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Stationary Gaussian Markov Processes As
Limits of Stationary Autoregressive Time

Series

Lawrence D. Brown, Philip A. Ernst, Larry Shepp,
and Robert Wolpert

August 27, 2015

Abstract

We consider the class, C p, of all zero mean stationary Gaussian
processes, Yt, t ∈ (−∞,∞) with p derivatives, for which the vector
valued process (

Y
(0)
t , Y

(1)
t , . . . , Y

(p)
t

)
, t ≥ 0

is a p+ 1-vector Markov process, where
(
Y

(0)
t = Y (t)

)
. We provide a

rigorous description and treatment of these stationary Gaussian pro-
cesses as limits of stationary AR(p) time series.

MSC 2010 Primary: 60G10, Secondary: 60G15

Keywords: Continuous autoregressive processes, stationary Gaussian
Markovian processes, stochastic differential. equations

1 Introduction

In many data-driven applications in both the natural sciences and in finance,
time series data are often discretized prior to analysis and are then formu-
lated using autoregressive models. The theoretical and applied properties
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of the convergence of discrete autoregressive (“AR”) processes to their con-
tinuous analogs (continuous autoregressive or “CAR” processes) has been
well studied by many mathematicians, statisticians, and economists. See, for
example, the works of [3], [4], [2], and [5].

A special class of autoregressive processes are the discrete-time zero-mean
stationary Gaussian Markovian processes on the line (−∞,∞). The contin-
uous time analogs of these processes are documented in [9] (ch.10) and [10]
(pp. 207-212). For processes in this class, the sample paths possess p − 1
derivatives at each value of t, and the evolution of the process following t
depends only on the values of these derivatives at t. Notationally, we term
such a process as a member of the class C p. For convenience, we will use
the notation CAR(p)=C p. The standard Ornstein-Uhlenbeck processes is of
course a member of C 1, and hence CAR(p) processes can be described as a
generalization of the Ornstein-Uhlenbeck process.

It is well understood that the Ornstein-Uhlenbeck process is related to the
usual Gaussian AR(1) process on a discrete-time index, and that an Ornstein-
Uhlenbeck process can be described as a limit of appropriately chosen AR(1)
processes (see [7]). In an analogous fashion we show that processes in C p are
related to AR(p) processes and can be described as limits of an appropriately
chosen sequence of AR(p) processes.

Section 2 begins by reviewing the literature on CAR(p) processes, recall-
ing three equivalent definitions of the processes in C p. Section 3 discusses
how to correctly approximate C p by discrete AR(p) processes. This con-
struction is, to the best of our knowledge, novel.

2 Equivalent Descriptions of the Class Cp

We give here three distinct descriptions of processes comprising the class
C p, which are documented in [10] (p. 212), but in different notation. [10]
prove (p.211-212) that these descriptions are equivalent ways of describing
the same class of processes. The first description matches the heuristic de-
scription given in the introduction. The remaining descriptions provide more
explicit descriptions that can be useful in construction and interpretation of
these processes. In all the descriptions Y = {Y (t)} symbolizes a zero-mean
Gaussian process on t ∈ [0,∞).
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2.1 Three Definitions

(I) Y is stationary. The sample paths are continuous and are p − 1 times
differentiable, a.e., at each t ∈ [0,∞) (The derivatives at t = 0 are defined
only from the right. At all other values of t, the derivatives can be computed
from either the left or the right, and both right and left derivatives are equal).
We denote the derivatives at t by Y (i)(t), i = 1, ..., p− 1. At any t0 ∈ (0,∞),
the conditional evolution of the process given Y (t), t ∈ [0, t0] depends only
on the values of Y (i)(t0), i = 0, ..., p − 1. The above can be formalized as

follows: let
(
Y

(0)
t , Y

(1)
t , . . . , Y

(p−1)
t

)
, t ≥ 0 denote the values of a mean zero

Itô vector diffusion process defined by the system of equations

dY
(i−1)
t = Y

(i)
t dt, t > 0, i = 1, 2, ..., p− 1

dY
(p−1)
t =

p−1∑
i=0

ai+1Y
(i)
t dt+ σdWt

(2.1)

for all t > 0, where σ > 0 and the coefficients {aj} satisfy conditions (2.3)

and (2.4), below. Then let Y (t) = Y
(0)
t .

(II) Each Y ∈ C p is given uniquely by a certain polynomial P (z) via the
covariance of any such Y as follows:

E [YsYt] = R(s, t)

= r(t− s)

=

∫ ∞
−∞

ei(t−s)z

|P (z)|2
dz.

(2.2)

P (z) is a complex polynomial of degree p + 1. It has positive leading
coefficients and all complex roots ζj = ρj + iσj, j = 0, . . . , p with σj > 0, and
ρj real. We impose the following constraint on the roots of P (z): whenever
ρj 6= 0, then there is another ζ ′j = −ζ∗j which is the negative conjugate of ζj.
This definition of P (z) ensures that |P (z)|2 is an even function. Finally, it
can easily be shown that, for all t, r(t) automatically has 2p derivatives. The
conditions in equations (2.3) and (2.4) below link equations (2.2) and (2.1)
and characterize which processes satisfying (2.1) are stationary.

The coefficients ai are the unique solution of the equations:
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r(p+i+1)(0+) =

p∑
j=0

ajr
(i+j)(0), i = 0, 1, . . . , p− 1. (2.3)

Note that the left and right derivatives of r(j) are equal except for j = 2p.

The diffusion coefficient, σ, is given by

σ2 =

p∑
j=0

ajr
(j+p)(0)(−1)j+1 + (−1)pr(2p+1)(0−). (2.4)

The stationarity of the process in (2.1) can also be determined via the char-
acterization in Section 2.2.

(III) Equivalently, it is necessary and sufficient that Y ∈ C p has the repre-
sentation via Wiener integrals with a standard Brownian motion, W ,

Yt =

∫ ∞
−∞

g(t− u)dW (u), (2.5)

where g has the L2 Fourier transform

ĝ(z) =
1

|P (z)|
. (2.6)

By well-known results from both Fourier analysis and stochastic integration,
a full treatment of which is given in [6], (2.5) and (2.6) jointly are equivalent
to construction (II). Further, by [6], an equivalent construction to that given
jointly by equations (2.5) and (2.6) is the following: given a pair of indepen-
dent standard Brownian motions, W1 and W2, Y has the following spectral
representation:

Yt =

∫ ∞
−∞

cos tzĝ dW1(z) +

∫ ∞
−∞

sin tzĝ dW2(z). (2.7)

With regard to initial conditions for (2.1), we note that the process in
(2.2) has a stationary distribution. If we use that distribution as the initial
distribution for (2.1), and check that equations (2.3) and (2.4) hold, we arrive
at a stationary process.
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2.2 Characterization of Stationarity via (2.1)

The system in (2.1) is linear. Stationary of vector-valued processes described
in such a way has been studied elsewhere. See in particular ([7], p. 357,
Theorem 5.6.7). The coefficients in (2.1) that yield stationarity can be char-
acterized via the characteristic polynomial of the matrix Λ, where |Λ− λI|
is:

λp − apλp−1 − ...− a2λ− a1 = 0. (2.8)

The process is stationary if and only if all the roots of equation (2.8) have
strictly negative real parts.

In order to discover whether the coefficients in (2.1) yield a stationary
process it is thus necessary and sufficient to check whether all the roots
of equation (2.8) have strictly negative real parts. In the case of C 2 the
condition for stationarity is quite simple, namely that a1, a2 should lie in the
quadrant ai < 0, i = 1, 2. The covariance functions for C 2 can be found in [9]
(p. 326). For higher order order processes the conditions for stationarity are
not so easily described. Indeed, for C 3 it is necessary that ai < 0, i = 1, 2, 3,
but the set of values for which stationarity holds is not the entire octant. For
larger p one needs to study the solutions of the higher order polynomial in
equation (2.8).

3 Weak Convergence of the h-AR(2) Process

to CAR(2) Process

3.1 Discrete Time Analogs of the CAR Processes

We now turn our focus to describing the discrete time analogs of the CAR
processes and the expression of the CAR processes as limits of these discrete
time processes. In this section, we discuss the situation for p = 2. Define the
h-AR(2) processes on the discrete time domain domain {0, h, 2h, ...} via

Xt = bh1Xt−h + bh2Xt−2h + ςhZt, (3.1)

Zt ∼ IID N(0, 1), t = 2h, 3h, ...

The goal is to establish conditions on the coefficients bh1 , bh2 and ςh so that
these AR(2) processes converge to the continuous time CAR(2) process as in
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the system of equations given in (2.1). We then discuss some further features
of these processes.

To see the similarity of the h-AR(2) process in (3.1) with the CAR(2) pro-
cess of (2.1), we introduce the corresponding h-VAR(2) processes {∆h

0;t,∆
h
1;t}

defined via

∆h
0;t −∆h

0;t−h = h∆h
1;t,

∆h
1;t −∆h

1;t−h =
[
ch1∆h

0;t−h + ch2∆h
1;t−h

]
h+ ξhZt.

Zt ∼ IID N(0, 1), t = h, 2h, ...

(3.2)

From (3.2) we see that

∆h
0;t = ∆h

0;t−h + h∆h
1;t

= ∆h
0;t−h + h∆h

1;t−h +
[
ch1∆h

0;t−h + ch2∆h
1;t−h

]
h2 + ξhhZt

=
[
2 + ch1h

2 + ch2h
]

∆h
0;t−h −

[
1 + ch2h

]
∆h

0;t−2h + ξhhZt.

This shows that the h-AR(2) process of (3.1) is equivalent to the h-VAR(2)
in (3.2) with

bh1 , ch1h
2 + ch2h+ 2, bh2 , −ch2h− 1, and ςh , ξhh, (3.3)

or, equivalently,

ch1 , h−2
[
bh1 + bh2 − 1

]
, ch2 , h−1

[
−1− bh2

]
, and ξh , h−1ςh.

(3.4)

From above, the h-AR(2) process of (3.1) with coefficients given by (3.3) is
equivalent to the h-VAR(2) in equations (3.2).

Theorem 3.1. Consider a sequence of h-AR(2) processes of (3.1) with co-
efficients given by (3.3), where chj → aj, j = 1, 2, and ξh/

√
h → σ as h ↓ 0.

This sequence converges in distribution to the CAR(2) process of (2.1).

Proof. It suffices to show that the h-VAR(2) process of (3.2) converges to
the SDE system of

dYt = Ẏtdt, t > 0

dẎt =
[
a1Yt + a2Ẏt

]
dt+ σdWt, t > 0. (3.5)
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We employ the framework of Theorems 2.1 and 2.2 of [8]. Let Mt be the
σ-algebra generated by

∆h
0;0,∆

h
0;h,∆

h
0;2h, ...,∆

h
0;t−h

and
∆h

1;0,∆
h
1;h,∆

h
1;2h, ...,∆

h
1;t

for t = h, 2h, . . .. The h-VAR(2) process of (3.2) is clearly Markovian of order
1, since to construct {∆h

0;t,∆
h
1;t} from {∆h

0;t−h,∆
h
1;t−h} one needs to use the

second equation of (3.2) to construct ∆h
1;t and then use the first equation to

construct ∆h
0;t as well. This establishes that ∆h

0;t is Mt adapted. Thus, the
corresponding drifts per unit of time conditioned on information at time t
are given by:

E

[
∆h

0;t −∆h
0;t−h

h

∣∣∣∣Mt

]
= E

[
∆h

0;t−h + h∆h
1;t −∆h

0;t−h

h

∣∣∣∣Mt

]
= ∆h

1;t (3.6)

and

E

[
∆h

1;t+h −∆h
1;t

h

∣∣∣∣Mt

]
= E

[(
ch1∆h

0;t + ch2∆h
1;t

)
h+ ξhZt+h

h

∣∣∣∣Mt

]
(3.7)

= ch1∆h
0;t + ch2∆h

1;t.

Furthermore, the variances and covariances per unit of time are given by

E

[(
∆h

0;t −∆h
0;t−h

)2

h

∣∣∣∣Mt

]
= E

[(
h∆h

1;t

)2

h

∣∣∣∣Mt

]
= h

(
∆h

1;t

)2
(3.8)

and

E

[
(∆h

1;t+h −∆h
1;t

)2

h

∣∣∣∣Mt

]
= E


[ (
ch1∆h

0;t + ch2∆h
1;t

)
h+ ξhZt+h

]2

h

∣∣∣∣Mt


=
[
ch1∆h

0;t + ch2∆h
1;t

]2
h+ 2

[
ch1∆h

0;t + ch2∆h
1;t

]
ξhE [Zt+h] +

(
ξh
)2

h
E
[
Z2
t+h

]
=
[
ch1∆h

0;t + ch2∆h
1;t

]2
h+

(
ξh
)2

h
, (3.9)
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where the last equality assumes that εt+h ∼ IID N(0, 1). By the same logic,

E

[(
∆h

0;t −∆h
0;t−h

)(
∆h

1;t+h −∆h
1;t

)
h

∣∣∣∣Mt

]

=E

h∆h
1;t

[ (
ch1∆h

0;t + ch2∆h
1;t

)
h+ ξhZt+h

]
h

∣∣∣∣Mt

 (3.10)

=h∆h
1;t

[
ch1∆h

0;t + ch2∆h
1;t

]
.

The relationships in (3.8) - (3.10) become

E

[(
∆h

0;t −∆h
0;t−h

)2

h

∣∣∣∣Mt

]
= o(1), (3.11)

E

[(
∆h

1;t+h −∆h
1;t

)2

h

∣∣∣∣Mt

]
=

(
ξh
)2

h
+ o(1), (3.12)

and

E

[(
∆h

0;t −∆h
0;t−h

)(
∆h

1;t+h −∆h
1;t

)
h

∣∣∣∣Mt

]
= o(1). (3.13)

The o(1) terms vanish uniformly on compact sets. We may additionally show
by brute force that the limits of

E

[(
∆h

0;t −∆h
0;t−h

)4

h

∣∣∣∣Mt

]

and

E

[(
∆h

1;t+h −∆h
1;t

)4

h

∣∣∣∣Mt

]

exist and converge to zero as h ↓ 0.
We proceed to define the continuous time version of the h-VAR(2) process

of (3.2) by

8



∆h
0;t , ∆h

0;kh and ∆h
1;t , ∆h

1;kh

for kh ≤ t < (k + 1)h. Then, according to the Theorem 2.2 in [8], the
relationships (3.6), (3.7) and (3.11) - (3.13) provide the weak (in distribution)
limit diffusion

d

[
Yt
Ẏt

]
=

[
0 1
a1 a2

] [
Yt
Ẏt

]
dt+

[
0 0
0 σ

]
d

[
0
Wt

]
,

where Wt, t ≥ 0, is a Brownian motion. This is the linear SDE system of
(3.5) and it has a unique solution.

Remark 3.1. [8] Theorems 2.1 and 2.2 are explicitly stated for real-valued
processes but apply to vector valued processes as well. One only needs to
explicitly allow the processes to be vector valued, and to write the regularity
conditions to allow for the full cross-covariance of the vector valued obser-
vations, rather than just ordinary covariance functions. Our processes are
much better behaved than the most general type of process [8] considers since
our error variance is constant (depending only on h) and our distributions
are Gaussian, and hence very light tailed. Thus both of Theorems 2.1 and
2.2 in [8] apply.

3.2 Stationarity of AR(2)-VAR(2) process

In this section we present necessary and sufficient conditions for stationarity
of the AR(2) process and its equivalent VAR(2) process and connect this to
the stationary condition for CAR(2). First, we invoke the following propo-
sition, which is easily proved using well-known results from the time series
literature (see [1]).

Proposition 3.1. The AR(2) process

Xt = b1Xt−1 + b2Xt−2 + ς Zt, Zt ∼ IID N(0, 1). (3.14)

is stationary if and only if

−2 < b1 < 2, b2 − b1 < 1 and b1 + b2 < 1, (3.15)

which require
(
b1, b2

)
to lie in the interior of the triangle with vertices (-2,-1),

(0,1) and (2,-1). Its stationary variance is given by

γ0 =
ς2

1− b21
1−b2 − b2

(
b21

1−b2 + b2

) . (3.16)
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Because of the relations in (3.3) and (3.4), it follows that we have the
following corollary to Proposition 3.1.

Corollary 3.1. The VAR(2) process

∆0;t −∆0;t−1 = ∆1;t,

∆1;t −∆1;t−1 = c1∆0;t−1 + c2∆1;t−1 + ξZt,

Zt ∼ IID N(0, 1), t = 1, 2, ...,

is equivalent to the AR(2) process of (3.14) for

b1 = c1 + c2 + 2 b2 = −c2 − 1 and ς = ξ.

Furthermore, the VAR(2) process is stationary if and only if

−4 < c1 < 0 and − 2− c1

2
< c2 < 0. (3.17)

(3.17) is equivalent to the condition that (c1, c2) lies in the interior of the
triangle with vertices (-4,0), (0,0) and (0,-2).

3.3 Stationary Variance of h-VAR(2) Process

In this section we investigate the stationarity of a special version of the h-
VAR(2) process in Theorem 5.1.1, which converges to the CAR(2) process of
(3.5) as h ↓ 0, through the stationarity of its equivalent h-AR(2) process.

Proposition 3.2. The h-VAR(2) process of (3.2) for ch1 = a1, ch2 = a2 and
ξh = σ

√
h is stationary as h ↓ 0 if and only if aj < 0, j = 1, 2. Then its

stationary variance satisfies

lim
h↓0

γh0 =
σ2

2a1a2

. (3.18)

Proof. From (3.3), the h-VAR(2) process of the hypothesis is equivalent to
the h-AR(2) process of equation (3.1) with coefficients given by

bh1 = a1h
2 + a2h+ 2, bh2 = −a2h− 1 and ςh = σ

(√
h
)3
. (3.19)

From condition (3.15) of Proposition 3.1, this h-AR(2) process is stationary
if and only if the following conditions hold:

• bh1 + bh2 < 1 ⇔ a1h
2 + a2h+ 2− a2h− 1 < 1 ⇔ a1 < 0,

10



• bh1 < 2 ⇔ a1h
2 + a2h+ 2 < 2 ⇔ a2 < −a1h

h↓0
⇐⇒ a2 < 0,

• −2 < bh1 ⇔ −2 < a1h
2 + a2h + 2 ⇔ a1h

2 + a2h + 4 > 0 ⇔ 0 <

h <
−a2−
√
a22−16a1

2a1
,

• bh2 − bh1 < 1 ⇔ −a2h − 1 − a1h
2 − a2h − 2 < 1 ⇔ a1h

2 + 2a2h + 4 >

0 ⇔ 0 < h <
−a2−
√
a22−4a1

a1
,

where the last two conditions hold as h ↓ 0.

Finally, from equation (3.16) and (3.19) we can compute the stationary vari-
ance as follows:

γh0 =

(
ςh
)2

1−
(
bh1

)2
1−bh2

− bh2

[(
bh1

)2
1−bh2

+ bh2

] ,

=
σ2(2 + a2h)

a1a2(4 + a1h2 + 2a2h)
h↓0
−→ =

σ2

2a1a2

.

This concludes the proof.

3.4 Stationarity of CAR(2) Process

This section provides a new derivation of the necessary and sufficient condi-
tions for the stationarity of a CAR(2) process. It also gives the stationary

covariance function of the vector
(
Y

(0)
t , Y

(1)
t

)
.

Theorem 3.2. The CAR(2) process given by the SDEs system

d

[
Yt
Ẏt

]
= Λ

[
Yt
Ẏt

]
dt+ Σ d

[
0
Wt

]
, t > 0, (3.20)

where

Λ =

[
0 1
a1 a2

]
and Σ =

[
0 0
0 σ

]
,

11



is stationary if and only if aj < 0, j = 1, 2. Then its solution [Yt, Ẏt]
>, t ≥ 0,

is a zero-mean 2-dimensional Gaussian process with covariance

V ,
∫ ∞

0

etΛΣΣ>etΛ
>
dt (3.21)

and covariance function

ρ(s, t) , E

([
Ys
Ẏs

] [
Yt, Ẏt

])
=

{
e(s−t)ΛV, 0 ≤ t ≤ s <∞;

V e(t−s)Λ> , 0 ≤ s ≤ t <∞.

Proof. According to Theorem 6.7 in Chapter 5 of [7], the assertion of the the-
orem holds if all the eigenvalues of matrix Λ have negative real parts. Hence,
we compute the eigenvalues of matrix Λ. We calculate the characteristic
polynomial as

φ(λ) = |Λ− λI| =

∣∣∣∣∣∣
−λ 1

a1 a2 − λ

∣∣∣∣∣∣ = λ2 − a2λ− a1,

which is of quadratic order with a discriminant equal to D = a2
2 + 4a1. We

then consider the following cases:

(i) If D = 0 ⇔ a22
4

= −a1, the characteristic polynomial has the double
root

λ1,2 =
a2

2
.

(ii) If D > 0 ⇔ a22
4
> −a1, the characteristic polynomial has the two

real roots

λ1,2 =
a2 ±

√
a2

2 + 4a1

2
.

(iii) If D < 0 ⇔ a22
4
< −a1, the characteristic polynomial has the two

complex roots

λ1,2 =
a2 ± i

√
4a1 + a2

2

2
.

In every case we need to impose conditions on the coefficients of the
characteristic polynomial so as the real part of all eigenvalues is negative.
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Indeed, in case (i) the double real root of the characteristic polynomial is
negative if and only if a2 < 0, which through the discriminant condition
implies also that a1 < 0. In case (ii) we need to impose that both real
eigenvalues are negative; i.e.,

λ1 =
a2 −

√
a2

2 + 4a1

2
< 0,

λ2 =
a2 +

√
a2

2 + 4a1

2
< 0

⇐⇒

√
a2

2 + 4a1 < −a2

a2<0
⇐⇒ a2

2 + 4a1 < a2
2

⇐⇒ a1 < 0.

Note that the latter condition implies both that aj < 0 for j = 1, 2. Then
the former condition holds as well. In case (iii) the common real part of the
two complex eigenvalues is negative if and only if a2 < 0, which through the
discriminant condition also implies that a1 < 0. Consequently, in all cases
the real part of both eigenvalues of matrix Λ is negative if and only if aj < 0,
j = 1, 2.

We now compute the stationary variance V of the CAR(2) process of
(3.20), as given in (3.21), beginning with the computation of the matrix etΛ,
t ≥ 0. In particular, we are looking for f(Λ), where f(λ) = eλt. From
standard matrix theory, this can be computed via a polynomial expression of
order 1, and thus f(Λ) = δ0 I+ δ1 Λ. Hence, it suffices to set g(λ) = δ0 + δ1 λ
and to demand that f(λ) and g(λ) to be equal on the spectrum of Λ. Then
we will have that f(Λ) = g(Λ).

The roots (one double or two real/complex) λ1, λ2 of the characteristic
polynomial φ(λ) of Λ satisfy the relationships:

λ1 + λ2 = a2 and λ1λ2 = −a1. (3.22)

Since the polynomials f(λ) = eλt and g(λ) = δ0 + δ1 λ must be equal on the
spectrum of Λ, we have that

f(λ1) = g(λ1) ⇔ eλ1 t = δ0 + δ1λ1,

f(λ2) = g(λ2) ⇔ eλ2 t = δ0 + δ1λ2.

13



Then,

eΛt = f(Λ) = g(Λ) = δ0 I + δ1 Λ =

 δ0 δ1

a1δ1 δ0 + a2δ1

 .
From (3.21), we compute the stationary variance

V =

∫ ∞
0

etΛΣΣ>etΛ
>
dt = σ2

∫ ∞
0

etΛ
[

0 0
0 1

] (
etΛ
)>
dt.

For any a < 0 we have that∫ ∞
0

e(a+bi)tdt =
e(a+bi)t

(a+ bi)

∣∣∣∣∞
0

= − 1

a+ bi
.

Using the equalities in (3.22), we can rewrite the covariance function as:

=

 σ2 λ2eλ1 (s−t)−λ1eλ2 (s−t)

2a1a2(λ2−λ1)
−σ2 eλ2 (s−t)−eλ1 (s−t)

2a2(λ2−λ1)

σ2 eλ2 (s−t)−eλ1 (s−t)

2a2(λ2−λ1)
−σ2 λ2eλ2 (s−t)−λ1eλ1 (s−t)

2a2(λ2−λ1)

 , 0 ≤ t ≤ s <∞.

3.5 Weak Convergence of h-AR(p) process to CAR(p)
process

We now consider the AR(p) process on the discrete time domain {0, h, 2h, ...},
given as

Xt = bh1Xt−h + bh2Xt−2h + · · ·+ bhiXt−ih + · · ·+ bhpXt−ph + ςhZt, (3.23)

Zt ∼ IID N(0, 1), t = ph, (p+ 1)h, ...,

and show that subject to suitable conditions on the coefficients bh1 , bh2 , ... bhp
and ςh, this converges as h ↓ 0 to its continuous time CAR(p) process of the
form

Y
(p)
t =

p−1∑
i=0

ai+1Y
(i)
t + σWt, t > 0, (3.24)

14



for aj 6= 0, j = 1, 2, ..., p, and σ2 > 0.
Define the coefficients {chj : j = 1, ..., p} and ζh through the equations

bhi , (−1)i−1

{(
p

i

)
+

p∑
k=i

(
k − 1

i− 1

)
hp−k+1chk

}
, and (3.25)

ςh , hp−1ξh.

The following theorem, which is relegated to the Appendix, can be proven:

Theorem 3.3. The h-AR(p) process of (3.23) with coefficients given by
(3.25), where chj → aj, j = 1, 2, ..., p, and ξh/

√
h→ σ as h ↓ 0, converges in

distribution to the CAR(p) process of (3.24).

It is of interest to note the scaling for the Gaussian variable Zt in (3.23).
In order to have the desired convergence, one must have ζh → σ

√
h and via

(3.25 this entails ζh → σhp−1/2.

APPENDIX

The Appendix proves Theorem 5.3. To do so, we first study the similarity
of the h-AR(p) process in (3.23) with the CAR(p) process (3.24). We begin
by introducing the corresponding h-VAR(p) process

∆h
0;t −∆h

0;t−h = h∆h
1;t,

∆h
1;t −∆h

1;t−h = h∆h
2;t,

...

∆h
i−1;t −∆h

i−1;t−h = h∆h
i;t, (A.1)

...

∆h
p−2;t −∆h

p−2;t−h = h∆h
p−1;t,

∆h
p−1;t −∆h

p−1;t−h = h

p−1∑
i=0

chi+1∆h
i;t−h + ξhZt,

Zt ∼ IID N(0, 1), t = h, 2h, ....

The process of (A.1) immediately yields:

i=1
=⇒ h∆h

1;t−h = ∆h
0;t−h −∆h

0;t−2h

15



=

(
1

0

)
(−1)0∆h

0;t−h +

(
1

1

)
(−1)1∆h

0;t−2h,

i=2
=⇒ h2∆h

2;t−h = h
[
∆h

1;t−h −∆h
1;t−2h

]
=
[
∆h

0;t−h −∆h
0;t−2h

]
−
[
∆h

0;t−2h −∆h
1;t−3h

]
= ∆h

0;t−h − 2∆h
0;t−2h + ∆h

0;t−3h

=

(
2

0

)
(−1)0∆h

0;t−h +

(
2

1

)
(−1)1∆h

0;t−2h +

(
2

2

)
(−1)2∆h

0;t−3h.

The process of (A.1) generalizes as follows:

hi∆h
i;t−h =

i+1∑
k=1

(
i

k − 1

)
(−1)k−1∆h

0;t−kh, (A.2)

for i = 1, 2, ..., p− 1.
We prove (A.2) via mathematical induction. (i) For i = 1 the relationship
(A.2) holds trivially. (ii) Let (A.2) hold for i = m. (iii) We shall show that
(A.2) also holds for i = m+ 1.

hm+1∆h
m+1;t−h

(A.1) for i=m+1
=========== hm∆h

m;t−h − hm∆h
m;t−2h

(ii)
===

m+1∑
k=1

(
m

k − 1

)
(−1)k−1∆h

0;t−kh−

m+1∑
k=1

(
m

k − 1

)
(−1)k−1∆h

0;t−(k+1)h

2nd sum: l=k+1
===========

m+1∑
k=1

(
m

k − 1

)
(−1)k−1∆h

0;t−kh+

m+2∑
l=2

(
m

l − 2

)
(−1)l−1∆h

0;t−lh

=
m+2∑
k=1

(
m+ 1

k − 1

)
(−1)k−1∆h

0;t−kh.
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Furthermore, we have that

∆h
0;t

(A.1) for i=1
========= ∆h

0;t−h + h∆h
1;t

(A.1) for i=2
========= ∆h

0;t−h + h
[
∆h

1;t−h + h∆h
2;t

]
= ∆h

0;t−h + h∆h
1;t−h + h2∆h

2;t

= · · · =
p−2∑
i=0

hi∆h
i;t−h + hp−1∆h

p−1;t

by the last equation of (A.1)
==================

p−2∑
i=0

hi∆h
i;t−h + hp−1

[
∆h
p−1;t−h+

h

p−1∑
i=0

chi+1∆h
i;t−h + ξhZt

]
(A.2)

====

p−1∑
i=0

[
1 + hp−ichi+1

] i+1∑
k=1

(
i

k − 1

)
(−1)k−1∆h

0;t−kh + hp−1ξhZt

by interchanging the sums
=================

p∑
k=1

(−1)k−1

{
p−1∑
i=k−1

(
i

k − 1

)[
1 + hp−ichi+1

]}
∆h

0;t−kh + hp−1ξhZt

telescopic sum
==========

p∑
k=1

(−1)k−1

{(
p

k

)
+

p∑
i=k

(
i− 1

k − 1

)
hp−i+1chi

}
∆h

0;t−kh+

hp−1ξhZt,

which, when compared with the h-AR(p) process of (3.23), yields the rela-
tionships

bhi , (−1)i−1

{(
p

i

)
+

p∑
k=i

(
k − 1

i− 1

)
hp−k+1chk

}
, and (A.3)

ςh , hp−1ξh
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for all i = 1, 2..., p. From above, the h-AR(p) process of (3.23) with coeffi-
cients given by (3.25) is equivalent to the h-VAR(p) of (A.1). We conclude
with a statement of Theorem 5.3, the proof and supporting details of which
are in the Appendix.

We shall next find the coefficients chi , i = 1, 2, ..., p, in terms of the coef-
ficients bhi , i = 1, 2, ..., p. In particular, we have that, from (3.25),

i=p
=⇒ bhp = (−1)p−1

{(
p

p

)
+

(
p− 1

p− 1

)
h chp

}
⇒ chp = h−1

[
(−1)p−1

(
p− 1

p− 1

)
bhp − 1

]
and

i=p−1
=⇒ bhp−1 = (−1)p−2

{(
p

p− 1

)
+

p∑
k=p−1

(
k − 1

p− 2

)
hp−k+1chk

}

⇒ chp−1 = h−2

{
(−1)p−2

[(
p− 2

p− 2

)
bhp−1 +

(
p− 1

p− 2

)
bhp

]
− 1

}
.

Proposition A.1. This gives the general formula

chi = h−p+i−1

[
(−1)i−1

p∑
k=i

(
k − 1

i− 1

)
bhk − 1

]
, i = 1, 2, ..., p. (A.4)

Proof. We prove Proposition A.1 by backward induction. (i) For i = p the
relationship (A.4) holds trivially. (ii) Let (A.4) hold for every i = p− 1, p−
2, ...,m+ 1. (iii) We shall show that (A.4) also holds for i = m.

i=m
=⇒ bhm = (−1)m−1

{(
p

m

)
+

p∑
i=m

(
i− 1

m− 1

)
hp−i+1chi

}

(i), (ii)
=⇒ (−1)m−1bhm =

(
p

m

)
+ hp−m+1chm+

p∑
i=m+1

(
i− 1

m− 1

)
(−1)i−1

p∑
k=i

(
k − 1

i− 1

)
bhk −

p∑
i=m+1

(
i− 1

m− 1

)
.

Hence, interchanging the order of summation in the double sum, the former
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index bounds i ≤ k ≤ p and m+1 ≤ i ≤ p have now become m+1 ≤ i ≤ k
and m+ 1 ≤ k ≤ p . We further have:

p∑
i=m+1

(
i− 1

m− 1

)
(−1)i−1

p∑
k=i

(
k − 1

i− 1

)
bhk =

=

p∑
k=m+1

bhk

k∑
i=m+1

(−1)i−1

(
i− 1

m− 1

)(
k − 1

i− 1

)

j=i−m
======

p∑
k=m+1

bhk

(
k − 1

m− 1

) k−m∑
j=1

(−1)j+m−1

(
k −m
j

)

= (−1)m−1

p∑
k=m+1

bhk

(
k − 1

m− 1

)[k−m∑
j=0

(−1)j
(
k −m
j

)
− 1

]

Newton
====== (−1)m−1

p∑
k=m+1

bhk

(
k − 1

m− 1

)[
(−1 + 1)k−m − 1

]

= (−1)m
p∑

k=m+1

bhk

(
k − 1

m− 1

)
,

as well as

p∑
i=m+1

(
i− 1

m− 1

)
=

p∑
i=m+1

[(
i

m

)
−
(
i− 1

m

)]
telescopic sum

==========

(
p

m

)
− 1.

The last relationship yields

(−1)m−1bhm =

(
p

m

)
+ hp−m+1chm + (−1)m

p∑
k=m+1

bhk

(
k − 1

m− 1

)
−[(

p

m

)
− 1

]

⇒ hp−m+1chm = (−1)m−1

p∑
k=m

bhk

(
k − 1

m− 1

)
− 1,

concluding part (iii) and thus the proof.

19



Finally, for t > 0 we know that:

dYt = Y
(1)
t dt,

dY
(1)
t = Y

(2)
t dt,

...

dY
(i−1)
t = Y

(i)
t dt, (A.5)

...

dY
(p−2)
t = Y

(p−1)
t dt,

and from (3.24) we have also that

dY
(p−1)
t =

[
a1Yt + a2Y

(1)
t + · · ·+ aiY

(i−1)
t + · · ·

+ ap−1Y
(p−2)
t + apY

(p−1)
t

]
dt+ σdWt.

(A.6)

Thus the CAR(p) process of (3.24) is equivalent from (A.5) and (A.6) to the
system of stochastic differential equations in (2.1).

Theorem 5.3 The h-AR(p) process of (3.23) with coefficients given by
(3.25), where chj → aj, j = 1, 2, ..., p, and ξh/

√
h → σ as h ↓ 0, converges in

distribution to the CAR(p) process of (3.24).

Proof. We generalize Theorem 3.3 by proving that it suffices to show
that the h-VAR(p) process of (A.1) converges to the SDEs system of (2.1).
As in Theorem 5.1.1, we employ the framework of Theorems 2.1 and 2.2
of [8]. Let Mt be the σ-algebra generated by ∆h

i;0,∆
h
i;h,∆

h
i;2h, ...,∆

h
i;t−h, i =

0, 1, ..., p − 2, and ∆h
p−1;0,∆

h
p−1;h,∆

h
p−1;2h, ...,∆

h
p−1;t for t = h, 2h, .... The

h-VAR(p) process of (A.1) is clearly Markovian of order 1, since we may
construct ∆h

0;t,∆
h
1;t,∆

h
2;t, ...,∆

h
p−1;t from ∆h

0;t−h,∆
h
1;t−h,∆

h
2;t−h, ...,∆

h
p−1;t−h by

constructing first ∆h
p−1;t from the last equation of (A.1), ∆h

p−2;t from (A.1) for
i = p− 1, and so forth, and then finally ∆h

0;t from (A.1) for i = 1. This also
establishes that ∆h

i;t, i = 0, 1, ..., p−2 is Mt adapted. Thus the corresponding
drifts per unit of time conditioned on information at time t are given by:

E

[
∆h
i−1;t −∆h

i−1;t−h

h

∣∣∣∣Mt

]
(A.1)

==== E

[
∆h
i−1;t−h + h∆h

i;t −∆h
i−1;t−h

h

∣∣∣∣Mt

]
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= ∆h
i;t, i = 1, 2, ..., p− 1, (A.7)

and

E

[
∆h
p−1;t+h −∆h

p−1;t

h

∣∣∣∣Mt

]

by the last equation of (A.1)
================== E

[
h
∑p−1

i=0 c
h
i+1∆h

i;t + ξhZt+h

h

∣∣∣∣Mt

]
(A.8)

= ch1∆h
0;t + ch2∆h

1;t + · · ·+ chp∆
h
p−1;t .

Furthermore, the variances and covariances per unit of time are given by

E


(

∆h
i−1;t −∆h

i−1;t−h

)2

h

∣∣∣∣Mt

 (A.1)
==== E


(
h∆h

i;t

)2

h

∣∣∣∣Mt


= h

(
∆h
i;t

)2

, i = 1, 2, ..., p− 1, (A.9)

and

E


(

∆h
p−1;t+h −∆h

p−1;t

)2

h

∣∣∣∣Mt


by the last equation of (A.1)

================== E


[
h
∑p−1

i=0 c
h
i+1∆h

i;t)h+ ξhZt+h

]2

h

∣∣∣∣Mt



=
[
ch1∆h

0;t + ch2∆h
1;t + · · ·+ chp∆

h
p−1;t

]2
h+

(
ξh
)2

h
, (A.10)

where the last equality assumes that Zt+h ∼ IID N(0, 1). By the same logic:

E


(

∆h
i−1;t −∆h

i−1;t−h

)(
∆h
j−1;t −∆h

j−1;t−h

)
h

∣∣∣∣Mt
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(A.1)
==== E


(
h∆h

i;t

)(
h∆h

j;t

)
h

∣∣∣∣Mt


= h∆h

i;t ∆h
j;t, i, j = 1, 2, ..., p− 1, i 6= j, (A.11)

and

E


(

∆h
i−1;t −∆h

i−1;t−h

)(
∆h
p−1;t+h −∆h

p−1;t

)
h

∣∣∣∣Mt


(A.1)

==== E

h∆h
i;t

[(
ch1∆h

0;t + ch2∆h
1;t + · · ·+ chp∆

h
p−1;t

)
h+ ξhZt+h

]
h

∣∣∣∣Mt


= h∆h

i;t

[
ch1∆h

0;t + ch2∆h
1;t + · · ·+ chp∆

h
p−1;t

]
, i = 1, 2, ..., p− 1. (A.12)

Therefore, the relationships of (A.9) - (A.12) become

E


(

∆h
i−1;t −∆h

i−1;t−h

)2

h

∣∣∣∣Mt

 = o(1), i = 1, 2, ..., p− 1, (A.13)

E


(

∆h
p−1;t+h −∆h

p−1;t

)2

h

∣∣∣∣Mt

 =

(
ξh
)2

h
+ o(1), (A.14)

E

(∆h
i−1;t−∆h

i−1;t−h

)(
∆h
j−1;t−∆h

j−1;t−h

)
h

∣∣∣∣Mt

 = o(1) (A.15)

i, j = 1, 2, ..., p− 1, i 6= j

and

E

(∆h
i−1;t−∆h

i−1;t−h

)(
∆h
p−1;t+h−∆h

p−1;t

)
h

∣∣∣∣Mt

 = o(1), (A.16)
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i = 1, 2, ..., p− 1,

where the o(1) terms vanish uniformly on compact sets.

We may also show by brute force that the limits of

E


(

∆h
i−1;t −∆h

i−1;t−h

)4

h

∣∣∣∣Mt

 , i = 1, 2, ..., p− 1

and

E


(

∆h
p−1;t+h −∆h

p−1;t

)4

h

∣∣∣∣Mt


exist and converge to zero as h ↓ 0. We can then define the continuous time
version of the h-VAR(p) process of (A.1) by

∆h
i;t , ∆h

i;kh

for kh ≤ t < (k+ 1)h and i = 0, 1, ..., p− 1. Thus, according to Theorem 2.2
in [8], the relationships (A.7), (A.8) and (A.13) - (A.16) provide the weak
(in distribution) limit diffusion. This is precisely the linear SDE system of
(2.1) and it has a unique solution.

References

[1] Anderson, T. The Statistical Analysis of Time Series. Wiley-
Interscience, 1994.

[2] Brockwell, P. J., Ferrazzano, V., and Klüppelberg, C. High-
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