced by Wolfe (1974). For instance, as

1.25 = (2⇥ 2 + 1) / (2 + 2), it follows that � = 1.25 is equivalent to an unobserved covariate

that doubles the odds of treatment (⇤ = 2) and doubles the odds of a positive treated-

minus-control response di↵erence (� = 2). In other words, one may calculate and report

a one-dimensional sensitivity analysis in terms of � but have available the interpretations

of a two-dimensional sensitivity analysis in terms of (⇤,�).

3 When does ignoring an observed covariate attenuate the association be-

tween treatment assignment and an unobserved covariate?

3.1 Prods to receive treatment

To prod is to “goad, stimulate [or] prompt,” according to the Oxford English Dictionary.

Definition 3 The observed covariates ex are a prod to receive treatment given (x, u) if

e
x | | u

��� x, and var {Pr (Z = 1 |x, ex, u) | x, u} > 0, for all (x, u) . (7)

In (7), the condition e
x | | u

��� x says that, given x, there is no information in e
x about

u. In other words, trying to remove some bias from the unobserved u by adjusting for

(x, ex), rather than adjusting for x alone, is not going to work, because ex is unrelated to

u. The requirement in (7) that Pr (Z = 1 |x, ex, u) varies with e
x for fixed (x, u) says that,

although e
x is not informative about u, nonetheless ex does vary with treatment assignment.

Proposition 4 says that not matching for a prod e
x strictly attenuates the relationship

between treatment assignment Z and the unobserved covariate u, or in the notation of §2.2
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that ! (x, u, u0) is strictly closer to 1 than is ! {(x, ex) , u, u0}.

Proposition 4 Let ex be a prod to receive treatment given (x, u). For any fixed x, u, u0,

if

1

�
 !

�
(x, ex) , u, u0

 
 � for all ex with � > 1, (8)

then there exists an ⌥ with 1  ⌥ < � such that

1

⌥
 !

�
x, u, u0

�
 ⌥. (9)

Proof. Following Freedman (2008, §9), define f : (0, 1) ! (0,1) by f (p) = p/ (1� p), so

that f (·) is strictly increasing and f�1 (v) = v/ (1 + v), and write h (p) = f�1

{� f (p)}.

Freedman shows that h (·) is strictly concave on its domain, the open interval (0, 1). Now

the second inequality in (8) implies f {Pr (Z = 1 |x, ex, u)}  �f {Pr (Z = 1 |x, ex, u0)} or

equivalently that Pr (Z = 1 |x, ex, u)  h {Pr (Z = 1 |x, ex, u0)}. Using this and Jensen’s

inequality (e.g., Lange 2003, Proposition 3.5.1, page 61) for a strictly concave function

yields

Pr (Z = 1 |x, u) =

Z
Pr (Z = 1 |x, ex, u) Pr (ex|x) dex (10)



Z
h
�
Pr

�
Z = 1 |x, ex, u0

� 
Pr (ex|x) dex

< h

⇢Z
Pr

�
Z = 1 |x, ex, u0

�
Pr (ex|x) dex

�

= h
�
Pr

�
Z = 1 |x, u0

� 
.

Applying the increasing function f (·) to the first and last term in (10) yields f {Pr (Z = 1 |x, u)} <

�f {Pr (Z = 1 |x, u0)} or equivalently ! (x, u, u0) < �. Using instead the first inequal-

ity in (8) and ! {(x, ex) , u0, u} = 1/! {(x, ex) , u, u0}  �, the same argument shows
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! (x, u0, u) < �, and hence that ! (x, u, u0) = 1/! (x, u0, u) > 1/�. To complete the

proof, define ⌥ = max {! (x, u, u0) , 1/! (x, u, u0)}.

A few technical comments about Proposition 4 follow. First, in the definition of a

prod, the requirement that var {Pr (Z = 1 |x, ex, u) | x, u} > 0 in (7) is used to obtain the

strict inequality in (10) by way of Jensen’s inequality (e.g., Lange 2003, Proposition 3.5.1,

page 61). Proposition 4 says there is strict attenuation, � > ⌥, for each x, u, u0; however,

the degree of attenuation ⌥ in (9) generally depends upon x, u, u0. As a consequence,

if the sensitivity model (4) were true with x =(x, ex), then (8) would hold uniformly in

x, ex, u, u0, but this would not imply that there exists one ⌥ < � such that (9) holds

uniformly in x, u, u0. That is, Proposition 4 shows there is strict attentuation at each

x, u, u0, not that there is uniformly strict attenuation. It is clear that if one focused on

the subpopulation with e
x 2 C for some subset C, then essentially the same proof shows

there is attenuation in every subpopulation defined by e
x.

Proposition 4 is of no use on its own. However, if treatment assignment were ignorable

given (x, ex, u), if ex were innocuous given (x, u) and if ex were a prod to receive treat-

ment given (x, u), then: (i) it is su�ces to focus attention on (x, u) ignoring e
x, because

adjustments for (x, u) would permit estimation of causal e↵ects, and (ii) it is also advan-

tageous to focus attention on (x, u) ignoring ex, because the association between treatment

assignment Z and u has been attenuated.

The heavy assumptions required to use Proposition 4 are consequential. Failing to

adjust for e
x could increase the bias for either or both of two reasons: (i) if treatment

assignment were ignorable given (x, ex, u) but not given (x, u), then adjusting for ex may

reduce bias from e
x, (ii) even if ex itself seems to have no direct relevance, adjusting for ex

might possibly reduce bias from u to the extent that ex and u are associated and the left

side of (7) fails to hold.
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Because Proposition 4 is of no use on its own, its actual usefulness is a matter of

speculation. The additional assumptions that would make Proposition 4 useful are strin-

gent assumptions about an unobserved covariate, and any investigator who makes these

assumptions can expect an argument from skeptics. Rather than argue for or against the

additional assumptions that would make Proposition 4 useful, we suggest conducting two

analyses, one with and the other without these assumptions. A simple version of this has

two control groups, one matched to treated subjects for (x, ex), the other matched for x

alone. Heller et al. (2010) observe that if treatment assignment were ignorable given (x, ex)

and if ex were innocuous given x, then these two comparisons of treated subjects to these

two matched control groups would estimate the same parameter, the average e↵ect of the

treatment on the treated, so contrasting these two estimates provides a test of these two

assumptions. In contrast, Proposition 5 in §6 frames the discussion of these two control

groups when they may both be a↵ected by bias from an unmeasured covariate u.

3.2 Is a prod an instrument?

So far, §3 has considered the possibility of comparing outcomes R in treated, Z = 1, and

control, Z = 0, groups without adjustment for a covariate ex that meets certain additional,

fairly speculative, conditions required of a prod. As noted in §1.1, this possibility has been

discussed in several recent articles concerned with health outcomes research, including

Brooks and Ohsfeldt (2013), Sanni et al. (2014), Walker (2013) and Zubizarreta et al.

(2012). The method we propose in §5 takes the analysis adjusting for (x, ex) as the

primary analysis, then adds at negligible cost in power a secondary analysis adjusting for x

but not for ex, while controlling the familywise error rate in these two analyses, and making

use of controls who might otherwise have been discarded. Could one, instead, view e
x

as an instrument or instrumental variable? Viewing e
x as an instrument might suggest a
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di↵erent analysis, say the Wald estimator or two-stage least squares, aimed at estimating

the so-called “complier-average causal e↵ect” or CACE.

By definition in the Neyman-Rubin framework, a covariate is a variable whose value

is determined prior to treatment assignment Z and hence una↵ected by which treatment

an individual ultimately receives; that is, a covariate has single version that is the same

whether or not Z = 1 or Z = 0, like x or ex and unlike R or Z. In this framework, an

instrument (recorded in an instrumental variable) is a very special kind of treatment that

encourages an experimental subject to take a second treatment over which the experimentor

lacks direct control, but the encouragement-treatment a↵ects outcomes only to the extent

that it alters acceptance of the second treatment; see Angrist, Imbens and Rubin (1996),

Hirano et al. (2000) and Holland (1988). The CACE is the average e↵ect of the second

treatment on subjects who would respond to the encouragement treatment by changing

their adoption of the second treatment, and Angrist et al. (1996) show that the CACE is

the estimand of the Wald estimator. For instance, the VietnamWar draft lottery randomly

selected people for the draft, a treatment that “encouraged” some people to serve in the

military, though many men served without being drafted and others found ways to dodge

the draft; see Angrist et al. (1996). For the draft lottery, the CACE is the average e↵ect

of military service on the subset of men who would serve in the military only if drafted.

A substantial literature consistent with the Neyman-Rubin framework cautions against

adjusting for certain variables that, unlike ex, are not covariates. In particular, Rosenbaum

(1984, 2015c) cautions against adjusting for other outcomes of treatment, noting that such

an adjustment can create a bias that would otherwise be absent. Several authors wisely

advise against adjusting for instruments, such as the draft lottery used as an instrument

for military service; see, for instance, Wooldridge (2006), Myers et al. (2011), Pearl (2010,

2011), and Bhattacharya and Vogt (2012).
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In §1.2 and §6.2, ex describes income and education. In the context of NHANES,

income and education are plausible covariates for smoking. In particular, we have a clear

idea about what it means to be poor and uneducated, and we have no di�culty imagining

a person of any fixed income or education choosing to smoke or not smoke. If treatment

assignment were ignorable given (x, ex) and if ex were innocuous given x, then the two

matched comparisons of the treated group to each of the two control groups would estimate

the same parameter, namely the average e↵ect of the treatment on the treated. Although

smoking is, in 2015, relatively uncommon among individuals with relatively high income

and education, it would be quite a stretch to regard income and education as “treatments”

that discourage smoking. For income and education to be instruments, the estimand in

instrumental variables estimation, the CACE, would then be the average e↵ect of smoking

on people who would change their smoking behavior in response to a substantial change

in income and education, a nebulous estimand at best. Within the view of instruments

proposed by Angrist et al. (1996), it is not easy to think of income and education as

instruments, so within that view, a prod — a type of covariate — is not an instrument —

a type of treatment. An older view of instruments defines them in a context-free manner

purely in terms of conditional independence or moment conditions. Within this older

view, instruments of the type studied by Angrist et al. (1996) and prods might be viewed

as two nonoverlapping subsets. A general principle is that an estimand should be clear

and intelligible before an investigator sets out to estimate it. Our sense is that the CACE

fails that principle for income and education in the NHANES example in §1.2 and §6.2.

We do not regard the Wald estimator or two-stage least squares as options in this example.
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4 The magnitude of the attenuation: direct calculation under a simple model

Proposition 4 says that not adjusting for a prod e
x attenuates the bias in (8) because the

inequality in (9) is strict. How large is this attenuation? For fixed (u, u0), how much

closer to 1 is ! (x, u, u0) than !{(x, ex) , u, u0}? As in §3, Bayes theorem permits us to think

about the answer in terms of the imbalance in u in treated, Z = 1, and control, Z = 0,

groups. Table 1 provides an answer to how large the attenuation is in a simple case in

which there is no x, ex is a scalar prod with ex ⇠ N
�
0,�2

�
for � = 1/2 or 1, and treatment

assignment probabilities follow a logit model, logit {Pr(Z = 1|ex, u)} = ↵+ ex+ �u, so that

for u = 0 and u0 = 1, condition (8) holds with equality as � = exp (�) = !(ex, u, u0). Under

this model, for fixed u and u0, the odds of treatment are exp (2�) times greater when ex is

one standard deviation above its mean than when it is one standard deviation below its

mean, or exp (2�) = 2.71 for � = 1/2 and exp (2�) = 7.39 for � = 1, so for both values of

� the prod ex substantially alters the treatment assignment probabilities. Table 1 displays

the attenuated ! (x, u, u0) with u = 0 and u0 = 1, obtained by evaluating (10) by numerical

integration. For example, for ↵ = �1, for � = 1/2, a moderate bias of � = exp (�) = 1.5

attenuates to 1.47, whereas for � = 1 a large bias of � = 5 attenuates to 3.81. The

impression from the simple example in Table 1 is that: (i) a prod ex must substantially

a↵ect the treatment assignment probabilities to produce substantial attenuation, and (ii)

even when there is substantial attenuation, the bias that remains is far from small.

5 Two control groups: controlling for (x, ex) or x

5.1 Using two control groups

Proposition 4 reaches an attractive conclusion — a reduction in unmeasured biases in (9)

— on the basis of heroic assumptions in (2) with v

1

= (x, u) and v

2

= e
x and (7) — the
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strong influence but total irrelevance of the prod e
x. In many applications, investigators

will be understandably reluctant to rely on such strong assumptions to achieve the modest

level of attenuation seen in Table 1. There is, however, a practical way to use Proposition

4 to see a little more in observational data without committing to the strong assumptions

in Proposition 4, that is, a way to have it both ways.

The possibility of using two control groups subject to di↵erent biases is much discussed

in the literature on observational studies; see, for instance, Campbell (1969), Rosenbaum

(1987b, 2015a), Meyer (1995), Shadish et al. (2002), Stuart and Rubin (2008), West et al.

(2008), Heller et al. (2010) and Lu et al. (2011). Typically, these two control groups are

found rather than constructed; that is, the groups existed as groups before the investigation

began.

With varied motivations, several recent studies have used the computer to construct

two control groups, one matched for (x, ex), the other match only for x; see Daniel et al.

(2008), Heller et al. (2010), and Silber et al. (2012, 2013). These two control groups may

be nonoverlapping, perhaps constructed using the tapered matching algorithm of Daniel et

al. (2008), or they may share controls. Matched control groups that share controls may

be compared to each other using a device known as the exterior match; see Rosenbaum

and Silber (2013). Matching ensures that x has the same distribution in the treated group

and both control groups, a helpful fact if the magnitude of the treatment e↵ect varies with

x; however, at the risk of losing this desirable property, one could alternatively adjust for

(x, ex) or x using some form of covariance adjustment.

Suppose that two control groups are formed, perhaps overlapping, perhaps not, one

matched for (x, ex), the other just for e
x. In the context of Proposition 4, if there are

benefits to not matching for ex, then we see such an analysis, but if the strong assumptions

in Definitions 2 and 3 are false or doubtful, then we see an analysis that does not depend
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upon these assumptions. Moreover, we are able to compare these two analyses.

Strict use of Proposition 4 would perform two unrelated and therefore typically over-

lapping matches, one for x alone, the other for (x, ex). In this strict use, each match

does not alter the other match: the match for (x, ex) does not alter the distribution of ex

in the match for x alone, so Proposition 4 speaks directly to the consequences of leaving

e
x unmatched. An alternative approach inspired by Proposition 4 but only informally

linked to it would force the two matches to use di↵erent controls, thereby typically using

more controls, with better matches for (x, ex) going to the match that controls (x, ex) and

worse matches for (x, ex) going to the match for x alone, as happens in tapered matching

(Daniel et al. 2008). Because this alternative approach forces the two matched control

groups to be nonoverlapping, the two control groups compete for controls, so there is some

distortion of the distribution of the unmatched prod e
x. Another alternative also inspired

by Proposition 4 but even more informally linked to it would force the two matches to

use di↵erent controls and additionally force the controls matched for x alone to di↵er from

the treated group in terms of ex. The goal in this second alternative is to achieve greater

attenuation of bias from u by picking controls precisely because the prod e
x pushed them

into the control group; see §5.2.

As noted previously, the attenuation result in Proposition 4 holds whether or not ex is

innocuous, but attenuation is useful in an observational study only if ex is innocuous given

(x, u) in the sense of Definition 2, for otherwise the attenuation of bias from u may be more

than o↵set by bias from failure to control ex. In the current paragraph, assume treatment

assignment is ignorable given (x, ex0, u). Were it true that ex is innocuous given (x, u), then

Pr (r
T

, r
C

| x, u) = Pr (r
T

, r
C

| x, ex, u)

= Pr (r
T

, r
C

| Z = z, x, ex, u) = Pr
�
r
T

, r
C

| Z = z, x, ex0, u
�
for all ex, ex0. (11)
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We observe treated response distributions from treated subjects, say Pr (R | Z = 1, x) =

Pr (r
T

| Z = 1, x) or Pr (R | Z = 1, x, ex) = Pr (r
T

| Z = 1, x, ex), and control response dis-

tributions from control subjects, say Pr (R | Z = 0, x) = Pr (r
C

| Z = 0, x), or Pr (R | Z = 0, x, ex) =

Pr (r
C

| Z = 0, x, ex). Treated response distributions may di↵er from control response dis-

tributions either because of a treatment e↵ect or because of a bias. In contrast, if we

compare two control response distributions, say Pr (R | Z = 0, x) = Pr (r
C

| Z = 0, x) ver-

sus Pr (R | Z = 0, x, ex) = Pr (r
C

| Z = 0, x, ex) for controls matched to the same treated

subject, then these di↵er when (11) holds only because of bias from the failure to control

the unobserved covariate u. This is true of all three matches in the previous paragraph

when (11) holds, and forcing e
x to di↵er in the third match may provide a greater op-

portunity to check whether or not Pr (r
C

| Z = 0, x) and Pr (r
C

| Z = 0, x, ex) di↵er. If

Pr (r
C

| Z = 0, x) and Pr (r
C

| Z = 0, x, ex) do di↵er, then this can indicate bias from u or

it can indicate that ex is not innocuous given (x, u) or both (so (11) does not hold), but it

surely indicates that at least one control group cannot be trusted.

5.2 Attenuation with forced separation

The magnitude of attenuation is now considered under a simple method for forcing sepa-

ration on a prod, so treated and control groups are further apart on the prod than they

would be if the prod were left unmatched. In brief summary, forcing separation increases

attentuation when the initial bias is large, but the attenuated bias that remains is still

large, even when treated and control groups are widely separated on the prod, as in the

example in Figure 1. The logit-model formulation used here is similar to §4 except treated

units are matched to controls whose prod x̃ is less than or equal to c� for some cuto↵ c.

The smaller c is for a given �, the greater the separation on the prod. By analogy with (3),

we use Bayes theorem and measure attenuation by comparing odds ratios of u = 1 versus
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u = 0 in treated, Z = 1, and control, Z = 0, groups. Here we consider ↵ = �1 so that

there are more control units than treated units, which is needed for matching to ensure

separation on a prod; the results (not shown) were similar for ↵ = 0 and ↵ = 1. Table 2

shows the attenuation for di↵erent values c. The top half of Table 2 can be compared to

the first line of Table 1 and the second half of Table 2 can be compared to the fourth line

of Table 1. In Table 2 matching to ensure separation on a prod creates greater attenuation

than leaving the prod unmatched. The di↵erences are fairly small for moderate �: for

� = 1.5 and � = 1/2, even for c = �1, ensuring separation on the prod only increased the

attenuation from 1.47 to 1.39. The di↵erences are more substantial for larger �, e.g., for

� = 10 and � = 1/2, for c = �1, ensuring separation on the prod increases the attenuation

from 8.88 to 6.42. Table 3 shows how much separation on the prod is created by matching

to ensure separation on the prod for di↵erent values of c. The table reports the standard-

ized di↵erence on the prod when matching treated units to control units with prod  c�.

For � = 1/2, the standardized di↵erence ranges from about 1.8 � 1.9 (depending on �)

with c = �1 to 0.6� 0.7 with c = 1.

5.3 An algorithm for matching to ensure separation on a prod

We now introduce an algorithm to create matches that exhibit balance on x and force

separation on e
x. The algorithm produced the match in Figure 1. This new algorithm

slightly extends the balanced optimal matching technique of Pimentel et al. (2015); see

Hansen and Klopfer (2006) and Stuart (2010) for other discussions of matching algorithms

in observational studies. That approach used penalized network flows to select controls

with a covariate distribution as similar as possible to the treated group for large numbers

of nominal covariates and their interactions. The extension proposed here selects controls

to be similar to treated subjects in some ways and as di↵erent as possible in others. The

18



original algorithm has a target distribution for the covariates in the control group, and the

extension simply changes the target distribution. In the example, this means that controls

should resemble the treated group in terms of biological quantities, age, gender, BMI, but

should be as high as possible in terms of education and income. A precise description is

given in the Appendix. To create separation on a prod e
x while balancing x, we first define

a new covariate

⌘(ex
i

) =

8
><

>:

1 if ex
i

2 X

0 otherwise

where X is a set of desired values for the prod. The target distribution for controls has the

same distribution of x
i

as the treated group and has ⌘(ex
i

) = 1. Running the algorithm for

this target group and with balance constraints on x and ⌘(ex) selects a control group with

a distribution of x very similar to that in the treated population, but also ensures that as

many of the controls as possible are chosen with e
x values in the region X , thereby creating

separation on the prod.

6 Inference with and without a prod

6.1 Sensitivity analysis with two control groups controlling the familywise error rate

Figure 2 shows homocysteine levels in blood plasma for the I = 512 matched triples in

Figure 1; see §1.2. The current section is concerned with the simultaneous analysis of

prodded and unprodded match sets of the type displayed in Figure 2.

Define the null hypothesis H 0
�

to be the conjunction of (i) Fisher’s hypothesis of no

e↵ect, H
0

, (ii) treatment assignment Z is ignorable given v = (x, ex, u) and (iii) a bias in

treatment assignment from u of at most � � 1 in pairs of individuals matched for (x, ex),

so that (8) holds for all x, ex, u, u0. Define the null hypothesis H⇤
⌥

to be the conjunction

of (i) Fisher’s hypothesis of no e↵ect, H
0

, (ii) treatment assignment Z is ignorable given
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v = (x, ex, u), (iv) ex is innocuous given (x, u), (v) a bias in treatment assignment from

u of at most ⌥ � 1 in pairs of individuals matched for x, so that (9) holds for all x, u,

u0. Obviously, rejecting H 0
�

or H⇤
⌥

leaves open whether Fisher’s H
0

is false or whether the

additional assumptions are false. Notably, H 0
�

and H⇤
⌥

share (i) and (ii) but H 0
�

adds (iii)

while H⇤
⌥

omits (iii) and adds (iv) and (v), although all of assumptions (i)-(v) could be

jointly true. The data used to test H 0
�

and H⇤
⌥

are dependent because the same treated

subjects are used in both tests, as in Figure 2, and also if the control groups are allowed

to overlap or share some controls, as is not true in Figure 2.

If H 0
�

or H⇤
⌥

were both true, then Proposition 4 would lead us to anticipate modest

attenuation of unmeasured biases. That is, Proposition 4 leads us to be interested in

testing pairs (H 0
�

, H⇤
⌥

) with ⌥ modestly smaller than �, perhaps ⌥ = !� for ! = 0.9, or

10% smaller based on Table 2.

We propose to use a multiple testing procedure to conduct two sensitivity analyses,

one for H 0
�

and one for H⇤
⌥

, correcting for multiple testing using the recycling method of

Burman, Sonesson and Guilbaud (2009). The recycling procedure strongly controls the

familywise error rate. Let 0 < ↵0
 ↵ < 1 be two fixed numbers, conventionally ↵ = 0.05.

Fix (�,⌥), say (�,⌥) = (�,!�), and compute the two upper bounds on P -values, say

p
0
�,max

and p⇤
⌥,max

, from separate sensitivity analyses for H 0
�

and H⇤
⌥

, respectively. In the

example, the method in Rosenbaum (2007) yields p
0
�,max

and p⇤
⌥,max

using the R package

sensitivitymw. The recycling steps are:

Recycling procedure:

1. Test H 0
�

: Reject H 0
�

at level ↵ in the presence of a bias of at most � if p
0
�,max

 ↵0.

2. Test H⇤
⌥

: If H 0
�

was rejected in step 1, then reject H⇤
⌥

at level ↵ in the presence of a

bias of at most ⌥ if p⇤
⌥,max

 ↵. Otherwise, if H 0
�

was not rejected in step 1, then
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reject H⇤
⌥

at level ↵ in the presence of a bias of at most ⌥ if p⇤
⌥,max

 ↵� ↵0.

3. Recycle to retest H 0
�

: If H 0
�

was not rejected in step 1 but H⇤
⌥

was rejected in step

2, then reject H 0
�

at level ↵ in the presence of a bias of at most � if p
0
�,max

 ↵.

For a fixed (�,⌥) with ↵0 = ↵/2, then this recycling procedure is easily seen to be

equivalent to the standard version of Holm’s (1979) procedure, and if 0 < ↵0 < ↵, then it

is equivalent to Holm’s (1979) weighted procedure with w0 = ↵0/↵ and w⇤ = (↵� ↵0) /↵.

These equivalences are seen by considering the four possible outcomes of steps 1-3. As

noted by Benjamini and Hochberg (1997, p. 411), the weighted Holm procedure is superior

to another weighting scheme with two hypotheses, as here. Taking ↵0 = ↵ is fixed sequence

testing, so rejection ofH⇤
⌥

can occur only ifH 0
�

is rejected in step 1, and step 3 is redundant.

So in our case with two hypotheses, the recycling procedure reduces to one of two other

methods, but is attractive in unifying them. To reject both H 0
�

and H⇤
⌥

is to have

max
⇣
p
0
�,max

, p⇤
⌥,max

⌘
 ↵ as for intersection-union testing (Berger 1982, Laska and Meiser

1989); however, intersection-union testing could reject when recycling does not if ↵0 < ↵,

and recycling could reject just one hypothesis, either H 0
�

and H⇤
⌥

, which intersection-union

testing cannot.

Conventionally, ↵ = 0.05. How should ↵0 be chosen? If an analysis that controlled x

but not ex would be implausible if it disagreed with an analysis that controls (x, ex), then

↵0 should be close to ↵, perhaps ↵0
2 [0.8↵, ↵]. Arguably this is the case with e

x recording

income and education in the smoking example, so we take ↵0 = 0.04 < ↵ = 0.05, but taking

↵0 = ↵ = 0.05 would be reasonable also. In this way, little power is lost in the analysis

that adjusts for (x, ex), yet both analyses are considered with strong control for testing two

null hypotheses.

The discussion above considered a single fixed (�,⌥). In fact, we consider not a fixed

(�,⌥) but rather a sequence (�,⌥) = {�
n

, max (1,!�
n

)}, n = 1, 2, . . ., with �
1

= 1 and
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�
n

! 1 as n ! 1, where ! > 0 is fixed. In practice, reasonable values of ! are ! = 0.9,

hoping for modest attenuation, or ! = 1, preferring to handle the two control groups

symmetrically. At step n, a total of 2n hypotheses have been tested using the recycling

procedure.

Proposition 5 For fixed ! > 0, apply the recycling procedure to (�
n

,⌥
n

) = {�
n

, max (1,!�
n

)}

for n = 1, 2, . . . . The chance of falsely rejecting at least one true hypothesis, H 0
�

n

or

H⇤
⌥

n

, n = 1, 2, . . . ., is at most ↵.

Proof. Recall that p
0
�,max

is a valid P -value for testing H 0
�

alone and p
0
�,max

increases with

�, whereas p⇤
⌥,max

is a valid P -value for testingH⇤
⌥

alone and p⇤
⌥,max

increases with⌥. Also,

the recycling procedure controls the familywise error when testing both H 0
�

and H⇤
⌥

with

any one fixed (�,⌥). Let � = inf
�
�
n

: H 0
�

n

is true
 

and ⌥ = inf
�
⌥

n

: H⇤
⌥

n

is true
 
,

where � = 1 and ⌥ = 1 are possible values. To avoid a separate discussion of the

infinite cases, define p
0
1,max

= p⇤1,max

= 1. By definition of the hypotheses earlier in

this section, H 0
�

n

is true for all �
n

� � and H⇤
⌥

n

is true for all ⌥
n

� ⌥. Hence, the

smallest p
0
�

n

,max

for a true H 0
�

n

is p
0

�,max

and the smallest p⇤
⌥

n

,max

for a true H⇤
⌥

n

is p⇤
⌥,max

.

We consider cases. If � = ⌥ = 1, then there is nothing to prove, because no true

hypothesis is tested. If ⌥ = !� < 1, then to reject any true hypothesis, one must have
⇣
p
0

�,max

 ↵0
⌘
_

⇣
p⇤
⌥,max

 ↵� ↵0
⌘
and the chance of this is as most ↵. If ⌥ < !�, then

a false rejection for (�
n

,⌥
n

) with �
n

< � and ⌥  ⌥
n

< !� requires rejection of the true

H⇤
⌥

with p⇤
⌥,max

 ↵ which occurs with probability at most ↵, whereas false rejection for

(�
n

,⌥
n

) with � � � and ⌥ � !� requires
⇣
p
0
�

n

,max

 ↵0
⌘
_

⇣
p⇤
⌥

n

,max

 ↵� ↵0
⌘
, which

implies
⇣
p
0

�,max

 ↵0
⌘
_

⇣
p⇤
⌥,max

 ↵� ↵0
⌘

which has probability at most ↵. The case

⌥ > !� is analogous.
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6.2 Example: Using wealthy, educated nonsmokers as a second control group

For the data in §1.2, Figure 2 compares homocysteine levels among smokers to two control

groups, one (M) matched to controls for all measured covariates, the other (P) separated

from the smokers on the prod e
x of education and income; see, again, Figure 1 for the

di↵erence in education and income among these groups. The smokers in Figure 2 appear

to have somewhat higher homocysteine levels than both control groups, whereas control

groups M and P appear similar. We now conduct a sensitivity analysis using the procedure

in §6.

With I treatment-control matched pairs, Maritz (1979) used the null randomization dis-

tribution of Huber’s one-sampleM -statistic T =
P

I

i=1

 (Y
i

/s) to test Fisher’s null hypoth-

esis of no e↵ect, where Y
i

is a treated-minus-control matched pair di↵erence in responses R,

s is the median |Y
i

|, and  (·) is an odd function,  (y) = � (�y). Taking  
t

(y) = y makes

T into a constant multiple of the sample mean, and then Maritz’s method is equivalent to

the randomization distribution of the mean, that is, the permutational t-test; see Pitman

(1937) and Welch (1937). Huber’s  
hu

(·) has  
hu

(y) = sign (y) · min (|y| ,) for some

 > 0, where sign (y) = 1, 0, �1 as y > 0, y = 0, y < 0, so  
hu

(·) has the same influence

function as a trimmed mean. A sensitivity analysis for T when used in observational stud-

ies was proposed in Rosenbaum (2007), its power and large sample properties in sensitivity

analysis with various choices of  (·) were examined in Rosenbaum (2013), and the method

was implemented in the sensitivitymv and sensitivitymw packages in R; see Rosenbaum

(2015b). In particular, taking  
in

(y) = {/ (� ◆)} · sign (y) ·max {0,min (|y| ,)� ◆} for

some  > ◆ � 0 entails inner trimming and means  
in

(y) is zero for |y| 2 [0, ◆], is sign (y) ·

for |y| � , and rises linearly from 0 to  on [◆,]. For many distributions of Y
i

, the M -

statistic T =
P

I

i=1

 
in

(Y
i

/s) reports greater insensitivity to unmeasured biases than does

 
hu

(·). Here, we set  = 2 and ◆ = 1/2; see Rosenbaum (2013, Table 3) and method="p"
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in the senmw function of the sensitivitymw package in R.

Table 4 performs a sensitivity analysis with (�,⌥) = (�, 0.9⇥ �) for an increasing

sequence of values of �, as discussed in §6.1, reporting the upper bounds, p
0
�,max

and

p⇤
⌥,max

, on the marginal P -values testing H 0
�

and H⇤
⌥

, respectively. Table 4 does not

control for testing two hypotheses. Using the method in §6.1 to control for testing two

hypotheses and testing in a fixed sequence with ↵ = ↵0 = 0.05 leads to rejection of H 0
�

and

H⇤
⌥

for (�,⌥) = (1.640, 1.476), and no rejections at (�,⌥) = (1.650, 1.485). Recycling

with ↵ = 0.05 and ↵0 = 0.04 rejects H 0
�

and H⇤
⌥

for (�,⌥) = (1.640, 1.476), tests H 0
�

at

the 0.05 level for � = 1.650 but fails to reject, and barely rejects H⇤
⌥

for ⌥ = 1.575. To

put this in context, � = 5/3 = 1.667 corresponds with an unobserved covariate that triples

the odds of treatment and triples the odds of a positive pair di↵erence in outcomes, while

� = 1.5 corresponds with an unobserved covariate that doubles the odds of treatment and

doubles the odds of positive pair di↵erence in outcomes; see Rosenbaum and Silber (2009)

and the amplify function in the sensitivitymv package in R.

If, as may be, it is important to adjust for socioeconomic factors e
x, then Table 4

does this, finding that the results are not sensitive to small unmeasured biases. If, as

may be, socioeconomic factors introduce a biologically irrelevant source of variation in

smoking behavior, so that comparing people di↵ering in ex attenuates bias from unmeasured

covariates u, then Table 4 does this also, finding again that the results are not sensitive

to small unmeasured biases. Whether you compare people with the same or di↵erent

education and income, smokers tend to have higher homocysteine levels than nonsmokers.

These two analyses bracket the one analysis in Bazzano et al. (2003), where ex was neither

controlled nor separated.

Arguably, Table 4 allows us to see more in an observational study than we would have

seen with either comparison alone, yet it avoids committing us to one or another set of
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assumptions about unmeasured covariates, assumptions that are easy enough to state but

di�cult if not impossible to justify. Moreover, in this example, the M-controls were tested

at level 0.05, yet the familywise error rate for two tests was also controlled at ↵ = 0.05,

so the addition of the P-controls came without cost. The simulation in §6.3 asks whether

this pattern is expected in general.

6.3 Simulation: power of the recycling procedure in a sensitivity analysis

Ideally, a sensitivity analysis would reject the null hypothesis of no e↵ect when there is no

unmeasured bias and there is a treatment e↵ect, and the power of a sensitivity analysis is

the probability that this will happen; see Rosenbaum (2004, 2013). More precisely, the

power of an ↵-level sensitivity analysis allowing for bias � is the probability that the upper

bound on the P -value leads to rejection when computed with this �. The simulation

contrasts testing in a fixed sequence, ↵ = ↵0 = 0.05, and recycling with ↵ = 0.05 and

↵0 = 0.04. The simulation also contrasts exploring the (�,⌥) sequence along (�,⌥) =

(�,�) with equal sensitivity parameters and along (�,⌥) = {�, max (1, 0.9⇥ �)}. The

latter sequence makes sense if the investigator included the prodded controls anticipating

moderate attenuation of unmeasured biases.

Table 5 simulates a simple situation in which all treated-minus-control pair di↵erences

in both control groups are Normal with expectation ⌧ and variance 1. The correlation

between the pair-di↵erences in the two control groups is 1/2 because the same treated

subject is matched to two di↵erent controls, as in §1.2. The e↵ect size is either ⌧ = 1/4

or ⌧ = 1/2. Of course, the results are less sensitive with a larger e↵ect, and � is adjusted

accordingly, � = 1.5 for ⌧ = 1/4, � = 2.8 for ⌧ = 1/2. Columns a and b, labeled

↵0 = 0.05, refer to testing in a fixed sequence. Columns c and d, labeled ↵0 = 0.04, refer to

recycling. The final column is for comparison only: column e gives the power if H⇤
⌥

were
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tested at the ↵ = 0.05 level with no correction for testing two hypotheses. Although a

part of fixed sequence testing, column a for ↵0 = 0.05 and H
0
�

analogously gives the power

when testing H
0
�

without correction for multiple testing, because in fixed sequence testing

the first hypothesis in the sequence is tested without correction. Table 5 also compares

the power when using  
hu

(·) and  
in

(·) with  = 2 and ◆ = 1/2 and, as expected from

Rosenbaum (2013), the power is greater with  
in

(·). Each situation is replicated 50,000

times, so the standard error of an estimated power is at most
p
0.25/50000 = 0.0022.

With fixed sequence testing, adding a second comparison does not reduce the power of

the first comparison, but it a↵ects the power of subsequent comparisons. For instance, in

Table 5 with (�,⌥) = (1.5, 1.5), ⌧ = 1/4,  
hu

(·), the power is 0.47 for H
0
�

alone, for H
0
�

as first in sequence, and for H⇤
⌥

alone in the last column, but H⇤
⌥

tested in fixed sequence

after testing H
0
�

has power of only 0.30. In contrast, with (�,⌥) = (�,�), recycling with

↵0 = 0.04 slightly reduces the power for H
0
�

and somewhat increases the power for H⇤
⌥

.

There is some attraction to conducting the sensitivity analysis through a sequence of

the form (�,⌥) = {�, max (1, 0.9⇥ �)}, as was done in the example in Table 4. That

sequence is interesting because the prod, if it actually works, is intended to attenuate bias,

as in Proposition 4, so values of ⌥ somewhat below � are not without interest. At the

same time, in the simulated situation, recycling of unused ↵ is much more likely to occur

when ⌥ = 0.9 ⇥ �, so the power loss is smaller. Specifically, when ⌥ = 0.9 ⇥ � in Table

4, the power for H
0
�

is only slightly lower in column c than in column a, typically about

1% lower, whereas the power for H⇤
⌥

is much higher in column d than in column b. The

combination of ↵0 = 0.04 and ⌥ = 0.9 ⇥ � is, therefore, attractive: despite correction for

performing two tests, the M-controls are tested at nearly the power of a single test, while

the smaller value of ⌥ = 0.9⇥ � for the P-controls means the second comparison also has

high power.
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7 Summary: Prefer additional analyses to additional assumptions

It has been argued in the literature that leaving a measured covariate e
x uncontrolled,

say unmatched, may attenuate biases from an unmeasured covariate u. Although this is

formally true, the argument requires very strong, typically doubtful, assumptions about

both observed and unobserved covariates, and even when those assumptions are true the

magnitude of the attenuation is modest. We suggest that one should not conduct a

single analysis that presumes these doubtful assumptions are true. Rather, we suggest

building two control groups, with two analyses, one that controls for ex and one that leaves

e
x uncontrolled. Often, the second control group uses individuals who would otherwise be

excluded from the analysis because they are so di↵erent from treated subjects in terms of

e
x. A second control group entails a second hypothesis test, hence a correction for testing

two hypotheses; however, by careful organization of the analyses, there is only a slight loss

of power in the primary comparison controlling e
x, so the second control group is nearly

without cost.
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Table 1: Degree of attenuation of bias � by not matching for a Normally distributed prod
ex with expectation 0 and standard deviation �.

�
� ↵ 1 1.5 2 3 4 5 10
1/2 �1 1.00 1.47 1.93 2.83 3.71 4.59 8.88
1/2 0 1.00 1.47 1.93 2.83 3.73 4.63 9.07
1/2 1 1.00 1.47 1.94 2.88 3.82 4.75 9.41
1 �1 1.00 1.40 1.78 2.49 3.16 3.81 6.82
1 0 1.00 1.40 1.78 2.50 3.19 3.86 7.11
1 1 1.00 1.41 1.81 2.58 3.34 4.08 7.75

Table 2: Degree of attenuation of bias � by matching treated units to control units
with prod  c� for a normally distributed prod with expectation 0 and standard devi-
ation �, where the treatment assignment probabilities follow a logit model log{Pr(Z =
1|x̃, u)/Pr(Z = 0|x̃, u)} = ↵ + x̃ + �u with ↵ = �1 and � = exp(�). The attenuation is
measured by the odds ratio linking u and the group.

�
� c 1 1.5 2 3 4 5 10
1/2 -1 1.00 1.39 1.77 2.40 3.07 3.62 6.42
1/2 0 1.00 1.44 1.83 2.61 3.33 4.09 7.58
1/2 1 1.00 1.45 1.88 2.74 3.60 4.43 8.48
1 -1 1.00 1.30 1.54 1.99 2.35 2.67 4.14
1 0 1.00 1.36 1.66 2.20 2.73 3.22 5.42
1 1 1.00 1.38 1.74 2.42 3.04 3.68 6.49

Table 3: Standardized di↵erence on the prod x̃ when matching treated units to control units
with prod  c� for a normally distributed prod with expectation 0 and standard deviation
�, where the treatment assignment probabilities follow a logit model log{!̃(x̄, x̃, u)} = ↵+

x̃+�u, with ↵ = �1 and � = exp(�). The standardized di↵erence is E(x̃|Z=1)�E(x̃|Z=0,x̃c�)q
V ar(x̃|Z=1)+V ar(x̃|Z=0)

2

.

�
� c 1 1.5 2 3 4 5 10
1/2 -1 1.93 1.91 1.89 1.86 1.83 1.81 1.75
1/2 0 1.21 1.19 1.16 1.14 1.12 1.10 1.05
1/2 1 0.72 0.71 0.70 0.68 0.65 0.63 0.58
1 -1 2.31 2.28 2.24 2.19 2.15 2.11 2.00
1 0 1.56 1.53 1.50 1.45 1.41 1.39 1.30
1 1 1.09 1.07 1.05 1.01 0.98 0.96 0.87
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Table 4: Sensitivity analysis in the example with two control groups, one matched (M) for
e
x with sensitivity parameter �, the other using ex as a prod (P) with sensitivity parameter
⌥ = 0.9⇥�. The tabled values are upper bounds on marginal P -values using M -statistics
with inner trimming,  

in

with ◆ = 0.5,  = 2.
Sensitivity parameters

� 1.000 1.250 1.500 1.600 1.640 1.650 1.750
⌥ = 0.9⇥ � 1.000 1.125 1.350 1.440 1.476 1.485 1.575

Upper bounds on P -values testing no e↵ect
M-controls (p0

�,max

) 0.000 0.000 0.009 0.031 0.047 0.051 0.119
P-controls (p⇤

⌥,max

) 0.000 0.000 0.000 0.001 0.002 0.002 0.009

Table 5: Simulated power of an ↵ = 0.05 level sensitivity analysis with I = 500 matched
triples, Normal errors, and an additive constant treatment e↵ect that is ⌧ standard devi-
ations of a treated-minus-control matched pair di↵erence. For ↵0 = 0.05, there is fixed-
sequence testing, whereas for ↵0 = 0.04 there is recycling or equivalently a weighted Holm
procedure. Either ⌥ = 0.9⇥ � or ⌥ = �. Two  -functions are compared. Estimated from
50000 independent replicates.

� ⌥ ↵0 = 0.05 ↵0 = 0.04
Column Label a b c d e

H 0
�

H⇤
⌥

H 0
�

H⇤
⌥

H⇤
⌥

Alone
⌧ = 1/4 with  

hu

1.50 1.35 0.47 0.44 0.46 0.66 0.82
1.50 1.50 0.47 0.30 0.44 0.35 0.47

⌧ = 1/4 with  
in

1.50 1.35 0.66 0.63 0.65 0.80 0.90
1.50 1.50 0.66 0.50 0.63 0.56 0.66

⌧ = 1/2 with  
hu

2.80 2.52 0.32 0.28 0.31 0.47 0.68
2.80 2.80 0.32 0.17 0.29 0.20 0.32

⌧ = 1/2 with  
in

2.80 2.52 0.77 0.75 0.77 0.87 0.94
2.80 2.80 0.77 0.65 0.75 0.69 0.77
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Supplement to “Constructed second control groups and attenua-

tion of unmeasured biases”

Samuel D. Pimentel, Dylan S. Small, Paul R. Rosenbaum

1

Abstract. This supplement provides a formal description of the matching algorithm used in the

main paper to create balance on certain covariates and separation on others. This algorithm

generalizes the large, sparse matching method of Pimentel et al. (2015) to a broader class of

target covariate distributions. A method for tuning the algorithm to provide better simultaneous

separation and balance is also detailed.

1 Introduction

In Section 5.3 of the main paper we briefly describe an algorithm that can balance treated

and control groups closely on certain covariates x while separating them on others ex. This

supplement provides a full technical specification of this algorithm. In Section 2 below, the

general algorithm is described and its optimality is proven, using concepts and notation

from Pimentel et al. (2015). In Section 3, further detail is given about how the general

algorithm can be fine-tuned to create better separation on a prod. This section also gives

specifics about how the second control group was created in the NHANES example given

in the main paper.

1Samuel Pimentel is a doctoral student and Dylan Small and Paul Rosenbaum are professors in the
Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6340 US.
spi@wharton.upenn.edu. Supported by the Measurement, Methodology, and Statistics Program of the
National Science Foundation and by Fellowship FA9550-11-C-0028 from the Department of Defense, Army
Research O�ce, National Defense Science and Engineering Graduate (NDSEG) Fellowship Program, 32
CFR 168a4. 11 June 2015.
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2 Matching to a di↵erent target distribution

The large, sparse matching algorithm of Pimentel et al. (2015) requires that balance

covariates ⌫1, ⌫2, . . . , ⌫K (given in decreasing order of importance) be nested within each

other, i.e. all categories of ⌫j are finer subdivisions of the categories of ⌫j�1. In practice the

covariates ⌫i are often interactions of many nominal covariates measured in the dataset.

The algorithm computes an optimal match by formulating the task as a network flow

problem. Flow constraints in certain edges of the network are set based on the empirical

covariate distribution of the treated units, and require the covariate distribution of the

controls to be as close as possible to this distribution. In this technical sense the treated

group provides the “target distribution” to which the selected control will be made similar.

We wish to modify this algorithm so that a di↵erent target distribution can be used.

Formally, we transform the algorithm as follows. Here we adopt the notation of Pimentel

et al. (2015). In the original algorithm there was a treated group T and a control group

C. Define a third group T 0 = {⌧ 01, ⌧ 02, . . . , ⌧ 0T } where T = |T | and call it the target group.

We also extend the domain of each nested covariate ⌫k to include T 0 so now ⌫k : T [ C [

T 0 �! Kk; in other words, the units in the target group take values for each of the nested

covariates. We now alter the algorithm by changing the definition of the quantities dk` for

` = 1, . . . , Lk and k = 1, . . . ,K. In the original algorithm, these are defined as:

dk` = |{⌧t 2 T : ⌫k(⌧t) = �k`}|

In short, dk` counts the number of individuals in category ` of covariate k in the treated

group T . We change the definition so that instead dk` is equal to the number of individuals

2



in category ` of covariate k in the target group T 0:

dk` =
���⌧ 0t 2 T 0 : ⌫k(⌧

0
t) = �k`

 ��

This mainly a↵ects the algorithm through the quantities �k`, which give the covariate

imbalance at a particular category and are defined as follows:

�k` = m⇥ dk` � |{(⌧t,c) 2 M : ⌫k(c) = �k`}|

These �k` terms are used in Definition 2 of Pimentel et al. (2015) to define refined covariate

balance. So in changing the dk` values we not only transform the algorithm but broaden the

definition of refined covariate balance, so that balance is now with respect to a particular

target distribution T 0. This leads to the following proposition;

Proposition (A1). Given a target group T 0
, if we alter the dk` values and associated �k`

values as outlined above to obtain a new algorithm and a new definition of refined covariate

balance, then the new algorithm produces an optimal match with refined covariate balance

with respect to T 0
.

Proof. The proof is identical to the optimality proof for the original algorithm, except that

we use the new definition for dk` and the resulting new definition of �k`.

Notice that the new version of the proof includes the old version as the special case when

T = T 0. However, it also shows the optimality of the modified algorithm for matching under

refined covariate balance with respect to any empirical covariate distribution generated by

T observations on ⌫1 ⇥ ⌫2 ⇥ . . .⇥ ⌫K .
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3 Creating better separation on a prod

The balance constraints for the large, sparse optimal matching algorithm are described

by the decreasingly-important, increasingly-fine nominal covariates ⌫1, ⌫2, . . . , ⌫K . When

matching to create separation, these covariates could be formed by relevant functions and

interactions of x and ⌘(ex) (where ⌘ is defined as in Section 5.3 of the main paper). As in the

original version of large, sparse matching with refined covariate balance, the best choice

of K and of the nested covariates ⌫1, . . . , ⌫K is highly application- and data-dependent,

and researchers may need to experiment with several di↵erent configurations to obtain

acceptable balance results.

To improve observed separation on e
x, the researcher may find it useful to define balance

constraints not just in terms of the single function of ex described by ⌘ but in terms of a

series of such constraints ⌘1, . . . , ⌘J . For example, one might define a series of J sets

X 0
j ⇢ X such that X 0

1 ⇢ X 0
2 ⇢ . . . ⇢ X 0

J where X 0
1 is the region from which the researcher

would most like controls to be selected and X 0
2, . . . ,X 0

J are regions from which to select the

controls if this is not possible, in decreasing order of preference. Then one could define

new covariates

⌘j(exi) =

8
><

>:

1 if exi 2 Xj

0 otherwise

for j = 1, . . . , J and set the values of each ⌘j(exi) to 1 in the target distribution. These

covariates and their interactions with x would grant the researcher greater flexibility in

defining the balance constraints ⌫1, . . . , ⌫K and might lead to better combinations of e
x-

separation and x-balance.

In the NHANES example of Section 1.2 of the main paper, we used the 5-level ordinal

measure of education and the continuous measure of socioeconomic status to define the
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following desirable regions from which to draw controls:

X1 = income-to-poverty ratio above 2

X2 = income-to-poverty ratio above 2, high school graduate

X3 = income-to-poverty ratio above 4, some college

X4 = income-to-poverty ratio above 4, college graduate

We then enforced balance on a series of interactions of the resulting variables ⌘1(ex), . . . , ⌘4(ex)

with the balance covariates x. We controlled for ⌘1 at an early, coarse level in the balance

hierarchy (to ensure most controls had at least a moderate level of income) and added the

other more stringent variables ⌘j at finer, less-prioritized levels in the hierarchy (to ensure

better-educated and wealthier controls were chosen when available).
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