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CODEX: A Normalization and Copy Number Variation Detection
Method for Whole Exome Sequencing

Abstract
High-throughput sequencing of DNA coding regions has become a common way of assaying genomic
variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic
variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of
biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome
sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases
due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also
includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based
exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap
samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based
validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals
and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample
normalization procedure of CODEX removes more noise than normalizing the tumor against the matched
normal and that the segmentation procedure performs well in detecting CNVs with nested structures.
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ABSTRACT

High-throughput sequencing of DNA coding regions
has become a common way of assaying genomic
variation in the study of human diseases. Copy num-
ber variation (CNV) is an important type of genomic
variation, but detecting and characterizing CNV from
exome sequencing is challenging due to the high
level of biases and artifacts. We propose CODEX, a
normalization and CNV calling procedure for whole
exome sequencing data. The Poisson latent factor
model in CODEX includes terms that specifically re-
move biases due to GC content, exon capture and
amplification efficiency, and latent systemic artifacts.
CODEX also includes a Poisson likelihood-based re-
cursive segmentation procedure that explicitly mod-
els the count-based exome sequencing data. CODEX
is compared to existing methods on a population
analysis of HapMap samples from the 1000 Genomes
Project, and shown to be more accurate on three
microarray-based validation data sets. We further
evaluate performance on 222 neuroblastoma sam-
ples with matched normals and focus on a well-
studied rare somatic CNV within the ATRX gene.
We show that the cross-sample normalization proce-
dure of CODEX removes more noise than normalizing
the tumor against the matched normal and that the
segmentation procedure performs well in detecting
CNVs with nested structures.

INTRODUCTION

Copy number variants (CNVs) are large insertions and dele-
tions that lead to gains and losses of segments of chromo-
somes. CNVs are an important and abundant source of

variation in the human genome (1–4). Like other types of
genetic variation, some CNVs have been associated with
diseases, such as neuroblastoma (5), autism (6) and Crohn’s
disease (7). Better understanding of the genetics of CNV-
associated diseases requires accurate CNV detection. Tra-
ditional genome-wide approaches to detect CNVs make use
of array comparative genome hybridization (CGH) or sin-
gle nucleotide polymorphism (SNP) array data (8–10). The
minimum detectable size and breakpoint resolution, which
are correlated with the density of probes on the array, are
limited. Paired-end Sanger sequencing, which is often used
as the gold standard platform for CNV detection, has bet-
ter resolution and accuracy but requires significant time and
budget investment.

With the dramatic growth of sequencing capacity and
the accompanying drop in cost, massively parallel next-
generation sequencing (NGS) offers appealing platforms
for CNV detection. Many current analysis methods are fo-
cused on whole genome sequencing (WGS), which allows
for genome-wide CNV detection and finer breakpoint reso-
lution than array-based approaches (11–15). Whole exome
sequencing (WES), on the other hand, has been preferred
as a cheaper, faster, but still effective alternative to WGS in
large-scale studies, where the priority has been to identify
disease-associated variants in coding regions (16–19).

Due to the biases and artifacts introduced during the
exon targeting and amplification steps of WES, depth of
coverage in WES data is heavily contaminated with exper-
imental noise and thus does not accurately reflect the true
copy number. Here, we present a novel normalization and
CNV calling method, CODEX (COpy number Detection
by EXome sequencing), to remove biases and artifacts in
WES data and produce accurate CNV calls. As an example,
in Figure 1a, we show heatmap of raw read depth matrix
from the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) Project (20) WES data set.
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Figure 1. Heatmaps of raw, normalized and segmented WES read depth data from the TARGET Project. (a) Exon- and sample-wise biases and artifacts
make the raw read depth data noisy and not directly reflect true copy number states. (b) CODEX’s normalization procedures are performed. Heatmap of(
Y − λ̂

)
/
√

λ̂ is shown and has a cleaner view of CNV signals. (c) CODEX’s Poisson-likelihood-based segmentation procedure returns CNV calls.

The region contains a small deletion that is obscured by ex-
perimental noise. The second and third heatmaps show the
coverage in this region after, respectively, CODEX’s nor-
malization and segmentation steps.

Several algorithms have been developed for copy number
estimation with whole exome data in matched case/control
settings by either directly using the matched normal (21–23)
or building an optimized reference set (24,25) to control for
artifacts. Other algorithms use singular value decomposi-
tion (SVD) to extract copy number signals from noisy cov-
erage matrices by removing K latent factors that explain the
most variance (26–28). This exploratory approach assumes
continuous measurements with Gaussian noise, uses an ar-
bitrary choice of K and does not specifically model known
quantifiable biases, such as those due to GC content.

CODEX does not require matched normal controls, but
relies on the availability of multiple samples processed using

the same sequencing pipeline. Unlike current approaches,
CODEX uses a Poisson log-linear model that is more suit-
able for discrete count data. The normalization model in
CODEX includes terms that specifically remove biases due
to GC content, exon length and capture and amplification
efficiency, and latent systematic artifacts. We explore sev-
eral different statistical approaches for choosing the num-
ber of latent factors, and discuss how one should set this
crucial parameter wisely. The power of CODEX and SVD-
based approaches are compared by in silico spike-in stud-
ies on the 1000 Genomes Project (29) WES data and show
that CODEX offers higher power in detecting both com-
mon and rare CNVs. Also, on WES data from the 1000
Genomes Project paired with SNP array data from three
previous cohort studies on the same HapMap samples (30–
32), CODEX gives higher precision and recall for both rare
and common CNV detection by WES data, as compared to
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Figure 2. A flowchart outlining the procedures of CODEX in normaliz-
ing WES read depth and calling CNV. The first step is computing GC con-
tent, mappability and depth of coverage using Rsamtools with QC mea-
sures. The multi-sample normalization model by CODEX is then applied
to remove biases and artifacts introduced by GC content, exon target-
ing and amplification efficiency and latent systemic artifacts. The Poisson
likelihood-based segmentation algorithm gives final CNV calls with copy
number estimates.

existing methods. CODEX’s normalization and segmenta-
tion accuracy is further evaluated through the analysis of
the WES data of 222 neuroblastoma matched tumor/blood
samples from the TARGET project (20), with a focus on
the well-studied ATRX gene region (20,33,34). The cross-
sample normalization procedure of CODEX, when applied
to the matrix of tumor samples, is more effective in reducing
noise than normalizing each tumor to its matched normal.
The somatic deletions in the ATRX region have a nested
structure, which CODEX was able to recover.

MATERIALS AND METHODS

Overview of analysis pipeline

Figure 2 shows an overview of the analysis pipeline of
CODEX. We start with mapped reads from BAM files (35)
that are assembled, sorted and indexed by the same pipeline,
and compute depth of coverage after a series of quality fil-
tering based on mappability, exon size and a cutoff on min-
imum coverage (see details below). Then, we fit a normal-
ization model based on a log-linear decomposition of the
depth of coverage matrix into effects due to GC content,
exon capture and amplification and other latent systemic
factors. The normalization model produces an estimated
‘control coverage’ for each exon and each sample, which is
the coverage we expect to see if there is no CNV. Next, the
observed coverage for each exon and each sample is com-
pared to the corresponding estimated control coverage in
a Poisson likelihood-based segmentation algorithm, which
returns a segmentation of the genome into regions of ho-
mogeneous copy number. A direct estimate of the relative

copy number, in terms of fold change from the expected
control value, can be used for genotyping. Heatmaps of raw
depth of coverage in an example region, its corresponding
normalized coverage and its segmentation results are shown
in Figure 1. CODEX is freely available as a Bioconductor
R package at http://www.bioconductor.org/packages/devel/
bioc/html/CODEX.html.

Sample selection and target filtering

To have as much sample- and exon-wise homogeneity as
possible and to make sure that our normalization algorithm
converges without being deviated by extreme values, we
adopt a sample selection and target filtering strategy before
applying our proposed normalization method to the read
depth data. Specifically, for reducing artifacts, we recom-
mend that all of the samples be sequenced by the same plat-
form. We further filter out exons that: (i) have extremely low
coverage (median read depth across all samples less than 20,
which mostly reflect capture failure); (ii) are extremely short
(less than 20 base pairs); (iii) are hard to map (mappability
less than 0.9, Supplementary Figure S1); (iv) have extreme
GC content (less than 20% or greater than 80%). These de-
fault thresholds for quality control (QC) are recommended
but are also user-tuneable and thus can be adapted to differ-
ent sequencing protocols. We show in Table 1 that with the
above QC thresholds, 9.74% of exon targets are excluded in
the data. Details on computation of GC content, mappa-
bility and depth of coverage are provided in Supplementary
Material.

Read depth normalization

Due to the extremely high level of systemic bias in
WES data, normalization is crucial in WES CNV calling.
CODEX’s multi-sample normalization model takes as in-
put the WES depth of coverage, exon-wise GC content and
sample-wise total number of reads. Specifically, we denote Y
as the coverage matrix with row i (1 ≤ i ≤ n) corresponding
to the ith exon and column j (1 ≤ j ≤ m) to the jth sample,
GCi as the GC content for exon i and Nj as the total num-
ber of mapped reads for sample j. The ‘null’ model, which
reflects the expected coverage when there is no CNVs, is

Yi j ∼ Poisson(λi j )

λi j = Nj f j (GCi )βi exp
(

K∑
k=1

gikh jk

)
,

where fj(GCi) is the bias due to GC content for exon i sample
j; β i reflects the exon-specific bias due to length and capture
and amplification efficiency of exon i and gikhjk (1 ≤ k ≤ K)
are the kth latent Poisson factors for exon i and sample j.
The goal of fitting the null model to the data is to estimate
the various sources of biases, which can then be used for
normalization.

We adopt a robust iterative maximum-likelihood algo-
rithm for estimating the parameters of the null model.
Briefly, in each iteration, we estimate f(GC) by fitting
a smoothing spline of Y

/
Nβ exp(g × hT) against the

GC content, using the built-in function smooth.spline in
R. β takes the value of the median of each row in

http://www.bioconductor.org/packages/devel/bioc/html/CODEX.html
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Table 1. CNV call sets information on the 1000 Genomes Project WES data set

Chr

Number of
targets
(before/after QC) CODEX XHMM CoNIFER

EXCAVATOR
CNVs

K CNVs PCs CNVs PCs CNVs

1 15 426/14 101 3 361 (301-60) 4 129 (56-73) 36 (13-23) 263 (236-27)
2 9640/8956 3 54 (14-40) 4 51 (16-35) 6 (0-6) 15 (0-15)
3 8267/7775 3 13 (0-13) 4 8 (0-8) 4 (0-4) 5 (0-5)
4 5519/5157 4 27 (16-11) 4 20 (7-13) 16 (6-10) 91 (86-5)
5 6403/5950 3 163 (143-20) 4 39 (23-16) 5 (0-5) 79 (72-7)
6 6997/6569 3 115 (95-20) 4 34 (11-23) 15 (6-9) 62 (58-4)
7 6210/5546 3 164 (118-46) 4 62 (24-38) 6 (0-6) 121 (108-13)
8 4477/4118 3 51 (42-9) 4 12 (0-12) 2 (0-2) 41 (39-2)
9 5777/5136 3 27 (6-21) 4 24 (0-24) 7 (0-7) 66 (42-24)
10 6354/5759 3 28 (6-22) 4 27 (9-18) 6 (0-6) 55 (50-5)
11 7778/6979 3 77 (54-23) 4 26 (0-26) 7 (0-7) 73 (45-28)
12 7817/7261 3 35 (6-29) 4 32 (2-30) 4 9 (0-9) 25 (12-13)
13 2536/2362 3 14 (0-14) 4 7 (0-7) 0 (0-0) 3 (0-3)
14 4482/4127 3 37 (29-8) 4 16 (0-16) 8 (7-1) 56 (46-10)
15 4635/4150 3 93 (66-27) 4 40 (18-22) 5 (0-5) 73 (65-8)
16 5596/4744 4 154 (124-30) 5 86 (57-29) 9 (0-9) 112 (78-34)
17 8283/7386 3 91 (58-33) 4 49 (23-26) 10 (0-10) 124 (110-14)
18 2021/1888 3 4 (0-4) 4 5 (0-5) 1 (0-1) 3 (0-3)
19 7438/5982 4 168 (117-51) 5 135 (103-32) 15 (0-15) 197 (131-66)
20 3966/3497 3 11 (7-4) 4 9 (0-9) 1 (0-1) 18 (7-11)
21 1499/1314 4 4 (0-4) 4 29 (26-3) 0 (0-0) 61 (58-3)
22 2957/2493 4 79 (62-17) 5 55 (38-17) 12 (0-12) 124 (107-17)
X 5436/4787 3 36 (15-21) 4 60 (41-19) 9 (0-9) 248a (248a-0)
Y 281/146 3 0 (0-0) 3 0 (0-0) 0 (0-0) 144a (144a-0)
Sum 139 795/126 183 - 1806 (1279-527) - 955 (454-501) - 189 (32-157) 1667 (1350-317)

Number of exon targets before and after QC procedure is shown. CNVs detected by CODEX, XHMM, CoNIFER and EXCAVATOR are shown and are
further categorized into common and rare ones (common–rare in parentheses). Number of latent factors (K) and PCs are shown for latent factor models:
default values from CODEX and XHMM are adopted; number of PCs for CoNIFER is chosen at 4 so that it is conservative by the scree plot and is
comparable to XHMM.
aExcluded due to mishandling of sex chromosomes by EXCAVATOR.

Y
/

Nf (GC) exp(g × hT). The latent variables gikh jk (1 ≤ k
≤ K) are estimated in the following steps: (i) take known
h as covariates, fit n Poisson log-linear regressions with
each row of Y as the response and corresponding row of
log (Nf (GC)β) as the fixed offset; (ii) take known g as co-
variates, fit m Poisson log-linear regressions with each col-
umn of Y as the response and corresponding column of
log (Nf (GC)β) as the fixed offset; (iii) apply SVD to the
row-centered matrix g × hT to obtain the K right singular
vectors to update h. The third step ensures the uniqueness
and orthogonality of the updated components, which forces
the identifiability of gikh jk (1 ≤ k ≤ K) (36). We fit the Pois-
son log-linear models with the built-in function glm in R.
See below for details of the maximum-likelihood algorithm.
Procedures for determining K, the number of latent Poisson
factors, is discussed later.

Initialization
βold = 1n, g = 0n×K , h = 0m×K .
Iteration

i. For each sample j, fit a smoothing spline of
Yj

Nj βold(exp(g×hT)) j

∼ GC to get f j (GC).

ii. For each exon i, update β i as βnew
i =

median
([

Y
Nf (GC) exp(g×hT)

]
i

)
.

iii. Denote Z = Nf (GC)βnew. Apply SVD to row-centered
log(Y

/
Z) to obtain the K right singular vectors and use

as hold.
a. Fit n Poisson log-linear regressions with Yi· as re-

sponse, hdd as covariates, log(Zi ) as fixed offset to ob-
tain updated estimates as g.

b. Fit m Poisson log-linear regressions with Yj as re-
sponse, g as covariates, log(Zj ) as fixed offset to ob-
tain updated estimates as hnew.

c. Center each row of g × (hnew)T and apply SVD to the
row-centered matrix to obtain the K right singular
vectors to update hnew.

d. Repeat steps a to c with hold = hnew until convergence
to obtain h and g.

iv. Repeat steps i to iii with βold = βnew until convergence.

After the normalization procedure, we obtain λ̂ =
Nβ̂ f̂ (GC) exp

(
ĝ × ĥT

)
, which is the expected ‘control cov-

erage’ in the event where there is no CNV. As described
later, the observed coverage Y will be compared to the cor-
responding estimated control coverage λ̂ to test for the pres-
ence of CNVs.

For CNV detection under case–control settings (e.g. tu-
mor with normal) involving recurrent large chromosomal
aberrations, CODEX estimates the exon-wise Poisson latent
factor {h jk} using only the read depths in the control cohort,
and then computes the {gik} terms for the case samples by
regression. This leads to higher sensitivity for detecting vari-
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ants that are present only in the case samples. CODEX also
includes two modes––‘integer’ mode that returns copy num-
bers as integers for germline CNV detection and ‘fraction’
mode that returns fractional copy numbers for CNV detec-
tion of samples with heterogeneous genetic compositions.

Poisson latent factors and choice of K

Some sources of bias in WES can be directly measured
(GC content, mappability and exon size). However, there
are other unmeasurable sample- and target-specific biases
that are amplified during the library preparation and se-
quencing experiment. The latent Poisson factors {gik} and
{h jk} are designed to capture and decompose these unob-
served systemic bias in a log-additive manner. Such latent
factor models have been shown to be effective in the analy-
sis of microarray data (37–40), and have also recently been
applied to NGS data. Both CoNIFER (26) and XHMM
(28) use latent factor models to remove systemic bias, but
their models assume continuous measurements with Gaus-
sian noise structure, while CODEX is based on a Poisson
log-linear model, which is more suitable for modeling the
discrete counts in WES data, especially when there is high
variance in depth of coverage between exons. The latent fac-
tor terms in the normalization model resemble those used
in Lee et al. (36) for microRNA profiling. In particular,
the identifiability constraints in Lee et al. also apply to our
case, and our iterative maximum-likelihood estimation pro-
cedure ensures identifiability.

A common downfall of latent factor models is that true
CNV signals may correlate with and influence the top K la-
tent factors. Thus, the number of latent factors, K, is a cru-
cial parameter. If K is chosen to be too large, some bona
fide CNV signals, especially those for common CNVs, will
be dampened during normalization. On the other hand, if
K is too small, residual artifacts will remain and inflate the
type I error rate. CoNIFER (26) adopts a common practice
for choosing the number of factors in latent variable models,
which is to draw the screen plot with the number of compo-
nents on the X-axis and the corresponding contributed vari-
ance on the Y-axis. If there is an ‘elbow’ in the scree plot,
then K is chosen at the position of the elbow. However, in
most cases there is no detectable elbow, which is why many
existing methods arbitrarily set the value of K. XHMM re-
moves components with variance 0.7/m or higher, where m
is the number of components (samples) and 0.7 is a user-
tuneable parameter arbitrarily set as default (28).

We apply two additional statistical procedures of choos-
ing this crucial model tuning parameter: Akaike informa-
tion criterion (AIC) and Bayes information criterion (BIC)

AIC = 2 ln(L) − 2k
BIC = 2 ln(L) − k ln(n),

where L is the likelihood for the estimated model, k is the
number of parameters in the model and n is the number
of data points. Both criteria reward goodness of fit with
a penalty term that is an increasing function of the num-
ber of parameters in the model. AIC penalizes the num-
ber of parameters less strongly than does BIC, and thus the
model chosen by AIC removes more latent factors than that
chosen by BIC. CODEX reports all three statistical met-

rics (AIC, BIC, percentage of variance explained) and uses
BIC as the default method to determine the number of K.
Since false positives can be screened out through a closer
examination of the post-segmentation data, whereas CNV
signals removed in the normalization step cannot be recov-
ered, CODEX opts for a more conservative normalization
that, when in doubt, uses a smaller value of K.

CNV detection and copy number estimation

Proper normalization sets the stage for accurate segmenta-
tion and CNV calling. For germline CNV detection in nor-
mal samples, many CNVs are short and extend over only
one or two exons. In this case, simple gene- or exon-level
thresholding is sufficient.

For longer CNVs and for copy number estimation in tu-
mors where the events are expected to be large and exhibit
nested structure, we propose a Poisson likelihood-based re-
cursive segmentation algorithm. Let ys, ..., yt and λs, ..., λt
be the raw and estimated control coverage of the window
spanning exon s to exon t. The values λs, ..., λt are estimated
by the normalization procedure described in the previous
section, but suppressing the sample indicator j since we seg-
ment each sample separately. A joint cross-sample segmen-
tation, as proposed in Zhang et al. (41), can also be ap-
plied and may yield more accurate results for detection of

germline CNVs. Let ys:t =
t∑

i=s
yi and λs:t =

t∑
i=s

λi . The scan

statistic we use is maxs,t U(s, t), where

U(s, t) = sup
μ

(
log

(
μys:t exp(−μ)
λ

ys:t
s:t exp(−λs:t)

))
=

ys:t log
(

ys:t
λs:t

)
− (ys:t − λs:t)

The above is the generalized log-likelihood ratio of the al-
ternative model, ys:t ∼ Poisson(μ) with μ arbitrary, versus
the null model, ys:t ∼ Poisson(λs:t). The copy number esti-
mate for the window is given by 2ys:t

/
λs:t.

Given the scan statistic, CODEX performs a circular bi-
nary segmentation procedure (42) using U(s,t). We further
use a modified BIC (mBIC) to determine the number of
change points P in our model (43),

mBIC(P) =
log

(
Lτ

L0

)
− 1

2

P∑
ρ=0

log(̂τρ+1 − τ̂ρ) + ( 1
2 − P) log(n),

where the first term is the generalized log-likelihood ra-
tio for the model with P change points versus the null
model with no change points; τρ (1 ≤ ρ ≤ P) is the ρth
change point, 1 = τ0 < τ1 < ... < τP < τP+1 = n; n is the
number of exons. We report the segmentation with P̂ =
argmaxPmBIC(P). Compared with algorithms based on
HMM, such as XHMM and EXCAVATOR, CODEX does
not require the user to pre-specify unknown parameters,
such as expected distance between exons, exon-wise CNV
rate and average number of exons in a CNV. These quan-
tities are often hard to set a priori without a large relevant
training data set, and in many cases have to be chosen arbi-
trarily. Post-segmentation, CODEX outputs an estimate of
the relative copy number in terms of fold change from the
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expected control coverage, rather than a binary categoriza-
tion of deletion and duplication as in CoNIFER (26) and
XHMM (28).

Samples and data sets

To examine the accuracy of CODEX and to illustrate its
application, we use a publicly available WES data set from
the 1000 Genomes Project Phase 1 release (29) contain-
ing 90 healthy individuals. Forty-six samples are sequenced
at the Washington University Genome Sequencing Center
(captured by HSGC VCRome) and 44 at the Baylor Col-
lege of Medicine (captured by SureSelect All Exon V2). All
samples have Omni and Axiom genotypes and have more
than 70% of exome targets covered to 20× or more. Sex is
well balanced (44 males and 46 females) and population (40
Utah residents with northern and western European ances-
try (CEU), 24 Japanese people from Tokyo (JPT) and 26
Yoruba people from Ibadan (YRI)) adds a potential source
of latent variation. More details on the HapMap samples
are provided in Supplementary Table S1.

We also analyze a WES data set consisting of 222 paired
tumor/normal (blood leukocyte) samples of individuals
older than 18 months of age at diagnosis with stage-4 neu-
roblastoma from the TARGET Project (20). WES of na-
tive and whole genome amplified DNA of ∼33 Mb regions
yields a 124× average coverage, with 87% of bases suitable
for mutation detection (20).

RESULTS

Calling germline variations from HapMap samples

Effectiveness of normalization procedure. We first exam-
ine the effectiveness of CODEX’s proposed normalization
model on the 1000 Genomes Project WES data set (29). Pre-
vious studies have shown that read depth has a unimodal
relationship with GC content––regions with high or low
GC content tend to have decreased read depth (44). In our
smoothed estimates of f j (GC), we find that most but not all
samples have a unimodal shape for this function. We show
the predicted values of f j (GC) for four typical samples in
Figure 3. Interestingly, we found that some samples have es-
timates with multiple peaks in f j (GC), which suggests that
a parametric functional form assuming unimodality may be
too simplistic. Comparing across samples, we see that the
function f j (GC) changes in shape and not just by a scaling
factor. Therefore, the GC content bias is not linear across
samples and thus cannot be fully captured by linear latent
factor models. This motivates the separate non-parametric
term in our model for GC bias.

We further compare the normalization result of CODEX
against that of SVD-based method using array-based CNV
calls from the International HapMap Consortium (30) on
the same samples we analyze. For different categories of
CNV events, namely, homozygous deletions, heterozygous
deletions and duplications, we use direct thresholding of
log(Y

/̂
λ) to draw receiver operating characteristic (ROC)

curves of our model, where λ̂ is the estimated control cov-
erage from CODEX’s normalization procedure. The ROC
curves for SVD-based normalization are drawn by thresh-
olding on the residuals obtained by subtracting the first K
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Figure 3. Predicted values of f (GC) for four samples from the 1000
Genomes Project data set. Most patterns agree with previous observa-
tions that read depth has a unimodal relationship with GC content. How-
ever, dual modality is also observed. Furthermore, the function changes in
shape and not just by a scaling factor.

principal components (PCs) from the original read depth
Y. A separate power analysis is done for each of the fol-
lowing category of events: common homozygous deletion,
common heterozygous deletion, common duplication, rare
heterozygous deletion and rare duplication (Supplementary
Figure S2). There are no rare homozygous deletions as all
of the rare deletions from the HapMap CNV call set are
present in only heterozygous form. We see that CODEX’s
normalization procedure leads to a better signal-to-noise
ratio for both common and rare CNVs, and for both dele-
tions and duplications (Supplementary Figure S2).

Accuracy of CNV calling. We next compare the accuracy
of CODEX to existing approaches that are designed for
population-based CNV calling. These programs include
CoNIFER (26), XHMM (28) and EXCAVATOR (25) in its
‘pooling’ mode, for which we added four additional samples
as controls (Supplementary Table S1).

The number of calls made by each program on each chro-
mosome sample, broken down into common and rare calls,
is shown in Table 1. Globally, CODEX detects twice as
many CNV events as XHMM does and nearly 10 times
as many as CoNIFER does, while EXCAVATOR and
CODEX have comparable number of calls. CoNIFER de-
tects the fewest CNVs in total, which agrees with compar-
isons against EXCAVATOR made in Magi et al. (25). Since
CoNIFER does not automatically choose the number of
PCs, we fix the number of PCs filtered out by CoNIFER
at 4, agreeing with the selection made by XHMM so as
to make the two SVD-based programs comparable. The
choice of 4 PCs in normalization should not account for the
low number of calls made by CoNIFER, since through the
scree plot output by CoNIFER, we find the curve of rel-
ative contributed variance to be still significantly decreas-
ing at 4, indicating that the choice of 4 is conservative
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(Supplementary Figure S3). A large proportion of XHMM
and CoNIFER calls are rare (<5%) variants––52.46%
(501/955) and 83.07% (157/189), respectively. Despite the
bias in sensitivity of HMM and CoNIFER toward rare
variants, CODEX detects even more rare CNVs in total as
well as proportionately more common ones. Notably, the
number of latent factors K selected by CODEX is for most
chromosomes one less than the number of PCs excluded
by XHMM across the genome. Furthermore, CODEX
and XHMM tends to detect shorter CNVs compared to
CoNIFER and EXCAVATOR in units of both kb (Figure
4a) and exon (Figure 4b). Detailed CNV call sets by the four
methods are provided in Supplementary Table S2.

We assess the CNV calls made by the four methods by
comparing to calls reported by the International HapMap
Consortium (30), McCarroll et al. (31) and Conrad et al.
(32) in the same 90 HapMap samples. The International
HapMap 3 Consortium produced a clean CNV call set
by merging and utilizing probe-level intensity from both
Affymetrix and Illumina arrays, containing 856 copy num-
ber polymorphisms (CNPs) with a 99.0% mean call rate and
0.3% Mendelian inconsistency (30). Separately, McCarroll
et al. developed a map consisting of 1320 CNVs at 2-kb
breakpoint resolution by joint analysis of Affymetrix SNP
array, array CGH (45) and fosmid end-sequence-pair data
(31,46). The third source of validation we use is the call
set from Conrad et al., who used Nimblegen tiling oligonu-
cleotide arrays to generate a map of 11 700 CNVs greater
than 443 base pairs, of which 8599 have been validated in-
dependently (32). The genotyped CNPs from these three co-
hort studies that overlap with exon regions (73, 123 and 377
in total, respectively) are used as ‘validation set’ to assess
sensitivity and specificity of the four methods compared in
Table 1 (details provided in Supplementary Table S3). Fig-
ure 5 shows the precision and recall rates (precision is the
proportion of calls made by the program that overlap with
validation set, and recall is the proportion of the CNVs in
validation set that are called.) The different programs vary
considerably in precision and recall rate. CODEX has the
highest F-measure (harmonic mean of precision and recall)
for both common and rare CNVs (Figure 5). XHMM per-
forms well in detecting rare variants but is insensitive to
common ones (Figure 5). CoNIFER has the highest pre-
cision when comparing against calls from the International
HapMap Consortium (Figure 5a) and McCarroll et al. (Fig-
ure 5c) but gives poor results against Conrad et al. (Figure
5b). Furthermore, the high precision of CoNIFER come
with significant sacrifice on recall (Figure 5). See Supple-
mentary Table S4 for detailed comparison results based on
the three SNP array metrics.

Sensitivity assessment with spike-in study. We next con-
duct an in silico spike-in study to assess the sensitivity of the
different methods at varying population frequencies. Start-
ing with the WES data from chromosome 20 of the m = 90
HapMap samples analyzed in the previous section, we spike
CNV signals in to copy-number-neutral regions. We define
a region to be copy-number-neutral if it does not overlap
with CNV calls made by CODEX, XHMM, EXCAVATOR
and CoNIFER nor with previously reported CNV regions
by DGV (http://dgv.tcag.ca/dgv/app/) and dbVar (http://

www.ncbi.nlm.nih.gov/dbvar/). Of the 3966 exon targets on
chromosome 20, 1035 pass this criterion for copy-number-
neutral. We considered only heterozygous deletions of two
different lengths (5 and 10 exons) and varying population
frequencies (p ∈ {5%, 10%, . . . , 95%}). We focus on het-
erozygous deletions because (i) homozygous deletions are
easily detectable by all methods; (ii) as is shown in Supple-
mentary Figure S4, heterozygous deletions with frequency p
in the population have exactly the same detection accuracy
as duplications with frequency 1 − p. Specifically, for dele-
tions with population frequencies greater than 50%, copy-
number-neutral states are reported as duplications, whereas
deletions are reported as normal events, since all copy num-
ber events are defined in reference to a population average.
Events are centered at every hundredth exon and m × p sam-
ples are randomly chosen to be carriers. To generate CNV
signals for heterozygous deletions, we reduce the raw depth
of coverage for exons spanned by the CNV from y to c

2 × y,
where c is sampled from a normal distribution with mean 1
and standard deviation 0.1.

We apply CODEX to these spike-in data sets and com-
pare it to SVD-based normalization followed by HMM-
based segmentation. For the latter, we remove the first K
PCs from the read depth matrix and transform the residu-
als to z-scores for each sample separately. The z-scores are
then segmented by a HMM whose parameters are set as
the default values in XHMM. The specificity of both ap-
proaches is controlled to be higher than 99%. The sensitiv-
ities for short CNV (5 exons) and long CNV (10 exons) at
different population frequency levels are shown in Figure
6. We see that both approaches attain high sensitivity for
rare CNVs, and both have decreased sensitivity for common
CNV events. The sensitivity of CODEX is higher than that
of the existing approach for both rare and common vari-
ants (Figure 6, Supplementary Figure S5). For CNV events
with frequencies around 50%, both methods have the low-
est power due to the fact that the CNV signals are falsely
filtered out by a sample-wise latent factor (Figure 6, Supple-
mentary Figures S5 and S6). Also, shorter CNV events are
more often missed by the SVD approach, whereas CODEX
has comparable sensitivity for short and long variants at this
scale (Figure 6, Supplementary Figure S5). We also exam-
ine the effect of different choice of QC procedures and Sup-
plementary Figure S5 shows that detection power indeed
suffers from not removing outstanding outliers.

To gain a better understanding of what the latent fac-
tors in CODEX and SVD-based methods are capturing,
we show in Supplementary Figure S6 the correlation of the
latent factors to measurable quantities. The exon-wise la-
tent factors in both models and the estimated value of β
in CODEX are compared to GC content, mean exon cov-
erage and true copy number. The sample-wise latent fac-
tors in both models are compared to center, batch, pop-
ulation and total coverage (N). Based on these correla-
tions, we make the following observations: First, mean
exon coverage (represented by the pseudo-reference sam-

ple
{(∏m

v=1 Yiv
)1/m : 1 ≤ i ≤ n

}
) is captured by β in (cor-

relation coefficient 0.99) in CODEX and the first exon-
wise PC in SVD (correlation coefficient −0.98). Exon length
and capture and amplification efficiency are confounded in

http://dgv.tcag.ca/dgv/app/
http://www.ncbi.nlm.nih.gov/dbvar/
http://www.ncbi.nlm.nih.gov/dbvar/
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Figure 4. Lengths of CNV calls by CODEX, XHMM, CoNIFER and EXCAVATOR. Genomics lengths of CNVs (a) and number of exons in CNV
regions (b) are compared across four different methods. CODEX and XHMM detects more short CNVs, whereas CoNIFER and EXCAVATOR return
significant proportion of CNVs with lengths greater than 200 kb/20 exons.
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Figure 5. Assessment of CNV calls on the 1000 Genomes Project by array-based methods. CNV calls by CODEX, XHMM, CoNIFER and EXCAVATOR
are validated against genotyping calls from International HapMap Consortium (a), Conrad et al. (b) and McCarroll et al. (c). CODEX returns well-
balanced precision and recall rates with highest F-measures (gray contours shown harmonic means of precision and recall rates) among all methods for
detection of common, rare and all CNVs.

this exon-specific bias and there is no way, nor any need,
to estimate these individual quantities separately. Second,
GC content is correlated with the third exon-wise PC in
SVD (correlation coefficient −0.75). CODEX specifically
models the GC content bias for each sample by the term{

f j (GC) : 1 ≤ j ≤ m
}
, and as we show later, the bias can-

not be fully captured by a linear PC. Third, a CNV that is
more frequent in the population has higher absolute corre-
lation between copy number state and the exon-wise latent
factors in both CODEX (−0.22) and SVD (0.57). This is
why sensitivity is lower for common CNVs. Finally, other
known sources of bias, such as sequencing center and batch,
are captured by sample-wise latent factors in both CODEX
(correlation coefficient −1 and 0.74) and SVD (correlation
coefficient 0.97 and −0.71). In this data set, population does
not seem to be captured by any of the top latent factors.

Analysis of WES of neuroblastoma

We also apply CODEX to the WES data of 222 neurob-
lastoma patients from the TARGET Project (20). Our dis-
cussion here focuses on the well-characterized ATRX gene
region (20,33,34). The TARGET Project reported recurrent
focal deletions with a complex nested structure spanning the
ATRX gene. Since there are matched normal samples for
this study that have also been sequenced by the same tech-
nology, the TARGET calls were made by comparing each
tumor sample to its matched normal. This allows us to com-
pare the effectiveness of CODEX’s normalization model to
that of taking a log ratio to the matched normal coverage.
Also, focusing on this well-characterized region allows us to
demonstrate in accuracy of CODEX for handling recurrent
complex nested events.

The RPKM (reads per kilo bases per million reads) for
each exon and each sample are plotted in Figure 7a. The
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Figure 6. Power analysis of CODEX and SVD-based method on simula-
tion data set. Sensitivities are obtained by averaging results from 10 simu-
lations. Both methods suffer from ‘common’ CNV events (CNVs with fre-
quencies around 50%). When CNV frequency exceeds 50%, deletions and
copy-neutral states are detected as copy-neutral states and duplications in-
stead, which recovers the sensitivities. CODEX performs better compared
to SVD-based methods with higher power. Longer CNVs are generally
easier to be detected.

RPKM profiles are very noisy and do not show any clear
decrease in this region in any of the samples, highlighting
the need for normalization. For comparison, we also show
the TARGET Project’s initial analysis, which reported 16
multi-exon deletions within ATRX by comparing tumor to
matched normal samples (20). Specifically, we repeat their
analysis by thresholding the log2-ratio of RPKM in tumor
to RPKM in normal samples, illustrated in Figure 7b. Fig-
ure 7c shows the normalized intensities given by CODEX,
which detects 18 samples with somatic focal deletions (plots
for each individual sample are given in Supplementary Fig-
ure S7). We also apply XHMM to the tumor data set and
detect 14 samples with focal deletions (Figure 7d).

Of the 18 samples with somatic deletions detected by
CODEX, three are also called by the TARGET Project
but missed by XHMM; one is detected by XHMM and
CODEX with exactly the same breakpoints but is missed
by the Target Project; one is uniquely called by CODEX
(Supplementary Table S5a). The sample uniquely called by
CODEX is a small deletion that overlaps significantly with
deletions called in other samples. Detailed CNV calling and
genotyping results by each method are in Supplementary
Table S5b–d and the genome-wide blood and tumor CNV
events discovered by CODEX are summarized in Supple-
mentary Table S6. The comprehensive analysis results will
be published separately.

It is clear by visual comparison of Figure 7c to b and d
that the read depth normalization method within CODEX
gives better signal-to-noise ratio than the SVD-based nor-
malization method in XHMM (note the difference in range
of the y-axes) and also better than the commonly prescribed
method of normalizing to matched normal controls. This
illustrates that by borrowing information across a large co-
hort, the estimated control coverage of λ̂ from our normal-
ization model is more effective in capturing the biases in
WES than the matched normal. Whereas the matched nor-
mal sample is important to distinguish between germline
and somatic variants, CODEX’s normalization procedure

can be used in case of unavailability of blood samples or
contamination of blood samples from circulating tumor
cells. When matched normal is available, somatic status can
be determined by comparing CODEX calls in tumor to
those in normal. This example also shows that CODEX’s
segmentation algorithm performs well in detecting multi-
exon CNVs with a nested structure, and that it successfully
detected a rare CNVs (18/222 = 8.11%) in a clinical setting.

DISCUSSION

Here we propose CODEX, a normalization and CNV de-
tection method for WES data. CODEX includes a normal-
ization model with non-parametric functional terms for GC
content and Poisson latent factors for biases that are not di-
rectly quantifiable. We show that both parts of the normal-
ization model are necessary for WES data. CODEX seg-
ments the genome using a Poisson likelihood model based
on the control coverage λ̂ estimated during the normaliza-
tion step. CODEX can be applied to both normal and tu-
mor genome analysis.

We show through several data sets that CODEX’s multi-
sample normalization procedure offers higher sensitiv-
ity and specificity for detection and genotyping of both
common and rare CNVs. The distinguishing features of
CODEX compared to existing methods are: (i) CODEX
does not require matched normal samples as controls for
normalization; (ii) The Poisson log-linear model fits bet-
ter with the WES count data than SVD approaches; (iii)
Dependence on GC content is modeled by a flexible non-
parametric function in CODEX allowing it to capture non-
linear biases; (iv) CODEX implements the BIC criterion for
choosing the number of latent variables, which gives a con-
servative normalization on simulated and real data sets; (v)
Compared to HMM-based segmentation procedures, the
segmentation procedure in CODEX is completely off-the-
shelf and does not require large relevant training set; (vi)
CODEX estimates relative copy number, which can be con-
verted to genotypes by thresholding, rather than broad cate-
gorizations (deletion, duplication and copy number neutral
states).

We carry out simulation studies by spiking in CNV sig-
nals to WES read depth data from copy-number-neutral re-
gions. We show that CODEX has higher power compared
to SVD-based method followed by HMM, although both
methods suffer from common CNV events. We also investi-
gate the nature of the exon- and sample-wise terms and Pois-
son factors in CODEX, PCs extracted by SVD and other
directly known biases and artifacts. We show that PCs from
SVD obtained by unsupervised learning are correlated by
the terms specifically modeled and quantified by CODEX
and that the GC content correlates with one PC from SVD
with correlation coefficient −0.75, which, again, is specif-
ically modeled by CODEX. Developing a robust method
that can detect common CNVs from background noise with
high sensitivities may be a future direction to get focused on.

We compare CODEX’s performance against direct call-
ing results from other existing methods on the 1000
Genomes Project WES data set and show that CODEX is
more accurate by comparing CNV calls by WES against
three gold standard SNP array CNV call sets. Since
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CoNIFER and EXCAVATOR detect a significant propor-
tion of CNVs with lengths greater than 200 kb, whereas
CODEX and XHMM return much shorter CNVs (Figure
4), we do not exclude any CNV calls by SNP arrays so as
to get more ‘reliable’ gold standards as does Fromer et al.
(28), despite the fact that array-based methods, when com-
pared to NGS, do not have as good resolutions. This might
explain why the overall sensitivity/recall rates are no larger
than 0.6 for all methods (Figure 5, Supplementary Table
S4). Another possible explanation lie in that due to the dis-
crete nature of WES data, read depth is used as the only
inference to detect CNVs, which has only exon-level reso-
lution and thus lower power in detecting short CNVs com-
pared to split-read and paired-end-mapping methods devel-
oped for WGS. Despite the limitations, WES has been used
and is still being used as a preferred method of choice for
large-scale studies.

With a clinically relevant example on detecting rare so-
matic CNVs within ATRX associated with neuroblastoma,
CODEX is shown to be applicable to a wide range of
study designs for CNV detection using WES data. Specifi-
cally, we show that CODEX does not require matched nor-
mal controls for normalization and is able to detect pre-
viously reported CNVs within tumor samples more accu-
rately compared to SVD-based method. Matched blood
samples, when available, can be used to distinguish somatic
CNVs from germline ones. However, under most circum-
stances, the normal samples are often unavailable, incom-
plete or unmatched, which drives the need for normal-
ization using cases only. The genome-wide CNV results
based on this data set are available and will be compared
against other metrics (matched microarrays, whole-genome
sequencing, RNA-sequencing, etc.) and validated on bench.
The comprehensive analysis results will be published else-
where.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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