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Large-Scale Multiple Testing of Correlations

Abstract
Multiple testing of correlations arises in many applications including gene coexpression network analysis and
brain connectivity analysis. In this article, we consider large-scale simultaneous testing for correlations in both
the one-sample and two-sample settings. New multiple testing procedures are proposed and a bootstrap
method is introduced for estimating the proportion of the nulls falsely rejected among all the true nulls. We
investigate the properties of the proposed procedures both theoretically and numerically. It is shown that the
procedures asymptotically control the overall false discovery rate and false discovery proportion at the
nominal level. Simulation results show that the methods perform well numerically in terms of both the size
and power of the test and it significantly outperforms two alternative methods. The two-sample procedure is
also illustrated by an analysis of a prostate cancer dataset for the detection of changes in coexpression patterns
between gene expression levels. Supplementary materials for this article are available online.
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Large-Scale Multiple Testing of Correlations*
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Weidong Liu [Professor]
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Abstract

Multiple testing of correlations arises in many applications including gene coexpression network 

analysis and brain connectivity analysis. In this paper, we consider large scale simultaneous testing 

for correlations in both the one-sample and two-sample settings. New multiple testing procedures 

are proposed and a bootstrap method is introduced for estimating the proportion of the nulls 

falsely rejected among all the true nulls.

The properties of the proposed procedures are investigated both theoretically and numerically. It is 

shown that the procedures asymptotically control the overall false discovery rate and false 

discovery proportion at the nominal level. Simulation results show that the methods perform well 

numerically in terms of both the size and power of the test and it significantly outperforms two 

alternative methods. The two-sample procedure is also illustrated by an analysis of a prostate 

cancer dataset for the detection of changes in coexpression patterns between gene expression 

levels.

1 Introduction

Knowledge of the correlation structure is essential for a wide range of statistical 

methodologies and applications. For example, gene coexpression network plays an 

important role in genomics and understanding the correlations between the genes is critical 

for the construction of such a network. See, for example, Kostka and Spang (2004), Carterm 

et al. (2004), Lai, et al. (2004), and de la Fuente (2010). In this paper, we consider large 

scale multiple testing of correlations in both one- and two-sample cases. A particular focus 

is on the high dimensional setting where the dimension can be much larger than the sample 

size.

Multiple testing of correlations arises in many applications, including brain connectivity 

analysis (Shaw, et al. 2006) and gene coexpression network analysis (Zhang, et al. 2008 and 
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Excellent Talents in University, Shanghai Pujiang Program, 973 Program (2015CB856004) and a grant from Australian Research 
Council.
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de la Fuente, 2010), where one tests thousands or millions of hypotheses on the changes of 

the correlations between genes. Multiple testing of correlations also has important 

applications in the selection of the significant gene pairs and in correlation analysis of 

factors that interact to shape children's language development and reading ability; see Lee, et 

al. (2004), Carter, et al (2004), Zhu, et al. (2005), Dubois, et al. (2010) Hirai, et al. (2007), 

and Raizada et al. (2008).

A common goal in multiple testing is to control the false discovery rate (FDR), which is 

defined to be the expected proportion of false positives among all rejections. This testing 

problem has been well studied in the literature, especially in the case where the test statistics 

are independent. The well-known step-up procedure of Benjamini and Hochberg (1995), 

which guarantees the control of the FDR, thresholds the p-values of the individual tests. Sun 

and Cai (2007) developed under a mixture model an optimal and adaptive multiple testing 

procedure that minimizes the false nondiscovery rate subject to a constraint on the FDR. See 

also Storey (2002), Genovese and Wasserman (2004), and Efron (2004), among many 

others. The multiple testing problem is more complicated when the test statistics are 

dependent. The effects of dependency on FDR procedures have been considered, for 

example, in Benjamini and Yekutieli (2001), Storey, Taylor and Siegmund (2004), Qiu et al. 

(2005) Farcomeni (2007), Wu (2008), Efron (2007), and Sun and Cai (2009). In particular, 
Qiu et al. (2005) demonstrated that the dependency effects can significantly deteriorate the 

performance of many FDR procedures. Farcomeni (2007) and Wu (2008) showed that the 

FDR is controlled at the nominal level by the Benjamini-Hochberg step-up procedure under 

some stringent dependency assumptions. The procedure in Benjamini and Yekutieli (2001) 

allows the general dependency by paying a logarithmic term loss on the FDR which makes 

the method very conservative.

For large scale multiple testing of correlations, a natural starting point is the sample 

correlation matrix, whose entries are intrinsically dependent even if the original observations 

are independent. The dependence structure among these sample correlations is rather 

complicated. The difficulties of this multiple testing problem lie in the construction of 

suitable test statistics for testing the individual hypotheses and more importantly in 

constructing a good procedure to account for the multiplicity of the tests so that the overall 

FDR is controlled. To the best of our knowledge, existing procedures cannot be readily 

applied to this testing problem to have a solid theoretical guarantee on the FDR level while 

maintaining good power.

In the one-sample case, let X = (X1, . . . , Xp)′ be a p dimensional random vector with mean 

μ and correlation matrix R = (ρij)p×p, and one wishes to simultaneously test the hypotheses

(1)

based on a random sample X1, ..., Xn from the distribution of X. In the two-sample case, let 

X = (X1, . . . , Xp)′ and Y = (Y1, . . . , Yp)′ be two p dimensional random vectors with means 

μ1 and μ2 and correlation matrices R1 = (ρij1)p×p and R2 = (ρij2)p×p respectively, and we are 

interested in the simultaneous testing of correlation changes,
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(2)

based on two independent random samples, X1, ..., Xn1 from the distribution of X and Y1, ..., 

Yn2 from the distribution of Y, where c1 ≤ n1/n2 ≤ c2 for some c1, c2 > 0.

We shall focus on the two-sample case in the following discussion. The one-sample case is 

slightly simpler and will be considered in Section 4. The classical statistics for correlation 

detection are based on the sample correlations. For the two independent and identically 

distributed random samples {X1, . . . , Xn1} and {Y1, . . . , Yn2}, denote by Xk = (Xk,1, . . . , 

Xk,p)′ and Yk = (Yk,1, . . . , Yk,p)′. The sample correlations are defined by

and

where  and . The sample correlations  and  are 

heteroscedastic and the null distribution of  and  depends on unknown parameters. A 

well known variance stabilization method is Fisher's z-transformation,

where  is a sample correlation coefficient. In the two-sample case, it is easy to see that 

under the null hypothesis H0ij : ρij1 = ρij2 and the bivariate normal assumptions on (Xi, Xj) 

and (Yi, Yj),

(3)

See, e.g., Anderson (2003). To perform multiple testing (2), a natural approach is to use Fij 

as the test statistics and then apply a multiple testing method such as the Benjamini-

Hochberg procedure or the Benjamini-Yekutieli procedure to the p-values calculated from 

Fij. See, for example, Shaw, et al. (2006) and Zhang, et al. (2008). However, the asymptotic 
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normality result in (3) heavily depends on the bivariate normality assumptions on (Xi, Xj) 

and (Yi, Yj). The behavior of Fij in the non-normal case is complicated with the asymptotic 

variance of Fij depending on  and  even when ρij1 = ρij2 = 0; see Hawkins 

(1989). As will be seen in Section 5, the combination of Fisher's z-transformation with either 

the Benjamini-Hochberg procedure or the Benjamini-Yekutieli procedure, does not in 

general perform well numerically.

In this paper, we propose a large scale multiple testing procedure for correlations that 

controls the FDR and the false discovery proportion (FDP) asymptotically at any 

prespecified level 0 < α < 1. The multiple testing procedure is developed in two stages. We 

first construct a test statistic for testing the equality of each individual pair of correlations, 

H0ij : ρij1 = ρij2. It is shown that the test statistic has standard normal distribution 

asymptotically under the null hypothesis H0ij and it is robust against a class of non-normal 

population distributions of X and Y. We then develop a procedure to account for the 

multiplicity in testing a large number of hypotheses so that the overall FDR and FDP levels 

are under control. A key step is the estimation of the proportion of the nulls falsely rejected 

by the procedure among all the true nulls at any given threshold level. A bootstrap method is 

introduced for estimating this proportion.

The properties of the proposed procedure are investigated both theoretically and numerically. 

It is shown that, under regularity conditions, the multiple testing procedure controls the 

overall FDR and FDP at the pre-specified level asymptotically. The proposed procedure 

works well even when the components of the random vectors are strongly dependent and 

hence provides theoretical guarantees for a large class of correlation matrices.

In addition to the theoretical properties, the numerical performance of the proposed multiple 

testing procedure is also studied using both simulated and real data. A simulation study is 

carried out in Section 5.1, which shows that this procedure performs well numerically in 

terms of both the size and power of the test. In particular, the procedure significantly 

outperforms the methods using Fisher's z-transformation together with either the Benjamini-

Hochberg procedure or the Benjamini-Yekutieli procedure, especially in the non-normal 

case. The simulation study also shows that the numerical performance of the proposed 

procedure is not sensitive to the choice of the bootstrap replication number. We also 

illustrate our procedure with an analysis of a prostate cancer dataset for the detection of 

changes in the coexpression patterns between gene expression levels. The procedure 

identifies 1341 pairs of coexpression genes (out of a total of 124,750 pairs) and 1.07% 

nonzero entries of the coexpression matrix. Our method leads to a clear and easily 

interpretable coexpression network.

The rest of the paper is organized as follows. Section 2 gives a detailed description of the 

proposed multiple testing procedure. Theoretical properties of the procedure is investigated 

in Section 3. It is shown that, under some regularity conditions, the procedure controls the 

FDR and FDP at the nominal level asymptotically. Section 4 discusses the one-sample case. 

Numerical properties of the proposed testing procedure are studied in Section 5. The 

performance of the procedure is compared to that of the methods based on the combination 

of Fisher's z-transformation with either the Benjamini-Hochberg procedure or the 
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Benjamini-Yekutieli procedure. A real dataset is analyzed in Section 5.2. A discussion on 

extensions and related problems is given in Section 6 and all the proofs are contained in the 

supplementary material Cai and Liu (2014).

2 FDR control procedure

In this section we present a detailed description of the multiple testing procedure for 

correlations in the two-sample case. The theoretical results given in Section 3 show that the 

procedure controls the FDR and FDP at the pre-specified level asymptotically.

We begin by constructing a test statistic for testing each individual pair of correlations, H0ij : 

ρij1 = ρij2. In this paper, we shall focus on the class of populations with the elliptically 

contoured distributions (see Condition (C2) in Section 3) which is more general than the 

multivariate normal distributions. The test statistic for general population distributions is 

introduced in Section 6.3. Under Condition (C2) and the null hypothesis H0ij : ρij1 = ρij2, as 

(n1, n2) → ∞,

(4)

with

where (μ11, . . . , μp1)′ = μ1 and (μ12, . . . , μp2)′ = μ2. Note that  for i = 1, 2 and they 

are related to the kurtosis with  where  is the kurtosis of X. 

For multivariate normal distributions, κ1 = κ2 = 1.

In general, the parameters ρij1, ρij2, κ1 and κ2 in the denominator are unknown and need to 

be estimated. In this paper we estimated κ1 and κ2 respectively by

To estimate ρij1 and ρij2, taking into account of possible sparsity of the correlation matrices, 

we use the thresholded version of the sample correlation coefficients
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where I{·} denotes the indicator function. Let  and we use  to 

replace  and  in (4). We propose the test statistic

(5)

for testing the individual hypotheses H0ij : ρij1 = ρij2. Note that under H0ij,  is a consistent 

estimator of ρij1 and ρij2. On the other hand, under the alternative H1ij, 

. Hence, Tij will be more 

powerful than the test statistic using  and  to estimate ρij1 and ρij2 respectively.

Before introducing the multiple testing procedure, it is helpful to understand the basic 

properties of the test statistics Tij which are in general correlated. It can be proved that, 

under the null hypothesis H0ij and certain regularity conditions,

uniformly in 1 ≤ i < j ≤ p and p ≤ nr for any b > 0 and r > 0, where Φ is the cumulative 

distribution function of the standard normal distribution; see Proposition 1 in Section 3.

Denote the set of true null hypotheses by

Since the asymptotic null distribution of each test statistic Tij is standard normal, it is easy to 

see that

(6)

We now develop the multiple testing procedure. Let t be the threshold level such that the null 

hypotheses H0ij are rejected whenever |Tij| ≥ t. Then the false discovery proportion (FDP) of 

the procedure is
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An ideal threshold level for controlling the false discovery proportion at a pre-specified level 

0 < α < 1 is

where the constraint  is used here due to the tail bound (6).

The ideal threshold  is unknown and needs to be estimated because it depends on the 

knowledge of the set of the true null hypotheses . A key step in developing the FDR 

procedure is the estimation of G0(t) defined by

(7)

where q0 = Card( ). Note that G0(t) is the true proportion of the nulls falsely rejected by 

the procedure among all the true nulls at the threshold level t. In some applications such as 

the PheWAS problem in genomics, the sample sizes can be very large. In this case, it is 

natural to use the tail of normal distribution G(t) = 2 – 2Φ(t) to approximate G0(t). In fact, 

we have

(8)

in probability as (n1, n2, p) → ∞, where  and ap = 2 log(log p). The range 

0 ≤ t ≤ bp is nearly optimal for (8) to hold in the sense that ap cannot be replaced by any 

constant in general.

Large-scale Correlation Tests with Normal approximation (LCT-N)

Let 0 < α < 1 and define

(9)
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where G(t) = 2 – 2Φ(t). If  does not exist, then set . We reject H0ij whenever |

Tij} ≥ .

Remark 1

In the above procedure, we use G(t) to estimate G0(t) when 0 ≤ t ≤ bp. For t > bp, G(t) is not 

a good approximation of G0(t) because the convergence rate of G0(t)/G(t) → 1 is very slow. 

Furthermore, G(t) is not even a consistent estimator of G0(t) when 

 since  is bounded. Thus, we threshold the test |Tij| 

with  directly to control the FDP.

Note that Benjamini-Hochberg procedure with p-values G(|Tij|) is equivalent to re-jecting 

H0ij if |Tij| ≥ , where

It is important to restrict the range of t to [0, bp] in (9). The B-H procedure uses G(t) to 

estimate G0(t) for all t ≥ 0. As a result, when the number of true alternatives  is fixed as 

p → ∞, the B-H method is unable to control the FDP with some positive probability, even in 

the independent case. To see this, we let H01, . . . , H0m be m null hypotheses and m1 be the 

number of true alternatives. Let FDPBH be the true FDP of the B-H method with 

independent true p-values and the target FDR = α. If m1 is fixed as m → ∞, then 

Proposition 2.1 in Liu and Shao (2014) proved that, for any 0 < β < 1, there exists some 

constant c > 0 such that .

Remark 2

In the multiple testing procedure given above, we use p(p – 1)/2 as the estimate for the 

number q0 of the true nulls. In many applications, the number of the true significant 

alternatives is relatively small. In such “sparse” settings, one has q0/((p2 – p)/2) ≈ 1 and the 

true FDR level of the testing procedure would be close to the nominal level α. See Section 5 

for discussions on the numerical performance of the procedure.

The normal approximation is suitable when the sample sizes are large. On the other hand, 

when the sample sizes are small, the following bootstrap procedure can be used to improve 

the accuracy of the approximation. Let  and 

 be resamples drawn randomly with replacement from {Xk, 1 ≤ k ≤ 

n1} and {Yk, 1 ≤ k ≤ n2} respectively. Set  and 

. Let

Cai and Liu Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2017 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  and . We define  in a similar way. Let

(10)

For some given positive integer N, we replicate the above procedure N times independently 

and obtain . Let

In the bootstrap procedure, we use the conditional (given the data) distribution of 

 to approximate the null distribution. The signal is not present 

because the conditional mean of  is zero. Proposition 1 in 

Section 3 shows that, under some regularity conditions,

(11)

in probability. Equation (11) leads us to propose the following multiple testing procedure for 

correlations.

Large-scale Correlation Tests with Bootstrap (LCT-B)

Let 0 < α < 1 and define

(12)

If  does not exist, then let . We reject H0ij whenever .
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The procedure requires to choose the bootstrap replication time N. The theoretical analysis 

in Section 3 shows that it can be taken to be any positive integer. The simulation shows that 

the performance of the procedure is quite insensitive to the choice of N.

3 Theoretical properties

We now investigate the properties of the multiple testing procedure for correlations 

introduced in Section 2. It will be shown that, under mild regularity conditions, the 

procedure controls the FDR asymptotically at any pre-specified level 0 < α < 1. In addition, 

it also controls the FDP accurately.

Let FDP  and FDR  be respectively the false discovery proportion and the false 

discovery rate of the multiple testing procedure defined in (9) and (12),

For given positive numbers kp and sp, define the collection of symmetric matrices 

by

(13)

We introduce some conditions on the dependence structure of X and Y.

(C1). Suppose that, for some 0 < θ < 1, γ > 0 and 0 < ξ < min}(1 – θ)/(1 + θ), 1/3}, we have 

, h = 1, 2, and . h = 1, 2, for some kp = log p)−2–γ and 

.

The assumption max1≤i<j≤p|ρijh| ≤ θ, h = 1, 2, is natural as the correlation matrix would be 

singular if max1≤i<j≤p|ρijh| = 1. The assumption  means that every variable 

can be highly correlated (i.e., ρijl ≥ kp) with at most sp other variables. The conditions on the 

correlations in (C1) are quite weak.

Besides the above dependence conditions, we also need an assumption on the covariance 

structures of X and Y. Let (σij1)p×p and (σij2)p×p be the covariance matrices of X and Y 
respectively.

(C2). Suppose that there exist constants  and  such that for any i, j, k, l ∈ {1, 

2, . . . , p},

(14)
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It is easy to see that  and 

. Condition (C2) holds, for example, for all the 

elliptically contoured distributions (Anderson, 2003). Note that the asymptotically normality 

result (4) holds under Condition (C2) and the null H0ij : ρij1 = ρij2.

We also impose exponential type tail conditions on X and Y.

(C3). Exponential tails: There exist some constants η > 0 and K > 0 such that

Let n = n1 + n2. We first show that under p ≤ nr for some r > 0, (C2) and (C3), the 

distributions of Tij and  are asymptotic normally distributed and G0(t) is well 

approximated by .

Proposition 1

Suppose p ≤ nr for some constant r > 0. Under Conditions (C2) and(C3), we have for any r > 

0 and b > 0, as (n, p) → ∞,

(15)

(16)

and

(17)

in probability, where Φ is the cumulative distribution function of the standard normal 

distribution.

We are now ready to state our main results. For ease of notation, we use FDP and FDR to 

denote FDP  and FDR  respectively. Recall that 

and q0 = Card(H0). Let 

.
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Theorem 1

Assume that p ≤ nr for some r > 0 and q1 ≤ cq for some 0 < c < 1. Under (C1)-(C3),

(18)

for any ε > 0.

Theorem 1 shows that the procedures proposed in Section 2 control the FDR and FDP at the 

desired level asymptotically. It is quite natural to assume q1 ≤ cq. For example, if q1/q → 1, 

then the number of the zero entries of R1 – R2 is negligible compared with the number of the 

nonzero entries and the trivial procedure of rejecting all of the null hypotheses controls FDR 

at level 0 asymptotically. Note that r in Theorem 1 can be arbitrarily large so that p can be 

much larger than .

A weak condition to ensure t̂ in (9) and (12) exists is Equation (19) below, which imposes 

the condition on the number of significant true alternatives. The next theorem shows that, 

when t̂ in (9) and (12) exists, the FDR and FDP tend to αq0/q, where q = (p2 – p)/2.

Theorem 2

Suppose that for some δ > 0,

(19)

Then, under the conditions of Theorem 1, we have

(20)

From Theorem 2, we see that if R1 – R2 is sparse such that the number of nonzero entries is 

of order o(p2), then q0/q → 1. So the FDR tends to asymptotically. The sparsity assumption 

is commonly imposed in the literature on estimation of high dimensional covariance matrix. 

See, for example, Bickel and Levina (2008), and Cai and Liu (2011).

The multiple testing procedure in this paper is related to that in Storey, Taylor and Siegmund 

(2004). Let p1, . . . , pq be the p-values. Storey, Taylor and Siegmund (2004) estimated the 

number of true null hypotheses q0  with some well-chosen λ 

and then incorporate q̂0 into the B-H method for FDR control. It is possible to use similar 

idea to estimate q0 and improve the power in our problem. However, the theoretical results 

in Storey, Taylor and Siegmund (2004) are not applicable in our setting. In their Theorem 4, 

to control FDR, they required  which implies the number of true alternative 
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hypotheses q1/q → π1 with some positive π1 > 0. This excludes the sparse setting q1 = o(q) 

which is of particular interesting in this paper. They assumed that the true p-values are 

known. This is a very strong condition and will not be satisfied in our setting. Moreover, 

their dependence condition is imposed on the p-values by assuming the law of large numbers 

(7) in Storey, Taylor and Siegmund (2004). Note that we only have the asymptotic 

distributions  and N(0, 1) for the test statistic. Our dependence condition is imposed 

on the correlation matrix which is more natural.

4 One-Sample Case

As mentioned in the introduction, multiple testing of correlations in the one-sample case 

also has important applications. In this section, we consider the one-sample testing problem 

where we observe a random sample X1, ..., Xn from a p dimensional distribution with mean 

μ and correlation matrix R = (ρij)p×p, and wish to simultaneously test the hypotheses

(21)

As mentioned in the introduction, Fisher's z-transformation does not work well for non-

Gaussian data in general. Using the same argument as in the two-sample case, we may use 

the following test statistic for testing each H0ij : ρij = 0,

where  is an estimate of . The false 

discovery rate can be controlled in a similar way as in Section 2 and all the theoretical 

results in Section 3 also hold in the one-sample case.

There is in fact a di erent test statistic that requires weaker conditions for the asymptotic 

normality for the one-sample testing problem (21). Note that (21) is equivalent to

(22)

Hence, we propose to use the following normalized sample covariance as the test statistic

(23)

where
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is a consistent estimator of the variance θij = Var((Xi – μi)(Xj – μj)). Note that Cai and Liu 

(2011) used a similar idea to construct an adaptive thresholding procedure for estimation of 

sparse covariance matrix. By the central limit theorem and the law of large numbers, we 

have Tij converging in law to N(0, 1) under the null H0ij and the finite fourth moment 

condition, .

When the sample size is large, the normal approximation can be used as in (9). On the other 

hand, if the sample size is small, then we can use a similar bootstrap method to estimate the 

proportion of the nulls falsely rejected among all the true nulls,

where  and . Let 

be a resample drawn randomly with replacement from . Let the re-samples 

, be independent given  and set 

. We construct the bootstrap test statistics 

from  as in (23). The above procedure is replicated N times independently 

which yield . Let

(24)

Finally, we use the same FDR control procedure as defined in (12).

In the one sample case, the dependence condition (C1) can be weakened significantly. 

(C1*). Suppose that for some γ > 0 and ξ > 0 we have

In (C1*), the number of pairs of strong correlated variables can be as large as p2/(log p)1+ξ. 

Similar to Theorems 1 and 2 in the two-sample case, we have the following results for the 

one-sample case. Let , q1 = Card( ) and q = (p2 – 

p)/2.
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Theorem 3

Assume that p ≤ nr for some r > 0 and q1 ≤ cq for some 0 < c < 1. Suppose the distribution of 

X satisfies Condition (C1*), (C2) and (C3), then

(25)

for any ε > 0.

Theorem 3 shows that for simultaneous testing of the correlations in the one-sample case, 

the dependence condition (C1) can be substantially weakened to (C1*). As in Theorem 2, if 

the number of significant true alternatives is at least of order , then Theorem 4 

below shows that the FDR and FDP will converge to αq0/q

Theorem 4

Suppose that for some δ > 0,

Then, under conditions of Theorem 3,

(26)

5 Numerical study

In this section, we study the numerical properties of the multiple testing procedure defined 

in Section 2 through the analysis of both simulated and real data. Section 5.1 examines the 

performance of the multiple testing procedure by simulations. A real data analysis is 

discussed in Section 5.2.

5.1 Simulation

We study in this section the performance of the testing procedure by a simulation study. In 

particular, the numerical performance of the proposed procedure is compared with that of 

the procedures based on Fisher's z transformation (3) together with the Benjamini-Hochberg 

method (Benjamini and Hochberg, 1995) and Benjamini-Yekutieli method (Benjamini and 

Yekutieli, 2001). We denote these two procedures by Fz-B-H and Fz-B-Y, respectively.

5.1.1 Two sample case: comparison with Fz-B-H and Fz-B-Y—The sample 

correlation matrix is invariant to the variances. Hence, we only consider the simulation for 

σii1 = σii2 = 1, i = 1, ..., p. Two covariance matrix models are considered.
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• Model 1. R1 = Σ1 = diag(D1, D2 . . . , Dp/5), where Dk is a 5 × 5 matrix with 1 on 

the diagonal and ρ for all the off-diagonal entries. R2 = Σ2 = diag(I, A), where I is a 

(p/4) × (p/4) identity matrix and A = diag(Dp/20+1, . . . ,Dp/5).

• Model 2. R1 = Σ1 = diag(D̂
1, D̂

2, . . ., D̂
[p/m2], Î), where D̂

k is a m1 × m1 matrix 

with 1 on the diagonal and ρ for all the off-diagonal entries. Î is a (p – m1[p/m1]) × 

(p – m1[p/m1]) identity matrix. R2 = Σ2 = diag(D̂
1, D̂

2, . . ., D̂
[p/m2], Î), where D̃

k is 

a m2 × m2 matrix with 1 on the diagonal and ρ for all the off-diagonal entries. Ĩ is a 

(p – m2[p/m2]) × (p – m2[p/m2]) identity matrix.

The value of ρ will be specified in different distributions for the population. We will take 

(m1, m2) = (80, 40) in Model 2 to consider the strong correlation case. The following four 

distributions are considered.

• Normal mixture distribution. X = U1Z1 and Y = U2Z2, where U1 and U2 are 

independent uniform random variables on (0, 1) and Z1 and Z2 are independent 

random vectors with distributions N(0, Σ1) and N(0, Σ2) respectively. Let ρ = 0.8.

• Normal distribution. X and Y are independent random vectors with distributions 

N(0, Σ1) and N(0, Σ2) respectively. Let ρ = 0.6.

• t distribution. Z1 and Z2 are independent random vectors with i.i.d. components 

having t6 distributions. Let  and  with ρ = 0.6.

• Exponential distribution. Z1 and Z2 are independent random vectors with i.i.d. 

components having exponential distributions with parameter 1. Let  and 

 with ρ = 0.6.

The normal mixture distribution (κ1 ≠ 1 and κ2 ≠ 1) allows us to check the influence of non-

normality of the data on the procedures based on Fisher's z transformation. We also give the 

comparison between our procedure and the one based on Fisher's z transformation when the 

distribution is truly multivariate normal distributed. Note that the normal mixture 

distribution and the normal distribution satisfy the elliptically contoured distributions 

condition. On the other hand, the t distribution and exponential distribution generated by the 

above way do not satisfy (C2) and the t distribution does not satisfy (C3) either. So it allows 

us to check the influence of conditions (C2) and (C3) on our method.

In the simulation, we generate two groups of independent samples from X and Y . Let the 

sample sizes n1 = n2 = 50 and n1 = n2 = 100 and let the dimension p = 250, 500 and 1000. 

The number of the bootstrap re-samples is taken to be N = 50 and the nominal false 

discovery rate α = 0.2. Based on 100 replications, we calculate the average empirical false 

discovery rates

and the average empirical powers
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where .

The simulation results for Model 1 in terms of the empirical FDR are summarized in Table 1 

and the results on the empirical powers are given in Table 2. It can be seen from the two 

tables that, for the normal mixture distribution, the proposed procedure with bootstrap 

approximation (LCT-B) has significant advantages on controlling the FDR. It performs 

much better than the proposed procedure with normal approximation (LCT-N) when the 

sample size is small. Note that the performance of LCT-N becomes better as n increases. 

Both procedures in (9) and (12) outperform the one based on Fisher's z transformation (3) on 

FDR control. For the multivariate normal distribution, our methods have more power than 

Fz-B-H and Fz-B-Y. The latter method is also quite conservative. For the other two 

distributions which do not satisfy (C2), the empirical FDRs of Fz-B-H are larger than α 

while the empirical FDRs of our method are smaller than α. However, the powers of our 

method are quite close to those of Fz-B-H. Note that Fz-B-Y has the lowest powers although 

it is able to control the FDR.

The correlation in Model 2 is much stronger than that in Model 1 and the number of true 

alternatives is also larger. As we can see from Table 3, our method can still control the FDR 

e ciently and the powers are comparable to those of Fz-B-H and much higher than those of 

Fz-B-Y. As the numerical results for Model 1, the empirical FDRs of Fz-B-H are much larger 

than α for the normal mixture distribution. The performance of Fz-B-H is improved on the 

other three distributions although its empirical FDRs are somewhat higher than α when p = 

1000 and n = 50.

5.1.2 One sample case—To examine the performance of our method in the one-sample 

case, we consider the following model.

• Model 3. R = Σ = diag(D1, D2 . . . , Dp/5), where Dk is a 5 × 5 matrix with 1 on the 

diagonal and ρ for all the off-diagonal entries.

We consider four types of distributions and ρ is taken to be the same values as in the two-

sample case. In the simulation we let n = 50 and p = 500. The number of the bootstrap re-

samples is taken to be N = 50 and the nominal false discovery rate α = 0.2. The empirical 

FDRs of three methods based on 100 replications are summarized in Table 5. As we can see 

from Table 5, the empirical FDRs of Fz-B-H are higher than α, especially for the normal 

mixture distribution. Fz-B-Y is also unable to control the FDR for the normal mixture 

distribution. Our method controls FDR quite well for all four distributions. Even when (C2) 

is not satisfied, our method can still control FDR efficiently.

We now carry out a simulation study to verify that the FDP control in the one sample case 

can be get benefit from the correlation. Consider the following matrix model.
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• Model 4. Σ = diag(D1, D2 . . . ,Dk, I), where Dk is a 5 × 5 matrix with 1 on the 

diagonal and 0.6 for all the off-diagonal entries.

We take k = 1, 5, 10, 20, 40, 80 such that the correlation increases as k grows. Let X = 

, where Z is the standard normal random vector. We take n = 50 and p = 500. The 

procedure in Section 4 with the bootstrap approximation is used in the simulation. To 

evaluate the performance of the FDP control, we use the l2 distance 

, where FDPi is the FDP in the i-th replication. As 

we can see from Table 5, the distance between FDP and αq0/q becomes small as k increases.

5.2 Real data analysis
Kostka and Spang (2004), Carter et al. (2004) and Lai, et al. (2004) studied gene-gene 

coexpression patterns based on cancer gene expression datasets. Their analyses showed that 

several transcriptional regulators, which are known to be involved in cancer, had no 

significant changes in their mean expression levels but were highly differentially 

coexpressed. As pointed out in de la Fuente (2010), these results strongly indicated that, 

besides differential mean expressions, coexpression changes are also highly relevant when 

comparing gene expression datasets.

In this section we illustrate the proposed multiple testing procedure with an application to 

the detection of the changes in coexpression patterns between gene expression levels using a 

prostate cancer dataset (Singh et al. 2002). The dataset is available at http://

www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

This dataset consists of two classes of gene expression data that came from 52 prostate 

tumor patients and 50 prostate normal patients. There are a total of 12600 genes. We first 

choose 500 genes with the smallest absolute values of the two-sample t test statistics for the 

comparison of the means

where  and  are the sample variances of the i-th gene. All of the p-values P(|N(0, 1)| ≥ |

ti|) of 500 genes are greater than 0.87; see Figure (a). Hence, it is very likely that all of the 

500 genes are not differentially expressed in the means. The proposed multiple testing 

procedure is applied to investigate whether there are differentially coexpressed gene pairs 

between these 500 genes. As in Kostka and Spang (2004), Carter et al. (2004) and Lai, et al. 

(2004), the aim of this analysis is to verify the phenomenon that additional information can 

be gained from the coexpressions even when the genes are not differentially expressed in the 

means.

Let  denote the Pearson correlation coefficient between the expression levels of gene 

i and gene j of the prostate normal (tumor) patients. We wish to test the hypotheses 

, 1 ≤ i < j ≤ 500. The pair of genes i and j is identified to be differentially 
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coexpressed if the hypothesis H0ij is rejected. See de la Fuente (2010). We compare the 

performance between our procedure (the number of the bootstrap re-samples N = 50) and 

those based on Fisher's z transformation with the nominal FDR level α = 0.05. Our 

procedure (Figure (b)) identifies 1341 pairs of coexpression genes and 1.07% nonzero 

entries of the coexpression matrix (estimation of support of R1 – R2). As noted by Yeung, et 

al. (2002), gene regulatory networks in most biological systems are expected to be sparse. 

Our method thus leads to a clear and easily interpretable coexpression network. In 

comparison, Fz-B-H and Fz-B-Y identify respectively 26373 (21.14%) and 13794 (11.06%) 

pairs of coexpression genes and the estimates of the support of R1 – R2 are very dense and 

difficult to interpret (Figures (c) and (d)). This is likely due to the non-normality of the 

dataset so that (3) fails to hold. As a result, the true FDR level of Fz-B-H and Fz-B-Y may be 

much larger than the nominal level which leads to the large number of rejections.

6 Discussion

In this paper, we introduced a large scale multiple testing procedure for correlations and 

showed that the procedure performs well both theoretically and numerically under certain 

regularity conditions. The method can also be used for testing the cross-correlations, and 

some of the conditions can be further weakened. We discuss in the section some of the 

extensions and the connections to other work.

6.1 Multiple Testing of Cross-Correlations

In some applications, it is of interest to carry out multiple testing of cross-correlations 

between two high dimensional random vectors, which is closely related to the one-sample 

case considered in this paper. Let X = (X1, . . . , Xp1)′ and Y = (Y1, . . . , Yp2) be two random 

vectors with dimension p1 and p2 respectively. We consider multiple correlation tests 

between Xi and Yj

for 1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. We can construct similar test statistics

where

The normal distribution can be used to approximate the null distribution of Tij when the 

sample size is large. If the sample size is small, we can use  to approximate the null 

distribution of Tij, where
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Here  are constructed by the bootstrap method as in (24). The multiple testing procedure 

is as follows.

FDR control procedure—Let 0 < α < 1 and define

If t̂ does not exist, then let . We reject H0ij whenever |Tij| ≥ .

Let  and . We assume the 

following condition holds for X and Y.

(C4). For any , if  and , then

for some positive constant .

Let R1 and R2 be the correlation matrices of X and Y respectively. Denote p = p1 + p2, q = 

p1p2, q0 = Card( ) and q1 = Card( ). Suppose that . Then the following theorem 

holds.

Theorem 5—Assume that p ≤ nr for some r > 0 and q1 ≤ cq for some 0 < c < 1. Under 
(C1), (C3) and (C4),

for any ε > 0. Furthermore, if

then
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where θij,XY = Var[(Xi – EXi)(Yj – EYj)].

6.2 Relations to Owen (2005)

A related work to the one-sample correlation test is Owen (2005), which studied the 

variance of the number of false discoveries in the tests on the correlations between a single 

response and p covariates. It was shown that the correlation would greatly a ect the variance 

of the number of false discoveries. The goal in our paper is different from that in Owen 

(2005). Here we study the FDR control on the correlation tests between all pairs of 

variables. In our problem, the impact of correlation is much less serious and is even 

beneficial to the FDP control under the sparse setting (C1*). To see this, set 

 for some γ > 0. In other words, N denotes 

the pairs with strong correlations. Suppose that Card( ) = pτ for some 0 < τ < 2. The larger 

τ indicates the stronger correlations among the variables. It follows from the proof of 

Theorem 2 that  1. By the proof in Section 7, we can see 

that the di erence FDP – αq0/q depends on the accuracy of the approximation

Generally, a larger τ provides a better approximation because the range 0 ≤ t ≤ 

 becomes smaller and  becomes larger. Hence, 

as τ increases, the FDP is better controlled. Simulation results in Section 5.1.2 also support 

this observation.

6.3 Relax the Conditions

In Sections 2 and 3, we require the distributions to satisfy the moment condition (C2), which 

is essential for the validity of the testing procedure. An important example is the class of the 

elliptically contoured distributions. This is clearly a much larger class than the class of 

multivariate normal distributions. However, in real applications, (C2) can still be violated. It 

is desirable to develop test statistics that can be used for more general distributions. To this 

end, we introduce the following test statistics that do not need the condition (C2).

Let . It can be proved that, under the finite 4th moment condition 

,

(27)

where i ≠ j and
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We can estimate μi and σii1 in θij1 by their sample versions. Let 

where , and let

 is defined in the same way by replacing X with Y . So the test statistic

(28)

can be used to test the individual hypothesis H0ij : ρij1 = ρij2. We have the following 

proposition.

Proposition 2

(1). Suppose that  and . 

Under the null hypothesis H0ij : ρij1 = ρij2, we have .

(2). Suppose that p ≤ nr for some r > 0 and (C3) holds. For any b > 0, we 
have

Proposition 2 can be used to establish the FDR control result for multiple tests (2) by 

assuming some dependence condition between the test statistics . However, we should 

point out that, although  does not require (C2), numerical results show that it is less 

powerful than the test statistic Tij in Section 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) p-Values of 500 genes. (b) Coexpression matrix (C-L). (c) Coexpression matrix (Fz-B-

H). (d) Coexpression matrix (Fz-B-Y).
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Table 1

Empirical false discovery rates (α = 0.2), Model 1.

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.9519 0.9479 0.3084 0.2511

Fz-B-Y 0.6400 0.6136 0.0411 0.0256

LCT-B 0.2267 0.1096 0.1068 0.1045

LCT-N 0.4897 0.3065 0.3270 0.2450

500 Fz-B-H 0.9750 0.9721 0.3253 0.2511

Fz-B-Y 0.7293 0.6714 0.0341 0.0249

LCT-B 0.2368 0.0935 0.1039 0.0834

LCT-N 0.5137 0.2977 0.3204 0.2334

1000 Fz-B-H 0.9871 0.9861 0.3669 0.2594

Fz-B-Y 0.8052 0.7629 0.0428 0.0226

LCT-B 0.2420 0.0620 0.1012 0.0567

LCT-N 0.5479 0.2804 0.3304 0.2227

t 6 Exp(1)

250 Fz-B-H 0.3204 0.2473 0.3738 0.2846

Fz-B-Y 0.0430 0.0278 0.0693 0.0351

LCT-B 0.0703 0.0890 0.0943 0.0817

LCT-N 0.0903 0.0323 0.0721 0.0097

500 Fz-B-H 0.3487 0.2530 0.4328 0.3040

Fz-B-Y 0.0384 0.0255 0.0768 0.0345

LCT-B 0.0612 0.0639 0.0915 0.0568

LCT-N 0.0868 0.0228 0.0845 0.0065

1000 Fz-B-H 0.3870 0.2711 0.4975 0.3309

Fz-B-Y 0.0523 0.0261 0.0958 0.0396

LCT-B 0.0565 0.0434 0.1050 0.0355

LCT-N 0.0907 0.0165 0.1018 0.0046
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Table 2

Empirical powers (α = 0.2), Model 1.

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.9889 1.0000 0.5375 0.9405

Fz-B-Y 0.9113 0.8782 0.2125 0.8072

LCT-B 0.9245 0.9968 0.6445 0.9712

LCT-N 0.9729 0.9995 0.7798 0.9792

500 Fz-B-H 0.9906 1.0000 0.4433 0.9247

Fz-B-Y 0.8945 0.9985 0.1521 0.7576

LCT-B 0.9074 0.9944 0.5741 0.9572

LCT-N 0.9671 0.9996 0.7268 0.9751

1000 Fz-B-H 0.9894 1.0000 0.3593 0.8866

Fz-B-Y 0.8768 0.9977 0.1027 0.6876

LCT-B 0.8920 0.9979 0.5048 0.9381

LCT-N 0.9583 0.9992 0.6784 0.9646

t 6 Exp(1)

250 Fz-B-H 0.5465 0.9477 0.5981 0.9565

Fz-B-Y 0.2329 0.8252 0.2762 0.8432

LCT-B 0.6397 0.9647 0.5593 0.9525

LCT-N 0.6562 0.9462 0.5357 0.8806

500 Fz-B-H 0.4679 0.9228 0.5104 0.9273

Fz-B-Y 0.1684 0.7645 0.1884 0.7763

LCT-B 0.5536 0.9490 0.4781 0.9206

LCT-N 0.6047 0.9244 0.4656 0.8300

1000 Fz-B-H 0.4717 0.8925 0.4405 0.9049

Fz-B-Y 0.1134 0.6965 0.1334 0.7208

LCT-B 0.4699 0.9273 0.4118 0.8754

LCT-N 0.5373 0.8984 0.4067 0.7873
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Table 3

Empirical false discovery rates (α = 0.2), Model 2.

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.4582 0.4476 0.1944 0.1797

Fz-B-Y 0.1406 0.1356 0.0212 0.0189

LCT-B 0.2095 0.2063 0.1845 0.1824

LCT-N 0.2934 0.2433 0.2454 0.2163

500 Fz-B-H 0.6264 0.5993 0.2226 0.1968

Fz-B-Y 0.2187 0.1924 0.0239 0.0174

LCT-B 0.1722 0.1951 0.1612 0.1836

LCT-N 0.3309 0.2694 0.2607 0.2214

1000 Fz-B-H 0.7275 0.7174 0.2436 0.2131

Fz-B-Y 0.2700 0.2456 0.0245 0.0177

LCT-B 0.1349 0.1632 0.1222 0.1600

LCT-N 0.3297 0.2698 0.2626 0.2278

t 6 Exp(1)

250 Fz-B-H 0.1976 0.1753 0.2058 0.2051

Fz-B-Y 0.0242 0.0171 0.0257 0.0253

LCT-B 0.1928 0.1924 0.2111 0.2039

LCT-N 0.1924 0.1398 0.1497 0.1100

500 Fz-B-H 0.2340 0.2067 0.2372 0.2163

Fz-B-Y 0.0253 0.0201 0.0282 0.0215

LCT-B 0.1694 0.1745 0.1699 0.1945

LCT-N 0.1883 0.1377 0.1313 0.0810

1000 Fz-B-H 0.2425 0.2171 0.2597 0.2255

Fz-B-Y 0.0234 0.0181 0.0275 0.0201

LCT-B 0.1235 0.1675 0.1343 0.1667

LCT-N 0.1644 0.1211 0.1101 0.0640
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Table 4

Empirical powers (α = 0.2), Model 2.

Normal mixture N(0,1)

p\n1 = n2 50 100 50 100

250 Fz-B-H 0.9970 1.0000 0.9208 0.9963

Fz-B-Y 0.9730 0.9997 0.6640 0.9658

LCT-B 0.9879 1.0000 0.9096 0.9977

LCT-N 0.9932 0.9999 0.9381 0.9978

500 Fz-B-H 0.9955 1.0000 0.8637 0.9941

Fz-B-Y 0.9658 0.9996 0.5482 0.9506

LCT-B 0.9819 0.9999 0.8482 0.9943

LCT-N 0.9901 0.9999 0.8954 0.9967

1000 Fz-B-H 0.9936 1.0000 0.8037 0.9900

Fz-B-Y 0.9498 0.9996 0.4479 0.9257

LCT-B 0.9753 0.9999 0.7920 0.9926

LCT-N 0.9836 0.9999 0.8492 0.9947

t 6 Exp(1)

250 Fz-B-H 0.9136 0.9965 0.9165 0.9971

Fz-B-Y 0.6548 0.9678 0.6861 0.9704

LCT-B 0.9047 0.9972 0.8710 0.9957

LCT-N 0.9013 0.9957 0.8607 0.9920

500 Fz-B-H 0.8576 0.9924 0.8641 0.9929

Fz-B-Y 0.5498 0.9430 0.5771 0.9467

LCT-B 0.8441 0.9946 0.8000 0.9912

LCT-N 0.8394 0.9907 0.7774 0.9813

1000 Fz-B-H 0.8015 0.9881 0.8105 0.9875

Fz-B-Y 0.4639 0.9232 0.4890 0.9196

LCT-B 0.7655 0.9886 0.7254 0.9827

LCT-N 0.7857 0.9856 0.7110 0.9679
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Table 5

Empirical FDRs for one sample tests (α = 0.2), Model 3.

U*N(0,1) N(0,1) t(6) Exp(1)

Fz-B-H 0.9093 0.2923 0.3019 0.3601

Fz-B-Y 0.5304 0.0339 0.0361 0.0714

LCT-B 0.1733 0.1895 0.1859 0.1769
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Table 6

Empirical distance between FDP and αq0/q (α = 0.2).

k 1 5 10 20 40 80

SD 0.3426 0.1784 0.0836 0.0433 0.0281 0.0221
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