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Surrogate Markers for Time-Varying Treatments and Outcomes

Abstract
BACKGROUND: A surrogate marker is a variable commonly used in clinical trials to guide treatment
decisions when the outcome of ultimate interest is not available. A good surrogate marker is one where the
treatment effect on the surrogate is a strong predictor of the effect of treatment on the outcome. We review the
situation when there is one treatment delivered at baseline, one surrogate measured at one later time point,
and one ultimate outcome of interest and discuss new issues arising when variables are time-varying.

METHODS: Most of the literature on surrogate markers has only considered simple settings with one
treatment, one surrogate, and one outcome of interest at a fixed time point. However, more complicated time-
varying settings are common in practice. In this article, we describe the unique challenges in two settings,
time-varying treatments and time-varying surrogates, while relating the ideas back to the causal-effects and
causal-association paradigms.

CONCLUSION: In addition to discussing and extending popular notions of surrogacy to time-varying
settings, we give examples illustrating that one can be misled by not taking into account time-varying
information about the surrogate or treatment. We hope this article has provided some motivation for future
work on estimation and inference in such settings.
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Surrogate markers for time-varying treatments and outcomes

Jesse Y Hsu1, Edward H Kennedy1, Jason A Roy1, Alisa J Stephens-Shields1, Dylan S 
Small2, and Marshall M Joffe1

1Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of 
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2Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 
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Abstract

Background—A surrogate marker is a variable commonly used in clinical trials to guide 

treatment decisions when the outcome of ultimate interest is not available. A good surrogate 

marker is one where the treatment effect on the surrogate is a strong predictor of the effect of 

treatment on the outcome. We review the situation when there is one treatment delivered at 

baseline, one surrogate measured at one later time point and one ultimate outcome of interest, and 

discuss new issues arising when variables are time-varying.

Methods—Most of the literature on surrogate markers has only considered simple settings with 

one treatment, one surrogate, and one outcome of interest at a fixed time point. However, more 

complicated time-varying settings are common in practice. In this paper, we describe the unique 

challenges in two settings, time-varying treatments and time-varying surrogates, while relating the 

ideas back to the causal-effects and causal-association paradigms.

Conclusions—In addition to discussing and extending popular notions of surrogacy to time-

varying settings, we give examples illustrating that one can be misled by not taking into account 

time-varying information about the surrogate or treatment. We hope this paper has provided some 

motivation for future work on estimation and inference in such settings.

Keywords

Causal inference; observational studies; randomization; surrogacy; time-varying

Introduction: surrogate markers

A surrogate marker is a variable used to guide treatment decisions when the outcome of 

ultimate interest is not available. In clinical trials, commonly used surrogate markers include 

laboratory values, body weight, and blood pressure. What makes a good surrogate marker is 

different than what makes a good biomarker. A good biomarker is a variable that is a strong 

predictor of the outcome of interest. A good surrogate marker is one where the treatment 
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effect on the surrogate is a strong predictor of the effect of treatment on the outcome. It is 

possible that a variable is a good biomarker, but a poor surrogate marker.

There is a large literature on surrogate markers.1–6 Most of this literature focuses on a 

surrogate marker measured at one time point and an ultimate outcome of interest measured 

at one (typically later) time point. More complicated settings with time-varying variables are 

common in clinical trials; the time varying variables could be treatments, clinical outcomes, 

or surrogate markers. For motivation, consider studies of an antiretroviral drug (ART), 

Zidovudine, to reduce mortality for patients with HIV. A patient’s CD4 count is a known 

surrogate marker for mortality.7 In time-varying settings, another treatment option such as 

Lamivudine can be added during the course of treatments (multiple treatments), or a 

repeated measurement of CD4 count can be treated as another surrogate marker (multiple 

surrogates). The goal of this paper is to discuss new issues that arise when thinking about 

surrogate markers in the context of time-varying variables.

We first review the situation when there is one treatment, one surrogate and one ultimate 

outcome of interest in the Review Section. Then, we discuss new issues arising when there 

are time-varying situations.

Review: one treatment, one surrogate, and one outcome of interest

We review surrogate markers in simple settings, following the arguments of Joffe and 

Greene.8 A surrogate is a variable for which knowing the effect of treatment on the 

surrogate allows prediction of the effect of treatment on the outcome. There are two major 

frameworks for evaluating surrogates: (1) the causal-effects paradigm, and (2) the causal-

association paradigm.

First, to talk about causal inference we need to introduce notation. In what follows, we use 

both potential outcomes or counterfactual language9,10 and graphical models language.11 

Let A denote the (randomized) treatment, S the surrogate, and Y the ultimate outcome of 

interest. Define U as a common cause of S and Y, possibly unmeasured. Let Ya and Sa be the 

outcome and surrogate, respectively, that would be seen under treatment level of a. Causal 

effects are contrasts of potential outcomes for different treatment levels for the same 

subjects. For example, for a binary treatment, a = 0, 1, the effect of treatment for a particular 

subject would be Y1 – Y0, the difference between the outcome a subject would get had 

he/she received the treatment versus what the subject would get had he/she received the 

control. Similarly we also let Ya,s denote the potential outcome that would have been 

observed under treatment level a and surrogate level s. Thus the potential outcome Ya under 

treatment level a can also be expressed as Ya,Sa
.

In the causal-effects paradigm, the quality of a surrogate is typically assessed with 

“proportion explained” or “proportion mediated” measures, i.e., how much of the effect of 

treatment is explained or mediated by the surrogate. Thus a variable is considered a good 

surrogate if knowing the causal effect of a treatment on the surrogate along with the causal 

effect of the surrogate on the outcome allows good prediction of the causal effect of the 

treatment on the outcome. We may learn about the effect of the surrogate on the outcome 

from prior experiments or external information, and conduct a surrogate experiment to 
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obtain the effect of a new treatment on the surrogate, from which we would make a decision 

about the effect of new treatment on the outcome.

Freedman et al.12 proposed to measure the proportion of effect explained using the 

framework proposed by Prentice,13 who defined a surrogate as a variable S for which a test 

of the null hypothesis of no relationship to treatment A is also a valid test of no relationship 

to the outcome Y. Operationally, Prentice suggested the following criterion: S is a surrogate 

if it is correlated with the outcome Y and if, once conditioned upon, it renders the treatment 

A and outcome Y independent. The proportion explained approach for a general endpoint 

outcome works as follows. Consider two generalized linear models: one that models Y given 

A directly, g{E(Y | A)} = β0 + AβA, and another that models Y given A and S without 

interaction between A and S, g{E(Y | A, S)} = γ0 + AγA + SγS. Then we can express a 

proportion of the total effect of A explained by S by 1 – γA/βA.12 Freedman et al. consider S 

to be a surrogate if the proportion of effect explained is greater than zero. Although this 

“proportion explained” approach does not utilize explicitly causal ideas, it does seem to 

implicitly require no unmeasured confounding of the effect of S on Y (Figure 1a), which 

unfortunately cannot be ensured by randomization of treatment A.

An alternative approach in the causal-effects paradigm is based on more explicitly causal 

ideas from the mediation literature. The total effect of treatment on the outcome can be 

pieced together from its direct effect and its indirect effect through the surrogate, which we 

now define. Informally, Figure 1b shows the graphical presentation for direct and indirect 

effects. The formal definition involves potential outcome Ya,Sa
, which is the outcome that 

would be observed at treatment level a and surrogate Sa. The total effect of treatment, 

Ya=1,S1
 – Ya=0,S0

, can be decomposed as the sum of a natural direct and indirect effect. The 

subject-level natural direct effect (NDE) of treatment when the surrogate is fixed at its level 

under treatment level a=0 is Ya=1,S0
 – Ya=0,S0

, a contrast that holds the surrogate constant at 

the value it would have obtained had treatment been set to zero while changing the treatment 

from 1 to 0, and the natural indirect effect (NIE) through the surrogate when treatment is 

fixed at level a=1 is Ya=1,S1
 – Ya=1,S0

, a contrast holding the treatment constant and 

changing the surrogate from the value it would have obtained under treatment versus 

control;14 the sum of this natural direct effect and natural indirect effect is the total effect of 

treatment, Ya=1,S1
 – Ya=0,S0

. Another decomposition of the total effect is the natural direct 

effect when the surrogate is fixed at its level under treatment level a=1, Ya=1,S1
 – Ya=0,S0

, 

plus the natural indirect effect when the treatment is fixed at level a=0, Ya=0,S1
 – Ya=0,S0

. 

The average direct and indirect effects can be estimated using, for example, a structural 

model approach under the assumption that the initial treatment is randomized or ignorable 

conditional on baseline covariates, and that the surrogate is sequentially ignorable given the 

initial treatment and baseline covariates.8,15

The causal-effects paradigm typically assumes that the surrogate is on the causal pathway 

from the treatment to the outcome. Understanding the way in which the surrogate fits into 

the causal process may be helpful for generalizing whether a variable that is a good 

surrogate in one setting will be a good surrogate in another. However, a drawback of the 

causal effects paradigm is that many surrogates are not causal intermediates (i.e., not on the 

causal pathway), but instead are proxies for causal intermediates. Figure 1c depicts a setting 
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where S* is the causal intermediate but the proxy S is observed; we call such an S a proxy 

surrogate. An example of a proxy surrogate is hemoglobin A1C in diabetes; hemoglobin 

A1C is a proxy for blood sugar and not a causal intermediate -- if there were a way to 

change the amount of glycosylated hemoglobin (what hemoglobin A1C measures) without 

changing levels of blood sugar, it would have little or no effect on health outcomes for 

diabetic patients.

In the causal-association paradigm, evaluation of a surrogate is based on examination of the 

association, across studies or population subgroups, between the effect of a treatment on the 

surrogate and the effect of a treatment on the clinical outcome. A good surrogate is a 

variable for which the effect of a treatment on the surrogate is highly associated with the 

effect of the treatment on the outcome. One approach in this paradigm is based on meta-

analysis.2 The meta-analytic approach examines the relationship across studies between the 

effect of the randomized treatment on the surrogate and the effect of the randomized 

treatment on the clinical outcome. Denote the effect of treatment on surrogate in study j as θj 

and the effect of treatment on outcome in that study as φj. Ideally, for a good surrogate, we 

would find (1) there is a monotonic relationship between θj and φj; (2) when θj is 0, φj is 

also 0; and (3) θj should predict φj well; i.e., in a regression of φj on θj, there should be little 

variability around the regression line. This approach can be applied not only across studies 

but also across specific subgroups defined by baseline covariates within a study. An 

alternative approach in the causal-association paradigm is principal stratification.16 In 

principal stratification, we focus on the association of individual-level effects of A on S and 

on Y; i.e., the association of S1 – S0 with Y1 – Y0. A variable S is called a principal surrogate 

if the effect of treatment on the outcome is 0 in any individual for whom A does not affect 

S.16 Because S1 and S0 are not simultaneously observable in any individual, the causal effect 

of treatment on the surrogate is not observable without further assumptions and so 

assessment of whether S is a principal surrogate requires further assumptions. An advantage 

of the causal-association paradigm is that it deals naturally with proxy surrogates as well as 

causal surrogates. In general, the causal-effects and causal-association paradigms and their 

corresponding approaches can have different advantages in different settings. Which 

approach is used should depend on the specific study goals and on the nature of the putative 

surrogate.6

Time-varying settings

To this point, nearly all of the literature on surrogate markers has considered relatively 

simple settings where the treatment, surrogate, and outcome are all scalars measured at one 

fixed time each. However, more complicated time-varying scenarios are common in 

practice; in fact, Prentice actually considered an example where the surrogate was measured 

over time and the outcome was time-to-event.13 A few authors have considered surrogates 

for failure time outcomes (e.g., Qin et al.17 and Gabriel and Gilbert),18 but to the best of our 

knowledge no one has addressed the problem of evaluating surrogate markers in settings 

where the treatment or surrogate are measured repeatedly over time. We describe the unique 

challenges in these two settings, while relating the ideas back to the two paradigms 

discussed above.
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Time-varying treatments

Before proceeding to time-varying treatments in both causal-effects and causal-association 

paradigms in next paragraphs, we first introduce notation and the concept of global and local 

contrasts for time-varying treatments. We consider two sequential treatments, A1 and A2 

with one surrogate marker S and one clinical outcome Y (Figure 2). In the HIV example, 

treatments A1 and A2 could be Zidovudine and Lamivudine, surrogate S could be patient’s 

CD4 count and clinical outcome Y could be time to death. The effect of treatments on the 

outcome is contrasted under different treatment plans or regimes; e.g.,  and 

. There are global contrasts and local contrasts. Whether S is a good surrogate may 

depend on whether we are interested in global vs. local contrasts. A global contrast 

considers  where ; i.e., we make contrasts over all different 

treatment plans. On the other hand, a local contrast considers different treatments varying at 

only one time point in time; e.g.,  and  for the effect of a blip of treatment at 

time 1 or  and  for the effect of blip of treatment at time 2. The effect of a blip 

of treatment at time j is the causal effect of treatment vs. control at time j conditional on the 

observed past and setting all future treatment to be the control. For statistical inference, we 

could consider marginal structural models for global contrasts and structural nested models 

for local contrasts.19

In the causal-effects paradigm, we typically try to assess how much of the effect of 

treatment on the outcome is explained or mediated by the surrogate. For the proportion 

explained approach in the time-varying setting, we can update the two generalized linear 

models in the Review Section as g{E(Y|A1, A2)} = β0 + A1βA1 + A2βA2 + A1A2βA1A2 and 

g{E(Y|A1, A2, S)} = γ0 + A1γA1 + A2γA2 + A1A2γA1A2 + Sγs. Then, we can express a 

proportion of the total effect of A1 and A2 explained by S as 

.

From the mediation perspective we can discuss effects in terms of global and local contrasts. 

For a global contrast, the overall effect of treatment would be a contrast of what would have 

happened if varying A1 and A2, that is , where 

 and , (all pathways from A1 and A2 to Y in Figure 2a), and the indirect effect 

of treatment involves all pathways except those from treatment directly into the outcome, 

that is, , (A1→Y and A2→Y in Figure 2b).

Note that a variable may be a good surrogate for the joint effect of a time-varying treatment, 

but not for the effect of one treatment alone. This can be assessed using measures of the 

“proportion mediated”, which for the joint effect of A1 and A2 could be expressed as the 

ratio , and similarly for the effect of A1 could be 

expressed as . Given assumptions of consistency and 

randomization of the treatments and surrogate, these measures of proportion mediated can 

be expressed in terms of the observed data as follows:
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and

For example, consider the simple setting where all variables are binary and both treatments 

A1 and A2 are randomized and the surrogate S is sequentially ignorable, i.e., independent of 

future potential outcomes given A1 and A2, so that the triple (A1, A2, S) is independent of 

potential outcomes Ya1,a2,s and (A1, A2) is independent of potential outcomes Sa1,a2 (and 

similarly for A1 alone). Then, for the data-generating process given in Table 1 (and 

considering the two global contrasts (a1 = 1, a2 = 1) versus (a1 = 0, a2 = 0) and a1 = 1 

versus a1 = 0), S is a good surrogate for A1 and A2 jointly, but not for A1 alone. Specifically, 

one can calculate that the proportion mediated for the joint effect of A1 and A2 is 100%, 

indicating that all of this joint effect is mediated by S, but that the proportion mediated for 

A1 alone is only 3%, indicating that relatively little of the marginal effect of A1 is mediated 

by S. This is the case even though in this example the putative surrogate S is a “consistent 

surrogate” in the sense that the effects of A1 and A2 jointly and of A1 alone (marginally) on 

the surrogate are in the same direction as the corresponding effects on the outcome.6 This 

example illustrates that one can severely underestimate the quality of a surrogate by using 

only partial information about a time-varying treatment.

Focusing on global contrasts may be reasonable if there is a common mechanism for the 

effect of sequential treatments or if the sequential treatments at different times have the 

same contents. For example, the global contrast would make sense in randomized trials with 

time-varying adherence or in observational studies of repeated treatments. It would make 

less sense if the sequential treatments have very different contents such as in sequential, 

multiple assignment, randomized trials (SMARTs).20 For a local contrast, the overall effect 

of treatment A1, , consists of two pathways, one 

that goes through S and one that does not go through S (Figure 3a), and the indirect effect of 

treatment A1 is the pathway that goes through S, that is, , (Figure 

3b).

While we focus on the treatment effect for A1 in the local contrast, we also have to control 

for A2, e.g., A2 = a2. There are multiple possibilities to be considered. For instance, if we are 

investigating an optimal treatment regime, we may want to choose A2 to maximize the 
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utility function or to optimize the outcome. This is not an easy task when a surrogate S is 

still unproven. We may also be interested in the effects of treatment A2. Similarly, there are 

the overall effect of treatment A2, , and the 

indirect effect of treatment A2 with multiple possibilities of treatment A1, 

; see Figure 3c and 3d. In general, a good surrogate for treatment 

A1 or A2 would be, in the causal-effects paradigm, when the indirect effect is close to the 

overall effect and where a positive effect on the surrogate implies a positive effect on the 

outcome. A good surrogate for A1 is not necessary a good surrogate for A2.

In the causal-association paradigm for a time-varying treatment, we focus on the blip of 

treatment for a particular time. For example, let θjt be the effect in study/group j of blip of 

treatment at t on S and let φjt be the effect in group/study j of blip of treatment at t on Y. The 

focus would be on the association between θjt and φjt in this paradigm. Similar to the case of 

scalar quantities, S would be a good surrogate for At, if there is strong association between 

θjt and φjt; and positive effect of At on S implies positive effect on Y. Note that S may be a 

good surrogate for A1, not for A2; or vice versa. Similarly as in the causal effects paradigm, 

we can also consider θjt and φjt for global and local contrasts.

Another example of time-varying treatments can be found in SMARTs. In SMARTs, the 

goal is to find an optimal dynamic treatment regime. Let H1, ...,HT denote the information 

on a subject’s history up to times 1, ..., T; Ht can include the subject’s treatment history 

before time (A1,..., At–1), baseline covariates and intermediate variables that are measured 

after baseline but before or at time t. A dynamic treatment regime is a set of rules π1 (H1),..., 

πT(HT) for assigning treatment at times 1, ..., T based on a patient’s history. The Y-optimal 

dynamic treatment regime is the dynamic treatment regime which maximizes the expected 

value of the ultimate outcome of interest Y. See Laber et al. for discussion of estimating 

optimal dynamic treatment regimes.21 Suppose there is a surrogate S that is measured after 

all of the treatments have been administered, i.e., after time T, but before the ultimate 

outcome of interest Y is measured. The S-optimal dynamic treatment regime is the dynamic 

treatment regime which maximizes the expected value of the outcome S. Our goal is to find 

a good treatment regime for the ultimate outcome of interest Y. The variable S is a good 

surrogate for this goal if the expected value of Y under the S-optimal dynamic treatment 

regime is close to the expected value of Y under the Y-optimal dynamic treatment regime, 

which can be evaluated by meta-analysis in the causal-association paradigm.

Time-varying surrogates

Here we briefly discuss some issues that can arise with time-varying surrogates. Considering 

generic surrogates S1 and S2 in Figure 4, each surrogate mediates a proportion of the effect 

of treatment; e.g., A→S1→Y, A→S2→Y, or A→S1→S2→Y. In the HIV example, treatment A 

could be Zidovudine, surrogates S1 and S2 could be patient’s CD4 count at the first and 

second time points of measurement, and clinical outcome Y could be time to death. Even if 

each surrogate mediates only a small proportion of the effect of treatment, the effects of 

treatment A on S1 and S2 individually may be good predictors of the effects of A on Y due to 

the common cause of S1 and S2, the two-headed black arc in Figure 4. In this case, there 

would be a divergence between causal-effects and causal-association measures for the 
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surrogacy for the individual level of S. When considering joint surrogacy of S1 and S2, both 

of them together as a vector could be better surrogates than each one individually. In the 

causal-association paradigm, let θjv be the effect in study/group j of treatment on Sv and let 

φj be the effect in group/study j of treatment on Y. The vector {S1, ..., SV} could be a better 

predictor of φj than individual effects on single Sv.

In the causal-effects paradigm, the quality of S1 and S2 jointly versus individually can be 

assessed using “proportion mediated” measures. For instance, the ratio 

 represents the proportion mediated by both S1 and S2, 

and the ratio  represents the proportion mediated by S1 by itself 

(or marginally). Given assumptions of consistency, randomization of the treatment, and 

sequential ignorability of surrogates, these measures of proportion mediated can be 

expressed in terms of the observed data as follows:

and

As an example, consider a simple setting as in the Time-varying treatments Subsection 

where (A, S1, S2, Y) are all binary, and the treatment and surrogates are all sequentially 

ignorable. Then, for the distribution of observed data given in Table 2, the surrogates S1 and 

S2 taken together mediate a large proportion of the effect on Y but S1 alone does not. 

Specifically, one can calculate that the proportion mediated by S1 and S2 together is 

approximately 99%, while the proportion mediated by S1 alone is exactly zero. This 

illustrates that one can undervalue a surrogate by not incorporating its repeated 

measurements.

Discussion

We have discussed a conceptual framework for time-varying variables in both the causal-

effects and causal-association paradigms, focusing in particular on time-varying treatments 

and surrogates. We extended notions of surrogacy for scalar variables to corresponding 

settings with time-varying variables. Both paradigms play important roles in the surrogate 

marker problem. In general, the causal-effects paradigm is often useful for proposing causal 

surrogates that are intermediate on the causal pathway from treatments to outcome, and the 

causal-association paradigm is often useful for evaluating proxy surrogates that are not 

necessarily on the causal pathway but may be correlated with causal surrogates. Different 

approaches within the two paradigms, for example using “proportion explained” measures, 
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indirect effects, meta-analysis, or principal stratification, each have their own advantages 

and disadvantages depending on the kind of surrogate being used and on the particular study 

objectives.

VanderWeele6 discussed three types of surrogates: (1) mediator surrogates, those on the 

causal pathway from treatment to response; (2) proxy-mediator surrogates, those related to 

the intermediate variables on the causal pathway from treatment to response; and (3) 

prognostic surrogates, those not on the causal pathway and unrelated to the intermediate 

variables on the pathway. Different types of surrogates require different approaches. As 

presently developed in this paper, we have assumed time-varying surrogates in the causal-

effects paradigm are also mediator surrogates. It is also possible that the time-varying 

surrogates in the causal-association paradigm are proxy-mediator or prognostic surrogates. 

How to think about the presence of time-varying proxy-mediator or prognostic surrogates in 

the causal-effects paradigm has not been fully investigated yet.

We have considered issues arising in surrogate assessment when there are time varying 

treatments or time varying surrogates. Another type of time varying setting that would be of 

interest to consider in future research is time varying outcomes, which could be either a 

repeated measure outcome or a survival outcome.

We have focused almost exclusively on conceptual issues in this paper. A very important 

topic we have not covered in much detail is how to do statistical estimation and inference in 

time-varying settings. In the supplemental material, we provide a brief illustration of 

statistical estimation in time-varying settings. This will be critical to explore in future work, 

for which we hope this paper has provided some motivation.
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Figure 1. 
Causal diagrams of a treatment A, a surrogate S, a proxy surrogate S*, an unmeasured 

confounder U, and an outcome of interest Y
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Figure 2. 
Time-varying treatment causal diagrams of two treatments A1 and A2, a surrogate S, an 

unmeasured confounder U, and an outcome of interest Y
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Figure 3. 
Direct and indirect time-varying treatment causal diagram of two treatments A1 and A2, a 

surrogate S, an unmeasured confounder U, and an outcome of interest Y
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Figure 4. 
Time-varying surrogate causal diagram of a treatment A, two surrogates S1 and S2, an 

unmeasured confounder U, and an outcome of interest Y
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