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Abstract

Despite the wide adoption of spike-and-slab methodology for Bayesian variable selection,

its potential for penalized likelihood estimation has largely been overlooked. In this paper,

we bridge this gap by cross-fertilizing these two paradigms with the Spike-and-Slab LASSO

procedure for variable selection and parameter estimation in linear regression. We introduce

a new class of self-adaptive penalty functions that arise from a fully Bayes spike-and-slab

formulation, ultimately moving beyond the separable penalty framework. A virtue of these

non-separable penalties is their ability to borrow strength across coordinates, adapt to en-

semble sparsity information and exert multiplicity adjustment. The Spike-and-Slab LASSO

procedure harvests efficient Bayesian EM and coordinate-wise implementations with a path-

following scheme for dynamic posterior exploration. We show on simulated data that the fully

Bayes penalty mimics oracle performance, providing a viable alternative to cross-validation.

We develop theory for the separable and non-separable variants of the penalty, showing rate-

optimality of the global mode as well as optimal posterior concentration when p > n. Thus,

the modal estimates can be supplemented with meaningful uncertainty assessments.

Keywords: High-dimensional Regression; LASSO; Penalized Likelihood; Posterior Concen-

tration; Spike-and-Slab; Variable Selection.
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1 Introduction

Spike-and-slab formulations are fundamentally probabilistic constructs for sparse recovery, most

naturally understood from the Bayesian standpoint. Penalized likelihood approaches, on the

other hand, induce sparsity through penalty functions whose geometry is exerted in constrained

optimization. Forming a bridge between these two parallel developments, here we harvest their

potential for mutual cross-fertilization with the Spike-and-Slab LASSO (SSL) procedure for si-

multaneous variable selection and parameter estimation.

For the well-studied problem of variable selection in multiple regression, consider the classical

linear model

Y = Xβ0 + ε, (1.1)

where Y is an n-dimensional response vector, Xn×p = [X1, . . . ,Xp] is a fixed regression matrix

of p potential predictors, β0 = (β01, . . . , β0p)
′ is a p-dimensional vector of unknown regression

coefficients and ε ∼ Nn(0, Ip) is the noise vector with a known variance σ2 = 1. We tacitly

assume that Y has been centered at 0 to avoid the need for an intercept. The regressors will

be treated as centered and standardized with ||Xj ||2 = n for 1 ≤ j ≤ p. We focus on settings

where p > n and where many of the components of β0 are zero or so small as to render most

of the potential predictors inconsequential. The complexity of the solution will be denoted by

q = ||β0||0. In this setup, we are interested in a purposeful recovery of β0, which entails (a) the

identification of active predictors and (b) estimation of their effects.

A variant of the penalized likelihood approach estimates β0 with

β̂ = arg max
β∈Rp

{
−1

2
||Y −Xβ||2 + penλ(β)

}
, (1.2)

where penλ(β) is a penalty function (indexed by a penalty parameter λ) prioritizing solutions

that are suitably disciplined. An overwhelming emphasis in the literature has been on penalty

functions that are separable, i.e. penλ(β) =
∑p

j=1 ρλ(βj). Most notably, the best subset selection

`0 approach deploys ρλ(βj) = −λ I(βj 6= 0), whereas the LASSO `1 penalty of Tibshirani (1994)

(its closest concave1 relative) uses ρλ(βj) = −λ|βj |. These two approaches stand at the two

ends of a conceptual and a computational ideal for sparsity detection. Non-concave separable

elaborations, intermediate between the two, have witnessed a surge of interest (e.g. MCP penalty

of Zhang (2010), SCAD penalty of Fan and Li (2001)). These penalties have the ability to

threshold (select) and, at the same time, diminish the well-known estimation bias of the LASSO.

Any penalized likelihood estimator (1.2) may be seen as a posterior mode under a (possibly

improper) prior π(β | λ), where penλ(β) = log π(β | λ). In particular, separable penalties stem

from independent product priors.

1The connotation concave vs. convex is reversed here relative to the conventional penalized likelihood literature.

To us, the penalized likelihood objective corresponds to an actual penalized log-likelihood with a minus sign.
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Spike-and-slab approaches to Bayesian variable selection arise directly from probabilistic con-

siderations. With a hierarchical prior over the parameter and model spaces, generic spike-and-slab

priors are of the form

π(β | γ) =

p∏
i=1

[γiψ1(βi) + (1− γi)ψ0(βi)], γ ∼ π(γ), (1.3)

where γ = (γ1, . . . , γp)
′, γi ∈ {0, 1}, is an intermediate vector of binary variables, indexing

the 2p possible models. Here, ψ0(β) serves as a “spike distribution” for modeling irrelevant

(zero) coefficients, and ψ1(β) serves as a “slab distribution” for modeling large effects. For the

Spike-and-Slab LASSO we deploy the particular variant of (1.3) with ψ0(β) = λ0
2 e−λ0|β| and

ψ1(β) = λ1
2 e−λ1|β|. Proposed by Rockova (2015) in the context of sparse normal means, these

two-point mixtures of Laplace distributions will be referred to as the Spike-and-Slab LASSO (SSL)

priors. The scope of these priors is greatly enhanced by the flexibility of the model space prior

π(γ), which can be used to gear π(β) towards preferred configurations γ. For our development,

we confine attention to exchangeable model space priors of the form

π(γ | θ) =

p∏
j=1

θγj (1− θ)1−γj , θ ∼ π(θ) (1.4)

where θ = P(γi = 1 | θ) is the prior expected fraction of large β′js.

Conditionally on θ, the SSL prior (1.3) boils down to an independent product of mixtures

π(β | θ) =

p∏
i=1

[θψ1(βi) + (1− θ)ψ0(βi)]. (1.5)

Choosing a point-mass spike ψ0(βj) = I(βj = 0) (obtained as λ0 → ∞) and ψ1(βj) ∝ c > 0

(obtained as λ1 → 0), log π(β |θ) collapses to the `0 penalty. At the other end, choosing ψ1(βj) =

ψ0(βj) yields the familiar LASSO penalty with a parameter λ1 = λ0. Thus, a feature of the

SSL priors is their ability to form a non-concave continuum between these two ideals. Despite

the wide adoption of spike-and-slab formulations for variable selection, their potential for modal

estimation (1.2) through penalty creation has largely been overlooked (with the notable exceptions

of George and Foster (1997) and Abramovich and Grinshtein (2010), who linked point-mass-

Gaussian mixtures with `0 selection criteria, and Yuan and Lin (2006) who studied empirical

Bayes calibration of point-mass-Laplace mixtures). Here, we unleash the potential of penalty

functions arising from the continuous SSL priors in the context of high-dimensional regression,

moving beyond the framework of independent product priors.

Whereas spike-and-slab priors with fixed θ are interesting constructs on their own, we shall

be ultimately interested in the fully Bayes formulations, treating θ as unknown and random with

θ ∼ π(θ). Such hierarchical mixture priors have proved remarkably successful, (a) producing
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posteriors that adapt to underlying sparsity (Castillo and van der Vaart, 2012), (b) perform-

ing automatic multiplicity adjustment (Scott and Berger, 2010), and (c) achieving Bayes factor

consistency in high-dimensional regression (Moreno et al., 2015), to name just a few. But how

exactly does the fully Bayes construction manifest itself in the posterior modes through a penalty

function? Intuitively, the unconditional prior π(β) renders the coordinates dependent, providing

an opportunity to borrow strength. This very dependence penetrates into a penalty log π(β)

which is ultimately non-separable. Here we explore the hidden potential of these new penalty

constructions. These fully Bayes penalties are an essential building block of our approach.

The main thrust of this paper is to propose the Spike-and-Slab LASSO procedure for si-

multaneous variable selection and estimation in high-dimensional linear regression. Summarized

in the points below, the paper makes contributions at three fronts: methodology, theory and

implementation.

(1) A novel penalized likelihood perspective is provided for the treatment of continuous spike-

and-slab priors in the context of high-dimensional regression when p > n. The framework

of non-separable fully Bayes penalties is introduced and developed, showing their potential

for self-adaptivity and automatic hyper-parameter tuning.

(2) Within the realm of Bayesian variable selection, it is typically the entire posterior distri-

bution that is used as a vehicle for variable selection. However, the practicality of MCMC

posterior simulation is often limited by the dimensionality p. Here, we focus primarily on

mode detection, capitalizing on the developments in non-concave optimization (Breheny

and Huang, 2011; Mazumder et al., 2011). Drawing upon the similarities to the LASSO, we

extend existing coordinate-wise optimization algorithms to the case of a non-separable SSL

penalty. Such adaptations are feasible and natural due to the underlying coherent Bayesian

formalism, which attributes a probabilistic meaning to adaptive selection thresholds. The

SSL priors are also amenable to MCMC techniques, which can be made more efficient by

leaving out the zero directions identified by the posterior modes.

(3) The Spike-and-Slab LASSO method for variable selection is introduced, entailing the de-

ployment of a sequence of (non-separable) priors within a path-following scheme. Unlike

the LASSO which uses a sequence of single Laplace priors with an increasing penalty λ,

the Spike-and-Slab LASSO uses a sequence of Laplace mixtures with an increasing spike

penalty λ0, while keeping λ1 fixed to a small constant.

A similar strategy was deployed in the EMVS procedure of Rockova and George (2014),

who proposed an efficient EM algorithm for Bayesian model exploration with a Gaussian

spike-and-slab mixture. Here, we revisit their approach for SSL priors as an alternative

strategy to coordinate ascent. The EMVS implementation with a Laplace mixture has
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many advantages: automatic variable selection through thresholding, diminished bias in

estimation, and provably faster convergence.

Path-following schemes are now routine for both concave/non-concave regularization. SCAD

and MCP penalties have two hyper-parameters that require tuning, so that cross validation

over a two-dimensional grid is often needed (Breheny and Huang, 2011; Mazumder et al.,

2011). We also have two tuning parameters (λ0, θ). However, by treating θ as random,

the non-separable SSL penalty avoids the need for cross-validation over θ. This aspect has

distinct practical advantages.

(4) Finally, we provide asymptotic arguments for the suitability of SSL priors for modal esti-

mation and full Bayes inference in high-dimensional linear regression. Extending the work

of Rockova (2015), we show rate-optimality of the global mode under the separable penalty

when p > n. This result is supplemented with an analogue involving the entire posterior

measure. Building on the work of Castillo et al. (2015), we show that the SSL posterior

keeps pace with the global mode by concentrating at the optimal rate when p > n. This

result attributes meaning to the penalized likelihood surface, which can be used for mean-

ingful uncertainty assessment, not only just as an objective function outputting a mode.

Going further, we extend the analysis of the global mode to the case of non-separable SSL

penalty functions, illuminating their potential for refining statistical rates.

The paper is structured as follows. Section 2 revisits the non-separable SSL penalty of Rockova

(2015) in the context of high-dimensional linear regression. Section 3 introduces the framework of

fully Bayes non-separable SSL penalties. Section 4 proposes a new coordinate ascent strategy for

the non-separable SSL penalty and revisits the Bayesian EM strategy. Section 5 introduces the

Spike-and-Slab LASSO approach and demonstrates its potential on a simulated example. Section

6 presents the asymptotic results and Section 7 concludes with a discussion.

2 The Separable SSL Penalty

A key ingredient of our approach is drawing upon connections between Spike-and-Slab LASSO

modal estimation, the foundation of our variable selection procedure, and generalized LASSO

estimation. An essential first step will be understanding the mechanics of a separable Spike-and-

Slab LASSO penalty. This penalty arises from an independent product prior (1.5), assuming θ is

fixed as if it were known. Paralleling the development of Rockova (2015) for normal means, here

we demonstrate the potential of this penalty in the context of high-dimensional regression. This

section serves as an overture to the fully Bayes approach developed in the next section.
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Figure 1: The plot of the univariate penalty function ρ(β |θ) with a minus sign for different choices (λ0, θ).

The vertical lines correspond to the intersection point δ.

Definition 2.1. Given θ ∈ (0, 1), the separable Spike-and-Slab LASSO (SSL) penalty is defined

as

penS(β | θ) = log

[
π(β | θ)
π(0p | θ)

]
=

p∑
j=1

log

[
θ ψ1(βj) + (1− θ)ψ0(βj)

θ ψ1(0) + (1− θ)ψ0(0)

]
. (2.1)

To facilitate manipulations with the penalty, we centered it so that penS(0p | θ) = 0. Due to

the conditional independence of β given θ, the penalty is built from singletons

ρ(βj | θ) = −λ1|βj |+ log[p?θ(0)/p?θ(βj)], (2.2)

which add up to yield

penS(β | θ) =

p∑
j=1

ρ(βj | θ) = −λ1|β|+
p∑
j=1

log

(
p?θ(0)

p?θ(βj)

)
, (2.3)

where

p?θ(βj) =
θψ1(βj)

θψ1(βj) + (1− θ)ψ0(βj)
. (2.4)

The alternative characterization (2.3) writes the separable SSL penalty as an adaptive sum of a

LASSO penalty and a non-concave penalty, rendering it ultimately non-concave. The maximal

non-concavity (Lv and Fan, 2009) equals κ = 1
4(λ0 − λ1)2, where larger differences λ0 − λ1 yield
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more aggressive penalties that are en route to best subset selection. The penalty is indexed by

a triplet of unknown parameters (λ1, λ0, θ) which work in tandem to yield desirable properties

(Rockova, 2015). Throughout the paper, we assume that λ1 has been set to a small value (made

precise by our theoretical study in Section 6) and thereby does not require tuning. The two

parameters (λ0, θ) will be seen to drive the performance of the penalty and their tuning will be

of the utmost importance.

The role of (λ0, θ) is best understood by looking at the univariate regularizer ρ(βj | θ). As

illustrated by Figure 1(a) (which plots ρ(βj | θ) with a minus sign), the larger λ0, the closer the

approximation to `0. The plot also portrays ρ(βj | θ) as a smooth mix of two `1 penalties with

parameters (λ0, λ1), where λ0 takes over near origin and λ1 dominates for larger values |βj |. The

vertical lines correspond to the intersection point between the spike-and-slab densities

δ =
1

λ0 − λ1
log[1/p?θ(0)− 1]. (2.5)

The value δ represents a turning point, at which the slab has dominated the spike, and may be

regarded as a threshold of practical significance (George and McCulloch, 1993). The sharper the

spike (i.e. λ0 is large), the smaller the threshold. A similar effect can be achieved by modulating

the prior weight θ. As seen from Figure 1(b), larger values θ represent a larger prior inclusion

probability and thereby a smaller threshold. The particular choices θ = 2/3 and θ = 0.34 will

be clarified in the next section, when linked to the non-separable SSL penalty. Figure 2 also

shows that ρ(β | θ) shares many of the desirable properties required for separable regularizers

(Zhang and Zhang, 2012): it is non-concave, non-increasing in [0;∞) and due to the convexity of

log[p?θ(0)]/p?θ(β)] it is super-additive, i.e. ρ(x+ y | θ) ≥ ρ(x | θ) + ρ(y | θ) for all x, y ≥ 0.

Before proceeding, it is worthwhile to examine more closely p?θ(βj) defined in (2.4), which

is the fundamental element of the penalty. This exponential mixing weight can be seen as the

conditional probability that βj came from ψ1(βj) rather than from ψ0(βj). Indeed,

p?θ(βj) = P(γj = 1 | βj , θ) =

[
1 +

λ0

λ1

(1− θ)
θ

e−|βj |(λ0−λ1)

]−1

. (2.6)

This quantity will keep reoccurring throughout the paper in many different contexts: implementa-

tion, statistical rates of the global mode, posterior concentration rates etc. We have already seen it

in the definition of the intersection point (2.5). Fundamentally an adaptive mixing weight, p?θ(βj)

determines the amount of shrinkage borrowed from the spike and the slab. This is formalized in

the following revealing lemma.

Lemma 2.1. The derivative of the separable SSL penalty satisfies

∂penS(β | θ)
∂|βj |

≡ −λ?θ(βj),

where

λ?θ(βj) = λ1p
?
θ(βj) + λ0[1− p?θ(βj)]. (2.7)
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Proof. The result follows immediately from

∂penS(β | θ)
∂|βj |

= p?θ(βj)
∂ logψ1(βj)

∂|βj |
+ [1− p?θ(βj)]

∂ logψ0(βj)

∂|βj |
.

By exerting its influence through the Karush-Kuhn-Tucker (KKT) conditions (seen in (2.8) and

(2.9) below), λ?θ(·) drives a “bias term” of the induced estimator Fan and Li (2001), determining

the amount of shrinkage. Ideally, one would like to shrink by a small amount when |βj | is large,

and by a large amount when |βj | is small. This is accomplished by the exponential mixing weight

p?θ(βj) (2.4), which gears λ?θ(βj) towards the extreme values λ1 and λ0, depending on the size |βj |.
Thus, λ?θ(βj) mixes the two LASSO “bias terms” and does so adaptively. This mixture penalty

effect is very much in contrast with a non-adaptive sum of the `1 and a non-concave penalty (Liu

and Wu, 2007; Fan and Lv, 2014)

2.1 Shrinkage Effects in Linear Regression

Throughout this section, we let β̂ = (β̂1, . . . , β̂p)
′ denote the global posterior mode (1.2) under

penS(β | θ). The adaptive features of the SSL penalty in linear regression are revealed from

necessary conditions for β̂. We begin with the KKT conditions

X ′j(Y −Xβ̂) = λ?θ(β̂j)sign(β̂j) for β̂j 6= 0, (2.8)

|X ′j(Y −Xβ̂)| ≤ λ?θ(β̂j) for β̂j = 0, (2.9)

which follow from the sub-differential calculus and Lemma 2.1. Using the fact ||Xj ||2 = n for

1 ≤ j ≤ p, (2.8) and (2.9) write equivalently as

β̂j =
1

n
[|zj | − λ?θ(β̂j)]+sign(zj), j = 1, . . . , p, (2.10)

where zj = X ′j(Y −
∑

k 6=jXkβ̂k).

The representation (2.10) is strikingly similar to the LASSO iterative soft-thresholding oper-

ator (Friedman et al., 2010) and thereby has instantaneous implications for the implementation

(explored in Section 4). However, the LASSO penalty induces a constant shrinkage term λ,

whereas the SSL penalty induces an adaptive term λ?θ(β̂j) that depends on the data through

β̂j itself. As with the adaptive LASSO (Zou, 2006) and weighted `1 penalties (Candes et al.,

2008), each coefficient has its own term, performing selective shrinkage. However, here the term

is self-adaptive, deploying a large penalty (close to λ0) to threshold small β̂j , and a small penalty

(close to λ1) to hold large β̂j steady with only slight bias. This adaptive aspect ameliorates the

well-known bias issue of concave regularizers.

It is important to alert the reader that the necessary characterization (2.10) will not be

sufficient, unless the log-posterior is unimodal. Unimodal log-posteriors will occur when p < n

and λ0 and λ1 are not too different. This can be seen by noting that the maximal non-concavity
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κ dominates the concavity of the log-likelihood when (λ0 − λ1)2 > 4λmin, where λmin is the

smallest eigenvalue of the Gram matrix X ′X. Here, however, we are primarily interested in

high-dimensional scenarios p > n, where λ0 →∞ as n→∞, allowing penS(β | θ) to approximate

the `0 penalty arbitrarily closely. This asymptotic regime is apt to generate multimodal posterior

landscapes. For these scenarios, we derive a more refined characterization of β̂.

This characterization is obtained by noting that β̂j is a global mode in the jth direction, while

keeping the other coordinates fixed at all but the jth entry of β̂. Thus, with zj as before,

β̂j = arg max
β

[
−1

2
(zj − nβ)2 + nρ(β | θ)

]
. (2.11)

It now follows that β̂j = 0 if and only if |zj | ≤ ∆, where

∆ ≡ inf
t>0

[n t/2− ρ(t | θ)/t] (2.12)

(using arguments of Zhang and Zhang (2012)). Combined with (2.10), we obtain the following

refined characterization of the global mode.

Theorem 2.1. Let zj = X ′j(Y −
∑

k 6=jXkβ̂k). Then the global mode β̂ under penS(β |θ) satisfies

β̂j =

0 when |zj | ≤ ∆,

1
n [|zj | − λ?θ(β̂j)]+sign(zj) when |zj | > ∆,

(2.13)

where ∆ is the selection threshold (2.12).

Theorem 2.1 shows that the global mode estimator β̂ is a blend of soft and hard-thresholding.

As a practical matter, the characterization (2.13) helps narrow down the set of candidates for the

global posterior mode and devise more targeted numerical procedures (Section 4). The properties

of β̂ are ultimately determined by the threshold level ∆. Thus, it is worthwhile to understand

the calibration of ∆ in relation to the parameters (λ0, θ). Interestingly, the quantity p?θ(0) will

play an integral role in ∆.

To begin with, the threshold always satisfies ∆ ≤ λ?θ(0) = p?θ(0)λ1 + [1− p?θ(0)]λ0 (Zhang and

Zhang, 2012). However, when λ0 gets large, this bound is too lose and can be improved. To

formalize this intuition, we need to introduce a bit of notation. Following Rockova (2015), we

define

gθ(x) = [λ?θ(x)− λ1]2 + 2n log p?θ(x).

Denote by c+ = 0.5(1 +
√

1− 4n/(λ0 − λ1)2 and

δc+ =
1

λ0 − λ1
log

[
1− θ
θ

λ0

λ1

c+

1− c+

]
.

The value δc+ is an inflection point of the univariate log-posterior in the jth direction (right hand

side of (2.11)), while keeping the other coordinates of β̂ fixed. The amount of curvature around δc+
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determines the severity of multi-modality. The objective will be unimodal when (λ0−λ1) >
√
n/2

and gθ(0) < 0. Otherwise, gθ(0) > 0 is equivalent to λ?θ(0) >
√

2n log[1/p?θ(0)]+λ1, which actually

constitutes an upper bound on the selection threshold. With a trivial modification of Lemma 4.1

of Rockova (2015), we now obtain the following bounds for ∆.

Theorem 2.2. When gθ(0) > 0 and (λ0 − λ1) >
√
n/2, the threshold ∆ in (2.12) is bounded by

∆L < ∆ < ∆U ,

where

∆L =
√

2n log[1/p?θ(0)]− d+ λ1 and ∆U =
√

2n log[1/p?θ(0)] + λ1. (2.14)

and 0 < d = −g(δc+) < 2n−
(

1
λ0−λ1

−
√

2n
)2

.

As an aside of Theorem 2.2, we obtain that β̂ has a zero gap, where the entries are either

zero or above a certain threshold, i.e |β̂j | > δc+ when β̂j 6= 0 (follows from Lemma 4.1 of Rockova

(2015)).

Theorem 2.2 implies that for very non-concave penalties, obtained when (λ0 − λ1) is large,

the selection threshold ∆ will be practically indistinguishable from ∆U . The condition gθ(0) > 0

is easily verifiable and will hold when λ0 increases sufficiently fast with n. We revisit the issue of

tuning λ0 in Section 6. With large λ0, the selection rule is hence mainly driven by log[1/p?θ(0)],

a fundamental quantity that affects statistical rates of the global mode (Section 6). Writing

log[1/p?θ(0)] = log

[
1 +

λ0

λ1

(1− θ)
θ

]
,

we see that the parameters (λ0, θ) have to work in concert to maintain the right balance. In order

to achieve rate-minimaxity in sparse normal means under squared error loss, Rockova (2015)

suggests setting λ0 ∼ (1 − θ)/θ ∼ p/q, when q is known. However, as will be seen in Section 5

we ultimately deploy SSL priors in a path following scheme, increasing λ0, without knowledge of

q. Assuming that somewhere along the solution path, λ0 is actually approaching the right order

p/q, we would like θ to adapt suitably. In the next section, we show that this can be achieved by

treating θ as random.

3 The Wonder of a Non-separable SSL Penalty

The separable SSL penalty is limited by its inability to adapt to the sparsity pattern across the

coordinates. This ensemble information is locked up in the value θ, which controls the expected

proportion of large coefficients. In the absence of prior information about the true sparsity level

q, arbitrary pre-specification of θ may diminish performance by unwittingly over/underestimating

the true sparsity fraction q/p. The hope is that with a suitable prior θ ∼ π(θ), the penalty can
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achieve a level of self-adaptivity and boost performance without the need for setting θ close q/p.

Such adaptivity has long been recognized to hold for fully Bayes spike-and-slab posteriors (Castillo

and van der Vaart, 2012). Here, we investigate the implications of the fully Bayes formulation for

the penalty functions and their modal estimates.

Assuming a generic prior π(θ), the coordinates in β are marginally dependent and distributed

according to

π(β) =

∫ 1

0

p∏
j=1

[θψ1(βj) + (1− θ)ψ0(βj)] dπ(θ) (3.1)

=

(
λ1

2

)p
e−λ1|β|1

∫ 1

0

θp∏p
j=1 p

?
θ(βj)

dπ(θ). (3.2)

Recasting (3.2) as a penalty function, we obtain the following non-separable variant of the SSL

penalty.

Definition 3.1. The non-separable Spike-and-Slab LASSO (NSSL) penalty with θ ∼ π(θ) is

defined as

penNS(β) = log

[
π(β)

π(0p)

]
= −λ1|β|+ log

∫ θp∏p
j=1 p

?
θ(βj)

dπ(θ)∫
θp∏p

j=1 p
?
θ(0)

dπ(θ)

 . (3.3)

Again, we have centered the penalty so that penNS(0) = 0. Contrasting (3.3) with (2.3),

the NSSL penalty still writes as an additive composition of a (separable) LASSO part and a

non-concave portion. But now, the non-concave part will be non-separable (for all but the trivial

point-mass priors π(θ)). Generally, the integral in (3.2) does not have a closed form solution,

seemingly complicating the tractability of the penalty. However, the manipulations unfold to be

extremely simple after realizing that the score function of the prior (the implicit bias term) can

be written in a simple and very intuitive form. This form emerges in the following non-separable

analogue of Lemma 2.1. It will be convenient to let β j denote the sub-vector of β containing all

by the jth entry.

Lemma 3.1. The derivative of the non-separable Spike-and-Slab LASSO penalty (3.3) satisfies

∂penNS(β)

∂|βj |
≡ λ?(βj ;β j), (3.4)

where

λ?(βj ;β j) = p?(βj ;β j)λ1 + [1− p?(βj ;β j)]λ0 (3.5)

and

p?(βj ;β j) ≡
∫ 1

0
p?θ(βj)π(θ | β)d θ (3.6)

11



Proof. The statement immediately follows from (3.2) by writing

∂ log π(β)

∂|βj |
=

1

π(β)

∫ 1

0

∂π(β | θ)
∂|βj |

π(θ)d θ =

∫ 1

0

∂ log π(β | θ)
∂|βj |

π(θ | β)d θ

= −λ1

∫ 1

0
p?θ(βj)π(θ | β)d θ − λ0

[
1−

∫ 1

0
p?θ(βj)π(θ | β)d θ

]
.

We now pause a bit to appreciate the difference between (2.7) and (3.5). Instead of a “fixed-

θ” mixing probability p?θ(βj), which appeared in the separable case, the non-separable penalty

deploys an aggregated mixing probability p?(βj ;β j) obtained by averaging p?θ(·) over π(θ | β). It

is through this very averaging that the penalty is given an opportunity to learn about the level

of sparsity of β. This first glimpse of the non-separable penalty suggests that its self-adapting

mechanism operates within the probabilistic domain, through conditional distributions. This

aspect was completely missing from the separable penalty.

It is not yet obvious how the effect of margining out θ in (3.6) affects the aggregated mixing

weight p?(βj ;β j), since p?θ(βj) is a non-linear function of θ. This mystery unfolds in the following

surprising lemma, which offers tremendous simplifications for the implementation and theoretical

investigation of the NSSL penalty.

Lemma 3.2. Given β ∈ Rp and prior π(θ) we can write

p?(βj ;β j) = p?θj (βj), where θj = E [θ | β j ]. (3.7)

Proof. The proof hinges on the following alternative form of the marginal prior

π(β) = ψ1(βj)π(β j)

∫
θ

p?θ(βj)
π(θ | β j)d θ. (3.8)

Using the fundamental identity (3.8) we obtain the following alternative form for (3.6)

p?(βj ;β j) =

∫
θ π(θ | β j)d θ∫
θ

p?θ(βj)
π(θ | β j)d θ

. (3.9)

Plugging in p?θ(βj) from (2.6) yields the desired result.

The value of (3.7) rests in the fact that we can transfer our insights about the separable case

to the non-separable case with the simple substitution θ = E [θ | β j ]. The identity (3.7) also

illuminates how the fully Bayes formulation attributes a probabilistic meaning to the elements of

the NSSL penalty.

The numerical deployment of penalized regression often proceeds coordinate-wise, inferring

about βj while keeping all the coordinates fixed at β j . Lemma 3.2 suggests that this will be a

viable strategy for the NSSL penalty as well. To continue, recall that the separable penalty was

guided by the singletons ρ(βj | θ) = −λ1|βj |+ log[p?θ(0)/p?θ(βj)] defined in (2.2). In a similar vein,
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using (3.8) and (3.9), here we introduce conditional singletons in the jth direction, while keeping

β j fixed:

ρ̃(βj ;β j) ≡ log

[
π(βj ,β j)

π(0,β j)

]
= −λ1|βj |+ log[p?(0;β j)/p

?(βj ;β j)], (3.10)

where we slightly abused the notation assuming π(βj ,β j) is the prior distribution (3.2) evaluated

at a vector β. Applying (3.7), we immediately obtain

ρ̃(βj ;β j) = ρ(βj | θj), where θj = E [θ | β j ],

where ρ(βj | θ) is the singleton (2.2) of a separable penalty. In this way, the conditional singleton

in the jth direction learns about θ through the sparsity pattern in β j . To see how this mechanism

works, let us go back to Figure 1(b), where we plotted ρ(β | θ) for different values θ. Suppose

β = (β1, β2)′ ∈ R2 and no information is available as to whether β is sparse. This might be

expressed with either a fixed value θ = 0.5 or by assuming θ ∼ B(1, 1) so that E θ = 0.5.

The fixed choice θ leads to a singleton ρ(β1 | 0.5), which does not incorporate any information

about β2 (plotted in Figure 1(b) by a solid line). In contrast, assuming β2 = 0, we obtain

E [θ | β2 = 0] = 0.34 which yields a conditional singleton ρ(β1 | 0.34) (plotted in Figure 1(b) with

the dotted line). Relative to the fixed choice θ = 0.5, E [θ | β2 = 0] drops to 0.34, after seeing

that the other coordinate is zero. This is an indication that the vector β may be sparse and the

selection threshold for the first coordinate should be larger. On the other hand, setting β2 = 4

we obtain E [θ | β2 = 4] = 2/3 (dashed line in Figure 1(b)), an indication that the full vector β

may be dense and thereby the selection threshold should be smaller.

The example in Figure 1(b) demonstrates how the NSSL penalty performs a multiplicity

adjustment through an automatic adaptation of the parameter θ. When more sparsity is detected

in β j , the selection threshold for the jth direction goes up. This adjustment correctly decreases

the chance of selection when most of the coefficients are negligible. This is a manifestation of the

familiar multiplicity adjustment observed by Scott and Berger (2010) for fully Bayes spike-and-

slab priors. Here, we obtain a similar effect within the penalized likelihood domain.

3.1 Adaptive Shrinkage Effects in Linear Regression

Having unraveled the connection between the separable and non-separable case, we can readily

obtain analogues of the results presented in Section 2. We now let β̂ = (β̂1, . . . , β̂p)
′ denote the

global mode (1.2) under penNS(β). A non-separable variant of the KKT necessary condition

(2.10) writes as

β̂j =
1

n
[|zj | − λ?θj (β̂j)]+sign(β̂j), j = 1, . . . , p. (3.11)

where zj = X ′j(Y −
∑

k 6=jXkβ̂k) and θj = E [θ | β̂ j ]. Contrasting (3.11) with (2.10), each

coordinate now has a shrinkage term λ?θj (β̂j) which depends on all the coordinates, not just the

jth. This interconnection comes through θj .
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For the more refined characterization of the global mode, one again uses the fact that β̂j is a

maximizer in the jth direction, while keeping β̂ j fixed. Thus, we have

β̂j = arg max
β

[
−1

2
(zj − nβ)2 + nρ(β | θj)

]
, (3.12)

where β̂j = 0 if and only if |zj | ≤ ∆j with

∆j ≡ inf
t>0

[n t/2− ρ(t | θj)/t] . (3.13)

Combined with (3.11), this yields the following direct analogue of Theorem 2.1.

Theorem 3.1. Let zj = X ′j(Y −
∑

k 6=jXkβ̂k). Then the global mode β̂ under the non-separable

penalty penNS(β) satisfies

β̂j =

0 when |zj | ≤ ∆j ,

1
n [|zj | − λ?θj (β̂j)]+sign(zj) when |zj | > ∆j ,

where θj = E [θ | β̂ j ] and ∆j is the adaptive selection threshold (3.13).

Compared to the separable case, here the selection thresholds ∆j are coordinate-specific and,

more importantly, they are not fixed but random because they depend on the data through

E [θ | β̂ j ]. This adaptation has an obvious empirical Bayes flavor. However, instead of estimating

θ from the marginal likelihood (as in Johnstone and Silverman (2004)), here it is estimated from

the global mode functional of the data.

Just as before, we can obtain a useful calibration for the random thresholds ∆j .

Theorem 3.2. With θj = E [θ | β̂ j ] such that gθj (0) > 0 and with (λ0−λ1) >
√
n/2, the adaptive

threshold ∆j defined in (3.13) satisfies

∆L
j < ∆j < ∆U

j ,

where

∆L
j =

√
2n log[1/p?θj (0)]− dj + λ1 and ∆U

j =
√

2n log[1/p?θj (0)] + λ1. (3.14)

and 0 < dj < 2n−
(

1
λ0−λ1

−
√

2n
)2

.

Proof. Follows from the proof of Lemma 4.1 of Rockova (2015), after a suitable modification.

Again, with large λ0 the threshold ∆j will be practically indistinguishable from ∆U
j . These

“pseudo-thresholds” satisfy

(∆U
j − λ1)2 = 2n log

[
1 +

λ0

λ1

1− E (θ | β̂ j)

E (θ | β̂ j)

]
, (3.15)
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which manifests the adaptability of the selection thresholds under the non-separable prior. Recall

that in the separable case (Section 2), there is a single fixed pseudo-threshold ∆U satisfying

(∆U − λ1)2 = 2n log

[
1 +

λ0

λ1

1− θ
θ

]
. (3.16)

With θ fixed to a constant, (3.16) deploys prior odds of non-entering the model (1 − θ)/θ. In

sharp contrast, (3.15) uses the “posterior odds” [1 − E (θ | β̂ j)]/E (θ | β̂ j). Here, the data speak

through the modal estimator β̂, which informs the value of unknown parameter θ.

Another aside is that under the conditions in Theorem 3.2, the global mode has a zero gap,

where the nonzero estimates satisfy |β̂j | > δj and δj is determined uniquely from p?θj (δj) = c+,

where c+ is defined in Section 2.

3.2 The Adaptive Weight

Because of the absolutely central role of E [θ | β̂ j ] in the architecture of the NSSL penalty, it

is worthwhile to investigate its behavior a bit more closely. These insights will be instrumental

for gaining intuition about statistical rates and variable selection properties of the global mode

estimator β̂.

We begin by stating the obvious fact that the posterior expectations E [θ | β̂ j ] will be very

similar and close to E [θ | β̂], when p is sufficiently large. Thus, despite being coordinate-specific,

∆j ’s may not be dramatically different. To continue, we examine the conditional distribution

π(θ | β̂) assuming the familiar beta prior θ ∼ B(a, b). This conditional distribution will be affected

both by the number of nonzero coefficients q̂ = ||β̂||0 and their size. Assuming that it is the first

q̂ entries in β̂ that are nonzero, the density of this distribution is given by

π(θ | β̂) ∝ θa−1(1− θ)b−1(1− θz)p−q̂
q̂∏
j=1

(1− θxj), (3.17)

where z = 1− λ1
λ0

, xj =
(

1− λ1
λ0

e|β̂j |(λ0−λ1)
)

. This distribution turns out to be a generalization of

the Gauss hypergeometric distribution (Armero and Bayarri, 1994; Ismail and Pitman, 2000). The

normalizing constant writes as an Euler integral representation of the hypergeometric function of

several variables (Gradshteyn and Ryzhik, 2000). Consequently, the expectation can be written

as

E [θ | β̂] =

∫ 1
0 θ

a(1− θ)b−1 (1− θz)p−q̂
∏q̂
j=1 (1− θxj) d θ∫ 1

0 θ
a−1(1− θ)b−1 (1− θz)p−q̂

∏q̂
j=1 (1− θxj) d θ

. (3.18)

Because β̂ has a zero gap (as noted at the end of the previous section), the values |xj | will

all be very large when λ0 is large. Then, the contribution from each individual xj in (3.18) is

comparable to a contribution from x ≡
(

1− λ1
λ0

em(λ0−λ1)
)
, where m = min{β̂j : β̂j 6= 0}. In the
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stylized scenario xj = x, 1 ≤ j ≤ p, (3.18) is equal to a ratio of Appell F1 functions with shifted

hyper-parameters, for which efficient calculations exist. This suggests approximating (3.18) with

B(a+ 1, b)

B(a, b)

F1(a+ 1, q̂ − p,−q̂, a+ b+ 1; z, x)

F1(a, q̂ − p,−q̂, a+ b; z, x)
, (3.19)

where

F1(a′, b′, c′, d′; z, x) =
1

B(d′ − a′, a′)

∫ 1

0
θa
′−1(1− θ)d′−a′−1(1− θz)−b′(1− θx)−c

′
d θ

is the Appell F1 function. Noting that the ratio (3.19) is monotone in x and z (Lemma 1 of

Rockova and George (2015a)), suitable lower and upper bounds can be obtained for E [θ | β̂].

Similar arguments also apply when xj are different for each j = 1, . . . , q̂. These considerations

lead us to the following lemma.

Lemma 3.3. Assume π(θ | β̂) is distributed according to (3.17). Let q̂ = ||β̂||0. Then

Cn
q̂ + a

b+ a+ p
< E [θ | β̂] <

q̂ + a

b+ a+ q̂
,

where 0 < Cn < 1. When λ0 b/q̂
2 →∞ as n→∞, then limn→∞Cn = 1.

Proof. Rockova and George (2015a)

Lemma 3.3 has distinct implications in terms of the calibration of the shape and scale param-

eters a and b of the beta prior B(a, b). Clearly, the choice a = 1 and b = Dp for some D > 0 will

yield E [θ | β̂] ∼ q̂/p, which is the actual proportion of the nonzero coefficients in β̂. This is our

recommended choice for calibration, successfully applied in our simulated example in Section 5.

Remark 3.1. Lemma 3.3 provides a non-asymptotic upper bound and an asymptotic lower bound.

The assumption b λ0
q̂2
n
→∞ can actually be relaxed (as seen in numerical experiments) and will be

satisfied with b ∝ p and λ0 ∝ pd with suitable d > 0 (the λ0 calibration considered in Section 6).

4 Implementation Aspects

A host of optimization algorithms have been proposed for non-concave separable penalties, includ-

ing the local quadratic approximation LQA (Fan and Li, 2001), the local linear approximation

LLA (Zou and Li, 2008; Candes et al., 2008), coordinate-wise optimization (Mazumder et al.,

2011; Breheny and Huang, 2011), proximal gradient methods (Loh and Wainwright, 2014; Wang

et al., 2014) or iterative soft thresholding (She, 2009). Whereas these procedures are in general

not guaranteed to find the global maximum, they can terminate at a mode with provably good

statistical properties (Fan et al., 2014; Wang et al., 2014). Here, we naturally extend two of these

approaches, coordinate ascent and LLA, to the case of a non-separable NSSL penalty.
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4.1 The Separable Case

We first revisit these two strategies in the context of the separable SSL penalty with fixed values

of (λ0, θ). By its striking resemblance to the LASSO regularization (made apparent by (2.10)),

the SSL modal estimator naturally lends itself to coordinate-wise optimization. Such strategy

makes use of the univariate soft-thresholding operator

S(z, λ) =
1

n
(|z| − λ)+sign(z).

Very much like for the LASSO (Friedman et al., 2010), stationary points satisfying (2.10) will be

reached by cycling over one-site updates

β
(k+1)
j = S(z

(k)
j , λ?θ(β

(k)
j )), (4.1)

where z
(k)
j = X ′j(Y −X jβ̃

(k)

j ), and β̃
(k)

j is the most recent coefficient vector, excluding the jth

coordinate. Starting with an initial guess β(0), parameters are cyclically updated according to

(4.1) until convergence.

This computational strategy resembles the LLA algorithm (Zou and Li, 2008; Candes et al.,

2008), which iterates over joint updates

β(k+1) = arg max
β∈Rp

−1

2
||Y −Xβ||2 −

p∑
j=1

λ?θ(β
(k)
j )|βj |

 . (4.2)

From another point of view, (4.2) coincides with the M-step of a Bayesian EM algorithm for

posterior mode detection under continuous spike-and-slab priors, which treats γ as missing data

and keeps θ fixed. This connection is made apparent by the fact λ?θ(β
(k)
j ) = λ1p

?
θ(β

(k)
j ) + λ0[1 −

p?θ(β
(k)
j )], and by noting p?θ(βj) = E (γj | β(k)

j , θ) (the E-step calculation). A similar strategy was

implemented for a mixture of two Gaussian distributions in the EMVS procedure by Rockova

and George (2014). Whereas their approach was based on iteratively solving adaptive ridge

regressions, here it entails solving weighted LASSO regressions. The advantages of using EMVS

with the LASSO updates are (a) automatic variable selection through thresholding, (b) faster

speed of convergence (follows from considerations of Rockova and George (2015b)).

Both (4.1) and the EMVS implementation with (4.2) target all local maxima, including many

peripheral modes. We can eliminate some of these suboptimal solutions with the aid of the refined

characterization in Theorem 3.1. Following Mazumder et al. (2011), we define the generalized

thresholding operator

S̃(z, λ,∆) =
1

n
(|z| − λ)+sign(z)I(|z| > ∆). (4.3)

With this operator, the refined coordinate-wise algorithm now cycles through

β
(k+1)
j = S̃(z

(k)
j , λ?θ(β

(k)
j ),∆), (4.4)
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Algorithm: The Spike-and-Slab LASSO

Input a grid of increasing λ0 values I = {λ10, . . . , λL0 }
For each value l ∈ {1, . . . , L}

EMVS NSCA

Set k = 0 Set k = 0

(a) Initialize: β
(k)
l = β?,θ(0) = θ? (a*) Initialize: β

(k)
l = β?,θ(0) = θ?

(b) While diff > ε (b*) While diff > ε

(i) Increment k (i*) Increment k

(ii) Update β
(k)
l according to (4.2) (ii*) For s = 1, . . . , bp/Mc

with θ = θ(k) 1. Update ∆ according to (2.12) with θ = θ(k)

(iii) Update θ(k) according to (4.5) 2. For j = 1, . . . ,M update β
(k)
l (s−1)M+j from (4.4)

(iv) diff = ||β(k) − β(k−1)||2 with θ = θ(k)

(c) Return β
(k)
l 3. Update θ(k) = E [θ | β(k)

l ] using (3.19)

(d) Assign β? = β
(k)
l (iii*) diff = ||β(k) − β(k−1)||2

(c*) Return β
(k)
l

(d*) Assign β? = β
(k)
l

Table 1: Two variants of the Spike-and-Slab LASSO procedure

where z
(k)
j is as in (4.1) and ∆ is the selection threshold (2.12). The selection threshold ∆ can be

computed exactly using numerical optimization. This algorithm can be applied as a standalone

or as a post-processing step after EMVS.

4.2 The Non-separable Case

We now turn to the optimization routines with λ0 fixed and θ adaptive assuming π(θ) = B(a, b).

Extending LLA to the case of a non-separable penalty is achieved naturally within the Bayesian

EM framework by treating θ as an additional model parameter. Instead of carrying forward the

same fixed value, one now simply updates θ throughout the algorithm. The non-separable variant

of the M-step thus uses θ = θ(k) to obtain β(k+1) from (4.2). This step is followed by a new

update θ(k+1) according to

θ(k+1) =

∑p
j=1 p

?
θ(k)(β

(k+1)
j ) + a− 1

a+ b+ p− 2
. (4.5)

The calculation (4.5) follows directly from equation (3.12) of Rockova and George (2014). A

variant of this strategy was implemented for sparse factor analysis by Rockova and George (2015b),

where more details on this algorithm can be found.

Extending the coordinate ascent to the case of the non-separable NSSL penalty is made

unapologetically simple by Lemma 3.2. Instead of using a fixed value θ, we can propagate it

throughout the sweeps of coordinate ascent. Using Theorem 3.1, the kth iteration of our proposed
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Non-Separable Coordinate Ascent (NSCA) algorithm updates the jth coordinate according to

β
(k+1)
j = S̃

(
z

(k)
j , λ?

θ
(k)
j

(β
(k)
j ),∆j

)
, where θ

(k)
j = E [θ | β̃

(k)

j ], (4.6)

where ∆j is the selection threshold (3.13) with θ = θ
(k)
j . Note that here, θ is meant to be updated

after every one-site update rather than every iteration. Nevertheless, after a handful of coordinate

updates, the selection thresholds ∆j are still very similar. Thus rather than updating θ after every

new β
(k)
j , it will be more practical to wait until after M one-site updates. Furthermore, the exact

calculation E [θ | β̃ j ] may be unnecessary as this quantity can be accurately approximated using

Appell F1 functions. Our recommended strategy is to use the approximation (3.19). A cruder

approximation can be obtained from Lemma 3.3.

4.3 Bayesian Calculation

The SSL and NSSL priors are also amenable to posterior simulation. Direct Gibbs sampling is

available through the exponential scale mixture representation of the Laplace distribution (Park

and Casella, 2008), applying the SSVS strategy (George and McCulloch, 1993). Alternatively,

one could deploy a variant of an orthant sampler developed for the Bayesian LASSO by Hans

(2009). Whereas simulating from the full-dimensional posterior π(β | Y ) will only be practical

when p is not overwhelmingly big, initiating the sampler at a posterior mode can save burn-in

time and provide a quick insight into uncertainty surrounding the mode. Alternatively, one could

confine the simulation to a lower-dimensional subspace, sampling only from active coordinates

identified by the mode hunting strategies. As will be shown in Section 6, the SSL posterior

behaves optimally, providing an opportunity for meaningful uncertainty assessment.

5 The Spike-and-Slab LASSO

The Spike-and-Slab LASSO is ultimately a path-following strategy for fast dynamic posterior ex-

ploration. Considering a sequence of L increasing spike penalty parameters λ0 ∈ I = {λ1
0, . . . , λ

L
0 },

the Spike-and-Slab LASSO begins with an initialization β?, and propagates it through a series

of spike-and-slab filters with increasingly more aggressive spike-and-slab penalties. The filters

have the effect of gradually removing noisy erratic coefficients, while supporting the worthwhile

coefficients with the slab. Without the slab component, the output would be equivalent to the

LASSO solution path. The slab here helps the large coefficients escape the gravitational pull of

the spike.

The path begins with λ1
0 close to λ1 so that the log-posterior is not too spiky, where a mode

hunting algorithm finds the first solution β̂1. With p < n, choosing λ1
0 < 2

√
λmin + λ1 ensures

that β̂1 is the actual global mode. This output is then propagated with sequential reinitialization,
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(a) θ = 0.5 (b) θ = 8/1000 (c) θ ∼ B(1, p)

Figure 2: The Spike-and-Slab LASSO solution paths using two non-adaptive SSL priors and the adaptive

NSSL prior.

where β̂l−1 is used as a warm start for the next lth calculation. At the end of the sequence, the

method outputs the entire solution path {β̂1, . . . , β̂L} which inherently identifies a set of models

through the inspection of the nonzero entries. Each individual β̂l can be quickly obtained with

either of the two non-concave optimization methods summarized in Table 1 and detailed in the

previous section. Note that by performing model selection directly in the continuous β parameter

space, the Spike-and-Slab LASSO is quite different from traditional spike-and-slab approaches

which perform model selection on the basis of the discrete model space posterior π(γ | Y ).

The sequential initialization is useful for the identification of a single good mode, which can be

reported when further increases of λ0 do not affect the solution. An example of such stabilization

is seen in Figure 2 where, towards the end, the trajectory stays horizontal after the coefficients

have clearly segregated into the zero and nonzero groups. The Spike-and-Slab LASSO, however,

can as well be deployed as a model exploration tool, where the entire solution path may be

reported, providing a snapshot of local model uncertainty. For this purpose, it might be useful to

rerun the Spike-and-Slab LASSO without sequential reinitialization (i.e. skipping steps (d) and

(d*) in Table 1), in order to identify a more diverse set of models.

Compared with existing path-following methods with non-concave penalties (SparseNet of

Mazumder et al. (2011), ncvreg of Breheny and Huang (2011)), the Spike-and-Slab LASSO permits

the use of a self-adaptive NSSL penalty, avoiding the need for tuning its complexity parameter θ.

We will illustrate this aspect in the next section. Non-adaptive variants of this strategy can be

obtained by skipping the steps (ii) and (3) in Table 1.
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5.1 Spike-and-Slab LASSO in Action

To illustrate the potential of the Spike-and-Slab LASSO, we consider the following example. With

n = 100 and p = 1 000, we generate a data matrix X from a multivariate Gaussian distribution

with mean 0p and Σ = (σij)
p
i,j=1, where σij = 0.6 if i 6= j and σii = 1. The true vector β0

is constructed by assigning regression coefficients 1√
3
{−2.5,−2,−1.5,−1, 1, 1.5, 2, 2.5} to q = 8

random directions and setting to zero all the remaining coefficients. The response is generated

from (1.1).

We now apply the Spike-and-Slab LASSO with the aim of finding a very good posterior mode,

sequentially reinitializing along a path. We set the slab penalty equal to λ1 = 0.1 and update

θ after every M = 10 coordinates. Choosing a ladder λ0 ∈ I = {λ1 + k × 5 : k = 1, 2, . . . , 10},
we follow the recipe in Table 1, using the NSCA variant and starting at β? = 0p. We consider

three settings: (a) a non-adaptive choice θ = 0.5, clearly over-estimating the true nonzero fraction

8/1 000, (b) the non-adaptive oracle choice θ = 8/1 000 and (c) the adaptive choice θ ∼ B(1, p).

The three solution paths are depicted in Figure 2. Each line corresponds to a single regression

coefficient, where true discoveries are depicted in green and false discoveries are depicted in red.

The levels of true coefficients are marked by the horizontal dotted lines. Clearly, when θ is too

large, there are many false positives (Figure 2(a)). When θ is set to the oracle choice 8/1000, there

are no false positives and only two false negatives. One would hope that the adaptive NSSL prior

would mimic this superb performance. This is exactly what happens. We can see that adapting

θ with B(1, p), we obtain a solution path that is almost identical to the oracle one. This is also

observed with the EMVS implementation, which outputs very similar solution paths. The purpose

of this exercise has not been to compare the coordinate ascent with the EMVS (both of which are

ultimately useful). The purpose has been to demonstrate that there are substantial gains when

using the NSSL penalty. Fortunately, the practical implementation of the non-separable case is

as easy as it is useful.

Similarly as the SSL penalty, the MCP penalty of Zhang (2010) also yields a continuum

between the LASSO and the `0 penalties. MCP has also two tuning parameters (λ, γ), where

γ → 1 yields hard-thresholding and γ →∞ yields soft-thresholding (Mazumder et al., 2011). We

applied the SparseNet algorithm of Mazumder et al. (2011) with the MCP penalty, which performs

cross-validation over a two-dimensional grid of values (λ, γ), on this dataset. Three snapshots of

the two-dimensional solution surface are captured in Figure 3. The best subset regime (Figure

3(a)) outputs a solution path, whose middle part compares to SSL with θ = 0.5 (Figure 2(a)).

Again, we are finding quite a few false positives. As we increase γ, the solution begins to resemble

a LASSO path, where all the coefficients are pulled towards zero with the same strength (Figure

3(c) with γ = 8.562). The best value of γ found by cross-validation was a compromise between the

two (Figure 3(b) with γ = 4.185). The best solution (marked by a solid line) identifies correctly 6

coefficients (similarly as the oracle SSL solution), at the expense of one false positive and slightly
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(a) γ ≈ 1 (b) γ = 4.185 (c) γ = 8.562

Figure 3: The MCP solution paths for three values of a tuning parameter γ. The vertical line corresponds

to the best solution found by cross-validation over a two-dimensional grid.

increased bias of the smaller nonzero coefficients. Overall, the performance of MCP after cross-

validation is comparable to the performance of the adaptive NSSL penalty. It is interesting to

note that the geometry of the solution paths of MCP and SSL priors are very different. Whereas

SSL coefficient trajectories stabilize with increasing λ0, indicating that the output is ready for

interpretation, MCP ultimately thresholds everything to zero at the end of the path and requires

cross-validation to identify the best-encountered solution.

6 Asymptotic Considerations

The purpose of this section is to provide affirmative statements about the suitability of the SSL

and NSSL priors for sparse high-dimensional linear regression using asymptotic considerations.

For us, particularly compelling questions here have been: (a) whether the Spike-and-Slab LASSO

estimator (the global mode) fares comparably to the LASSO estimator, (b) whether the entire

posterior distribution behaves optimally, and (c) whether the non-separable penalty can boost

performance. In this section, we address all these points by studying statistical rates under

squared error loss and assuming ||β0||0 = q.

Our analysis builds on existing theory developed for the LASSO (Bühlmann and van der Geer,

2011), non-concave separable regularizers (Zhang and Zhang, 2012) and posterior distributions

under point-mass mixture priors (Castillo et al., 2015).

6.1 Identifiability Issues

What makes the high-dimensional case p > n particularly challenging is the fact that X is

overcomplete, precluding unique identification of β from Xβ. These issues are exacerbated in
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the presence of collinearity. Thus, some identifiability constraints have to be imposed to warrant

estimability of β. Traditionally, one requires X ′X to be locally invertible over sparse sets and

the random component X ′ε to be overruled by some aspect of the penalty with large probability.

The latter requirement relates to the null consistency property introduced by Zhang and Zhang

(2012):

Definition 6.1. Let η ∈ (0, 1]. The regularization method with penalty pen(β) satisfies the η-null

consistency (η-NC) condition if

arg max
β∈Rp

{
−1

2
||ε/η −Xβ||2 + pen(β)

}
= 0p.

Null consistency refers to the ability of a regularizer to correctly detect no signal when there is

none. For the LASSO penalty, the η-NC condition is equivalent to assuming ||X ′ε||∞ < ηλ (Zhang

and Zhang, 2012). It is known that 1/2-NC consistency holds for the LASSO with probability at

least 1− 2
p when λ > 4

√
n log p (Castillo et al. (2015); Lemma 4).

The separable SSL penalty satisfies a necessary variant of this condition, namely the η-NC

condition implies ||X ′ε||∞ ≤ η∆ (Lemma 1 of Zhang and Zhang (2012)), where ∆ is the selection

threshold (2.12). A similar statement holds also for the non-separable case (forthcoming Lemma

6.2). Moreover, Zhang and Zhang (2012) provide conditions on X and ε, so that η-NC holds

with large probability. Thus, we regard η-NC as a convenient concept for exploring the rates of

the Spike-and-Slab LASSO estimators (global modes) β̂.

Denote by Θ = β̂ − β0 the discrepancy between the global mode estimator and the truth.

Under both the separable and non-separable SSL regularizers, Θ lives inside a very specific set as

follows from the following general lemma.

Lemma 6.1. Assume that η-NC holds. Suppose β̂ ∈ Rp is the global mode (1.2) under a penalty

pen(β) and let Θ = β̂ − β0. Then Θ ∈ C(η;β0), where

C(η;β0) =

{
Θ ∈ Rp : pen(Θ + β0) ≤ 1

η
[pen(Θ + β0)− pen(Θ− β0)]

}
. (6.1)

Proof. The resultfollows from Zhang and Zhang (2012) (proof of Lemma 2).

Identifiability constraints now need to be only imposed on the subset C(η;β0) of attainable

values Θ rather than on the entire Rp. Here, we adopt the concept of restricted eigenvalues

(Bühlmann and van der Geer, 2011).

Definition 6.2. The minimal restricted eigenvalue is defined as

c(η;β0) = inf
Θ∈Rp

{
||XΘ||
||X|| ||Θ||

: Θ ∈ C(η;β0)

}
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(a) λ1 = λ2 (b) λ1 = 0.1, λ0 = 10, θ = 0.1 (c) λ1 = 0.1, λ0 = 10, a = 1, b = 9

Figure 4: Plots of the feasible regions for Θ under the LASSO penalty and the SSL penalty.

The value c(η;β0) can be regarded as a “recoverability” factor, where only vectors β0 having

c(η;β0) > 0 can be identified from the data. Different penalties prompt different geometries for

C(η;β0). Figure 4 shows how this set depends on (λ0, λ1) and how it differs between the separable

vs. non-separable SSL penalties. For the sake of illustration, we have assumed β0 = (0, 3)′ and

η = 0.45. Under the LASSO penalty (where λ1 = λ0), the set (6.1) has a diamond shape (Figure

1(a)), embedded within a cone
{

Θ ∈ Rp : |ΘSc | ≤ 1+η
1−η |ΘS |

}
. On the other hand, for the other

limiting case λ0 =∞ and λ1 = 0, the SSL penalty corresponds to the `0 penalty. The set C(η;β0)

then consists of those values Θ = β̂ − β0 for which ||β̂||0 < 2, as marked by the two solid lines

corresponding to Θ1 = 0 and Θ2 = −3. The SSL penalty yields a compromise between these

two extremes. With 1 < λ0 < ∞ and 0 < λ1 < 1, C(η;β0) is a star-shaped wrap around the

set {Θ : ||β̂||0 < 2}. With larger λ1, the set begins to resemble a diamond. The non-separable

penalty ties the coordinates together, making the set larger in the center.

Figures 4(a), 4(b) and 4(c) are actual heat-maps of the restricted eigenvalues ||XΘ||
||X|| ||Θ|| inside

C(η;β0); the darker the shade of grey, the larger the value. Here, X contains n = 100 observations

on 2 highly collinear variables (correlation ρ = 0.96). The diamond in Figure 4(a) is seen as a

continuum of rays of equal eigenvalues, the minimum attained on the ray Θ2 = −Θ1 (marked by

a solid line). This ray dissects all three sets in Figure 4. Under the `0 penalty, the intersection

occurs at β̂ = (3, 0)′, the “opposite” of β0 = (0, 3) where the correct variable was mistaken for

its “knockoff”. This unfavorable case is assigned a very small c(η;β0) value, an indication that

the true variable is not easily distinguishable. Interestingly, compared to the LASSO set, the SSL

feasible regions indicate that at least one of the coordinates in β̂ must be negligible, acknowledging

the sparsity of the true β0. However, despite their different geometries, the minimal eigenvalue

taken over these different sets is the same. Thus, regardless of the penalty, the same identifiability

condition has to be imposed in this example.
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To proceed with our analysis, we will need to borrow one more concept from the penalized

likelihood literature, the compatibility.

Definition 6.3. The compatibility number φ(C) of vectors in C ⊂ Rp is defined as

φ(C) = inf
Θ∈Rp

{
||XΘ|| ||Θ||1/20

||X|| |Θ|
: Θ ∈ C

}
. (6.2)

For a nice description of this and related principles, we refer to Bühlmann and van der Geer

(2011) and Castillo et al. (2015). Our posterior concentration rates will be expressed in terms of

slightly modified compatibility numbers φ̃(·), φ̄(·) and a minimal eigenvalue c̄(·), defined in the

Appendix.

6.2 Asymptotic Properties

In this section, we build on the work of Rockova (2015), who showed that the global mode under

the separable SSL penalty achieves rate-optimality whenX = In over sparse vectors under squared

error loss. Going further, the entire posterior was shown to concentrate at the optimal rate in

this setting. More precisely, Rockova (2015) shows that sup||β0||0≤q E β0
||β̂−β0||2 ∼ q log[1/p?θ(0)]

and for some M > 0

lim
n→∞

sup
||β0||0≤q

E β0
P(||β − β0||2 > M q log[1/p?θ(0)] | y, θ)→ 0.

Both the risk and the posterior concentration rates are ultimately driven by the quantity log[1/p?θ(0)]

and thereby can simultaneously achieve optimality with suitable hyper-parameter choices. In par-

ticular, with C < λ1 < e−2 and with the oracle choice λ0 = (1−θ)/θ ∼ n/q (assuming q is known)

one achieves the minimax rate q log(n/q), whereas λ0 = (1 − θ)/θ ∼ n yields the near-minimax

rate q log n. Whereas the results in the orthogonal case do not imply analogues in the challenging

high-dimensional regression case, in the forthcoming sections we show that this is indeed the case

here.

6.2.1 The Global Mode (Separable Case)

We begin with an intermediate result, showing that the global mode β̂ is sparse under the η-NC

condition. In particular, ||β̂||0 overshoots the true dimensionality by only a constant multiple,

which depends on the “ease of recoverability” of the true vector β0, quantified by c(η;β0).

Theorem 6.1. Let β̂ be the Spike-and-Slab LASSO estimator under the separable penalty penS(β |θ)
and let q̂ = ||β̂||0. Assume (1 − θ)/θ = p, λ0 = pd, where d ≥ 2, and

√
n/p < λ1 ≤

√
2n log p.

Assume η-NC holds and let c = c(η;β0) be the minimal restricted eigenvalue. Denote by D =[
η
c + η+1

c
√
d

]2
and assume D < 1− ε for some 0 < ε < 1. Then

q̂ ≤ q(1 +K),
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where K = M D
1−D and M > 2.

Proof. Appendix 8.1.1

Remark 6.1. The smaller c(η;β0), the harder it is to recover the true set S0, which is manifested

in Theorem 6.1 by a larger constant K.

From existing theory about global posterior modes under separable non-concave regularizers

(Theorem 1 by Zhang and Zhang (2012)), it turns out that the statistical rates (under η-NC)

are ultimately guided by the selection threshold ∆ ≤ min{λ?θ(0),
√

2n log[1/p?θ(0)]}. When λ0

is not so large (i.e. gθ(0) < 0), ∆ behaves similarly as λ?(0), which in turn is very close to

λ0. In order to exert the influence of the spike-and-slab penalty, we need to increase λ0 so that

gθ(0) > 0. This condition is guaranteed when λ0 = pd for some d > 0 and (1− θ)/θ = p, yielding

∆ ∼ log[1/p?θ(0)] ∼
√

2n log p. This is the recognizable universal threshold (up to the a scaling

factor2 n), which produces the familiar near-minimax rates for the LASSO (van der Geer and

Buhlmann). These considerations suggest that the global mode β̂ will attain these rates with

a careful tuning of ∆. We could apply Theorem 1 of Zhang and Zhang (2012) to obtain the

statistical rates in terms of ∆. The following variant this theorem expresses the rates directly in

terms of (q, n, p).

Theorem 6.2. Let β̂ be the Spike-and-Slab LASSO estimator under the separable penalty penS(β |θ).
Under the same conditions as in Theorem 6.1 we have

||X(β̂ − β0)|| < M1η

φ

√
q(1 +K) log p, (6.3)

|β̂ − β0| <
M2η

φ2
q(1 +K)

√
log p

n
, (6.4)

||β̂ − β0|| <
M1η

φ c

√
q(1 +K)

log p

n
, (6.5)

where φ = φ[C(η;β0)] and c = c(η;β0).

Proof. Appendix 8.1.2

The multiplicative constants M1 and M2 in front of these rates depend on the recoverability

of the true set S0, quantified by the compatibility number and the minimal restricted eigenvalue.

6.2.2 Posterior Concentration (Separable Case)

Moving beyond the global posterior mode and its properties under the η-NC condition, we now

turn to the entire posterior distribution for full Bayes inference. For this purpose, it is imperative

that the entire posterior distribution concentrates at the right place and at the right rate (Castillo

2The scaling factor here emerges because we did not divide the likelihood portion of (1.2) by n.
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and van der Vaart, 2012; Martin and Walker, 2014a). Adopting this perspective, we provide a

comprehensive analysis of the entire posterior distribution, without restriction to data satisfying

η-NC.

Our theoretical analysis follows closely Castillo et al. (2015) who pioneered posterior concen-

tration rate results for high-dimensional regression under point-mass spike-and-slab mixtures. For

more background on rates of posterior concentration in regression settings we refer the reader to

Castillo and van der Vaart (2012); Castillo et al. (2015); Martin and Walker (2014a,b); van der

Pas et al. (2014); Bhattacharya et al. (2015) and Rockova (2015).

To begin, we provide an analogue of Theorem 6.1 for the entire posterior measure. The SSL

prior is inherently continuous, assigning zero mass to exactly sparse vectors. Following Rockova

(2015) and Bhattacharya et al. (2015) we therefore use the following generalized notion of sparsity.

Let δ be the intersection point between the spike and the slab densities in (2.5). We define the

generalized inclusion indicator and generalized dimensionality, respectively, by

γ(β) = I(|β| > δ) and |γ(β)| =
p∑
i=1

γ(βi).

The generalized dimensionality |γ(β)| counts the number of coordinates in β that are outside

[−δ,+δ]. Here, one can think of δ as a threshold of practical significance. With λ0 = (1−θ)/θ = pd,

this threshold goes to zero rapidly, where |γ(β)| quickly approaches ||β||0.

Throughout this section, we denote by S0 ⊂ {1, . . . , p} the support β0, where |S0| = q. As

a natural continuation of Theorem 6.1, the following theorem shows that the expected posterior

probability that the generalized dimensionality is a constant multiple larger than q, is asymptot-

ically vanishing.

Theorem 6.3. Assume λ0 = (1− θ)/θ = pd, where d ≥ 2, and
√
n/p < λ1 ≤ 4

√
n log p. Assume

p > n and n, p→∞. Then

sup
β0

E β0
P

(
β : |γ(β)| > q(1 +K)

∣∣∣Y , θ)→ 0,

where K = M
d−1

(
1 + 2λ1

φ̃(S0)2
√
n log p

)
and M > 2.

Proof. Appendix 8.2.1

The following theorem is a variant of Theorem 6.2, again involving the entire posterior not

just its mode. Here, we obtain the same rates as in Theorem 6.2, with only slightly different

multiplication constants (these are expressed in terms of modified compatibility numbers and

restricted eigenvalues, defined in (8.5), (8.6) and (8.7) in the Appendix).
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Theorem 6.4. Assume λ0 = (1− θ)/θ = pd, where d ≥ 2, and
√
n/p < λ1 ≤ 4

√
n log p. Assume

p > n and n, p→∞. Then

sup
β0

E β0
P

(
β : ||X(β − β0)|| > M1

φ1

√
q(1 +K) log p

∣∣∣Y )→ 0, (6.6)

sup
β0

E β0
P

(
β : |β − β0| >

M1

φ2
1

q(1 +K)

√
log p

n

∣∣∣Y )→ 0, (6.7)

sup
β0

E β0
P

(
β : ||β − β0|| >

M1

φ1 c1

√
q(1 +K)

log p

n

∣∣∣Y )→ 0, (6.8)

where φ1 = φ̃(2q+Kq), c1 = φ̄(2q+Kq) and K = M
d−1

(
1 + 2λ1

φ(S0)2
√
n log p

)
for suitable M,M1 > 0.

Proof. Appendix 8.2.2

To obtain a posterior mode and an entire posterior that converge at the same rate is not a

property that is automatic. Indeed, Castillo et al. (2015) show that the the posterior under a

single Laplace prior contracts at a far slower rate than its mode (the LASSO estimator). Thus,

the Spike-and-Slab LASSO posterior is rate-optimal from both the penalized likelihood and full

Bayes perspectives.

The Global Mode (Non-separable Case)

This section focuses on the non-separable NSSL penalty, studying statistical rates of the global

mode β̂ under the η-NC condition. We anticipate that the fully Bayes prior will yield improve-

ments, harvesting the cross link between the coordinates. This is strongly suggested by the

posterior concentration result of Rockova (2015) obtained for the NSSL priors in sparse normal

means, where p = n. Rockova (2015) showed that the entire posterior concentrates at the minimax

rate when θ ∼ B(1, Cp) and q is unknown. Intrigued by the possibility that such well-behaving

posterior produces similarly rate-optimal modes, Rockova and George (2015a) studies the NSSL

penalty in the context of normal means. Focusing on the high-dimensional regression, here we link

existing results for separable regularizers to the NSSL penalty, soliciting evidence that hierarchical

priors have the potential to refine statistical rates.

Similarly as in the separable case, we show the empirical process X ′ε can be bounded by an

aspect of the NSSL penalty under the η-NC condition.

Lemma 6.2. Let β̂ be the global mode under the NSSL penalty. Assume that η-NC holds, then

||X ′ε||∞ ≤ η∆̄, where ∆̄ = max1≤j≤p ∆j and ∆j is defined in (3.13)

Proof. Denote by ej the jth canonical vector. The global optimality of β̂ yields for any t ∈ R

−||Y −Xβ̂||/2 + penNS(β̂) ≥ −||Y −Xβ̂ − tXj ||/2 + penNS(β̂ + tej),
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Because ||Xj ||2 = n, this is equivalent to

tX ′j(Y −Xβ̂) ≤ t2n/2 + log

[
π(β̂)

π(β̂ + tej)

]
< nt2/2− ρ̃(t; β̂ j),

where we used the definition of the conditional singleton (3.10) together with (3.8) and (3.9). The

statement of the lemma follows from the definition of the selection threshold ∆j .

With this lemma, one immediately obtains Theorem 1 of Zhang and Zhang (2012), which

yields statistical rates for prediction and estimation of β0 in terms of ∆̄. In the separable case,

these rates correspond to a variant of (6.3), (6.4) and (6.5), with slightly different multiplication

constants using restricted invertibility factors. Thus, the difference between the rates for the SSL

and the NSSL case can be explained by the difference between their respective selection thresholds

∆ and ∆̄. Recall that in the separable case, we recommended setting (1− θ)/θ = p, yielding

∆ ∼

√
2n log

(
1 +

λ0

λ1
p

)
.

For the non-separable case, applying Lemma (3.3) we immediately obtain

∆̄ ∼

√
2n log

(
1 +

λ0

λ1

p

q̂

)
.

This comparison suggests that the non-separable case offers improvement. With λ0 = pd and
√
n/p < λ1 <

√
2n log p, we obtain the same near-minimax rates (6.3), (6.4) and (6.5) also for the

non-separable case.

The next natural step would be adapting also λ0, either with π(θ) by linking λ0 to θ, or with

a separate prior distribution π(λ0). We anticipate that this type of strategy would ultimately

provide a penalty, devoid of parameter tuning, which can attain shaper than the near-minimax

statistical rate. Such remarkable property has been recently shown for the SLOPE penalty (Su

and Candes, 2015) using different arguments.

7 Discussion

In this paper we have proposed a new class of self-adapting penalty functions arising from fully

Bayes formulations. These NSSL penalty functions yield posterior mode estimates that adap-

tively shrink and threshold in two distinct and important ways. First, coordinate estimates are

individually shrunk according to their size with shrinkage terms that decrease as estimates get

larger. Second, these estimates are adaptively thresholded at a joint level which increases as

more sparsity is detected across the coordinates. This type of multiplicity correction is obtained

with the automatic adjustment of a complexity parameter. It is interesting to compare these two
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shrinkage patterns with the adaptive LASSO (Zou, 2006), which penalizes the larger coefficients

less to avoid bias, and the SLOPE estimator (Su and Candes, 2015) which penalizes the larger

coefficients more to adjust for multiplicity. In contrast, the NSSL shrinkage meets both of these

goals simultaneously and does so with self-adaptive data-driven penalization.

The non-separability of the NSSL penalty is a necessary consequence of its capacity to in-

corporate ensemble information. However, existing theory and implementations for separable

regularizers are naturally extended. Its hierarchical form lends itself to fast implementation via

EM and coordinate-wise algorithms within the path-following Spike-and-Slab LASSO strategy.

As seen on a simulated example, the performance of the NSSL penalty mimics that of a oracle

SSL penalty, providing a viable substitute for cross-validation. Asymptotic theory for separable

and non-separable variants of the penalty establishes rate-optimality of the global mode as well

as optimal posterior concentration.

Finally, it is illuminating to view the path following deployment of the Spike-and-Slab LASSO

from a Bayesian perspective. Increasing λ0, while λ1 is held fixed, corresponds to the deployment

of a sequence of SSL priors where the spike concentrates increasingly more mass around zero,

approximating the point mass spike φ0(β) = I(β = 0). Thus, the Spike-and-Slab LASSO can be

seen as a fast computable approximation to mode detection under the spike-and-slab mixture of

a point mass at 0 and a diffuse heavy-tailed slab, which is often considered as the Bayesian ideal

(Castillo and van der Vaart, 2012).

8 Appendix

8.1 Proofs of Section 6.2.1

Throughout this section, we denote by Q(β) = −1
2 ||Y −Xβ||

2 + penS(β | θ) the log-posterior

under the separable SSL penalty.

8.1.1 Proof of Theorem 6.1

Proof. Denote by Θ = β̂ − β0. Because 0 ≥ Q(β0)−Q(β̂), we can write

0 ≥ ||XΘ||2 − 2ε′XΘ + 2 log

[
π(β0 | θ)
π(β̂ | θ)

]
. (8.1)

Using the fact p?θ(β̂j) > c+ when β̂j 6= 0, we can write

log

[
π(β0 | θ)
π(β̂ | θ)

]
≥ −λ1|β0 − β̂0|+

p∑
j=1

log

[
p?θ(β̂j)

p?θ(0)

]
+

p∑
j=1

log

[
p?θ(0)

p?θ(β0j)

]
≥ −λ1|β0 − β̂0|+ q̂ b+ (q̂ − q) log[1/p?θ(0)],
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where 0 > b = log c+ > log 0.5 is a constant very close to 0. Because ||X ′ε||∞ ≤ η∆ under η-NC

condition, we can use the Hölder inequality |α′β| ≤ |α|∞|β| to find that

0 ≥ ||XΘ||2 − 2(η∆ + λ1)|Θ|+ 2 q̂ b+ 2(q̂ − q) log[1/p?θ(0)]. (8.2)

From Lemma 1 we know that Θ lives inside the cone C(η;β0). Thus, we can use Definition 1 to find

that ||XΘ||2 ≥ c(η;β0)2||Θ||2 ||X||2. Denote by c = c(η;β0). Using the fact |Θ| ≤ ||Θ|| ||Θ||1/20 ,

we have

0 ≥ c2||Θ||2||X||2 − 2(η∆ + λ1)||Θ|| ||Θ||1/20 + 2 q̂ b+ 2(q̂ − q) log[1/p?θ(0)],

which is equivalent to writing[
c||Θ|| ||X|| − (η∆ + λ1)

c||X||
||Θ||1/20

]2

− (η∆ + λ1)2

c2||X||2
||Θ||0 + 2 q̂ + 2(q̂ − q) log[1/p?θ(0)] ≤ 0.

This yields

(q̂ − q) log[1/p?θ(0)] + q̂ b ≤ (η∆ + λ1)2

2c2||X||2
||Θ||0.

By noting ||Θ||0 ≤ q̂n + qn and ||X||2 = n, we can write

q̂ ≤ q
(

1 +
2A− b

B + b−A

)
,

where A = (η∆+λ1)2

2c2||X||2 and B = log[1/p?θ(0)]. Using the fact λ1 <
√

2n log p <
√

2n/dB we have

A
B <

(
η
c + η+1

c
√
d

)2
≡ D. We can then write q̂ ≤ q

(
1 +M D

1−D

)
.

8.1.2 Proof of Theorem 6.2

Proof. With Θ = β̂ − β0 and by noting log
[
π(β0 | θ)
π(β | θ)

]
> −λ1|Θ|+ q log p?θ(0) we can write

0 ≥ ||XΘ||2 − 2(η∆ + λ1)|Θ|+ 2 q log[p?θ(0)], (8.3)

where ∆ is the selection threshold. From Lemma 6.1 we have ||Θ||0 ≤ (K + 1) q under the η-NC

condition. Denote by φ = φ[C(η;β0)]. From the definition of the compatibility number φ, and

using 4uv ≤ u2 + 4v2, we find that

2(η∆ + λ1)|Θ| ≤ 3(η∆ + λ1)
||XΘ||

√
(K + 1) q

||X||φ
− (η∆ + λ1)|Θ|

≤ ||XΘ||2

2
+

5(K + 1)q(η∆ + λ1)2

||X||2φ2
− (η∆ + λ1)|Θ|.

Thus it follows from (8.3) that

1

2
||XΘ||2 + (η∆ + λ1)|Θ| ≤ 5(K + 1)q(η∆ + λ1)2

||X||2φ2
+ 2 q log[1/p?θ(0)]. (8.4)
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With λ0 = pd, (1− θ)/θ = p and
√
n/p < λ1 <

√
2n log p we have (η∆ + λ1) < C1η

√
n log p and

log[1/p?θ(0)] < C2log p. With ||X||2 = n, the first two statements of the theorem follow directly

from (8.4). Let c = c(η,β0) be the minimal restricted eigenvalue. Then the last statement is

obtained from ||XΘ|| > c||X||||Θ||.

8.2 Proofs of Section 6.2.2

The construction of the proof follows Castillo et al. (2015), where suitable modifications are

required when using the notion of generalized dimensionality. Before proceeding, we need to

introduce some more notation. Let

Λn,β,β0
= e−

1
2
||X(β−β0)||2+(y−Xβ0)′X(β−β0)

and

Π(β | θ) =

p∏
i=1

[θψ1(βi) + (1− θ)ψ0(βi)].

Throughout this section we will denote by λ̄ = 2
√
n log p the universal threshold. The rates in

this section will be expressed in terms of slightly different compatibility and minimal eigenvalue

numbers. Following Castillo (2015), for S ⊂ {1, . . . , p}, we define: the compatibility number φ̃(S)

of a model S by

φ̃(S) = inf

{
||Xβ|| |S|1/2

||X|| |βS |
: |βSc | ≤ 5|βS |,βS 6= 0

}
, (8.5)

the compatibility in vectors of generalized dimension s by

φ̄(s) = inf

{
||Xβ|| s1/2

||X|| |β|
: 0 < |γ(β)| ≤ s

}
(8.6)

and the minimal eigenvalue restricted to vectors β of generalized dimensionality at most s by

c̄(s) = inf

{
||Xβ||
||X|| ||β||

: 0 < |γ(β)| ≤ s
}

(8.7)

For S ⊂ {1, . . . , p}, let βS ∈ Rp be a subset of β with coordinates in S. Denote by ΠS(β | θ)
the marginal prior confined to coordinates in S. Denote by δ the intersection point between SSL

densities, by π ≡ P(|β1| ≤ δ) and by π(s | θ) =
(
p
s

)
πs(1 − π)p−s = P[|γ(β)| = s | θ] the prior

distribution on the effective dimensionality. By assumption, we have ||X||2 = max1≤i≤p ||Xi||2 =

n.

We will need the following analogue of Lemma 2 of Castillo et al. (2015) for the separable

SSL prior.
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Lemma 8.1. Assume β0 ∈ Rp has a support S0 ⊂ {1, . . . , p}, where |S0| = q. Assume λ0 =

(1− θ)/θ = Cpa, where a ≥ 2 and C > 0, and
√
n/p < λ1 ≤ 4

√
n log p. Assume p > n. Then∫

Λn,β,β0
Π(β | θ)dβ ≥ π(q | θ)

p2 q
e−1−D−λ1|β|1 ,

where D > 0.

Proof. Denote by g(β) = e−||Xβ||
2+(y−Xβ0)′Xβ. Using the fact ||Xβ||2 ≤ 2||XβS0

||2+2||XβSc0 ||
2,

we can write

Λn,β,β0
> g(βSc0)g(βS0

− β0S0
).

By the Jensen’s inequality we have∫
g(β)Π(β | θ)dβ ≥

∫
e−||Xβ||

2
Π(β | θ)dβ.

Conditionally on θ, the SSL prior is separable, implying Π(β |θ) = ΠS0(β |θ)ΠSc0
(β |θ). Changing

variables b→ (β − β0) and noting ΠS0(β | θ) > θq
(
λ1
2

)q
e−λ1|βS0

|, we can write∫
Λn,β,β0

Π(β | θ)dβ >
∫

e
−||XβSc0 ||

2

ΠSc0
(β | θ)dβSc0 (8.8)

× θqe−λ1|β0|
∫

e−||XbS0
||2
(
λ1

2

)q
e−λ1|bS0

|d bS0 . (8.9)

To simplify the integral in (8.9) we use arguments of Castillo (2015) in the proof of Lemma 2.

Under the assumption ||X||/p < λ1 < 4||X||
√

log p, we obtain∫
e−||XbS0

||2
(
λ1

2

)q
e−λ1|bS0

|d bS0 > e−1

(
λ1

||X||

)q e−λ1/||X||

q!
>

e−1

pqq!
(8.10)

To simplify the integral in (8.8), we use ||Xβ|| ≤ ||X|| |β| to find that∫
e
−||XβSc0 ||

2

ΠSc0
(β | θ)dβSc0 >

∫
|βi|≤δ;i/∈S0

e
−||X||2|βSc0 |

2

ΠSc0
(β | θ)dβSc0 (8.11)

≥e−(p−q)2||X||2δ2
P(|β1| ≤ δ)p−q. (8.12)

Combining (8.10) and (8.12) and noting θ > π ≡ P(|β1| > δ | θ), we obtain∫
Λn,β,β0

Π(β | θ)dβ > e−(p−q)2||X||2δ2
e−1−λ1|β0|πq(1− π)p−q

1

pqq!
.

Recall that π(q | θ) =
(
p
q

)
πq(1 − π)p−q is the prior probability of the effective dimensionality q.

Since
(
p
q

)
q! ≤ pq, we can write∫

Λn,β,β0
Π(β | θ)dβ > e−(p−q)2||X||2δ2

e−1−λ1|β0|π(q | θ)
p2 q

.
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Using the fact δ = 1
λ0−λ1

log[1/p?(0)− 1], we obtain

(p− q)2||X||2δ2 =
(p− q)2||X||2

(λ0 − λ1)2
log2[1/p?(0)− 1] (8.13)

Since ||X|| =
√
n <

√
p we have λ1 ≤ 4||X||

√
log p < 4p. Because λ0 = pd with d ≥ 2, we have

p−q
λ0−λ1

< 1
pd−1−4

. Because (1 − θ)/θ = pd, we have log[1/p?(0) − 1] = 2 d log p. Therefore, with

p > n and d ≥ 2 we obtain

(p− q)2||X||2δ2 <
n 4d2 log2 p

(pd−1 − 4)2
< D.

8.2.1 Dimensionality Result: Proof of Theorem 6.3

Proof. Denote by B = {β : |γ(β)| > R}. Then E β0
P(B | Y , θ) ≤ E β0

P(B | Y , θ)Iτ0 + 2
p , where

τ0 = {||X ′(Y −Xβ0)||∞ ≤ λ̄} and λ̄ = 2
√
n log p. Then

P(B | Y , θ) =

∫
B Λn,β,β0

Π(β | θ)dβ∫
Λn,β,β0

Π(β | θ)dβ
≤ Aeλ1|β0|

∫
B

e−
1
2
||X(β−β0)||2+(Y −Xβ0)′X(β−β0)Π(β | θ)dβ,

(8.14)

where A = p2 q

π(q | θ)e1+D. Similarly as in the proof of Theorem 12 of Castillo et al. (2015), we use

Hölder’s inequality to obtain on τ0

(Y −Xβ0)′X(β − β0) ≤ λ̄|β − β0|. (8.15)

Therefore, the expectation under β0 of the integrand satisfies

e−
1
2
||X(β−β0)||2E β0

[
e

(
1− λ1

2 λ̄

)
(Y −Xβ)′X(β−β0)Iτ0

]
e
λ1
2
|β−β0| (8.16)

≤ e
− 1

2

[
1−
(

1− λ1
2 λ̄

)2
]
||X(β−β0)||2

e
λ1
2
|β−β0| (8.17)

≤ e−
λ1
4λ̄
||X(β−β0)||2e

λ1
2
|β−β0|, (8.18)

where we used λ1 ≤ 2λ̄ and invoked the expectation of a log-normally distributed r.v. Thus,

E β0
P(B | Y , θ) Iτ0 ≤ A eλ1|β0|

∫
B

e−
λ1
4λ̄
||X(β−β0)||2e

λ1
2
|β−β0|d Π(β | θ). (8.19)

Now, when 5|βS0
− β0| ≤ |βSc0 |, then

|β0|+
1

2
|β − β0| ≤ |βS0

|+ 5

4
|βS − β0|+

3

4
|βSc0 | −

1

4
|β − β0| < −

1

4
|β − β0|+ |β| (8.20)

< −1

4
|β − β0|+ |β|+

1

4λ̄
||X(β − β0)||2 + 2

λ̄|S0|
||X||2φ̃(S0)2

. (8.21)
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When 5|βS0
− β0| > |βSc0 |, we use the definition of the compatibility number to find that

|βS0
|+ 5

4
|βS0

− β0|+
3

4
|βSc0 | −

1

4
|β − β0| < −

1

4
|β − β0|+ |β|+

5

4

||X(β − β0)|| |S0|1/2

||X||φ̃(S0)
.

Invoking the inequality 4uv ≤ u2 + 4v2, we can bound the last display from above by

−1

4
|β − β0|+ |β|+

1

4λ̄
||X(β − β0)||2 + 2

λ̄ q

||X||2φ̃(S0)2
.

Thus (8.19) can be bounded by

A e
2λ1 λ̄ q

||X||2φ̃(S0)2

∫
B

eλ1|β|−λ1
4
|β−β0|Π(β | θ)dβ.

Note that π(β | θ) < θλ1e−λ1|β| when |β| > δ. For B = {β : |γ(β)| > R}, we can write∫
B

eλ1|β|−λ1
4
|β−β0|Π(β | θ)dβ ≤

∑
S:|S|>R

θ|S|λ
|S|
1

∫
|βi|>δ;i∈S

e−
λ1
4
|βS−β0S |dβS (8.22)

×
∫
|βi|≤δ;i∈Sc

eλ1|βSc |−
λ1
4
|βSc−β0Sc |ΠSc(β | θ)dβSc (8.23)

<

p∑
k=R+1

(
p

k

)
(8 θ)keλ1δ(p−k)(1− π)p−k. (8.24)

Recall that π ≡ P(|β1| > δ | θ) = θ e−δλ1

(
1 + λ1

λ0

)
< θ. Because θ < πeδλ1 , we can bound the last

display by

eλ1p δ
p∑

k=R+1

8k
(
p

k

)
πk(1− π)p−k = eλ1p δ

p∑
k=R+1

8kπ(k | θ).

Because π/(1− π) < θ/(1− θ) ≤ 1/pd for d ≥ 2, we have

π(k | θ) ≤
(

1

p

)d−1

π(k − 1 | θ) for k ≥ 1.

Thereby, we can write for R > q

eλ1p δ
p∑

k=R+1

8kπ(k | θ) < eλ1p δ 8q π(q | θ)
(

8

pd−1

)R+1−q ∞∑
k=0

(
8

pd−1

)k
.

With (1− θ)/θ = λ0 = pd and ||X||2 = n, we have λ1δp ≤ C1. Altogether

P(B | Y , θ) � e
2q log p+λ1p δ+

2λ1λ̄ q

nφ̃(S0)2

(
8

pd−1

)R+1−q
+

2

p

� e(R+1−q) log 8+2q log p[1+4λ1/(λ̄φ̃(S0)2)]−(R+1−q)(d−1) log p +
2

p
.

The right side of the above display goes to zero when R > q
[
1 + M

d−1

(
1 + 4λ1

λ̄φ̃(S0)2

)]
for some

M > 2.
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8.2.2 Posterior Concentration Rate: Proof of Theorem 6.4

Proof. By Theorem 6.3, the posterior distribution is asymptotically supported on the event E =

{β : |γ(β)| ≤ q(1+K)|}, where K = M
d−1

(
1 + 4λ1

λ̄φ̃(S0)2

)
. Thus, we confine attention to E? = E∩τ0,

where τ0 was defined in the proof of Theorem 6.3. From (8.14) and (8.15), we can see that

Π(B | Y , θ)Iτ0 ≤
p2qe1+D

π(q | θ)

∫
B

e−
1
2
||X(β−β0)||2+3λ̄|β−β0|+λ1|β|Π(β | θ)dβ. (8.25)

We now use the definition of the compatibility number in vectors of generalized dimensionality

(8.6). With the inequality 4uv ≤ u2 + 4v2, we can then write

(4− 1)λ̄|β − β0| ≤
4λ̄||X(β − β0)|| |γ(β − β0)|1/2√

n φ̄(|γ(β − β0)|)
− λ̄|β − β0|

≤ 1

4
||X(β − β0)||2 +

16λ̄2|γ(β − β0)|
n φ̄(|γ(β − β0)|)2

− λ̄|β − β0|

Thus,

Π(B | Y , θ)Iτ0 ≤
p2qe1+D

π(q | θ)
e

16λ̄q(2+K)

n[φ̄(2q+Kq)]2

∫
B

e−
1
4
||X(β−β0)||2−λ̄|β−β0|+λ1|β|Π(β | θ)dβ.

Denote now B = {β ∈ E? : ||X(β − β0)|| > R}. Then

Π(B | Y , θ)Iτ0 ≤
p2qe1+D

π(q | θ)
e

16λ̄q(2+K)

n[φ̄(2q+Kq)]2 e−
R2

4

∫
B

e−λ̄|β−β0|+λ1|β|Π(β | θ)dβ

≤ p2qe1+D

π(q | θ)
e

16λ̄q(1+K)

n[φ̄(2q+Kq)]2 e−
R2

4 eλ1δp
p∑

k=0

8kπ(k | θ)

Now, because π > θe−δλ1 and θ = 1/(pd + 1) we can write

π(q | θ) > π(q − 1 | θ)e−δλ1

pd
> π(q − 1 | θ)C2

pd
,

where we used the fact e−δλ1 > C2. Thus, π(q | θ) > Cq2/p
d qπ(0 | θ). Thereby,

Π(B | Y , θ)Iτ0 ≤ C
−q
2 pq(2+d)e1+De

16λ̄2q(2+K)

n[φ̄(2q+Kq)]2 e−
R2

4 eλ1δp
p∑

k=0

(
8

pd−1

)k
.

This quantity will tend to zero for

R2 � 4q(2 + d) log p+
16λ̄2q(2 +K)

n[φ̄(2q +Kq)]2
� q(2 +K) log p

[φ̄(2q +Kq)]2
.

This proofs the first assertion. The second assertion follows from

λ̄|β − β0| ≤ ||X(β − β0)||2 +
λ̄2q(2 +K)

2nφ̄(2q +Kq)2

and the last one from the definition of a minimal eigenvalue restricted to β of generalized dimen-

sionality at most s in (8.7), which yields ||X(β − β0)|| > c̄(2q +Kq)||X|| ||β − β0||.
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