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Optimal restricted estimation for more efficient longitudinal 
causal inference

Edward H. Kennedya,*, Marshall M. Joffea, and Dylan S. Smallb

aDepartment of Biostatistics and Epidemiology, University of Pennsylvania

bDepartment of Statistics, The Wharton School, University of Pennsylvania

Abstract

Efficient semiparametric estimation of longitudinal causal effects is often analytically or 

computationally intractable. We propose a novel restricted estimation approach for increasing 

efficiency, which can be used with other techniques, is straightforward to implement, and requires 

no additional modeling assumptions.

Keywords

Doubly robust; Generalized method of moments; Marginal structural model; Semiparametric 
efficiency; Structural nested model; Time-varying confounding

1. Introduction

Locally efficient semiparametric estimation of causal effects in longitudinal studies can be 

analytically or computationally intractable; however, more simple and straightforward 

estimation techniques can be very imprecise. In this work we develop an approach for 

deriving more efficient estimators of parameters in such settings based on the idea of 

optimal restricted estimation, i.e., finding estimators that are optimally efficient among all 

those within some restricted class. In essence our approach amounts to finding optimal 

linear combinations of estimating functions, using constant coefficient matrices. The 

proposed approach can be used in conjunction with other techniques (such as those based on 

local efficiency derivations), is straightforward to implement, requires neither extra 

modeling assumptions nor extra model fitting, and comes with guarantees of better (or at 

least no worse) asymptotic efficiency. It can be viewed as a way to give analysts extra 

chances at attaining the semiparametric efficiency bound. We explore finite sample 

properties of our approach using simulated data.

© 2014 Elsevier Inc. All rights reserved.
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2. Setup

Many important models in longitudinal causal inference, including structural nested models 

(Robins, 1989, 1994) and marginal structural models (Robins, 2000; Hernán et al., 2002), 

lead to estimators that solve (at least up to asymptotic equivalence) estimating equations of 

the form

where  is the empirical measure so that (W) = n−1 Σi Wi denotes a usual sample average, 

mt is an estimating function of the same dimension as the parameter of interest ψ ∈ ℝq, η is 

a nuisance function taking values in some metric space, and h is an arbitrary function that 

affects the efficiency but not consistency of the estimator.

For example, in many settings the observed data consist of sequences of time-varying 

measurements of covariates L, treatment A, and outcome Y for each of n subjects. Let an 

overbar denote the past history of a variable so that W̄
t = (W1, W2, …, Wt), and let Xt = (L̄

t, 

Ȳt, Āt−1) represent the observed data available just prior to treatment at time t. Also for 

simplicity assume no censoring and discrete measurement times t = 1, …, K. Then a 

standard longitudinal study would yield an independent and identically distributed sample of 

observations (Z1, …, Zn), with Z = (L̄
K, ĀK, ȲK+1). Figure 1 shows a directed acyclic graph 

illustrating this data structure, allowing for the presence of unmeasured variables U and only 

incorporating the assumed time ordering.

Let  denote the potential outcome that would have been observed for a particular subject 

had that subject taken treatment sequence āt up to time t. Then a standard repeated measures 

marginal structural mean model (MSMM) (Robins, 1989, 1994) assumes

for t = 1, …, K and gt specified functions known up to the parameter of interest ψ, where V 

⊆ L1 is an arbitrary subset of baseline covariates whose modification of the effect of 

treatment is of particular interest. Similarly a standard structural nested mean model 

(SNMM) (Robins, 2000; Hernán et al., 2002) assumes that

for t = 1, …, K, where the specified functions γt (also known up to ψ) are restricted so that 

γt(xt, 0; ψ) = 0 since  if at = 0. We consider linear SNMMs for effects on 

the last outcome for ease of notation, but one could similarly use a log link or repeated 
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measures models for effects on all outcomes. One could also consider versions of the above 

models that contrast functionals other than the mean (e.g., percentiles).

As discussed by van der Laan and Robins (2003), Tsiatis (2006), and others, under standard 

‘no unmeasured confounding’ identifying assumptions (e.g., sequential ignorability, or 

 for t = 1, …, K and s = 1, …, K+1−t), estimating functions mt under the above 

MSMMs and SNMMs are given by mt(ψ; η, h) = ϕt(ψ; ηa, h) − E{ϕt(ψ; ηa, h) | Xt, At} + 

E{ϕt(ψ; ηa, h) | Xt} where

with the functions p(at | xt) denoting the conditional density of treatment given observed 

history, and ν a dominating measure for the distribution of treatment. In this setting the 

nuisance function η = (ηa, ηy) consists of two variation independent components; ηa denotes 

the conditional treatment densities p(at | xt) and ηy denotes the conditional outcome/

covariate densities p(lt, yt | xt−1, at−1). Importantly, the functions ht : Dt → ℝq (where Dt = 

(Āt, V) for MSMMs and Dt = (Xt, At) for MSMMs) are arbitrary but of the same dimension 

as ψ; they lie in q-replicating linear spaces  of stacked 

one-dimensional functions (Tsiatis, 2006).

The standard approach for estimating ψ is to construct estimating functions based on the 

above using a simple choice h* of h, for example  for MSMMs or 

for SNMMs. Under usual Glivenko-Cantelli and Donsker-type regularity conditions, 

standard Z-estimator (i.e., estimating equation) theory indicates that ψ̂ solving Σt {mt(ψ; η̂, 

h*)} = 0 will be consistent as long as at least one of the two nuisance functions ηa or ηy is 

estimated consistently; thus, letting η0 denote the probability limit of η̂, we only need to 

assume one of η̂
a or η̂

y converge to a corresponding true value. Further ψ̂ will be root-n 

consistent and asymptotically normal as long as at least one of the two nuisance functions is 

estimated at a fast enough rate of convergence. Thus estimating functions of the above form 

have the property of double robustness (van der Laan and Robins, 2003; Tsiatis, 2006). In 

practice, especially in longitudinal settings, one often chooses ηy so that mt = ϕt; for 

MSMMs, for example, this yields the class of popular inverse-probability-weighted 

estimators. Such estimators are often easier to construct with standard software, but are less 

robust since they require estimating ηa well and yield bias otherwise.

3. Restricted estimation

For given choices of the nuisance estimator η̂ = (η̂
a, η̂

y), the efficiency of estimators ψ̂ 

solving Σt {mt(ψ; η̂, h*)} = 0 will in general vary greatly depending on the choice of the 

functions h*. Let φ(ψ; η, h) = D(ψ; η, h) Σt mt(ψ; η, h) denote the influence function of the 
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estimator ψ̂, where D ∈ ℝq×q is a scaling matrix ensuring that , where Sψ is the 

score function for ψ and Iq is the (q × q) identity matrix. The optimal choice of h is therefore

so that φ(ψ; η0, hopt) = φeff corresponds to the efficient influence function. Unfortunately, 

the optimal choice of h is often prohibitively complicated. For MSMMs hopt is defined as 

the solution to a Fredholm integral equation of the second kind, and does not have a closed-

form expression (Robins, 2000; van der Laan and Robins, 2003). Similarly, for SNMMs hopt 

follows a lengthy recursive expression and requires extensive modeling (Robins, 1994).

For this reason, Tsiatis (2006) and Tan (2011) proposed approximate methods for increasing 

the efficiency of estimators in a context akin to that of a point-treatment or cross-sectional 

MSMM (i.e., t = K = 1). Specifically, instead of optimizing h over the infinite-dimensional 

spaces , their approach adapted to our context involves choosing some fixed r-

dimensional  with r > q, and optimizing over the restricted finite-dimensional 

spaces

(1)

This optimization thus finds the optimal way to combine or weight the estimating functions 

that make up , using a constant “weight” matrix W. The dimension of the function  must 

be strictly greater than that of the parameter of interest (i.e., r > q) because otherwise any 

nonsingular matrix W would lead to the same estimator. More specifically if r = q then the 

solution to  would also solve 

 for any nonsingular W.

We now discuss the above approach in more detail, adapting it to the longitudinal causal 

MSMM and SNMM setting. Suppose that the nuisance functions are estimated with 

parametric models, so that ηa and ηy are known up to finite-dimensional α and β, 

respectively, with estimators η̂ = (α̂, β̂) solving {Sa(α)} = {Sy(β)} = 0, for Sa(α) and 

Sy(β) appropriate estimating functions. Let η0 denote the probability limit of η̂, where it is 

assumed that either α0 or β0 corresponds to the true value of α or β. Then it is easily seen 

that influence functions under the restricted space  are given by φ(ψ0; η0, W) with

where m̃t(ψ; η, h) = mt(ψ; η, h)−E{∂mt(ψ; η, h)/∂αT}E{∂Sa(α)/∂αT}−1Sa(α)−E{∂mt(ψ; η, h)/

∂βT}E{∂Sy(β)/∂βT}−1Sy(β). Thus for ψ̂
W solving  we have that 
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, and the asymptotic variance of estimator ψ̂
W is 

given by E{φ(ψ0; η0, W)⊗2}, which clearly depends on the choice of matrix W. In the next 

theorems we give the efficiency bound over the restricted class , i.e., the asymptotic 

variance of the most efficient estimator for any choice of W.

Theorem 1

Consider the restricted class of functions  with  fixed 

and r > q, and the corresponding class of restricted estimators solving 

 with η = (α, β) ∈ ℝd and η̂ converging to probability limit η0. 

The efficiency bound for estimators in this restricted class is Σres(ψ0, η0), where

The (q×r) matrix  that minimizes the asymptotic variance across all restricted 

estimators is given by , where

In practice the optimal choice of W can be estimated with 

, based on an initial estimator 

ψ̂ solving, for example, {Σt mt(ψ; η̂, h*)} = 0 for some . Estimators based on this 

optimal choice of W can be viewed as generalized method of moments estimators, 

combining estimating functions based on functions  of dimension r > q (Hansen, 1982; 

Imbens, 2002).

4. Extended restricted estimation

In this section we propose an extension of the previous adapted estimation approach by 

optimizing h over larger restricted finite-dimensional spaces. Specifically we consider 

restricted estimation over the extended spaces

(2)

We will see that these spaces have benefits both in terms of yielding efficiency gains and 

simplifying practical construction and implementation.
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First, note that restricted estimation based on the space  generalizes the approach from 

Section 2 based on the space  since the weighting matrices Wt can change with time, 

allowing more adaptation to the longitudinal data structure. Thus, as before, optimization 

over this space amounts to finding optimal combinations of estimating functions, but now 

the combinations are more flexible since they can change with time. When based on the 

same function h*, if we take Ws = Wt for all s and t then  and the above 

extended restricted space reduces to the previous restricted space . Thus the restricted 

space  is contained in the extended space  when based on the same 

function , i.e., , and the extended space  thus allows for extra 

efficiency gains over the restricted space . Note however that for different choices of 

this nesting may not occur, i.e., if  then it may be possible that .

The extended restricted space  can also often be easier to construct in practice than the 

space . This is because for the space  the function  can be chosen to have the 

same dimension as ψ (i.e., it is only required that r ≥ q, not r > q as with ), which means 

one can use the same function  that is required to compute a standard estimator 

(e.g.,  or ). We can have r = q in the extended setting because even 

then the matrices cannot be factored out of the estimating equations; thus we still obtain 

different estimators with different choices of Wt. This is due to the fact that the dimension of 

all the matrices taken together (W1, …, WK) is ℝq×qK, which is larger than ℝq×q as long as 

we have longitudinal data so that K > 1. In contrast, as discussed earlier, when constructing 

the space  from Section 3, the analyst needs to augment the function  with an 

additional function of dimension r − q > 0.

Now we will consider some theoretical properties of the extended space . As in the 

previous section, assume that the nuisance functions are estimated with η̂ = (α̂, β̂) ∈ ℝd 

solving {Sa(α)} = {Sy(β)} = 0, for Sa(α) and Sy(β) appropriate estimating functions. Also 

let W = (W1, …, WK) ∈ ℝq×rK, , and  with m̃t(ψ; η, 

h) as defined earlier, so that m and m̃ are rK-dimensional vectors. Then influence functions 

under the extended restricted space  are given by

In the next theorem we give the efficiency bound for estimators with influence functions of 

the above form, along with the optimal choice of the matrix W that yields an estimator that 

attains the efficiency bound.

Theorem 2

Consider the restricted class of functions  with 

fixed and r ≥ q, and the corresponding class of restricted estimators solving 
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 with η = (α, β) ∈ ℝd and η̂ converging to probability limit η0. 

The efficiency bound for estimators in this restricted class is Σext(ψ0, η0), where

The (q×rK) matrix  that minimizes the asymptotic variance across all restricted 

estimators is given by , where

Note that since  it immediately follows that the efficiency bound from 

Theorem 1 is no less than that from Theorem 2, i.e., Σres(ψ0, η0) ≥ Σext(ψ0, η0). However, 

when the spaces are based on different functions , this inequality may not necessarily hold.

As before, the optimal choice of W can be estimated with 

, based on an initial estimator ψ̂ solving, 

for example, {Σt mt(ψ; η̂, h*)} = 0 for some . And again this estimator can be 

viewed as a generalized method of moments estimator, now additionally combining 

estimating functions across timepoints. The above estimator based on  is 

straightforward to use in practice because it only depends on simple sample averages of the 

estimating functions m and m̃; however, alternative estimators are available as well. These 

alternatives include iterated versions of the above and empirical likelihood estimators, which 

can have advantageous finite sample properties (Imbens, 2002). These could be particularly 

valuable for optimal restricted estimators based on the space , since such estimators 

optimize over larger matrices W = (W1, …, WK).

5. Simulation study

To investigate finite-sample properties of our proposed approach, we simulated data from 

the structural nested model given by

for t = 1, …, K. Under this model we have γt(Xt, At; ψ) = At{ψ0 + ψ1(Yt − c)}/(K + 1 − t); 

this means that the effect of treatment on the outcome is inversely proportional to how long 

before the end of the study the treatment was given, and that this effect is modified by 
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current outcome values. We chose parameter values θ = 29, σ = 4.5, β = (2, 1, 0.75, −0.75, 

0.2), ν = 3, α = (11, −0.15, 0.5, −0.05), τ = 1, ψ = (1, −0.1), and c = 40, with Yt ~ N(36, 4.52) 

and At ~ N(7.5, 1) for t < 1. These parameters yield data that approximately match real 

claims data from the United States Renal Data System, where At is the log-dose of 

erythropoietin at time t and Yt is hematocrit level at time t. We varied the sample size n and 

the number of time points K in simulations, and generated 1000 datasets at each setting.

We considered two methods for estimating ψ: a standard approach and restricted estimation. 

The standard approach used ht(Xt, At) = ∂γt(Xt, At; ψ)/∂ψ = At(1, Yt − c)T/(K + 1 − t), while 

restricted estimation used  as in Section 4 with . The 

matrix Wopt was estimated as discussed in the previous section, using the standard approach 

to compute the initial estimator of ψ. Both approaches rely on correctly-specified models for 

p(at | xt; α), and are doubly robust by modeling the quantity 

 with simple working models given by β0t + β1Yt + 

β2At−1 + β3Yt−1. Results are given in Table 1.

Restricted estimation gave better efficiency for every combination of n and K that we 

explored, with gains in RMSE relative to the standard estimator ranging from 1% to over 

60%. In this simulation, gains were larger for the effect modification parameterψ1 than for 

the main effect parameter ψ0. Further, in terms of RMSE, restricted estimation was most 

beneficial in studies with more timepoints and when sample sizes were not too large. For 

illustration, the estimated optimal weight matrix at the median simulation setting (n = 1000 

and K = 4), averaged across simulations, was given by Ŵopt = (Ŵ1, …, Ŵ4)T with

The average weight matrices at the first three times were similar, each having one large off-

diagonal element and somewhat dissimilar diagonal elements, while the weight matrix at the 

fourth time had small off-diagonal elements and similar diagonal elements. This suggests 

that the efficiency benefits do not necessarily come from simply reweighting across time 

with scalar matrices (i.e., using Wt = ct I for I the identity matrix); rather, there appears to be 

additional restructuring of the estimating functions. This phenomenon may account for the 

larger increase in efficiency for the effect modification parameter.

Restricted estimation gave some finite-sample bias in studies with six timepoints, but in 

terms of RMSE these biases were more than offset by decreases in variance. Such biases 

were expected based on results from the generalized method of moments literature, and 

could potentially be mitigated with empirical likelihood or bias-corrected approaches 

(Imbens, 2002).
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6. Discussion

In this paper we have discussed restricted estimation approaches for developing more 

efficient estimators of causal effects in longitudinal studies, where local efficiency can be a 

prohibitively difficult goal. We adapted the approaches developed by Tsiatis (2006) and Tan 

(2011) to novel longitudinal causal settings involving both marginal structural models and 

structural nested models. We also developed an extended approach that allows for more 

adaptation to the longitudinal data structure, and derived efficiency bounds and simple but 

optimal estimators. We illustrated our methods in a simulation experiment, which showed 

potential for large gains in efficiency, albeit sometimes at the cost of some finite sample 

bias. Based on simulations as well as higher-order asymptotic theory from the generalized 

method of moments literature (Imbens, 2002), our hypothesis is that finite-sample biases are 

more likely to arise in settings with smaller sample sizes and larger numbers of timepoints 

(or in general when there are more parameters in the weight matrices).

Future work will explore approaches for alleviating finite-sample bias, for example based on 

alternatives to simple two-step estimators (e.g., empirical likelihood). We also hope to 

develop computationally feasible but accurate confidence interval estimators, particularly 

for settings with many timepoints. Finally, it will be very useful to apply restricted 

estimation methodology to MSMMs, which are more popular and widely used than 

SNMMs, but which can have more severe issues with low efficiency.
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Appendix A

The following proof uses the same logic as that in Hansen (1982). For Theorem 1 (restricted 

estimation using the space ), let Δ(ψ, η) = E{Σt ∂mt(ψ; η, h*)/∂ψT} and Ω(ψ, η) = E[{Σt 

m̃t(ψ; η, h*)}⊗2]. For Theorem 2 (restricted estimation using the space Ht), let Δ(ψ, η) = 

E{∂m(ψ; η, h*)/∂ψT} and Ω(ψ, η) = E{m̃(ψ; η, h*)⊗2}, with m and m̃ as defined in the main 

text. For both theorems, we let Δ = Δ(ψ0, η0) and Ω = Ω(ψ0, η0).

For restricted estimators ψ̂
W based on a general W, with influence functions as in the main 

text, we have

We proceed by considering the difference between the above asymptotic variance for a 

general restricted estimator and the proposed efficiency bound given by (ΔTΩ−1Δ)−1. This 

difference can be written as QQT, where

with ΓΓT = Ω the Cholesky decomposition of the symmetric variance matrix Ω. Since QQT 

is positive semi-definite by construction, the matrix (ΔTΩ−1Δ)−1 corresponds to the 

minimum possible variance for any choice of W.

To prove that Wopt = ΔTΩ−1, we will show that QQT = 0 if and only if W = ΔTΩ−1. First 

assume QQT = 0. Then

which implies that W = ΔTΩ−1 up to a scaling constant. Now assume W = ΔTΩ−1. Then QQT 

can be written as
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which equals zero. Therefore the minimum variance is in fact achieved when W = Wopt = 

ΔTΩ−1.
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Figure 1. 
Directed acyclic graph of data structure assuming only time ordering.

Kennedy et al. Page 12

Stat Probab Lett. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kennedy et al. Page 13

T
ab

le
 1

Si
m

ul
at

io
n 

re
su

lts
 (

ac
ro

ss
 1

00
0 

si
m

ul
at

io
ns

)

K
n

St
an

da
rd

 A
pp

ro
ac

h
R

es
tr

ic
te

d 
E

st
im

at
io

n

%
 D

ec
re

as
e 

in
 R

M
SE

M
ai

n 
ef

fe
ct

 ψ
0

In
te

ra
ct

io
n 

ψ
1

M
ai

n 
ef

fe
ct

 ψ
0

In
te

ra
ct

io
n 

ψ
1

%
 B

ia
s

SE
%

 B
ia

s
SE

%
 B

ia
s

SE
%

 B
ia

s
SE

ψ
0

ψ
1

2
50

0
−

0.
6

3.
49

−
1.

3
1.

04
−

0.
3

3.
38

0.
1

0.
62

3.
1

40
.8

10
00

0.
4

3.
38

−
1.

0
0.

95
−

0.
1

3.
30

−
0.

6
0.

59
2.

3
38

.0

50
00

−
0.

1
3.

25
0.

6
0.

93
−

0.
2

3.
21

0.
5

0.
59

1.
3

37
.1

4
50

0
1.

5
3.

65
−

3.
0

1.
28

−
1.

7
2.

81
5.

7
0.

45
22

.5
63

.4

10
00

0.
3

3.
30

−
1.

8
0.

94
−

1.
4

3.
04

3.
0

0.
47

6.
8

49
.1

50
00

0.
1

2.
99

−
0.

3
0.

86
−

0.
5

2.
89

1.
1

0.
48

2.
5

43
.5

6
50

0
1.

1
4.

34
−

6.
7

1.
42

−
5.

2
2.

59
10

.6
0.

39
34

.8
68

.0

10
00

0.
5

3.
17

−
1.

6
0.

86
−

2.
8

2.
72

6.
6

0.
41

10
.0

47
.0

50
00

0.
1

2.
96

−
0.

1
0.

77
−

0.
7

2.
76

2.
0

0.
43

5.
2

40
.7

N
ot

e:
 S

E
 =

 s
ta

nd
ar

d 
er

ro
r 

(s
ca

le
d 

by
 n

1/
2 )

, R
M

SE
 =

 r
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r

Stat Probab Lett. Author manuscript; available in PMC 2016 February 01.


	University of Pennsylvania
	ScholarlyCommons
	2-2015

	Optimal Restricted Estimation for More Efficient Longitudinal Causal Inference
	Edward H. Kennedy
	Marshall M. Joffe
	Dylan S. Small
	Recommended Citation

	Optimal Restricted Estimation for More Efficient Longitudinal Causal Inference
	Abstract
	Keywords
	Disciplines


	tmp.1531757959.pdf.WwdVh

