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Strong Control of the Familywise Error Rate in Observational Studies that
Discover Effect Modification by Exploratory Methods

Abstract
An effect modifier is a pretreatment covariate that affects the magnitude of the treatment effect or its stability.
When there is effect modification, an overall test that ignores an effect modifier may be more sensitive to
unmeasured bias than a test that combines results from subgroups defined by the effect modifier. If there is
effect modification, one would like to identify specific subgroups for which there is evidence of effect that is
insensitive to small or moderate biases. In this paper, we propose an exploratory method for discovering effect
modification, and combine it with a confirmatory method of simultaneous inference that strongly controls the
familywise error rate in a sensitivity analysis, despite the fact that the groups being compared are defined
empirically. A new form of matching, strength-k matching, permits a search through more than k covariates
for effect modifiers, in such a way that no pairs are lost, provided that at most k covariates are selected to group
the pairs. In a strength-k match, each set of k covariates is exactly balanced, although a set of more than k
covariates may exhibit imbalance. We apply the proposed method to study the effects of the earthquake that
struck Chile in 2010.
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Strong control of the family-wise error rate in observational studies
that discover effect modification by exploratory methods
Jesse Y. Hsu1, José R. Zubizarreta, Dylan S. Small, Paul R. Rosenbaum

University of Pennsylvania and Columbia University

Abstract. An effect modifier is a pretreatment covariate such that the magnitude of the

treatment effect or its stability changes with the level of the covariate. Generally, other

things being equal, larger treatment effects and less heterogeneous treatment effects are less

sensitive to unmeasured biases in observational studies. It is known that when there is effect

modification, an overall test that ignores an effect modifier may report greater sensitivity to

unmeasured bias than a test that combines results at different levels of the effect modifier. This

known combined test reports that there is evidence of an effect somewhere that is insensitive to

bias of a certain magnitude, but it does not draw inferences about affected subgroups. If there

is effect modification, one would like to identify specific subgroups for which there is evidence

of effect that is insensitive to small or moderate biases. In the current paper, we propose an

exploratory method for discovering effect modification combined with a confirmatory method of

simultaneous inference that strongly controls the family-wise error rate in a sensitivity analysis,

despite the fact that the groups being compared are defined empirically. Groups of treatment-

control matched pairs are identified using a special version of CART. A new form of matching,

strength k matching, permits CART to search through many covariates for effect modifiers, yet

no pairs are lost providing CART settles on a tree that uses at most k covariates. In a strength

k match, we can build the CART tree using more than k variables, let CART decide which k

or fewer variables are the best candidates as effect modifiers, and know that all individuals can

be matched exactly for the variables CART selects. We apply the method to study the effects

of the powerful earthquake that struck Chile in 2010.

Keywords: Design sensitivity; effect modification; integer programming; matched sampling;

power of a sensitivity analysis; observational study; sensitivity analysis; truncated product of

P-values
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1 Introduction: effect modification; attentive inference

1.1 Attentive inference: using information that will be fixed anyway

It is common in practice to alter a statistical analysis to reflect features discovered in the

data at hand, and statistical theory is constantly trying to catch up with these diverse

practices, that is, to appropriately allow for repeated use of the same data. If no care is

taken when analyses are selected in light of the data analyzed, then desirable properties

of statistical procedures may evaporate: tests with nominal level α may reject true null

hypotheses with probability substantially greater than α, and confidence intervals with

nominal coverage 1 − α may cover the true parameter with probability substantially less

than 1− α. There are, of course, many approaches that permit multiple uses of the same

data, and “attentive inference” is one of the simplest though least developed of these.

If the observed data are (A,B) and inference will be based on the conditional distri-

bution of B given A, Pr (B|A), then an inference is “attentive” if the method of inference

is selected having examined A without examining B; otherwise, if A is not examined the

inference is “inattentive,” whereas if A and B are both examined the inference is “not

attentive.” For instance, if the inference were a hypothesis test and the null distribution of

the selected test statistic is derived from the null distribution of B given A, then one could

alter the choice of test statistic on the basis of an examination of A alone without altering

the level of the test. An important class of such tests are permutation (or randomiza-

tion) tests. In particular, the only two-sample tests that have level α for all continuous

distributions are permutation tests formed by conditioning on the pooled sample order

statistics, with an analogous result for two-sample tests stratified for covariates (Lehmann

and Romano 2005, §5.8, Theorem 5.8.1); here, A is the order statistic for the two sample

test and the stratified order statistic for the stratified two-sample test. In the two-sample

problem, Hogg, Fisher and Randles (1975) adaptively select a test statistic on the basis of

the tail-behavior of the order statistic, and Jones (1979) takes a parallel approach to test-

ing symmetry about zero in the one-sample problem. There are other forms of adaptive

inference that use both A and B, but unlike attentive inference, these forms of adaptive

inference must take account of the repeated use of B because they are “not attentive”;

see, for instance, Donegani (1991) and Rosenbaum (2012). Expressed informally, atten-

tive inference makes use of information that is freely available for use, whereas adaptive

inferences that are “not attentive” must pay a price for adaptation, perhaps a price worth
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paying but a price nonetheless.

1.2 The 2010 earthquake in Chile

On 27 February 2010, a powerful earthquake of magnitude 8.8 struck off the coast of

Chile. Its epicenter was located off the coast of central Chile, near the country’s second

largest city, Concepción (USGS 2011a). Depending on the city, during 3 to 6 minutes

the earthquake shook the center of the country with massive force. It moved the city of

Concepción 3.04 meters to the west (Pollitz et al. 2011). The earthquake was followed by

a tsunami and 525 people were killed (Interior 2011), almost 500,000 homes suffered severe

damage, and nearly 2,000,000 people were injured (La Tercera 2010). The earthquake was

the 4th strongest earthquake in the world in the last 50 years (USGS 2011b).

About two months before the earthquake, the Chilean government had completed its

national socioeconomic survey (CASEN). To measure the impact of the 2010 Chilean earth-

quake, the Chilean government decided to reinterview a subsample of the CASEN following

the earthquake, thereby creating rare longitudinal data before and after a major disaster.

The Post Earthquake Survey (EPT) was a national longitudinal household survey con-

ducted between May and June 2010, nearly two months after the earthquake. The EPT

consisted of 22,456 households out of the 71,460 original households in CASEN 2009. For

a description of the EPT see Mideplan (2011).

The effect of the earthquake on posttraumatic stress was analyzed by Zubizarreta,

Cerdá and Rosenbaum (2013). In the current paper, we examine the effect of the earth-

quake on the change in individual work income from before the earthquake to after. In

principle, a major earthquake might disrupt existing economic activity, thereby reducing

work income, or it might create jobs in construction to repair damage done by the earth-

quake, so even the direction of the possible effect is in doubt.

We constructed 2106 matched pairs of two individuals, one in a region of Chile severely

shaken by the earthquake, the other in a region remote from the earthquake. See Zu-

bizarreta et al. (2013) for discussion of the geologic measure used to define these regions;

however, essentially the severely shaken middle of Chile is compared to its north and

south. A covariate is a variable measured prior to the earthquake, hence unaffected by the

earthquake. The CASEN survey before the earthquake provided many covariates. The

matching controlled for covariates from the CASEN: sex, marital status, number of persons

in the household, self-reported health problem, self-reported health perception, quartile of
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work income (before the earthquake), age, self-reported psychological problems, disability,

health insurance status, years of education, employment status, per capita total household

income, poverty status, housing status, quality of housing structure, and overcrowding.

Figure 1 shows the covariate balance in these pairs for three continuous covariates, namely

age in years, education in years and work income in pesos before the earthquake. Ob-

viously, when subgroups are examined, it is important also to check for covariate balance

within each subgroup.

The matching introduces a new technique called strength k matching, and this technique

is described in detail in §4.2.
We wish to consider six covariates as possible effect modifiers. An effect modifier is

essentially a covariate that interacts with the treatment, so that the treatment effect is

not constant in size but rather varies with levels of the covariate. Here, that would mean

that the effect of the earthquake on the change in work income is larger for some groups of

individuals and smaller for others, where the groups are defined by some of the covariates.

Hsu et al. (2013) found that effect modifiers affect sensitivity to bias from unmeasured

covariates, because larger effects can be less sensitive to unmeasured biases; more precisely,

effect modifiers affect the design sensitivity.

For brevity, we refer to these V = 6 candidate effect-modifiers as “the basic covariates,”

specifically: gender (male, female), health problems (yes, no), self-rated health (poor, fair,

good), quartile of individual work income in 2009, number of persons in the household (1,

2, 3, 4 or 5, ≥ 6), and marital status (married/cohabiting versus other). Because most

people, including especially many women and elderly individuals, did not have individual

work income in 2009, the quartiles of work income defined only 3, not 4 groups. The six

basic covariates define 2× 2× 3× 3× 5× 2 = 360 types of individuals. A total of I = 2106

matched pairs were formed, so many of the 360 types of pairs are represented by only a

moderate number of pairs. We allow the data to suggest a grouping of types of pairs so

the groups have many pairs, and much of the technical work in the paper is concerned with

appropriately allowing an analysis for a data-derived grouping of pairs. Until §4, we ignore
the possibility of pairs inexactly matched for basic covariates; then §4 describes a simple

approach, one actually used here, to incorporate them.
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1.3 Outline: Can one strongly control the family-wise error rate in subgroup analyses

when the subgroups were discovered empirically using the data?

Section 2 defines notation (§2.1), reviews randomization inference in experiments (§2.2)
and sensitivity analysis in observational studies (§2.3), and then reviews the connection

between these topics and effect modification (§2.4). The new results are in §3. In §3.1,
Proposition 5 shows that a specific form of adaptive identification of effect modifiers does

not alter the null sensitivity distribution; that is, it is attentive in the sense of §1.1. In

§3.2, Proposition 8 uses the result from §3.1 to perform simultaneous inference with data-

dependent groups, strongly controlling the family-wise error rate in a sensitivity analysis.

A brief summary of the findings of §3 is given in §3.3. In the earthquake data in §5, six
covariates are considered as candidates for effect modification, two covariates are selected

to form three subgroups, and the method of §3 is applied. The earthquake example uses a

new form of matching, strength k = 3 matching, with the consequence that the data may be

exactly matched for any k = 3 of the six covariates. As reviewed in §2.4, asymptotically

the power of a sensitivity analysis is determined by the design sensitivity; however, §6
examines finite-sample power using simulation.

2 Notation and review: randomization inference; sensitivity analysis

2.1 Notation: treatment effects, treatment assignments, observed and unobserved

covariates

The data permit the construction of I pairs, i = 1, . . . , I, of two subjects, j = 1, 2, one

treated with Zij = 1, the other control with Zij = 0, so Zi1 + Zi2 = 1 for each i. Write

Z = (Z11, Z12, . . . , ZI2)
T for the 2I-dimensional vector containing the Zij , and write Z

for the set containing the 2I possible values z of Z, so z ∈ Z if z = (z11, . . . , zI2)
T with

zi1 + zi2 = 1 and zij = 0 or zij = 1 for each i, j. Conditioning on the event Z ∈ Z is

abbreviated as conditioning on Z. Write |S| for the number of elements of a finite set S;
for instance, |Z| = 2I .

Subject ij has an observed covariate (xij ,vij) used in matching and an unobserved

covariate uij that is not controlled by matching. The V -dimensional covariate vij consists

of V nominal covariates that are of interest as possible effect modifiers. A pair i is exactly

matched for vij if vi1 = vi2 and inexactly matched if vi1 ̸= vi2, and until §4 we assume

all pairs are exactly matched. Let V be the set of possible values v of vij , so there are
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|V| possible values of vij . In §1.2, vij contains V = 6 nominal covariates, and vij has

|V| = 360 possible values. Because uij is not observed, it is quite possible that ui1 ̸= ui2

for many or all i.

Each subject has a potential response rTij if treated with Zij = 1, a potential response

rCij if assigned to control with Zij = 0, an observed response Rij = Zij rTij+(1− Zij) rCij

under the treatment actually received, whereas the effect of the treatment, namely rTij −
rCij , is not observed for any subject; see Neyman (1923) and Rubin (1974). Fisher’s (1935)

sharp null hypothesis of no treatment effect asserts H0 : rT ij = rCij , ∀i, j. Importantly, if

H0 were true, then Rij = rCij does not change with treatment assignment Zij , but if H0

is false then at least some Rij do change with Zij . Write F = {(rTij , rCij ,xij ,vij , uij),

i = 1, . . . , I, j = 1, 2}. The treated-minus-control pair difference in observed responses in

pair i is Yi = (Zi1 − Zi2) (Ri1 −Ri2), and it equals (Zi1 − Zi2) (rCi1 − rCi2) if H0 is true.

Also, write rC = (rC11, rC12, . . . , rCI2)
T and R = (R11, R12, . . . , RI2)

T for the vectors of

dimension 2I, and Y = (Y1, . . . , YI)
T for the vector of dimension I. Effect modification

refers to the possibility that the size of the effect, rTij − rCij , varies systematically with

observed covariates, (xij ,vij), and here we are focusing specifically on vij as possible effect

modifiers.

2.2 Randomization inference in experiments

In a paired randomized experiment, subjects are paired on the basis of observed covariates,

(xij ,vij), and then a fair coin is flipped independently I times to determine the treatment

assignments Zi1 with Zi2 = 1 − Zi1; that is, Pr (Zij = 1 | F , Z) = 1/2 for each i, j and

Pr (Z = z | F , Z) = 2−I for each z ∈ Z. Let t (Z,R) be a test statistic, that is, a function

of the treatment assignment Z and the observed responses R. The statistic t (Z,R) may

depend also upon the observed covariates, but the notation does not indicate this explicitly.

The null distribution of t (Z,R) under Fisher’s H0 in a paired randomized experiment is

its permutation distribution, namely

Pr { t (Z,R) ≥ k | F , Z} = Pr { t (Z, rC) ≥ k | F , Z} =
|{z ∈ Z : t (z, rC) ≥ k}|

|Z|
, (1)

because R = rC if H0 is true, where rC is fixed by conditioning on F , and the distribution

of Z is uniform on Z in a randomized experiment. For instance, if t (Z,R) were Wilcoxon’s

signed rank statistic, then (1) would be its usual exact null distribution.
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Similarly, Maritz (1979) proposed testing H0 using (1) and a suitably defined M -

statistic — that is, the quantity equated to zero in defining Huber’s (1964) M-estimates

— specifically, t (Z,R) =
∑I

i=1 ψ (Yi/s) where s is a quantile of the |Yi| and ψ (·) is a

monotone increasing odd function, ψ (d) = −ψ (−d), so ψ (0) = 0. Under H0, the pair

difference is Yi = (Zi1 − Zi2) (rCi1 − rCi2) = ± |rCi1 − rCi2| so |Yi| = |rCi1 − rCi2| is fixed

by conditioning on F in (1), so s is also fixed, and t (Z,R) =
∑I

i=1 sign (Yi) qi, where

qi = ψ (|rCi1 − rCi2| /s) is fixed by conditioning on F and sign (Yi) = 1, 0, or −1 as Yi > 0,

Yi = 0, or Yi < 0. As a consequence, under H0, the distribution (1) is the distribu-

tion of the sum of I independent random variables taking the values ±ψ (|rCi1 − rCi2| /s)
with equal probabilities 1/2 if |rCi1 − rCi2| > 0 or taking the value 0 with probability 1 if

|rCi1 − rCi2| = 0.

In a limited sense, Maritz (1979)’s test is an attentive inference: the scale factor, s,

used in t (Z,R) is selected on the basis of the data; however, under H0, this scale factor s

is a function of F which is fixed in (1), so using the data to determine the scale factor s as

a quantile of |Yi| does not invalidate the exact null distribution (1). This same idea can

be put to work on a much larger scale.

2.3 Sensitivity analysis for nonrandom treatment assignment in observational studies

The sensitivity analysis in an observational study imagines that, in the population prior

to matching, individuals are independently assigned to treatment or control with un-

known probabilities, πij = Pr (Zij = 1 | F), that may depend upon both the observed

covariates (xij ,vij) and unobserved covariate uij as recorded in F . The model says

that two subjects ij and i′j′ with the same observed covariates, (xij ,vij) =
(
xi′j′ ,vi′j′

)
,

may differ in their odds of treatment by at most a factor of Γ ≥ 1, that is, Γ−1 ≤
πij

(
1− πi′j′

)
/
{
πi′j′ (1− πij)

}
≤ Γ. It is easy to show that this is equivalent to assuming

log {πij/ (1− πij)} = κ (xij ,vij)+γuij with γ = log (Γ) and 0 ≤ uij ≤ 1 for some unknown

function κ (·, ·); see Rosenbaum (2002, §4) where the proof consists in constructing uij from

πij and conversely. The distribution of Z is then restricted to Z by conditioning on the

event Z ∈ Z. If pairs are matched for observed covariates (xij ,vij) so that κ (xi1,vi2) =

κ (xi2,vi2), then Pr (Zi1 = 1 | F , Zi1 + Zi2 = 1) = exp (γui1) / {exp (γui1) + exp (γui2)}
and

Pr (Z = z | F , Z) =

I∏
i=1

zi1 exp (γui1) + zi2 exp (γui2)

exp (γui1) + exp (γui2)
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=
exp

(
γzTu

)∑
b∈Z exp (γbTu)

for z ∈ Z for some u = (u11, . . . , uI2)
T ∈ U , (2)

where U = [0, 1]2I is the 2I-dimensional unit cube. When Γ = 1 so γ = 0, expression (2)

equals the randomization distribution, Pr (Z = z | F , Z) = 2−I . Using (2), if γ and u were

known, then under H0 the distribution of the test statistic T = t (Z,R) = t (Z, rC) would

be the sum of the probabilities in (2) over the z in {z ∈ Z : t (z, rC) ≥ k}. The sensitivity

analysis asks: How large a departure Γ from randomization must be present to materially

alter inferences based on the naive model that claims adjustments for observed covariates

(xij ,vij) suffice to remove all bias? Each value of Γ ≥ 1 yields an interval of possible

P -values or point estimates or endpoints for confidence intervals, and the question is: How

large must Γ be if this interval is to be so long as to be uninformative, say permitting both

acceptance and rejection of H0?

The current paper considers analyses of subsets of the I pairs. Let s ⊆ {1, 2, . . . , I}
be a fixed nonempty subset of |s| ≥ 1 of the I pairs. For instance, if the pairs were

exactly matched for gender, the set s might consist of the pairs i consisting of two paired

women. Much of our concern later on will be with sets of pairs selected on the basis of

the data, but the complications introduced by a data-dependent set of pairs are deferred

to §2.4 and later, and in the current paragraph s is a set of pairs determined a priori,

for instance, a planned subgroup analysis for pairs of women. Appending a subscript

s to a vector such as Z, as in Zs, means the vector of dimension 2 |s| containing those

coordinates of Z corresponding to pairs i ∈ s. A similar notation applies to R as Rs,

to F as Fs, and to U as Us; moreover, H0s is the hypothesis of no treatment effect for

all pairs i ∈ s, that is, H0s : rTij = rCij for i ∈ s and j = 1, 2. If, as in §2.2, the test

statistic is of the form Ts = t (Zs,Rs) =
∑

i∈s sign (Yi) qsi where qsi ≥ 0 is a function of

Fs, then Ts is a function of aspects of just the pairs in s. Define TΓs to be a random

variable that is the sum of s independent random variables, the ith random variable being

qsi with probability Γ/ (1 + Γ) and −qsi with probability 1/ (1 + Γ) providing qsi > 0, and

otherwise the ith random variable is 0 with probability 1 if qsi = 0. Define TΓs analogously

but with Γ/ (1 + Γ) and 1/ (1 + Γ) interchanged. Then it is not difficult to show for each

fixed Γ = exp (γ), as us ranges over Us, the unknown distribution Pr (Ts ≥ k | F , Z) of Ts

under H0s and (2) is sharply bounded by two known distributions,

Pr
(
TΓs ≥ k

∣∣ F , Z)
≤ Pr (Ts ≥ k | F , Z) ≤ Pr

(
TΓs ≥ k

∣∣∣ F , Z)
; (3)

see Rosenbaum (1987; 2002, §4; 2007). When 0 = γ = log (Γ), there is equality in (2), and
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both bounds in (2) equal the randomization distribution (1). The bounds in (3) are sharp

being attained for particular us in Us; therefore, the bounds (3) cannot be improved except

with additional information about the unobserved us. The bounds (3) yield bounds on

P -values, point estimates and confidence intervals.

Other methods of sensitivity analysis in observational studies are discussed by Cornfield

et al. (1959), Gastwirth (1992), Hosman et al. (2010), Liu et al. (2013), Small (2007),

Wang and Kreiger (2006), Yanagawa (1984), and Yu and Gastwirth (2005).

2.4 Review: use of effect modifiers when testing the hypothesis of no effect

Hsu et al. (2013, §4) tested Fisher’s null hypothesisH0 of no effect by first dividing the pairs

i ∈ {1, . . . , I} into several groups based on vij looking for possible effect modification, that

is, larger or more stable treatment effects in some groups than in others. More precisely,

G ≥ 1 mutually exclusive and exhaustive groups of pairs were formed, gg ⊆ {1, . . . , I}
with gg ∩ gg′ = ∅ for g ̸= g′, and {1, . . . , I} =

∪G

g=1
gg. Write G = {g1, . . . , gG}. These

groups g ∈ G were formed in an attentive fashion; that is, when H0 is true, the groups

are a function of F , Z and not of Z, so the grouping is fixed by conditioning in the null

distributions (1), (2) and (3). Specifically, as in Hsu et al. (2013, §4), a function of |Yi| is
regressed on vi1 = vi2 = vi, say, in some fashion that yields nonoverlapping groups. Under

Fisher’s H0, the absolute difference in responses |Yi| = |rCi1 − rCi2| is fixed by conditioning

on F , as discussed in §2.2, so the grouping produced by the regression of |Yi| on vi is also

fixed.

There is some reason to hope that a grouping based on the regression of |Yi| on vi will

construct useful groups. If H0 were false with Yi = ρ (vi) + ξi where ρ (·) ≥ 0 and ξi

independent and identically distributed with continuous unimodal distribution symmetric

about zero, then |Yi| is stochastically larger than |Yi′ | if ρ (vi) > ρ (vi′); see Jogdeo (1977,

Theorem 2.2). Therefore, the regression of |Yi| on vi may form groups with different

typical effects under this simple model.

In the example in §1.2, there are |V| = 360 possible values of vij . In §4, the rank of

|Yi| is regressed on vi1 = vi2 using the CART regression tree method of Breiman et al.

(1983), resulting in three leaves or groups, namely g1 consisting of individuals with work

income prior to the earthquake, g2 consisting of men without work income prior to the

earthquake, and g3 consisting of women without work income prior to the earthquake. It

is not practical to study effect modification with 2106 pairs in 360 groups of pairs, but it
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is practical to study effect modification with 2106 pairs in 3 groups of pairs.

Groups G = {g1, . . . , gG} built in this way are functions of F , Z when H0 is true, so

the groups are fixed conditionally given F , Z when H0 is true. Under model (2) when

H0 is true, a test statistic Tg = t (Zg,Rg) =
∑

i∈g sign (Yi) qgi for g ∈ G has the usual

bounds on its null distribution, namely (3), because these bounds refer to the conditional

distribution given F , Z when H0 is true. In particular, in a randomized experiment,

model (2) holds with 0 = γ = log (Γ), so that under H0, the group-specific statistic Tg

has its usual randomization distribution despite the data-dependent nature of the groups

G = {g1, . . . , gG}. Typically, G is not fixed by conditioning on F , Z when H0 is false, and

this is the central issue addressed in §3, where H0 is not assumed to be true.

Hsu et al. (2013, §4) test H0 by computing a P -value of the form (1) or P -value bound

of the form (3) using the pairs in each group gg separately, yielding G independent P -values,

and combine them using a generalization of Fisher’s method for combining independent P -

values, namely the truncated product of P -values of Zaykin et al. (2002). The truncated

product uses as its test statistic the product of those P -values that are no larger than a

prespecified cutoff α̃ with 0 < α̃ ≤ 1, and for α̃ = 1 it is equivalent to Fisher’s procedure; see

Benjamini and Heller (2008) for simultaneous inference using Fisher’s procedure. Hsu et

al. show that in the presence of even a small amount of effect modification, this procedure

has higher power in a sensitivity analysis and larger design sensitivity than a test that

ignores the groups.

So far, the discussion has focused on testing the null hypothesis of no effect H0 at

all, and that hypothesis played a key role in permitting the groups G = {g1, . . . , gG} to be

determined from the data by regressing a function of |Yi| on vi. A more interesting question

not addressed by Hsu et al. (2013) is whether H0g may be tested using (3) when H0 may

be false. If H0 is false, then there is at least one pair i for which rTi1 ̸= rCi1 or rTi2 ̸= rCi2

or both, and in this case G = {g1, . . . , gG} is not a function of F , Z because R ̸= rC in the

sense that rC is determined by F but R varies with Z. In the example, G = {g1, g2, g3}
suggested a focus on individuals with work income before the earthquake, men without

work income and women without work income. If we reject the null hypothesis H0 of no

effect on anyone, it is not clear from the argument of this section that we can say anything

about just one of the groups, say about H0g2 for men without work income. Indeed, to

reject H0 is to reject the hypothesis that G = {g1, . . . , gG} is a function of F , Z. In

other words, if H0 is false in a randomized experiment, then the grouping G depends on Z:

had randomization yielded a different treatment assignment Z, it might also have yielded
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different groups G, and the hypothesis H0g2 is not even a hypothesis in any conventional

sense, because the hypotheses change as the treatment assignments Z change. This issue

is explored in §3.
In large samples, the power of a sensitivity analysis is determined by the design sensi-

tivity (Rosenbaum 2004), and a formula for the design sensitivity of Maritz’s (1979)M -test

is given in Corollary 1 in Rosenbaum (2013). Other things being equal, the design sen-

sitivity is larger — so the sensitivity analysis has greater power in large samples — when

the effect is larger, say the typical Yi is larger, or when the dispersion of the Yi is smaller

for a given typical size; see Rosenbaum (2004, 2005, 2013). Combining separate P -values

within groups G = {g1, . . . , gG} can increase the power of a sensitivity analysis when either

the size or dispersion of the Yi vary from group to group; see Hsu et al. (2013, §3.3).

3 Strong control of the family-wise error rate with groups constructed from

the data

3.1 Data-dependent groups of pairs and null distributions within those groups

To address the issue raised at the end of §2.4, the following conditions are assumed to hold.

Condition 1 The distribution of Z given F , Z is (2) for a specific γ = log (Γ) ≥ 0 and

unknown u ∈ U .

Condition 2 Mutually exclusive and exhaustive groups G = {g1, . . . , gG} of pairs are

formed as a function of R, vi and xi, i = 1, . . . , I from pairs exactly matched for vi1 =

vi2 = vi and xi1 = xi2 = xi.

Here, G and G are random quantities given F , Z because H0 may be false and, if so,

then R ̸= rC depends upon Z, so the groups in Condition 2 may also depend on Z. For

instance, in §2.4, had the earthquake struck different people in Chile, then there might

have been G = 6 groups, say, rather than the G = 3 groups in §2.4, and these groups might

have involved different variables in vij . If the groups G are random quantities depending

upon Z, then taking the groups to be fixed, conditioning on G, may alter the distribution

of Z. In particular, condition 2 is satisfied when, as in §2.4 and §5, groups are produced

as the leaves of a CART regression tree formed from pairs exactly matched for observed

covariates by regressing the rank of |Yi| on vi1 = vi2.
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Let h be the union of all of the groups, gg, for which there is no treatment effect, that

is, the union of those gg such that rTi1 = rCi1 and rTi2 = rCi2 for all i ∈ gg; possibly,

h = ∅. Obviously, the investigator does not know h.

Remark 3 There may be pairs i /∈ h with rTi1 = rCi1 and rT i2 = rCi2; however, these

pairs are in groups gg that contain at least one individual i′ such that either rTi′1 ̸= rCi′1

or rTi′2 ̸= rCi′2. In other words, h is the union of all groups with no effect, not the set of

all pairs with no effect. For instance, in §2.4, h would exclude all women with no work

income prior to the earthquake if at least one such woman ij was affected in the sense that

rTij ̸= rCij.

Remark 4 As G is a random quantity, h is also a random quantity because h is a union

of some of the gg. Indeed, the set h is a function of F , Z, G. Conditionally given F ,

Z, G, the set h is fixed. Conditionally given F , Z, G, if h=∅ then there are affected pairs

in every group g ∈ G so every H0g is false, and false rejection of a true H0g cannot occur.

Conversely, conditionally given F , Z, G, if h ̸=∅ then some group or groups g ∈ G contain

no affected individuals and false rejection of a true H0g is possible. Proposition 5 and its

Corollary speak about the distribution of the test statistic Th = t (Zh,Rh) given F , Z, G
where the pairs i ∈ h are all unaffected by the treatment, but the grouping G itself (and

hence also h) may have been affected by the treatment. Stated informally, Proposition 5

says that the data-dependent grouping G did not alter the null distribution of Th even when

H0 is false so the argument of §2.4 is inapplicable. To emphasize, Th is computed from

the union h of all groups gg where there is no treatment effect, and because the investigator

does not know h she cannot know when she has computed Th. Proposition 5 is a step in

developing a multiple inference procedure that strongly controls false rejections, as discussed

in §3.2.

Proposition 5 Assume Conditions 1 and 2. The conditional distribution Pr (Th ≥ k | F , Z, G)
of Th = t (Zh,Rh) given F , Z, G is sharply bounded by the bounds in (3) with s = h, pro-

viding h ̸=∅.

Proof. Assume h ̸=∅, for otherwise there is nothing to prove. Let N ⊆ {1, . . . , I} be

the set of pairs with no treatment effect, so rTi1 = rCi1 and rTi2 = rCi2 if and only if

i ∈ N , and let E be the complementary set of affected pairs, E = {1, . . . , I} − N . Of

course, N ⊇h̸=∅, so N ̸= ∅. Let z be a possible value of Zh, so z is a 2 |h|-dimensional
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vector z =
(
z11, z12, . . . , zℓj , . . . , z|h|,1, z|h|,2

)T
with zℓj = 1 or zℓj = 0 and zℓ1 + zℓ2 = 1

for each ℓ. Write D for the combination of the data {(rCi1, rCi2,vi,xi) , i ∈ N} and the

data (Ri1, Ri2, Zi1, Zi2,vi,xi), i ∈ E . Because pairs i ∈ N are unaffected with Rij = rCij

for i ∈ N and j = 1, 2, the grouping G = {g1, . . . , gG}, is a function of D. Because the

grouping G is a function of D, conditioning on G, D, F , Z is the same as conditioning on

D, F , Z. For i ∈ E , the information in (Ri1, Ri2, Zi1, Zi2,vi,xi) that is not in F , Z is

precisely Zi1 = 1−Zi2 for i ∈ E ; that is, one could construct (Ri1, Ri2, Zi1, Zi2,vi,xi) from

F , Z if one were told Zi1. Putting this all together under (2), the Zi1 = 1−Zi2 for i ∈ N
satisfy

Pr (Zi1 = 1 | F , Z, G, D) = Pr (Zi1 = 1 | F , Z, D)

= Pr (Zi1 = 1 | F , Z) =
exp (γui1)

exp (γui1) + exp (γui2)

because (i) G is a function of D, and (ii) the Zi1 for i ∈ N are conditionally independent of

the Zi′1 for i′ ∈ E , and apart from Zi′j for i′ ∈ E , the rest of (Ri′1, Ri′2, Zi′1, Zi′2,vi′ ,xi′),

i′ ∈ E is already fixed by conditioning on F , Z. Using (2) again and adding the fact that

h is fixed by conditioning on G, F , Z yields

Pr (Zh = z | F , Z, G, D) =
∏
ℓ∈h

zℓ1 exp (γuℓ1) + zℓ2 exp (γuℓ2)

exp (γuℓ1) + exp (γuℓi2)
. (4)

Now, the right side of (4) depends on G, F , Z because h depends upon G, F , Z, but it does

not depend on D given G, F , Z; therefore, (4) equals Pr (Zh = z | F , Z, G). It follows

that the distribution of Zh, namely Pr (Zh = z | G, F , Z), and hence also the distribution

Pr (Th ≥ k | F , Z, G) is identical to the distribution that produced the bounds in (3),

proving the result.

Corollary 6 Assume Condition 2. In a randomized experiment, the conditional distri-

bution of Th = t (Zh,Rh) given F , Z, G is its randomization distribution (i.e., (3) with

γ = 0), providing h̸=∅.

3.2 Sensitivity bounds for closed testing with groups built from the data

Let K ⊆ {1, . . . , G} be a nonempty subset of the groups and let k (K) = ∪g∈Kgg ⊆ {1, . . . , I}
be the indices of the pairs i in the groups gg for g ∈ K. If the groups G = {g1, . . . , gG} were

fixed a priori, then the hypothesis HK could be defined to say that there is no treatment
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effect in the pairs i ∈ k (K); that is, HK asserts that rTij = rCij for j = 1, 2 for all i ∈ gg

for all g ∈ K. A test of the a priori hypothesis HK with a priori groups G = {g1, . . . , gG}
could be based on Tk(K) in §2.3, and in particular, for each fixed Γ = exp (γ) ≥ 1, a level α

test could be constructed using the upper bound in (3), and this would be a conventional

randomization test if Γ = 1. With a priori groups G = {g1, . . . , gG}, the closed testing

procedure of Marcus et al. (1976) would reject HK at level α if and only if it had rejected

at level α all HL with K ⊆ L ⊆ {1, . . . , G}, and it would strongly control the family-wise

error rate, that is, it would falsely reject at least one true HK with probability at most α no

matter which hypotheses HM are true for M ⊆ {1, . . . , G}. See Hochberg and Tamhane

(1987, Chapter 1) for discussion of the family-wise error rate, and see Rosenbaum and

Silber (2009a) for discussion in the context of a sensitivity analysis. (Weak control of the

family-wise error rate is no longer regarded as adequate, so we do not discuss weak control;

it says that the chance of falsely rejecting HK is at most α if H0 is true, but if H0 is false

then there are no promises about false rejection of HK.) Does a similar result hold when

the groups G = {g1, . . . , gG} are built using the data subject to Condition 2?

Proposition 8 says that we may apply closed testing using groups constructed attentively

from the data at hand, yet strongly control the family-wise error rate in a sensitivity

analysis. Setting Γ = 1 yields the Corollary to Proposition 8

Algorithm 7 Construct groups G = {g1, . . . , gG} by a method that satisfies Condition 2.

Fix Γ ≥ 1, and for K ⊆ {1, . . . , G} determine the value kΓ,K from the upper bound in (3)

with s = k (K) as the smallest value such that Pr
(
TΓ,k(K) ≥ kΓ,K

∣∣∣ F , Z)
≤ α for a fixed α

with 0 < α < 1. Reject the null hypothesis that all pairs i ∈ k (K) experience no treatment

effect if TΓ,k(L) ≥ kΓ,L for all L such that K ⊆ L ⊆ {1, . . . , G}, and assert that this rejection

is insensitive to unmeasured biases no larger than Γ.

Proposition 8 Assume Condition 1 holds with the specified Γ. The conditional probability

given F , Z, G that Algorithm 7 makes at least one false rejection is at most α.

Proof. Under the stated conditions, Proposition 5 says the individual tests have condi-

tional level α. The main result in Marcus et al. (1976) says that a closed testing procedure

as in Algorithm 7 ensures that the probability of at least one false rejection is at most α

providing the component tests have level α.

Corollary 9 In a randomized paired experiment, the conditional probability given F , Z, G
that Algorithm 7 makes at least one false rejection is at most α.
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3.3 Summary: closed testing with groups discovered by exploratory analysis

To summarize, Proposition 8 and Corollary 6 would be relatively straightforward applica-

tions of closed testing if the groups G = {g1, . . . , gG} had been specified a priori; see Hsu

et al. (2013, §3.4). However, in §1.2 and §5, a collection of 360 types of individuals were

collapsed to G = 3 groups using the data, specifically by applying CART to a regression

of the rank of |Yi| on vi1 = vi2, so the groups were not given a priori. Conditioning on

G = {g1, . . . , gG} to fix the groups, and hence also to fix the null hypotheses, distorts the

distributions of some of the Zij when some H0g are true and others are false. Proposition 5

says that, under Condition 2, the distortion of the distribution of Zij is confined to groups

g such that H0g is false, and as a consequence Proposition 8 and Corollary 6 say that closed

testing strongly controls the family-wise error rate among groups selected on the basis of

the data.

4 Near exact matching with strength k balance

4.1 Offering CART more variables than can be used in the hope that CART will

refuse some of them

In studying effect modification, it is convenient to have treatment-control pairs with the

same values of the covariates under study as potential effect modifiers. If a covariate is not

exactly matched, if men are sometimes matched to women, then the treated-minus-control

pair difference in outcomes Yi may be associated with gender because of the mismatch

on gender rather than because the treatment effect is different for men than for women.

Expressed in familiar if imprecise terms, gender may have a main effect and an interaction

with the treatment, and when pairs are exactly matched for gender the main effect is

removed so the interaction can be seen clearly. In §1.2, it was not possible to match

exactly for all V = 6 candidate effect modifiers vij , yet we did not want to lose any pairs

because of this.

It is easy to match to balance many covariates, perhaps by matching on the propensity

score (Rosenbaum and Rubin 1985), or perhaps using fine balance (Zubizarreta et al. 2011),

but even with nominal covariates, it is not possible to match everyone exactly for more

than a few covariates because the number of combinations grows exponentially with the

number of covariates. So far, we have been ignoring the issue of matching exactly for

vij , but it is a common problem when more than a few covariates are candidates as effect
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modifiers. Before discussing the problem abstractly, consider the problem as it occurs in

the example in §1.2.
In the earthquake data in §1.2, there were V = 6 candidate covariates vij that were

plausible effect modifiers, yielding |V| = 2×2×3×3×5×2 = 360 types of individuals, yet

there were only I = 2106 pairs of an exposed and an unexposed individual. In fact, only

1978/2106 = 94% of the pairs are exactly matched for all six basic covariates. However,

by design, the six covariates exhibit a new and very strong form of covariate balance,

specifically strength 3 balance. There are
(
6
3

)
= 20 ways to pick 3 of the six covariates.

For each of these 20 choices of three covariates there is a nominal variable formed as all

combinations of levels of these three covariates; for instance, gender, marital status and

self-rated health combine to yield a nominal variable with 2 × 2 × 3 = 12 levels. In a

strength 3 match, each of the
(
V
3

)
=

(
6
3

)
= 20 combinations of 3 of the V covariates is

exactly balanced: the marginal distribution is the same in treated and control matched

pairs. Table 1 illustrates this in the case of gender, marital status and self-rated health,

but the same balance occurs for all 20 groups of three of the V = 6 basic covariates. One

of these 20 choices of 3 covariates had 3 × 3 × 5 = 45 categories, where all six covariates

had 2× 2× 3× 3× 5× 2 = 360 categories.

More generally, in a strength k match, each of the
(
V
k

)
nominal variables built from k

of the V basic variables is perfectly balanced. The term “strength k” match is intended to

suggest a (limited) analogy with the orthogonal arrays used to construct fractional factorial

designs (Hedayat, Sloane and Stufken 1999).

How can the marginal distributions be identical with pairs that are not perfectly

matched? A mismatch in one pair counterbalances a mismatch in another. Subject

to the requirement (or constraint) of strength k balance, plus balance requirement on xij ,

the matching algorithm maximized the number of pairs that were exactly matched for v,

so vi1 = vi2 as often as possible. Specifically, 1978/2106 = 94% of the pairs are exactly

matched for all V = 6 basic covariates vij , although 128 pairs could be balanced but not

exactly matched. The CART tree and its associated groups were built using the 1978

exact pairs, briefly ignoring the 128 inexact pairs. Because the six covariates are exactly

balanced, whenever an inexact match does occur in the 128 inexact pairs, the mismatch is

counterbalanced in another inexact pair. For example, there were 15/2106 = 0.007 pairs in

which a treated individual with a health problem was paired to a control without a health

problem, but this was counterbalanced by 15/2106 = 0.007 pairs in which a control with

a health problem was paired to a treated individual without one. For detailed display of
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how imperfect matches can yield perfect balance; see Zubizarreta et al. (2011, Table 4).

With a strength k match, we build the tree and its associated groups using just the

exactly matched pairs. If the resulting tree involves k or fewer variables, then the inexactly

matched pairs can be rearranged to be exactly matched for all of the k or fewer variables

used in the tree. In the example, the tree selected two variables, gender and income

quartile, and the match was strength 3, so it was possible to break the original pairing of

the 128 inexactly matched pairs, and pair these 2 × 128 individuals again to be exactly

matched for the groups defined by Figure 2, with the consequence that all of the individuals

in the original 2106 pairs were retained.

In a strength k match, we can build the tree using more than k variables, let CART

decide which k or fewer variables are the best candidates as effect modifiers, and know that

all individuals can be matched exactly for the variables CART selects.

4.2 Details of implementing strength k matching

Implementing strength k matching is straightforward using Zubizarreta (2012)’s mipmatch

package in R. First, the
(
V
k

)
nominal variables formed from k of the V basic variables

vij are determined, and the match is constrained to perfectly balance all of these. Sec-

ond, additional balance constraints are imposed on the remaining observed covariates xij .

At this stage, the problem becomes an integer program, a constrained combinatorial opti-

mization problem that mipmatch solves. The match maximizes the number of pairs subject

to covariate balance constraints. Optionally, one may also use other standard matching

techniques also available in mipmatch. In the current paper, as in Zubizarreta, Paredes

and Rosenbaum (2013), we view matching and pairing as separate tasks: matching selects

treated and control groups that exhibit covariate balance, whereas in the current paper the

pairing in §4.3 focuses attention on the V nominal candidate effect modifiers.

The remainder of §4.2 describes the construction of the matched earthquake data;

however, this material is not used later in the paper and may be skipped. The match

was the largest possible match that exhibited certain stipulated and desired properties

of covariate balance, a process called “cardinality matching” (Zubizarreta, Paredes and

Rosenbaum 2013). We matched:

(i) with exact pair matching for age groups, using 6 age groups, namely [15, 25), [25,

35), [35, 45), [45, 55), [55, 65), and [65, );

(ii) to exactly balance the 20 possible 3-way interactions of sex, married or cohabitant,
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number of persons in the household (1, 2, 3, 4 or 5, 6 or more), health problem, health

perception (poor, fair, good), and quartile of work income (0, (0, 150000], (150000, ∞));

(iii) to force very similar means or proportions for age, marital status (divorced or

widow, single), health problem, hospitalized, psychological problem, disability (self suffi-

cient or low, moderate or severe, no, unknown), health insurance (public, private, other,

no, unknown), years of education, employment status (employed, unemployed, inactive),

work income, total income, poverty status, housing status (own housing or paying to own

it, rented housing, ceded housing, irregular use of housing), housing structure (acceptable,

reparable, irreparable), overcrowding (no, medium, critical), and an estimated propensity

score. Here, we constrained the differences in means or proportions to be at most 0.1

times their standard deviations before matching; see Rosenbaum and Rubin (1985). This

produced 2106 matched pairs meeting the covariate balance properties.

4.3 Form the groups G = {g1, . . . , gG} using the exactly matched pairs

After matching with strength k, the pairs inexactly matched for the basic variables vij

are set aside, where pairs I ⊆ {1, . . . , I} are exactly matched. The remaining pairs

in {1, . . . , I}− I continue to exhibit strength k = 3 balance for the covariates in vij ,

but individual pairs differ, vi1 ̸= vi2 for i /∈ I; however, we minimized the number of

differences. Building the groups G = {g1, . . . , gG} uses only the exactly matched pairs in

I with the remaining pairs in {1, . . . , I}− I briefly set aside.

In the earthquake example in §1.2, 128 of I = 2106 pairs are set aside, leaving |I| = 1978

exactly matched pairs. These pairs exactly matched for vij are used to determine the values

of vij that define the boundaries of the groups of pairs. In the earthquake data, the rank

of the absolute pair difference |Yi| was regressed on vi1 = vi2 = vi for the exactly matched

pairs i ∈ I, yielding three groups, namely g1 consisting of individuals with work income

prior to the earthquake, g2 consisting of men without work income prior to the earthquake,

and g3 consisting of women without work income prior to the earthquake.

Replacing {1, . . . , I} by I in §3, Propositions 5 and 8 apply immediately to the pairs in

I. Under model (2), pairs i ∈ I are conditionally independent of pairs i /∈ I given F , Z,

so groups G = {g1, . . . , gG} formed using the pairs in I are conditionally independent given

F , Z of treatment assignments Zij for i /∈ I. Therefore, conditioning on G = {g1, . . . , gG}
does not change the conditional distribution given F , Z of treatment assignments Zij for

i /∈ I for the unused inexact pairs.
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If the groups G = {g1, . . . , gG} formed using the pairs in I involve k or fewer of the V

basic covariates, then the pairs i /∈ I are perfectly balanced for the k or fewer covariates

that define the groups G. The proof of this is immediate: the pairs i ∈ I exactly matched

for vij are certainly balanced for these k covariates, and all of the pairs {1, . . . , I} are

balanced for these k covariates because the match is strength k, so the pairs i /∈ I must

also be balanced for these k covariates. As a consequence, if the groups G = {g1, . . . , gG}
are determined by k or fewer covariates, it is possible to break the inexact pairing for i /∈ I
and pair these pairs again so that they are exactly paired for the k covariates that define the

groups, G. In the earthquake example, the 128 = 2106− 1978 = I − |I| inexact pairs not
used in forming the groups are balanced for the 2 ≤ k = 3 covariates that define the three

groups, namely gender and quantile of work income before the earthquake. Moreover,

because the new pairing uses the same 2 × 128 = 2 × (I − |I|) individuals as before, the

new pairing has the same balance properties: all
(
V
k

)
=

(
6
3

)
= 20 composites of k = 3 of the

V = 6 basic covariates are exactly balanced in the new pairing of the 128 = I−|I| inexactly
matched individuals. Therefore, the new match formed by combining the new pairing of

I − |I| = 128 pairs with the original exact pairing of |I| = 1978 pairs is also a match of

strength k = 3. In short, the new pairs are all exactly matched for the 2 ≤ 3 = k variables

that define the groups, yet there is still excellent balance on the remaining coordinates of

v. Moreover, the treatment assignments Zij in these new pairs i /∈ I are conditionally

independent of the groups G = {g1, . . . , gG} given F , Z. If the πij depend upon vij only

through the k coordinates of vij that define the groups, then Propositions 5 and 8 apply

to the I pairs formed by merging the old exact pairing of 1978 = |I| exact pairs combined

with the new pairing of 128 = 2106 − 1978 = I − |I| pairs. If the πij depend upon

all the coordinates of vij , then the bias introduced by the inexact pairs is unlikely to be

large, as all
(
V
k

)
composites of k covariates in vij are exactly balanced, a degree of balance

on observed covariates that is much better than expected by chance under completely

randomized treatment assignment.

The re-pairing of the 2 × 128 = 2 × (I − |I|) individuals inexactly matched for vij

used Hansen’s (2007) pairmatch function in his optmatch package in R, with a distance

that severely penalized mismatches for the three groups defined by Figure 2, but otherwise

simply counted the number of mismatches, 0 to 6, on coordinates of vij ; see Rosenbaum

(2010, §9.2). Among these 128 re-paired inexact pairs, none differed on the groups in

Figure 2, 126 pairs differed on exactly one of the six basic covariates in vij , and 2 pairs

differed on two of the basic covariates.
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5 Change in work income following the Chilean earthquake

In the earthquake data, there were 1978 pairs that were exactly matched, vi1 = vi2 = vi,

for the six basic covariates mentioned in §1.2. The outcome is the change in individual

work income from before the earthquake to after. Under H0, we have Rij = rCij , so

that Rij is fixed, and |Yi| = |Ri1 −Ri2| = |rCi1 − rCi2| is fixed. Using a regression tree

(Breiman et al.’s (1984, §8) CART as implemented in R by the rpart package with the

default settings) applied to the 1978 exact match pairs, the rank of |Yi| was predicted from

the value of vi; see Figure 2. The regression tree formed three groups, G = {g1, g2, g3},
a group with at least some work income in 2009 (labeled “p” for positive in Table 2), and

two groups with 0 pesos of work income in 2009, namely males and females (labeled “zm”

and “zf” respectively in Table 2).

Because the match was of strength k = 3 for vij , the remaining 128 = 2106 − 1978 =

I − |I| inexact pairs were balanced for quartile of work income and sex, so is was possible

to break the pairing for these 128 pairs, then pair again to control exactly work income

and sex, retaining the strength k = 3 balance on all of vij . Now, all I = 2106 pairs are

exactly matched for the variable that define the groups, G = {g1, g2, g3}.
Table 2 contrasts two sensitivity analyses. The first sensitivity analysis (“combined”)

tests the null hypothesis of no treatment effect at all, H0, with no attempt to consider

subgroups, and does this using an M -test of the type suggested by Maritz (1979) and that

is similar to a lightly trimmed mean, with Huber’s ψ-function, ψ (d) = max {−1,min (1, d)}
applied to Yi/s where s is the upper 1% quantile of |Yi|. The second sensitivity analysis

uses the groups defined in Figure 2, and calculates the same M -test within each of the

three groups, combining their P -values using the truncated product of P -values . The

second sensitivity analysis tests no effect at all, H0, using the truncated product of three

P -values for the three groups (zf.zm.p in Table 2), as suggested in Hsu et al. (2013), and

if H0 is rejected then tests hypotheses about subgroups, as developed in Proposition 8.

In Table 2, the truncated product zf.zm.p reports less sensitivity to bias than the

combined test, the former being insensitive to Γ = 1.45, and the latter being sensitive to

Γ = 1.25. Using the device in Rosenbaum and Silber (2009b), an unobserved covariate

that doubled the odds of exposure to the treatment (Zi1 − Zi2 = 1) and doubled the odds

of a positive pair difference in outcomes (Yi > 0) corresponds with Γ = 1.25, whereas an

unobserved covariate that doubled the odds exposure to the treatment (Zi1−Zi2 = 1) and

tripled the odds of a positive pair difference in outcomes (Yi > 0) corresponds with Γ = 1.4.
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Proposition 8 permits more to be said. In the absence of bias in exposure to the earthquake,

Γ = 1, there is less of an increase in work income in all three groups among those exposed

to the earthquake than among those not exposed; however, this finding is sensitive to a bias

of Γ = 1.45 except for men without work income before the earthquake. The strongest

evidence of an effect of the earthquake on work income is among men without work income

prior to the earthquake: those exposed to the earthquake were less likely to find jobs and

have work income after the earthquake than similar men far from the earthquake.

The novel aspect of Table 2 is that the three groups G = {g1, g2, g3} were built using the

data at hand, yet Proposition 8 implies that the family-wise error rate has been controlled

with data-dependent groups and multiple tests in a sensitivity analysis that allows for a

bias of Γ = 1.45.

6 Simulation: Do attentive groups increase the power of a sensitivity analysis?

Propositions 5 and 8 in §3 concern the family-wise error rate in a sensitivity analysis when

groups are attentively determined using the data at hand. The simulation will (i) check

the claims of Propositions 5 and 8, (ii) examine the ability of CART regression of |Yi| on
vi to identify relevant subgroups, (iii) examine various concepts of power.

We hope to report insensitivity to bias when the association between treatment Zij

and response Rij is produced by an actual treatment effect, not by bias in assigning treat-

ments. Therefore, the power of a sensitivity analysis is evaluated when, unknown to the

investigator, the treatment is effective and there is no unmeasured bias. In this situation,

the power of an α-level sensitivity analysis performed with a specific value of Γ ≥ 1 is

the probability that the upper bound on the P -value will be less than or equal to α when

computed with this Γ; see Rosenbaum (2004, 2005, 2010) for detailed discussion. For

instance, if a 0.05-level sensitivity analysis performed with Γ = 2 has power 0.99, then it is

very likely that the investigator will be able to assert that the ostensible treatment effect

could not be explained away by a bias of magnitude Γ = 2.

6.1 Structure of the simulation

The structure of the simulation follows.

(i) Six potential effect modifiers. In parallel with the example in §1.2, the simula-

tion considers six covariates v as potential effect modifiers. Each of these covariates
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is binary, and they are six independent Bernoulli trials with probability of success

1/2. Of these, at most two of the covariates interact with the treatment to affect the

responses, affecting either the mean or the variance of the pair differences Yi, but it

is left to the regression tree to discover which covariates affect the response. A tree

may fail by splitting in the wrong place. A first question addressed by the simulation

is the degree to which the trees accurately group pairs.

(ii) Building trees. In all cases, there are I = 2000 pairs, and of these |I| = 1000

are used to build the regression tree. For comparison, in §5 there were I = 2106

pairs and |I| = 1978 pairs were used to build the tree. The tree is built from the

CART regression of the ranks of 1000 absolute pair differences |Yi| on the vi for

the 1000 exactly matched pairs, in parallel with §5. The CART was fitted using

the rpart package in R with complexity parameter set to 0.005. The remaining

1000 pairs of the I = 2000 pairs were classified using the tree constructed from

the first 1000 pairs. Each sampling situation was replicated 5000 times, so an

estimated power or an estimated family-wise error rate has standard error of at most√
0.5× 0.5/5000 = 0.0071.

(iii) Sampling situations. Table 3 describes nine sampling situations with Normal er-

rors and constant variance of matched pair differences, Yi, whereas Table 4 permits

the variance of Yi to change with the covariates. Case G is the null case, with all

Yi ∼ N(0, 1). Cases M and N have E (Yi) = 0 but the variance changes with the

covariates. In all other cases, the average effect is 1/2 averaging over the four equally

likely cells defined by the first two covariates, which are the only active covariates.

In Table 4, the average variance over the active cases is 1. In case U, the expected

effect is constant but the variance changes.

6.2 Evaluating the groups

How can we judge whether groups G = {g1, . . . , gG} built by CART are in fact good groups?

In each sampling situation, let µi = E(Yi) and σ
2
i = var (Yi), and of course in a simulation

we know µi and σ
2
i . Remember that in all simulated cases, µi and σ

2
i vary with at most

two of the binary covariates, so there are at most four values of each. A tree yields leaves

or groups G = {g1, . . . , gG}. Write µg = |gg|−1∑
i∈gg µi for the average expectation in

group g. We say that a tree is “perfect” if µi = µg for every i ∈ gg, for every g; that is, if
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the groups always separate pair differences with different expectations. Perfection is too

much to expect. For every G, we quantify departures from perfection by

ιG =

∑G
g=1

∑
i∈gg

(
µi − µg

)2
+ σ2i∑G

g=1

∑
i∈gg σ

2
i

,

which is the fractional increase in the mean square error from grouping by G = {g1, . . . , gG}
rather than by a perfect grouping. A perfect tree has ιG = 1. For comparison, we also

compute ιA where A is a single group of all the pairs, A = {g1} with g1 = {1, . . . , I}.
In Tables 3 and 4, the mean of ιG and ιA is reported for nine sampling situations, each

replicated 5000 times. Without groups, the increase in mean square error ranges from

ιA = 1.000 for the null case G, to ιA = 1.375 in several other cases. In contrast, the

groups formed from the tree ιG are typically much better. Tables 3 and 4 also record the

fraction of trees that are perfect; however, frequent imperfection is compatible with near

perfection, that is 1 ≈ ιG ≪ ιA.

Tables 3 and 4 also record the number of trees, out of 5000 trees, that had a single

leaf, so CART produced just one group consisting of all I pairs. For instance, in cases

F and G, the pairs are homogeneous, and more than 4000 of the 5000 trees had a single

leaf. The good power of CART groups in homogenous cases like F in §6.4 partly reflects

CART’s typical decision not to form subgroups in homogeneous cases.

6.3 Level of the tests

Propositions 5 and 8 make assertions about the level of certain tests or testing procedures.

Specifically, Proposition 5 says that whenever a group of pairs is entirely unaffected, a

test with nominal level α will falsely reject with probability at most α, despite the fact

that the groups were built using the data. Proposition 8 says that when closed testing

is applied with component testing having nominal level α, the family-wise error rate is

strongly controlled at α: the chance of falsely rejecting at least one true hypothesis is at

most α. Is the simulation in agreement with these assertions?

Tables 3 and 4 record the number of null leaves, that is, the average over 5000 samples

of the number of groups of pairs in which all pairs experience no treatment effect. A

single tree may have no null leaves, one null leaf, or several null leaves. For example, case

B typically had 2.114 null subgroups, while case D typically had 1.106. Tables 3 and 4

record the average over 5000 samples of the total number of leaves, null or not. In the

homogenous case F, the average number of leaves or groups was 1.284 with no null leaves.
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In Tables 3 and 4, the column “False rejections, All” is the proportion of null leaves in

which the hypothesis of no effect was falsely rejected and for Γ = 1 it is consistently near

0.05. A false rejection cannot occur when every individual is affected by the treatment,

and in these cases (F, H, I, S, T and U), the “False rejections” section of the table is blank.

When there is no unmeasured bias, as in all the simulated examples, but the sensitivity

analysis entertains the possibility of such bias, Γ > 1, the chance of false rejection is much

less than 0.05. The column “Null rejects, family” is the proportion of applications of closed

testing that issued in at least one false rejection, that is, a null leaf declared to have been

affected. Here too, the 0.05 familywise level appears to have been preserved, consistent

with the claim of Proposition 8.

In brief, building the groups by CART regression of |Yi| on vi does not appear to have

increased the probability of falsely rejecting a true null hypothesis, consistent with the

claims of Propositions 5 and 8.

6.4 Power of the tests

The four columns of Tables 3 and 4 labeled “RejectingH0” give the power of four sensitivity

analyses when testing no effect at all, H0. Here, “one” is the combined test in Table 2 and

“trunc” is the truncated product, truncated at 0.05. Also, “Fisher” is Fisher’s combination

of P -values used in place of the truncated product. Finally, “Simes” is the Simes method

for combining independent P -values, and it is, by definition, a uniform improvement on

use of the Bonferroni inequality. Consistent with asymptotic results in Hsu et al. (2013)

about design sensitivity and limiting power of a sensitivity analysis, the combined method

“one” is substantially inferior except when the effect is constant in case F. The truncated

product and Simes method are similar and often best in terms of power, but they are not

uniformly best; see, for instance, the homogeneous case F where the combined method and

Fisher’s method win by a small margin.

The final column requires some explanation. There are I = 2000 pairs in each simulated

sample, but only some of these are affected by the treatment. For a pair that is affected,

we may score a 1 if that pair is in a group for which the hypothesis of no effect is rejected

by closed testing using the truncated product, and we may score a 0 otherwise. The

final column, “Reject false H0”, is the average over 5000 replicates of the proportion of 1’s

among the affected pairs. For example, if this number were 0.5, then we expect half of the

affected pairs to be in groups successfully identified by closed testing as “non-null groups.”
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This section is blank when there is no expected effect, as in cases G, M, and N. In case

A, at Γ = 9, 56.2% of affected pairs were in groups where an effect was found, whereas

the combined test found no evidence of an effect. In general, comparing the last column

“Reject False H0” to the column “Power to reject H0-one” it is seen that the truncated

product will often identify specific affected groups by closed testing at values of Γ such

that the combined test has virtually no power to detect anything.

Particularly interesting is case U. In case U, the first two covariates affect the variance

of Yi but not its mean. Despite this, and consistent with results in Rosenbaum (2005)

and Zubizarreta et al (2014), the single test has inferior power when compare to all of the

tree-based methods that focus on subgroups.

In brief, a single test for all pairs is substantially inferior in terms of power in all

simulated cases of effect modification, and it has only slightly higher power than the other

methods when the effect is constant in case F. Closed testing using the truncated product

will often identify affected groups when a single test would accept the null hypothesis of

no effect at all.

7 Summary: It is useful to notice effect modification in observational studies

If there is effect modification in an observational study — if the magnitude or stability of

an effect varies with measured pretreatment covariates — then the degree of sensitivity to

unmeasured biases may vary markedly within subgroups defined by the effect modifiers.

There may be stronger evidence of a treatment effect, evidence insensitive to small and

moderate biases, in some subgroups than in others. Propositions 5 and 8 permit an

empirical search for effect modifiers to be combined with a sensitivity analysis for subgroups

that controls the family-wise error rate in the strong sense.
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Table 1: Covariate balance for individuals exposed to severe shaking from the earthquake
and matched controls. One of 20 strength-3 tables of covariate balance, this one for the 3
covariates gender, marital status and self-rated health. In all cells, the count in the exposed
group equals the count in the control group, and the same is true for the other 19 tables
(not shown) describing 3 of the 6 balanced covariates.

Marital status Married/cohabitating Other

Gender Self-rated health Poor Fair Good Poor Fair Good

Male Exposed 18 299 167 5 145 47
Control 18 299 167 5 145 47

Female Exposed 40 542 339 21 280 203
Control 40 542 339 21 280 203
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Table 2: Contrasting two sensitivity analyses for the change in work income following the
earthquake. The “combined” test is a singlem-test using all I = 2106 pairs with no attempt
to discover effect modification. The three tests within groups use the same test within each
of the groups defined by the regression tree, namely “zl” for zero-work-income-female, “zm”
for zero-work-income-male, and “p” for positive-work-income. These individual P -values
are combined using the truncated product of P -values truncated at 0.05, so zf.zm combines
the two P -values for pairs with zero work income before the earthquake. Closed testing
starts with zf.zm.p, continuing to subhypotheses only if certain rejections take place. When
testing the null hypothesis H0 of no effect at all, the combined test is sensitive at Γ = 1.3
while the truncated product zf.zm.p is insensitive at Γ = 1.45. Although the null hypothesis
of no effect is rejected in all groups at Γ = 1, at Γ = 1.45 no effect is rejected only for men
with no work income prior to the earthquake. In each column, the least sensitive P -value
bound significant at the 0.05 level in closed testing is in bold.

Overall tests Two groups Individual groups

Γ Combined zf.zm.p zf.zm zf.p zm.p zf zm p

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009
1.1 0.001 0.000 0.000 0.006 0.004 0.002 0.001 0.079
1.2 0.023 0.000 0.000 0.018 0.007 0.008 0.002 0.288
1.25 0.067 0.001 0.000 0.031 0.010 0.015 0.004 0.437
1.3 0.151 0.002 0.001 0.051 0.013 0.026 0.006 0.589
1.35 0.280 0.004 0.002 0.080 0.018 0.041 0.008 0.724
1.4 0.440 0.037 0.024 1.000 0.024 0.062 0.011 0.829
1.45 0.606 0.048 0.031 1.000 0.031 0.089 0.015 0.903
1.5 0.749 0.061 0.040 1.000 0.040 0.123 0.020 0.948
1.6 0.925 0.096 0.065 1.000 0.065 0.210 0.033 0.988
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Table 3: Summary of evaluating the groups, level of the tests, and power of the tests for the null hypothesis of no
treatment effect with variousΓ when matched pair differences have Normal errors and constant variance

# Trees Avg. Leaves Avg. MSE False Rejections Power to RejectH0 Reject

Scenario 1-leaf Null Total Perfect ιG ιA Γ All Family one Fisher Simes truncFalseH0

A
X2=0 X2=1

X1=0 N(1,1) N(1,1)
X1=1 N(0,1) N(0,1)

0 1.113 2.354 1.000 1.000 1.250 1.0 0.048 0.047 1.000 1.000 1.000 1.000 1.000
2.5 0.000 0.000 0.701 1.000 1.000 1.000 1.000
2.6 0.000 0.000 0.436 1.000 1.000 1.000 1.000
9.0 0.000 0.000 0.000 0.388 0.591 0.598 0.562

B
X2=0 X2=1

X1=0 N(2,1) N(0,1)
X1=1 N(0,1) N(0,1)

0 2.114 3.132 1.000 1.000 1.749 1.0 0.047 0.047 1.000 1.000 1.000 1.000 1.000
2.0 0.000 0.000 0.721 1.000 1.000 1.000 1.000
2.1 0.000 0.000 0.381 1.000 1.000 1.000 1.000
30.0 0.000 0.000 0.000 0.858 0.999 0.999 0.994

C
X2=0 X2=1

X1=0 N(3/2,1) N(0,1)
X1=1 N(0,1) N(1/2,1)

0 1.400 3.585 0.292 1.022 1.375 1.0 0.047 0.043 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.817 1.000 1.000 1.000 0.615
2.5 0.000 0.000 0.290 1.000 1.000 1.000 0.581
15.0 0.000 0.000 0.000 0.803 0.993 0.997 0.487

D
X2=0 X2=1

X1=0 N(6/5,1) N(4/5,1)
X1=1 N(0,1) N(0,1)

0 1.106 3.305 0.902 1.002 1.270 1.0 0.044 0.044 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.967 1.000 1.000 1.000 1.000
2.5 0.000 0.000 0.631 1.000 1.000 1.000 0.999
10.0 0.000 0.000 0.000 0.564 0.849 0.849 0.409

E
X2=0 X2=1

X1=0 N(3/2,1) N(1/2,1)
X1=1 N(0,1) N(0,1)

0 1.098 3.295 0.935 1.002 1.375 1.0 0.054 0.054 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.818 1.000 1.000 1.000 0.873
2.5 0.000 0.000 0.281 1.000 1.000 1.000 0.759
20.0 0.000 0.000 0.000 0.222 0.826 0.822 0.398

F
X2=0 X2=1

X1=0 N(1/2,1) N(1/2,1)
X1=1 N(1/2,1) N(1/2,1)

4122 0.000 1.284 1.000 1.000 1.000 1.0 1.000 1.000 1.000 1.000 1.000
2.8 0.809 0.801 0.777 0.782 0.738
3.0 0.375 0.365 0.347 0.348 0.327
3.2 0.081 0.081 0.079 0.079 0.072

G
X2=0 X2=1

X1=0 N(0,1) N(0,1)
X1=1 N(0,1) N(0,1)

4128 1.285 1.285 1.000 1.000 1.000 1.0 0.049 0.048 0.049 0.049 0.048 0.048
1.1 0.002 0.001 0.001 0.001 0.001 0.001
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000

H
X2=0 X2=1

X1=0 N(3/5,1) N(3/5,1)
X1=1 N(2/5,1) N(2/5,1)

3094 0.000 1.587 0.263 1.007 1.010 1.0 1.000 1.000 1.000 1.000 1.000
2.8 0.767 0.822 0.810 0.812 0.640
3.0 0.321 0.477 0.487 0.487 0.331
3.2 0.065 0.245 0.277 0.278 0.148

I
X2=0 X2=1

X1=0 N(3/4,1) N(3/4,1)
X1=1 N(1/4,1) N(1/4,1)

181 0.000 2.335 0.949 1.003 1.062 1.0 1.000 1.000 1.000 1.000 1.000
2.8 0.577 0.976 0.975 0.975 0.494
3.0 0.164 0.959 0.959 0.959 0.479
3.2 0.019 0.955 0.956 0.956 0.474

NOTE: There are six potential effect modifiers,X1–X6, following six independent Bernoulli trials with probability of success 1/2. At most two of the
covariates, sayX1 and/orX2, interact with the treatment to affect the response. ThereareI = 2000 matched pairs,Yi = δ00+εi for X1i = 0 andX2i = 0,
Yi = δ01+ εi for X1i = 0 andX2i = 1, Yi = δ10+ εi for X1i = 1 andX2i = 0, andYi = δ11+ εi for X1i = 1 andX2i = 1, whereεi’s are independently
drawn from the standard Normal distribution. The statisticis M-statistic. Each situation is sampled 5,000 times. “# Trees, 1-leaf” is number of single-
leaf tree among 5,000 replicates. “Avg. Leaves, Null” and “Avg. Leaves, Total” are averaged null and total leaves over 5,000 replicates. TheιG and
ιA quantify departures from perfection, whereG = {g1, . . . ,gG} andA = {g1}. A perfect tree hasιG = 1. “False Rejections, All” is the proportion of
null leaves in which the hypothesis of no effect was falsely rejected. “False Rejections, Family” is the proportion of applications of closed testing that
issued in at least one false rejection. “Power to RejectH0” gives the power of four sensitivity analyses when testing no effect at all,H0. Here, “one” is
the combined test, “Fisher” is Fisher’s combination ofP-values, “Simes” is the Simes method for combining independent P-values, and “trunc” is the
truncated product. Finally, “Reject, FalseH0” is the proportion of pairs in a group for which the hypothesis of no effect is rejected by closed testing
using the truncated product, averaging over affected pairsand then 5,000 replicates.



Table 4: Summary of evaluating the groups, level of the tests, and power of the tests for the null hypothesis of no
treatment effect with variousΓ when matched pair differences have Normal errors and different variances

# Trees Avg. Leaves Avg. MSE False Rejections Power to RejectH0 Reject

Scenario 1-leaf Null Total Perfect ιG ιA Γ All Family one Fisher Simes truncFalseH0

J
X2=0 X2=1

X1=0 N(1,2/3) N(1,4/3)
X1=1 N(0,1) N(0,1)

0 1.131 2.501 1.000 1.000 1.250 1.0 0.045 0.046 1.000 1.000 1.000 1.000 1.000
2.5 0.000 0.000 0.732 1.000 1.000 1.000 1.000
2.6 0.000 0.000 0.478 1.000 1.000 1.000 1.000
9.0 0.000 0.000 0.000 0.491 0.674 0.676 0.568

K
X2=0 X2=1

X1=0 N(1,2/3) N(1,2/3)
X1=1 N(0,4/3) N(0,4/3)

98 1.164 2.345 0.971 1.007 1.250 1.0 0.050 0.049 1.000 1.000 1.000 1.000 1.000
2.5 0.000 0.000 0.884 0.993 0.993 0.993 0.990
2.6 0.000 0.000 0.700 0.987 0.986 0.986 0.983
9.0 0.000 0.000 0.000 0.975 0.976 0.976 0.969

L
X2=0 X2=1

X1=0 N(1,4/3) N(1,4/3)
X1=1 N(0,2/3) N(0,2/3)

0 1.054 2.300 1.000 1.000 1.250 1.0 0.045 0.045 1.000 1.000 1.000 1.000 1.000
2.5 0.000 0.000 0.485 1.000 1.000 1.000 1.000
2.6 0.000 0.000 0.230 1.000 1.000 1.000 1.000
9.0 0.000 0.000 0.000 0.000 0.001 0.001 0.001

M
X2=0 X2=1

X1=0 N(0,2/3) N(0,4/3)
X1=1 N(0,2/3) N(0,4/3)

0 2.381 2.381 1.000 1.000 1.000 1.0 0.051 0.049 0.057 0.056 0.051 0.051
1.1 0.003 0.001 0.001 0.001 0.001 0.001
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000

N
X2=0 X2=1

X1=0 N(0,2/3) N(0,4/3)
X1=1 N(0,4/3) N(0,2/3)

1286 4.209 4.209 1.000 1.000 1.000 1.0 0.049 0.040 0.051 0.051 0.053 0.054
1.1 0.009 0.001 0.000 0.000 0.004 0.001
1.2 0.002 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000

O
X2=0 X2=1

X1=0 N(3/2,4/3) N(1/2,2/3)
X1=1 N(0,1) N(0,1)

0 1.108 3.304 0.378 1.019 1.375 1.0 0.051 0.051 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.816 1.000 1.000 1.000 0.688
2.5 0.000 0.000 0.279 1.000 1.000 1.000 0.687
20.0 0.000 0.000 0.000 0.000 0.049 0.043 0.021

P
X2=0 X2=1

X1=0 N(3/2,9/5) N(1/2,1/5)
X1=1 N(0,1) N(0,1)

0 2.121 4.257 0.954 1.001 1.375 1.0 0.051 0.050 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.879 1.000 1.000 1.000 0.980
2.5 0.000 0.000 0.380 1.000 1.000 1.000 0.978
20.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Q
X2=0 X2=1

X1=0 N(3/2,4/3) N(0,1)
X1=1 N(0,1) N(1/2,2/3)

0 1.085 3.282 0.009 1.031 1.375 1.0 0.052 0.052 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.820 1.000 1.000 1.000 0.505
2.5 0.000 0.000 0.280 1.000 1.000 1.000 0.505
15.0 0.000 0.000 0.000 0.100 0.582 0.568 0.276

R
X2=0 X2=1

X1=0 N(3/2,9/5) N(0,1)
X1=1 N(0,1) N(1/2,1/5)

0 2.093 4.224 0.921 1.002 1.375 1.0 0.050 0.055 1.000 1.000 1.000 1.000 1.000
2.3 0.000 0.000 0.891 1.000 1.000 1.000 0.963
2.5 0.000 0.000 0.392 1.000 1.000 1.000 0.962
15.0 0.000 0.000 0.000 0.001 0.010 0.008 0.003

S
X2=0 X2=1

X1=0 N(3/4,2/3) N(3/4,2/3)
X1=1 N(1/4,4/3) N(1/4,4/3)

4074 0.000 1.294 0.031 1.060 1.062 1.0 1.000 1.000 1.000 1.000 1.000
2.8 0.785 0.791 0.768 0.771 0.715
3.0 0.359 0.385 0.373 0.375 0.332
3.2 0.070 0.113 0.113 0.113 0.082

T
X2=0 X2=1

X1=0 N(3/4,4/3) N(3/4,4/3)
X1=1 N(1/4,2/3) N(1/4,2/3)

0 0.000 2.328 1.000 1.000 1.062 1.0 1.000 1.000 1.000 1.000 1.000
2.8 0.561 1.000 1.000 1.000 0.495
3.0 0.147 0.995 0.997 0.998 0.489
3.2 0.019 0.972 0.987 0.990 0.477

U
X2=0 X2=1

X1=0 N(1/2,1/4) N(1/2,3/4)
X1=1 N(1/2,1) N(1/2,2)

0 0.000 4.294 1.000 1.000 1.000 1.0 1.000 1.000 1.000 1.000 1.000
3.0 0.830 1.000 1.000 1.000 0.390
3.2 0.445 1.000 1.000 1.000 0.332
3.4 0.127 1.000 1.000 1.000 0.297

NOTE: There are six potential effect modifiers,X1–X6, following six independent Bernoulli trials with probability of success 1/2. At most two of the
covariates, sayX1 and/orX2, interact with the treatment to affect the response. ThereareI = 2000 matched pairs,Yi = δ00+σ00εi for X1i = 0 and
X2i = 0, Yi = δ01+σ01εi for X1i = 0 andX2i = 1, Yi = δ10+σ10εi for X1i = 1 andX2i = 0, andYi = δ11+σ11εi for X1i = 1 andX2i = 1, whereεi’s
are independently drawn from the standard Normal distribution. The statistic isM-statistic. Each situation is sampled 5,000 times. “# Trees, 1-leaf” is
number of single-leaf tree among 5,000 replicates. “Avg. Leaves, Null” and “Avg. Leaves, Total” are averaged null and total leaves over 5,000 replicates.
The ιG andιA quantify departures from perfection, whereG = {g1, . . . ,gG} andA = {g1}. A perfect tree hasιG = 1. “False Rejections, All” is the
proportion of null leaves in which the hypothesis of no effect was falsely rejected. “False Rejections, Family” is the proportion of applications of closed
testing that issued in at least one false rejection. “Power to RejectH0” gives the power of four sensitivity analyses when testing no effect at all,H0.
Here, “one” is the combined test, “Fisher” is Fisher’s combination ofP-values, “Simes” is the Simes method for combining independent P-values, and
“trunc” is the truncated product. Finally, “Reject, FalseH0” is the proportion of pairs in a group for which the hypothesis of no effect is rejected by
closed testing using the truncated product, averaging overaffected pairs and then 5,000 replicates.



 

Figure 1: Balance for three continuous covariates in 2009, before the earthquake, in I = 2016 matched 

pairs containing one individual from a severely shaken region of Chile and one control from a region 

barely touched by the earthquake. 
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                                                                        All exact match pairs. 

          1978 pairs. 

          Mean rank 0.50. 

 

 

 

 

No work income in 2009      Some work income in 2009 

      1132 pairs.          846 pairs. 

      Mean rank 0.34.        Mean rank 0.71 

 

 

 

 

 

Female            Male 

951 pairs.          181 pairs 

Mean rank 0.32.        Mean rank 0.45 

 

 

 

Figure 2: Regression tree built from the ranks of the absolute differences in work income for the 1978 

pairs that were exactly matched for all 6 balanced covariates.  Ranks were divided by 1978, so that they 

fall in [0, 1].   
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