Disjoint Empty Convex Pentagons in Planar Point Sets

Bhaswar B. Bhattacharya
University of Pennsylvania
Sandip Das

Follow this and additional works at: https://repository.upenn.edu/statistics_papers
Part of the Applied Mathematics Commons, Business Commons, Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation

Bhattacharya, B. B., \& Das, S. (2016). Disjoint Empty Convex Pentagons in Planar Point Sets. Periodica Mathematica Hungaria, 66 (1), 73-86. http://dx.doi.org/10.1007/s10998-013-9078-z

Disjoint Empty Convex Pentagons in Planar Point Sets

Abstract

In this paper we obtain the first non-trivial lower bound on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least $\lfloor 5 n / 47\rfloor$. This bound can be further improved to ($3 n-1$)/28 for infinitely many n.

Keywords

convex hull, discrete geometry, empty convex polygons, Erd\ős-Szekeres theorem, pentagons

Disciplines

Applied Mathematics | Business | Mathematics | Statistics and Probability

Disjoint Empty Convex Pentagons in Planar Point Sets

Bhaswar B. Bhattacharya ${ }^{1}$ and Sandip Das ${ }^{2}$
${ }^{1}$ Indian Statistical Institute, Kolkata, India, bhaswar.bhattacharya@gmail.com
${ }^{2}$ Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India,
sandipdas@isical.ac.in

Abstract

Harborth [Elemente der Mathematik, Vol. 33 (5), 116-118, 1978] proved that every set of 10 points in the plane, no three on a line, contains an empty convex pentagon. From this it follows that the number of disjoint empty convex pentagons in any set of n points in the plane is least $\left\lfloor\frac{n}{10}\right\rfloor$. In this paper we prove that every set of 19 points in the plane, no three on a line, contains two disjoint empty convex pentagons. We also show that any set of $2 m+9$ points in the plane, where m is a positive integer, can be subdivided into three disjoint convex regions, two of which contains m points each, and another contains a set of 9 points containing an empty convex pentagon. Combining these two results, we obtain non-trivial lower bounds on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least $\left\lfloor\frac{5 n}{47}\right\rfloor$. This bound has been further improved to $\frac{3 n-1}{28}$ for infinitely many n.

Keywords. Convex hull, Discrete geometry, Empty convex polygons, Erdős-Szekeres theorem, Pentagons.

1 Introduction

The origin of the problems concerning the existence of empty convex polygons goes back to the famous theorem due to Erdős and Szekeres [10]. It states that for every positive integer $m \geq 3$, there exits a smallest integer $E S(m)$, such that any set of n points ($n \geq E S(m)$) in the plane, no three on a line, contains a subset of m points which lie on the vertices of a convex polygon. Evaluating the exact value of $E S(m)$ is a long standing open problem. A construction due to Erdős [11] shows that $E S(m) \geq 2^{m-2}+1$, which is also conjectured to be sharp. It is known that $E S(4)=5$ and $E S(5)=9$ [18]. Following a long computer search, Szekeres and Peters [28] recently proved that $E S(6)=17$. The value of $E S(m)$ is unknown for all $m>6$. The best known upper bound for $m \geq 7$ is due to Tóth and Valtr $[29]-E S(m) \leq\binom{ 2 m-5}{m-3}+1$. For a more detailed description of the Erdős-Szekeres theorem and its numerous ramifications see the surveys by Bárány and Károlyi [3] and Morris and Soltan [24].

In 1978, Erdős [9] asked whether for every positive integer k, there exists a smallest integer $H(k)$, such that any set of at least $H(k)$ points in the plane, no three on a line, contains k points which lie on the vertices of a convex polygon whose interior contains no points of the set. Such a subset is called an empty convex k-gon or a k-hole. Esther Klein showed $H(4)=5$ and Harborth [13] proved that $H(5)=10$. Horton [14] showed that it is possible to construct arbitrarily large set of points without a 7 -hole, thereby proving that $H(k)$ does not exist for $k \geq 7$. Recently, after a long wait, the existence of $H(6)$ has been proved by Gerken [12] and independently by Nicolás [25]. Later Valtr [32] gave a simpler version of Gerken's proof. For results regarding the number of k-holes in planar point sets and other related problems see $[2-4,8,27]$. Existence of a hole of any fixed size in sufficiently large point sets, with some additional restrictions on the point sets, has been studied by Károlyi et al. [19, 20], Kun and Lippner [22], and Valtr [31].

Two empty convex polygons are said to be disjoint if their convex hulls do not intersect. For positive integers $k \leq \ell$, denote by $H(k, \ell)$ the smallest integer such that any set of $H(k, \ell)$ points in the plane, no three on a line, contains both a k-hole and a ℓ-hole which are disjoint. Clearly, $H(3,3)=6$ and Horton's result [14] implies that $H(k, \ell)$ does not exist for all $\ell \geq 7$. Urabe [30] showed that $H(3,4)=7$, while Hosono and Urabe [17] showed that $H(4,4)=9$. Hosono and Urabe [15] also proved that $H(3,5)=10,12 \leq H(4,5) \leq 14$, and $16 \leq H(5,5) \leq 20$. The results $H(3,4)=7$ and $H(4,5) \leq 14$ were later reconfirmed by Wu and Ding [33]. Using the computer-aided order-type enumeration method, Aichholzer et al. [1] proved that every set of 11 points in the plane, no three on a line, contains either a 6 -hole or a 5 -hole and a disjoint 4 -hole. Recently, this result was proved geometrically by Bhattacharya and Das [5, 6]. Using this Ramsey-type result, Hosono and Urabe [16] proved that $H(4,5) \leq 13$, which was later tightened to $H(4,5)=12$ by Bhattacharya and Das [7]. Hosono and Urabe [16] have also improved the lower bound on $H(5,5)$ to 17.

The problems concerning disjoint holes was, in fact, first studied by Urabe [30] while addressing the problem of partitioning of planar point sets. For any set S of points in the plane, denote by $C H(S)$ the convex hull of S. Given a set S of n points in the plane, no three on a line, a disjoint convex partition of S is a partition of S into subsets $S_{1}, S_{2}, \ldots S_{t}$, with $\sum_{i=1}^{t}\left|S_{i}\right|=n$, such that for each $i \in\{1,2, \ldots, t\}, C H\left(S_{i}\right)$ forms a $\left|S_{i}\right|$-gon and $C H\left(S_{i}\right) \cap C H\left(S_{j}\right)=\emptyset$, for any pair of indices i, j. Observe that in any disjoint convex partition of S, the set S_{i} forms a $\left|S_{i}\right|$-hole and the holes formed by the sets S_{i} and S_{j} are disjoint for any pair of distinct indices i, j. If $F(S)$ denote the minimum number of disjoint holes in any disjoint convex partition of S, then $F(n)=\max _{S} F(S)$, where the maximum is taken over all sets S of n points, is called the disjoint convex partition number for all sets of fixed size n. The disjoint convex partition number $F(n)$ is bounded by $\left\lceil\frac{n-1}{4}\right\rceil \leq F(n) \leq\left\lceil\frac{5 n}{18}\right\rceil$. The lower bound is by Urabe [30] and the upper bound by Hosono and Urabe [17]. The proof of the upper bound uses the fact that every set of 7 points in the plane contains a 3 -hole and a disjoint 4-hole. Later, Xu and Ding [34] improved the lower bound to $\left\lceil\frac{n+1}{4}\right\rceil$. Recently, Aichholzer et al. [1] introduced the notion pseudo-convex partitioning of planar point sets, which extends the concept partitioning, in the sense, that they allow both convex polygons and pseudo-triangles in the partition.

Urabe [17] also defined the function $F_{k}(n)$ as the minimum number of pairwise disjoint k-holes in any n-element point set. If $F_{k}(S)$ denotes the number of k-holes in a disjoint partition of S, then $\left.F_{k}(n)=\min _{S}\left\{\max _{\pi_{d}} F_{k}(S)\right\}\right\}$, where the maximum is taken over all disjoint partitions π_{d} of S, and the minimum is taken over all sets S with $|S|=n$. Hosono and Urabe [17] proved any set of 9 points, no three on a line, contains two disjoint 4 -holes. They also showed any set of $2 m+4$ points can be divided into three disjoint convex regions, one containing a 4 -hole and the others containing m points each. Combining these two results they proved $F_{4}(n) \geq\left\lfloor\frac{5 n}{22}\right\rfloor$. This bound can be improved to $(3 n-1) / 13$ for infinitely many n.

The problem, however, appears to be much more complicated in the case of disjoint 5holes. Harborth's result [13] implies $F_{5}(n) \geq\left\lfloor\frac{n}{10}\right\rfloor$, which, to the best our knowledge, is the only known lower bound on this number. A construction by Hosono and Urabe [16] shows that $F_{5}(n) \leq 1$ if $n \leq 16$. In general, it is known that $F_{5}(n)<n / 6$ [3]. Moreover, Hosono and Urabe [17] states the impossibility of an analogous result for 5 -holes with $2 m+5$ points.

In this paper, following a couple of new results for small point sets, we prove non-trivial lower bounds on $F_{5}(n)$. At first, we show that every set of 19 points in the plane, no three on a line, contains two disjoint 5 -holes. In other words, this implies, $F_{5}(19) \geq 2$ or $H(5,5) \leq 19$. Drawing parallel from the result of Hosono and Urabe [17], we also show that any set of
$2 m+9$ points in the plane, where m is a positive integer, can be subdivided into three disjoint convex regions, two of which contains m points each, and the third one is a set of 9 points containing a 5 -hole. Combining these two results, we prove $F_{5}(n) \geq\left\lfloor\frac{5 n}{47}\right\rfloor$. This bound can be further improved to $\frac{3 n-1}{28}$ for infinitely many n. The proofs rely on a series of results concerning the existence of 5 -holes in planar point sets having less than 10 points.

The paper is organized as follows. The results proving the existence of 5 -holes in point sets having less than 10 points, and the characterization of 9 -point sets not containing any 5 -hole are presented in Section 3. In Section 4, we give the formal statements of our main results and use them to prove lower bounds on $F_{5}(n)$. The proofs of the 19-point result and the $2 m+9$-point partitioning theorem are presented in Sections 5 and 6 , respectively. In Section 2 we introduce notations and definitions and in Section 7 we summarize our work and provide some directions for future work.

2 Notations and Definitions

We first introduce the definitions and notations required for the remainder of the paper. Let S be a finite set of points in the plane in general position, that is, no three on a line. Denote the convex hull of S by $C H(S)$. The boundary vertices of $C H(S)$, and the points of S in the interior of $C H(S)$ are denoted by $\mathcal{V}(C H(S))$ and $\mathcal{I}(C H(S))$, respectively. A region R in the plane is said to be empty in S, if R contains no elements of S. A point $p \in S$ is said to be k-redundant in a subset T of S, if there exists a k-hole in $T \backslash\{p\}$.

By $\mathcal{P}=p_{1} p_{2} \ldots p_{k}$ we denote a convex k-gon with vertices $p_{1}, p_{2}, \ldots, p_{k}$ taken in the counter-clockwise order. $\mathcal{V}(\mathcal{P})$ denotes the set of vertices of \mathcal{P} and $\mathcal{I}(\mathcal{P})$ the interior of \mathcal{P}.

The j-th convex layer of S, denoted by $L\{j, S\}$, is the set of points that lie on the boundary of $C H\left(S \backslash\left\{\bigcup_{i=1}^{j-1} L\{i, S\}\right\}\right)$, where $L\{1, S\}=\mathcal{V}(C H(S))$. If $p, q \in S$ are such that $p q$ is an edge of the convex hull of the j-th layer, then the open halfplane bounded by the line $p q$ and not containing any point of $S \backslash\left\{\bigcup_{i=1}^{j-1} L\{i, S\}\right\}$ will be referred to as the outer halfplane induced by the edge $p q$.

For any three points $p, q, r \in S, \mathcal{H}(p q, r)$ (respectively $\mathcal{H}_{c}(p q, r)$) denotes the open (respectively closed) halfplane bounded by the line $p q$ containing the point r. Similarly, $\overline{\mathcal{H}}(p q, r)$ (respectively $\overline{\mathcal{H}}_{c}(p q, r)$) is the open (respectively closed) halfplane bounded by $p q$ not containing the point r.

Moreover, if $p, q, r \in S$ is such that $\angle r p q<\pi$, then $\operatorname{Cone}(r p q)$ is the set of points in \mathbb{R}^{2} which lies in the interior of the angular domain $\angle r p q$. A point $s \in C o n e(r p q) \cap S$ is called the nearest angular neighbor of $\overrightarrow{p q}$ in Cone $(r p q)$ if Cone $(s p q)$ is empty in S. In general, whenever we have a convex region R, we think of R as the set of points in \mathbb{R}^{2} which lies in the region R. Thus, for any convex region R a point $s \in R \cap S$ is called the nearest angular neighbor of $\overrightarrow{p q}$ in R if Cone $(s p q) \cap R$ is empty in S. More generally, for any positive integer k, a point $s \in S$ is called the k-th angular neighbor of $\overrightarrow{p q}$ whenever Cone (spq) $\cap R$ contains exactly $k-1$ points of S in its interior. Also, for any convex region R, the point $s \in S$, which has the shortest perpendicular distance to the line $p q, p, q \in S$, is called the nearest neighbor of $p q$ in R.

3 5-Holes With Less Than 10 Points

We begin by restating a well known result regarding the existence of 5 -holes in planar point sets.

Lemma 1. [23] Any set of points in general position containing a convex hexagon, contains a 5-hole.

From the Erdős Szekeres theorem, we know that every sufficiently large set of points in the plane in general position, contains a convex hexagon. Lemma 1 therefore ensures that every sufficiently large set of points in the plane contains a 5 -hole. Harborth [13] showed that a minimum of 10 points are required to ensure the existence of a 5 -hole, that is $H(5)=10$. This means, the existence of a 5 -hole is not guaranteed if we have less than 10 points in the plane [13].

In the following, we prove two lemmas where we show, if the convex hull of the point set is not a triangle, a 5 -hole can be obtained in less than 10 points.

Lemma 2. If Z is a set of points in the plane in general position, with $|\mathcal{V}(C H(Z))|=5$ and $|\mathcal{I}(C H(Z))| \geq 2$, then Z contains a 5-hole.

Proof. To begin with suppose there are only two points y_{1} and y_{2} in $\mathcal{I}(C H(Z))$. The extended straight line $y_{1} y_{2}$ divides the plane into two halfplanes, one of which must contain at least three points of $\mathcal{V}(C H(Z))$. These three points along with the points y_{1} and y_{2} forms a 5 -hole (Figure 1(a)).

Next suppose, there are three points y_{1}, y_{2}, and y_{3} in $\mathcal{I}(C H(Z))$. Consider the partition of the exterior of $y_{1} y_{2} y_{3}$ into disjoint regions R_{i} as shown in Figure 1(b). Let $\left|R_{i}\right|$ denote the number of points of $\mathcal{V}(C H(Z))$ in region R_{i}. If Z does not contain a 5 -hole, we must have:

Fig. 1. Illustrations for the proof of Lemma 2.

$$
\begin{gather*}
\left|R_{1}\right| \leq 1, \quad\left|R_{3}\right| \leq 1, \quad\left|R_{5}\right| \leq 1, \tag{1}\\
\left|R_{6}\right|+\left|R_{1}\right|+\left|R_{2}\right| \leq 2, \\
\left|R_{2}\right|+\left|R_{3}\right|+\left|R_{4}\right| \leq 2, \\
\left|R_{4}\right|+\left|R_{5}\right|+\left|R_{6}\right| \leq 2 . \tag{2}
\end{gather*}
$$

Adding the inequalities of (2) and using the fact $|\mathcal{V}(C H(Z))|=5$ we get $\left|R_{2}\right|+\left|R_{4}\right|+$ $\left|R_{6}\right| \leq 1$. On adding this inequality with those of (1) we finally get $\sum_{i=1}^{6}\left|R_{i}\right| \leq 4<5=$ $|\mathcal{V}(C H(Z))|$, which is a contradiction.

Finally, suppose $|\mathcal{I}(C H(Z))|=k \geq 4$. Let $x, y \in Z$ be such that $x y$ is an edge of $\mathrm{CH}(\mathcal{I}(C H(Z)))$ and $z \in \mathcal{I}(C H(Z))$ be any other point. If $|\mathcal{V}(C H(Z)) \cap \overline{\mathcal{H}}(x y, z)| \geq 3$, the points x and y together with the three points of $\mathcal{V}(C H(Z)) \cap \overline{\mathcal{H}}(x y, z)$ form a 5 -hole.

When $|\mathcal{V}(C H(Z)) \cap \overline{\mathcal{H}}(x y, z)|=1$, the 4 points in $\mathcal{V}(C H(Z)) \cap \mathcal{H}(x y, z)$ along with the points x and y form a convex hexagon, which contains a 5 -hole from Lemma 1. Otherwise, $|\mathcal{V}(C H(Z)) \cap \overline{\mathcal{H}}(x y, z)|=2$. Denote by α, β the points where the extended straight line passing through the points x and y intersects the boundary of $C H(Z)$, as shown in Figure $1(\mathrm{c})$. Let $R_{x}=\mathcal{I}(w x \beta)$ and $R_{y}=\mathcal{I}(u y \alpha)$ be the two triangular regions generated inside $C H(Z)$ in the halfplane $\mathcal{H}(x y, z)$. If any one of R_{x} or R_{y} is non-empty in Z, the nearest neighbor q of the line $u y$ (or $w x$) in R_{y} (or R_{x}) forms the convex hexagon uvwxyq (or $x y u v w q$), which contains an 5 -hole from Lemma 1. Therefore, assume that both R_{x} and R_{y} are empty in Z. Observe that the number of points of Z inside uvwxy is exactly two less than the number of points of Z inside $C H(Z)$. By applying this argument repeatedly on the modified pentagon we finally get a 5 -hole or a convex pentagon with two or three interior points.

Lemma 3. If Z is a set of points in the plane in general position, with $|\mathcal{V}(C H(Z))|=4$ and $|\mathcal{I}(C H(Z))| \geq 5$, then Z contains a 5-hole.

Proof. Let $C H(Z)$ be the polygon $p_{1} p_{2} p_{3} p_{4}$. If some outer halfplane induced by an edge of $C H(\mathcal{I}(C H(Z)))$ contains more than two points of $\mathcal{V}(C H(Z))$, then Z contains a 5-hole. Therefore, we assume

Assumption 1 Every outer halfplane induced by the edges of $\mathrm{CH}(\mathcal{I}(\mathrm{CH}(Z)))$ contains at most two points of $\mathcal{V}(C H(Z))$.

To begin with suppose $|\mathcal{I}(C H(Z))|=5$. If $|\mathcal{V}(C H(\mathcal{I}(C H(Z))))|=5$, we are done. Thus, the convex hull of the second layer of Z is either a quadrilateral or a triangle. Let $C H(\mathcal{I}(C H(Z)))$ be the polygon $z_{1} z_{2} \ldots z_{k}$, where k is either 3 or 4 . This means $3 \leq|L\{2, Z\}| \leq 4$, and we have the following two cases:

Case 1: $|L\{2, Z\}|=4$. Let $x \in L\{3, Z\}$ and w. l. o. g. assume $x \in \mathcal{I}\left(z_{1} z_{3} z_{4}\right) \cap Z$. Consider the partition of the exterior of the quadrilateral $z_{1} z_{2} z_{3} z_{4}$ into disjoint regions R_{i} as shown in Figure 2(a). Let $\left|R_{i}\right|$ denote the number of points of $\mathcal{V}(C H(Z))$ in the region R_{i}. If there exists a point $p_{i} \in R_{3} \cap Z$, then $p_{i} z_{2} z_{1} z_{3} x$ forms a 5 -hole. Therefore, assume that $\left|R_{3}\right|=0$, and similarly, $\left|R_{5}\right|=0$. Moreover, if $\left|R_{1}\right|+\left|R_{2}\right| \geq 2,\left(\left(R_{1} \cup R_{2}\right) \cap \mathcal{V}(C H(Z))\right) \cup$ $\left\{z_{1}, z_{4}, x\right\}$ contains a 5 -hole. This implies, $\left|R_{1}\right|+\left|R_{2}\right| \leq 1$ and similarly $\left|R_{6}\right|+\left|R_{7}\right| \leq 1$. Therefore, $\left|R_{4}\right| \geq 2$ and Assumption 1 implies that $\left|R_{4}\right|=2$. This implies that the set of points in $\left(R_{4} \cap Z\right) \cup\left\{z_{1}, z_{3}, z_{4}\right\}$ forms a convex pentagon with exactly two interior points, which then contains a 5 -hole from Lemma 2 .

Fig. 2. Illustrations for the proof of Lemma 3: (a) $|L\{2, Z\}|=4$, (b) $|L\{2, Z\}|=3$, (c) Illustration for the proof of Theorem 1.

Case 2: $|L\{2, Z\}|=3$. Let $L\{3, Z\}=\{x, y\}$. Consider the partition of the exterior of $\mathrm{CH}(\mathcal{I}(\mathrm{CH}(Z)))$ as shown in Figure 2(b). Observe that Z contains a 5 -hole unless $\left|R_{2}\right|=$ $0,\left|R_{1}\right| \leq 1$, and $\left|R_{3}\right|+\left|R_{4}\right| \leq 1$. This implies that $\sum_{i=1}^{4}\left|R_{i}\right| \leq 3<4=|\mathcal{V}(C H(Z))|$, which is a contradiction.

Now, consider $|\mathcal{I}(C H(Z))|>5$. W.l.o.g. assume that $\mathcal{I}\left(p_{1} p_{2} p_{3}\right) \cap Z$ is non-empty. If $\left|C H\left(Z \backslash\left\{p_{2}\right\}\right)\right| \geq 5$, a 5-hole in $Z \backslash\left\{p_{2}\right\}$ is ensured from Lemma 1 and Lemma 2. Otherwise, $C H\left(Z \backslash\left\{p_{2}\right\}\right)$ is a quadrilateral with exactly one less point of Z in its interior than $C H(Z)$. By repeating this process we finally get a convex quadrilateral with exactly 5 points in its interior, thus reducing the problem to Case 1 and Case 2.

From the argument at the end of the proof of the previous lemma, it follows that if $|\mathcal{I}(C H(Z))| \geq 6$, then either p_{1} or p_{3} is 5-redundant in Z. Similarly, either p_{2} or p_{4} is 5 -redundant in Z. Therefore, we have the following corollary:

Corollary 1. Let Z be a set of points in the plane in general position, such that $C H(Z)$ is the polygon $z_{1} z_{2} z_{3} z_{4}$, and $|\mathcal{I}(C H(Z))| \geq 6$. Then the following statements hold:
(i) If for some $i \in\{1,2,3,4\}, \mathcal{I}\left(z_{i-1} z_{i} z_{i+1}\right) \cap Z$ is non-empty, then z_{i} is 5 -redundant in Z, where the indices are taken modulo 4 .
(ii) At least one of the vertices corresponding to any diagonal of $C H(Z)$ is 5 -redundant in Z.

Moreover, by combining Lemmas 1,2 , and 3 , the following result about the existence of 5 -holes is immediate.

Corollary 2. Any set Z of 9 points in the plane in general position, with $|\mathcal{V}(C H(Z))| \geq 4$, contains a 5-hole.

Two sets of points, S_{1} and S_{2}, in general position, having the same number of points belong to the same layer equivalence class if the number of layers in both the point sets is the same and $\left|L\left\{k, S_{1}\right\}\right|=\left|L\left\{k, S_{2}\right\}\right|$, for all k. A set S of points with 3 different layers belongs to the layer equivalence class $L\{a, b, c\}$ whenever $|L\{1, S\}|=a,|L\{2, S\}|=b$, and $|L\{3, S\}|=c$, where a, b, c are positive integers.

It is known that there exist sets with 9 points without any 5 -hole, belonging to the layer equivalence classes $L\{3,3,3\}$ [21] and $L\{3,5,1\}$ [13]. In the following theorem we show that any 9 -point set not belonging to either of these two equivalent classes contains a 5 -hole.

Theorem 1. Any set of 9 points in the plane in general position, not containing a 5hole either belongs to the layer equivalence class $L\{3,3,3\}$ or to the layer equivalence class $L\{3,5,1\}$.

Proof. Let S be a set of 9 points in general position. If $|\mathcal{V}(C H(S))| \geq 4$, a 5 -hole is guaranteed from Corollary 2. Thus, for proving the result is suffices to show that S contains a 5 -hole if $S \in L\{3,4,2\}$.

Assume $S \in L\{3,4,2\}$ and suppose $z_{1}, z_{2}, z_{3}, z_{4}$ are the vertices of the second layer. Let $L\{3, S\}=\{x, y\}$. The extended straight line $x y$ divides the entire plane into two halfplanes. If one these halfplane contains three points of $L\{2, S\}$, these three points along with the points x and y form a 5 -hole.

Otherwise, both halfplanes induced by the extended straight line $x y$ contain exactly two points of $L\{2, S\}$. The exterior of the quadrilateral $z_{1} z_{2} z_{3} z_{4}$ can now be partitioned into 4
disjoint regions R_{1}, R_{2}, R_{3}, and R_{4}, as shown in Figure 2(c). Let $\left|R_{i}\right|$ denote the number of points of $\mathcal{V}(C H(S))$ in the region R_{i}. If R_{1} or R_{3} contains any point of $\mathcal{V}(C H(S))$, a 5-hole is immediate. Therefore, $\left|R_{1}\right|=\left|R_{3}\right|=0$, which implies that $\left|R_{2}\right|+\left|R_{4}\right|=|\mathcal{V}(C H(S))|=3$. By the pigeonhole principle, either $\left|R_{2}\right| \geq 2$ or $\left|R_{4}\right| \geq 2$. If $\left|R_{2}\right| \geq 2,\left(R_{2} \cap S\right) \cup\left\{x, z_{1}, z_{2}\right\}$ contains a 5 -hole. Otherwise, $\left|R_{4}\right| \geq 2$, and $\left(R_{4} \cap S\right) \cup\left\{y, z_{3}, z_{4}\right\}$ contains a 5 -hole.

Thus, a set S of 9 points not containing a 5 -hole, must either belong to $L\{3,3,3\}$ or $L\{3,5,1\}$.

4 Disjoint 5-Holes: Lower Bounds

In this section we present our main results concerning the existence of disjoint 5 -holes in planar point sets, which leads to a non-trivial lower bound on the number of disjoint 5 -holes in planar point sets. As $H(5)=10$, it is clear that every set 20 points in the plane in general position, contains two disjoint 5 -holes. At first, we improve upon this result by showing that any set of 19 points also contains two disjoint 5 -holes.

Theorem 2. Every set of 19 points in the plane in general position, contains two disjoint 5-holes.

Drawing parallel from the $2 m+4$-point result for disjoint 4-holes due to Hosono and Urabe [17], we prove a partitioning theorem for disjoint 5 -holes for any set of $2 m+9$ points in the plane in general position.

Theorem 3. For any set of $2 m+9$ points in the plane in general position, it is possible to divide the plane into three disjoint convex regions such that one contains a set of 9 points which contains a 5-hole, and the others contain m points each, where m is a positive integer.

Since $H(5)=10$, the trivial lower bound on $F_{5}(n)$ is $\left\lfloor\frac{n}{10}\right\rfloor$. Observe that any set of 47 points can be partitioned into two sets of 19 points each, and another set of 9 points containing a 5 -hole, by Theorem 3. Hence, from Theorems 2 and 3 , it follows that, $F_{5}(47)=$ 5. Using this result, we obtain an improved lower bound on $F_{5}(n)$.

Theorem 4. $F_{5}(n) \geq\left\lfloor\frac{5 n}{47}\right\rfloor$.
Proof. Let S be a set of n points in the plane, no three of which are collinear. By a horizontal sweep, we can divide the plane into $\left\lceil\frac{n}{47}\right\rceil$ disjoint strips, of which $\left\lfloor\frac{n}{47}\right\rfloor$ contain 47 points each and one remaining strip R, with $|R|<47$. The strips having 47 points contain at least 5 disjoint 5 -holes, since $F_{5}(47)=5$ (Theorems 2 and 3). If $9 k+1 \leq|R| \leq 9 k+9$, for $k=0$ or $k=1$, there exist at least k disjoint 5 -holes in R. If $19 \leq|R| \leq 28$, Theorem 2 guarantees the existence of 2 disjoint 5 -holes in R. Finally, if $9 k+2 \leq|R| \leq 9 k+10$, for $k=3$ or 4 , at least k disjoint 5 -holes exist in R. Thus, the total number of disjoint 5 -holes in a set of n points is always at least $\left\lfloor\frac{5 n}{47}\right\rfloor$.

We can obtain a better lower bound on $F_{5}(n)$ for infinitely many n, of the form $n=$ $28 \cdot 2^{k-1}-9$ with $k \geq 1$, by the repeated application of Theorem 3 .

Theorem 5. $F_{5}(n) \geq(3 n-1) / 28$, for $n=28 \cdot 2^{k-1}-9$ and $k \geq 1$.

Proof. Let $g(k)=28 \cdot 2^{k-1}-9$ and $h(k)=3 \cdot 2^{k-1}-1$. We need to show $F_{5}(g(k)) \geq h(k)$. We prove the inequality by induction on k. By Theorem 2 , the inequality holds for $k=1$. Suppose the result is true for k, that is, $F_{5}(g(k)) \geq h(k)$. Since, $g(k+1)=2 g(k)+9$, any set of $g(k+1)$ points can be partitioned into three disjoint convex regions, two of which contain $g(k)$ points each, and the third a set of 9 points containing a 5 -hole by Theorem 3 . Hence, $F_{5}(g(k+1))=F_{5}(2 g(k)+9) \geq 2 h(k)+1=h(k+1)$. This completes the induction step, proving the result for $n=28 \cdot 2^{k-1}-9$.

5 Proof of Theorem 2

Let S be a set of 19 points in the plane in general position. We say S is admissible if it contains two disjoint 5 -holes. We prove Theorem 2 by considering the various cases based on the size of $|\mathcal{V}(C H(S))|$. The proof is divided into two subsections. The first section considers the cases where $|\mathcal{V}(C H(S))| \geq 4$, and the second section deals with the case where $|\mathcal{V}(C H(S))|=3$.

5.1 $|\mathcal{V}(C H(S))| \geq 4$

Let $C H(S)$ be the polygon $s_{1} s_{2} \ldots s_{k}$, where $k=|\mathcal{V}(C H(S))|$ and $k \geq 4$. A diagonal $d:=s_{i} s_{j}$ of $C H(S)$, is called a dividing diagonal if

$$
\left|\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S))\right|-\right| \overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S)) \|=c,
$$

where c is 0 or 1 according as k is even or odd, and $s_{m} \in \mathcal{V}(C H(S))$ is such that $m \neq i, j$. Consider a dividing diagonal $d:=s_{i} s_{j}$ of $C H(S)$. Observe that for any fixed index $m \neq i, j$, either $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right| \geq 9$ or $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap S\right| \geq 9$. Now, we have the following observation.

Observation 1 If for some dividing diagonal $d=s_{i} s_{j}$ of $C H(S),\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|>10$, where $m \neq i, j$, then S is admissible.

Proof. Let $Z=\overline{\mathcal{H}}_{c}\left(s_{i} s_{j}, s_{m}\right) \cap S$ and β and γ the first and the second angular neighbors of $\overrightarrow{s_{i} s_{j}}$ in $\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S$, respectively. Now, $|\mathcal{V}(C H(Z))| \geq 3$, since $|\mathcal{V}(C H(S))|>3$. We consider different cases based on the size of $\mathrm{CH}(Z)$.

Case 1: $|\mathcal{V}(C H(Z))| \geq 5$. This implies that $|\mathcal{V}(C H(Z \cup\{\beta\}))| \geq 6$ and so $Z \cup\{\beta\}$ contains a 5 -hole by Lemma 1 . This 5 -hole is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap\right.$ $S) \backslash\{\beta\}$.
Case 2: $|\mathcal{V}(C H(Z))|=4$. If $|\mathcal{I}(C H(Z))| \geq 2$, then $Z \cup\{\beta\}$ is a convex pentagon with at least two interior points. From Lemma $2, Z \cup\{\beta\}$ contains a 5 -hole which is disjoint from the 5 hole contained in $\left(\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right) \backslash\{\beta\}$. Otherwise, $|\mathcal{I}(C H(Z))| \leq 1$. Let $Z^{\prime}=Z \cup\{\beta, \gamma\}$. It follows from Lemmas 1 and 2 that Z^{\prime} always contains a 5 -hole. This 5 -hole is disjoint from the 5-hole contained in $\left(\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right) \backslash\{\beta, \gamma\}$, since $\left|\left(\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right) \backslash\{\beta, \gamma\}\right| \geq$ 12.

Case 3: $|\mathcal{V}(C H(Z))|=3$. If $|\mathcal{I}(C H(Z))|=5,|\mathcal{V}(C H(Z \cup\{\beta\}))|=4$ and $Z \cup\{\beta\}$ contains a 5 -hole by Corollary 2, which is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap\right.$ $S) \backslash\{\beta\}$. So, let $|\mathcal{I}(C H(Z))|=b \leq 4$, which implies, $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=16-b$. Let η be the $(6-b)$-th angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in $\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S$. Let $S_{1}=\mathcal{H}_{c}\left(\eta s_{i}, s_{j}\right) \cap S$ and $S_{2}=\overline{\mathcal{H}}\left(\eta s_{i}, s_{j}\right) \cap S$. Now, since $\left|S_{1}\right|=9$ and $\left|\mathcal{V}\left(C H\left(S_{1}\right)\right)\right| \geq 4, S_{1}$ contains 5 -hole, by Corollary 2. This 5 -hole disjoint from the 5 -hole contained in S_{2}.

Observation 1 implies that for any dividing diagonal $d:=s_{i} s_{j}$ and for any fixed vertex s_{m}, with $m \neq i, j, S$ is admissible unless $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right| \leq 10$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap S\right| \leq 10$. This can now be used to show the admissibility of S whenever $|\mathcal{V}(C H(S))| \geq 8$.

Lemma 4. S is admissible whenever $|\mathcal{V}(C H(S))| \geq 8$.
Proof. Let $d:=s_{i} s_{j}$ be a dividing diagonal of $C H(S)$, and $s_{m} \in \mathcal{V}(C H(S))$ be such that $m \neq$ i, j. Since $|\mathcal{V}(C H(S))| \geq 8$, both $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S))\right|$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S))\right|$ must be greater than 3 . Moreover, if $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|>10$, Observation 1 ensures that S is admissible. Thus, we have the following two cases:

Case 1: $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=10$. Now, since $\left|\mathcal{V}\left(C H\left(\overline{\mathcal{H}}_{c}\left(s_{i} s_{j}, s_{m}\right) \cap S\right)\right)\right| \geq 4, \overline{\mathcal{H}}_{c}\left(s_{i} s_{j}, s_{m}\right) \cap S$ contains a 5 -hole which is disjoint from the 5 -hole contained in $\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S$.
Case 2: $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=9$. As $|\mathcal{V}(C H(S))| \geq 8$ and $\overrightarrow{s_{i} s_{j}}$ is a dividing diagonal of $C H(S)$, we have $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S))\right| \geq 3$. Let $W=\left(\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap S\right) \cup\left\{s_{i}\right\}$. Then from Corollary 2, W contains a 5 -hole, since $|W|=9$ and $|\mathcal{V}(C H(W))| \geq 4$. The 5-hole contained in W is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right) \cup\left\{s_{j}\right\}$. Hence S is admissible.
Case 3: $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right| \leq 8$. In this case, $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap S\right| \geq 9$, and the problem reduces to the previous cases.

Therefore, it suffices to show the admissibility of S whenever $4 \leq|\mathcal{V}(C H(S))| \leq 7$. Observe that S is admissible whenever $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=10$ and $\mid \mathcal{V}\left(C H\left(\overline{\mathcal{H}}_{c}\left(s_{i} s_{j}, s_{m}\right) \cap\right.\right.$ $S)) \mid \geq 4$. Moreover, Case 2 of Lemma 4 shows that S is admissible if $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=9$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S))\right| \geq 3$. Thus, hereafter we shall assume,

Assumption 2 For every dividing diagonal $s_{i} s_{j}$ of $\mathrm{CH}(S)$, there exists $s_{m} \in \mathcal{V}(C H(S))$, with $m \neq i, j$, such that either $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=10$ and $\left|\mathcal{V}\left(C H\left(\overline{\mathcal{H}}_{c}\left(s_{i} s_{j}, s_{m}\right) \cap S\right)\right)\right|=3$, or $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S\right|=9$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap \mathcal{V}(C H(S))\right| \leq 2$.

A dividing diagonal $s_{i} s_{j}$ of $C H(S)$ is said to be an $(a, b)-$ splitter of $C H(S)$, where $a \leq b$ are integers, if either $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S \backslash \mathcal{V}(C H(S))\right|=a$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap S \backslash \mathcal{V}(C H(S))\right|=b$ or $\left|\mathcal{H}\left(s_{i} s_{j}, s_{m}\right) \cap S \backslash \mathcal{V}(C H(S))\right|=b$ and $\left|\overline{\mathcal{H}}\left(s_{i} s_{j}, s_{m}\right) \cap S \backslash \mathcal{V}(C H(S))\right|=a$.

The admissibility of S in the different cases which arise are now proved as follows:

Fig. 3. Illustrations for the proof of Lemma 5: (a) $|\mathcal{V}(C H(S))|=7$, (b) $|\mathcal{V}(C H(S))|=6$, (c) Illustration for the proof of Lemma 6.

Lemma 5. S is admissible whenever $6 \leq|\mathcal{V}(C H(S))| \leq 7$.
Proof. We consider the two cases based on the size of $|\mathcal{V}(C H(S))|$ separately as follows:
Case 1: $|\mathcal{V}(C H(S))|=7$. Refer to Figure 3(a). From Assumption 2 it follows that every dividing diagonal of $C H(S)$ must be a $(6,6)$-splitter of $C H(S)$. As both $s_{2} s_{5}$ and $s_{2} s_{6}$ are $(6,6)$-splitters, it is clear that $\mathcal{I}\left(s_{2} s_{5} s_{6}\right)$ is empty in S. Now, if s_{2} is 5 -redundant in either $\mathcal{H}_{c}\left(s_{2} s_{5}, s_{4}\right) \cap S$ or $\mathcal{H}_{c}\left(s_{2} s_{6}, s_{2}\right) \cap S$, the admissibility of S is immediate. Therefore, assume that s_{2} is not 5 -redundant in either $\mathcal{H}_{c}\left(s_{2} s_{5}, s_{4}\right) \cap S$ or $\mathcal{H}_{c}\left(s_{2} s_{6}, s_{2}\right) \cap S$. This implies that $\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S \subset \mathcal{I}\left(s_{3} s_{4} s_{5}\right)$ and $\mathcal{I}\left(s_{2} s_{6} s_{1} s_{7}\right) \cap S \subset \mathcal{I}\left(s_{1} s_{6} s_{7}\right)$. Therefore, $\mathcal{I}\left(s_{1} s_{2} s_{3}\right)$ is empty in S. Now, since $s_{4} s_{7}$ is also a (6,6)-splitter of $C H(S),\left|\mathcal{V}\left(C H\left(\mathcal{H}\left(s_{4} s_{7}, s_{2}\right) \cap S\right)\right)\right| \geq$ 4 (see Figure $3(\mathrm{a})$), and Corollary 2 implies $\mathcal{H}\left(s_{4} s_{7}, s_{2}\right) \cap S$ contains a 5-hole. This 5-hole disjoint from the 5-hole contained in $\mathcal{H}_{c}\left(s_{4} s_{7}, s_{5}\right) \cap S$.
Case 2: $|\mathcal{V}(C H(S))|=6$. Refer to Figure 3(b). Again, Assumption 2 implies that every dividing diagonal of $C H(S)$ must be a $(6,7)$-splitter of $C H(S)$. W.l.o.g. assume that $\left|\mathcal{I}\left(s_{1} s_{2} s_{5} s_{6}\right) \cap S\right|=7$ and $\left|\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S\right|=6$. Let α be the point of intersection of the diagonals of the quadrilateral $s_{2} s_{3} s_{4} s_{5}$. If s_{2} or s_{5} is 5 -redundant in $\mathcal{H}_{c}\left(s_{2} s_{5}, s_{4}\right) \cap S$, then the admissibility of S is immediate. Therefore, assume that neither s_{2} nor s_{5} is 5-redundant in $\mathcal{H}_{c}\left(s_{2} s_{5}, s_{4}\right) \cap S$. This implies that $\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S \subset \mathcal{I}\left(s_{3} \alpha s_{4}\right)$. Now, if $\left|\mathcal{I}\left(s_{1} s_{2} s_{3} s_{4}\right) \cap S\right|=6$, then s_{4} is 5-redundant in $\mathcal{H}_{c}\left(s_{1} s_{4}, s_{2}\right) \cap S$ and the admissibility of S follows. Similarly, if $\left|\mathcal{I}\left(s_{3} s_{4} s_{5} s_{6}\right) \cap S\right|=6$, then S is admissible, as s_{3} is 5-redundant in $\mathcal{H}_{c}\left(s_{3} s_{6}, s_{5}\right) \cap S$. Hence, assume $\left|\mathcal{I}\left(s_{1} s_{2} s_{3} s_{4}\right) \cap S\right|=\left|\mathcal{I}\left(s_{3} s_{4} s_{5} s_{6}\right) \cap S\right|=7$. Now, as $\left|\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S\right|=6,\left(\mathcal{I}\left(s_{3} s_{4} s_{5} s_{6}\right) \backslash \mathcal{I}\left(s_{3} s_{4} \alpha\right)\right) \cap S \subset \mathcal{I}\left(s_{5} s_{6} \beta\right)$, where β is the point of intersection of the diagonals $s_{2} s_{5}$ and $s_{3} s_{6}$. Therefore, $\left|\mathcal{V}\left(C H\left(\mathcal{H}\left(s_{3} s_{6}, s_{5}\right) \cap S\right)\right)\right| \geq 4$. Therefore, the 5 -hole contained in $\mathcal{H}\left(s_{3} s_{6}, s_{5}\right) \cap S$ is disjoint from the 5 -hole contained in $\mathcal{H}_{c}\left(s_{3} s_{6}, s_{1}\right) \cap S$.

Lemma 6. S is admissible whenever $|\mathcal{V}(C H(S))|=5$.
Proof. Assumption 2 implies that a dividing diagonal of $\mathrm{CH}(S)$ is either a $(6,8)$-splitter or a $(7,7)$-splitter of $C H(S)$. To begin with suppose, every dividing diagonal of $C H(S)$ is a $(7,7)$-splitter of $|\mathcal{V}(C H(S))|$. Then $\left|\mathcal{I}\left(s_{1} s_{2} s_{3}\right) \cap S\right|=\left|\mathcal{I}\left(s_{1} s_{4} s_{5}\right) \cap S\right|=7$, which means that $\left|\mathcal{I}\left(s_{1} s_{3} s_{4}\right) \cap S\right|=0$. Similarly, $\left|\mathcal{I}\left(s_{2} s_{4} s_{5}\right) \cap S\right|=\left|\mathcal{I}\left(s_{3} s_{5} s_{1}\right) \cap S\right|=\left|\mathcal{I}\left(s_{4} s_{2} s_{1}\right) \cap S\right|=$ $\left|\mathcal{I}\left(s_{5} s_{2} s_{3}\right) \cap S\right|=0$. This implies $|\mathcal{I}(C H(S))|=0$, which is a contradiction.

Therefore, assume that there exists a $(6,8)$-splitter of $C H(S)$. W.l.o.g., assume $s_{2} s_{5}$ is a $(6,8)$-splitter of $C H(S)$. There are two possibilities:

Case 1: $\left|\mathcal{I}\left(s_{1} s_{2} s_{5}\right) \cap S\right|=6$ and $\left|\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S\right|=8$. Refer to Figure 3(c). Let p be the nearest neighbor of $s_{2} s_{5}$ in $\mathcal{H}\left(s_{2} s_{5}, s_{4}\right) \cap S$. W.l.o.g., assume $\mathcal{I}\left(s_{1} s_{2} p\right) \cap S$ is non-empty. Let x be the point where $\overrightarrow{s_{2} p}$ intersects the boundary of $C H(S)$. Then $\mathcal{H}_{c}\left(s_{2} x, s_{1}\right) \cap S$ contains a 5 -hole, and by Corollary $1 s_{2}$ is 5 -redundant in $\mathcal{H}_{c}\left(s_{2} p, s_{1}\right) \cap S$. Now, if Cone $\left(s_{5} p x\right) \cap S$ is empty, the 5 -hole contained in $\left(\mathcal{H}_{c}\left(s_{2} p, s_{1}\right) \cap S\right) \backslash\left\{s_{2}\right\}$ is disjoint from the 5 -hole contained in $\left(\overline{\mathcal{H}}\left(s_{2} p, s_{1}\right) \cap S\right) \cup\left\{s_{2}\right\}$. Otherwise, assume $\operatorname{Cone}\left(s_{5} p x\right) \cap S$ is non-empty. Let q be the first angular neighbor of $\overrightarrow{s_{2} s_{5}}$ in $\operatorname{Cone}\left(s_{5} p x\right)$. Observe that $\mathcal{I}\left(s_{1} s_{2} q\right) \cap S$ is non-empty, since $\mathcal{I}\left(s_{1} s_{2} p\right) \cap S$ is assumed to be non-empty, and $\mathcal{H}_{c}\left(s_{2} q, s_{1}\right) \cap S$ contains a 5 -hole. Now, Corollary 1 implies that s_{2} is 5 -redundant in $\mathcal{H}_{c}\left(s_{2} q, s_{1}\right) \cap S$, and the admissibility of S follows.
Case 2: $\left|\mathcal{I}\left(s_{1} s_{2} s_{5}\right) \cap S\right|=8$ and $\left|\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S\right|=6$. Clearly, $\mathcal{H}_{c}\left(s_{2} s_{5}, s_{3}\right) \cap S$ contains a 5 -hole. Now, if either s_{2} or s_{5} is 5 -redundant in $\mathcal{H}_{c}\left(s_{2} s_{5}, s_{3}\right) \cap S$, then S is admissible. Therefore, assume $\mathcal{I}\left(s_{2} s_{3} s_{4} s_{5}\right) \cap S \subset \mathcal{I}\left(s_{3} s_{4} \alpha\right)$, where α is the point where the diagonals
of the quadrilateral $s_{2} s_{3} s_{4} s_{5}$ intersect. The problem now reduces to Case 1 with respect to the dividing diagonal $s_{2} s_{4}$.

The case $|\mathcal{V}(C H(S))|=4$ is dealt separately in the next section.
$|\mathcal{V}(\boldsymbol{C H}(\boldsymbol{S}))|=4$ As before, let $C H(S)$ be the polygon $s_{1} s_{2} s_{3} s_{4}$. From Observation 1, we have to consider the cases where a dividing diagonal of $C H(S)$ is either a $(6,9)$-splitter or a $(7,8)$-splitter of $C H(S)$.

Firstly, suppose some dividing diagonal of $C H(S)$, say $s_{2} s_{4}$, is a (6, 9)-splitter of $C H(S)$. Assume that $\left|\mathcal{I}\left(s_{1} s_{2} s_{4}\right) \cap S\right|=6$ and $\left|\mathcal{I}\left(s_{2} s_{3} s_{4}\right) \cap S\right|=9$. Begin by taking the nearest neighbor p of $s_{2} s_{4}$ in $\mathcal{I}\left(s_{2} s_{3} s_{4}\right)$. Then choose the first angular neighbor q of either $\overrightarrow{s_{2} s_{4}}$ or $\overrightarrow{s_{4} s_{2}}$ in $\mathcal{I}\left(s_{2} s_{3} s_{4}\right)$, and proceed as in Case 1 of Lemma 6 to show the admissibility of S.

Therefore, it suffices to assume that
Assumption 3 Both the dividing diagonals of the quadrilateral $s_{1} s_{2} s_{3} s_{4}$ are $(7,8)$-splitters of $C H(S)$.
W.l.o.g., let $\left|\mathcal{I}\left(s_{1} s_{2} s_{4}\right) \cap S\right|=8$ and $\left|\mathcal{I}\left(s_{2} s_{3} s_{4}\right) \cap S\right|=7$. Let α be the point where the diagonals of $C H(S)$ intersect. Observe, there always exists an edge of $C H(S)$ say, $s_{2} s_{3}$, such that $\left|\mathcal{I}\left(s_{1} s_{2} s_{3}\right) \cap S\right|=\left|\mathcal{I}\left(s_{2} s_{3} s_{4}\right) \cap S\right|=7$, and $\left|\mathcal{I}\left(s_{1} s_{3} s_{4}\right) \cap S\right|=\left|\mathcal{I}\left(s_{1} s_{2} s_{4}\right) \cap S\right|=8$. This implies, $\left|\mathcal{I}\left(s_{1} s_{2} \alpha\right) \cap S\right|=\left|\mathcal{I}\left(s_{3} s_{4} \alpha\right) \cap S\right|=n$, with $0 \leq n \leq 7$. We begin with the following simple observation

Lemma 7. S is admissible whenever $n=0$.
Proof. Let $Z=\left(\mathcal{H}\left(s_{2} s_{4}, s_{1}\right) \cap S\right) \cup\left\{s_{4}\right\}$. Observe that $|Z|=10$, which means Z contains a 5-hole. If $|\mathcal{V}(C H(Z))| \geq 5, s_{4}$ is 5 -redundant in Z, and $Z \backslash\left\{s_{4}\right\}$ contains a 5 -hole which is disjoint from the 5 -hole contained in $\mathcal{H}_{c}\left(s_{2} s_{4}, s_{3}\right) \cap S$. Let r be the nearest angular neighbor of $\overline{s_{1} s_{3}}$ in Cone $\left(s_{4} s_{1} s_{3}\right)$. If $|\mathcal{V}(C H(Z))|=4$, either r or s_{4} is 5 -redundant in Z by Corollary 1 , and the admissibility of S follows. Otherwise, $|\mathcal{V}(C H(Z))|=3$ and at least one of s_{1}, s_{4}, or r is 5 -redundant in Z and the admissibility of S follows similarly.

From the previous lemma, it suffices to assume $n>0$. Let p be the first angular neighbor of $\overrightarrow{s_{2} s_{4}}$ in Cone $\left(s_{4} s_{2} s_{3}\right)$ and x the intersection point of $\overrightarrow{s_{2} p}$ with the boundary of $C H(S)$. Let α be the point of intersection of the diagonals of the quadrilateral $s_{1} s_{2} s_{3} s_{4}$. If Cone $\left(s_{3} p x\right) \cap S$ is non-empty, $\left|\mathcal{V}\left(C H\left(\mathcal{H}_{c}\left(s_{2} p, s_{3}\right) \cap S\right)\right)\right| \geq 4$. From Corollary 2, $\mathcal{H}_{c}\left(s_{2} p, s_{3}\right) \cap S$ contains a 5 -hole which is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(s_{2} s_{4}, s_{1}\right) \cap S\right) \cup\left\{s_{4}\right\}$. Therefore, we shall assume that

Assumption 4 Cone $\left(s_{3} p x\right) \cap S$ is empty.
Assumption 4 and the fact that $n>0$ implies that $p \in \mathcal{I}\left(s_{3} \alpha s_{4}\right) \cap S$ (see Figure 4(a)). Let q be the first angular neighbor of $\overrightarrow{p s 2}$ in $\operatorname{Cone}\left(s_{2} p s_{1}\right)$. The admissibility of S in the remaining cases is proved in the following two lemmas.

Lemma 8. S is admissible whenever $n \geq 2$.
Proof. To begin with suppose, $q \in \mathcal{I}\left(s_{2} \alpha s_{1}\right) \cap S$, as shown in Figure 4(a). By Assumption 4, there exists a point in $\mathcal{I}\left(s_{3} s_{4} \alpha\right) \cap S$, different from the point p, which belongs to $\mathcal{I}\left(q p s_{3}\right) \cap S$. Hence, by Corollary $1, p$ is 5 -redundant in $\mathcal{H}_{c}\left(p q, s_{2}\right) \cap S$, and the 5 -hole contained in $\left(\mathcal{H}\left(p q, s_{2}\right) \cap S\right) \cup\{q\}$ is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(p q, s_{1}\right) \cap S\right) \cup\{p\}$.

Fig. 4. $|\mathcal{V}(C H(S))|=4$: (a) $\left|\mathcal{I}\left(s_{1} s_{2} \alpha\right) \cap S\right|=\left|\mathcal{I}\left(s_{3} s_{4} \alpha\right) \cap S\right|=n \geq 2$ and $q \in \mathcal{I}\left(s_{2} \alpha s_{1}\right) \cap S$, (b) $\left|\mathcal{I}\left(s_{1} s_{2} \alpha\right) \cap S\right|=$ $\left|\mathcal{I}\left(s_{3} s_{4} \alpha\right) \cap S\right|=n \geq 2$, and $q \in \mathcal{I}\left(s_{1} \alpha s_{4}\right) \cap S$, (c) $\left|\mathcal{I}\left(s_{1} s_{2} \alpha\right) \cap S\right|=\left|\mathcal{I}\left(s_{3} s_{4} \alpha\right) \cap S\right|=n=1$.

Otherwise, assume that $q \in \mathcal{I}\left(s_{1} \alpha s_{4}\right) \cap S$ and refer to Figure 4(b). Observe that S is admissible if either p or q is 5 -redundant in $\mathcal{H}_{c}\left(p q, s_{2}\right) \cap S$. Hence, assume that neither p nor q is 5 -redundant in $\mathcal{H}_{c}\left(p q, s_{2}\right) \cap S$. This implies $\mathcal{I}\left(s_{2} s_{3} p q\right) \cap S \subset \mathcal{I}\left(s_{2} s_{3} \beta\right)$, where β is the point of intersection of the diagonals of the quadrilateral $s_{2} s_{3} p q$. Let r be the second angular neighbor of $\overrightarrow{q y}$ in $\operatorname{Cone}\left(y q s_{1}\right)$, where y is the point where $\overrightarrow{p q}$ intersects the boundary $C H(S)$. Note that the point r exists because $n \geq 2$ and $q \in \mathcal{I}\left(s_{1} s_{4} \alpha\right) \cap S$. Now, the 5-hole contained in $\left(\mathcal{H}\left(q r, s_{2}\right) \cap S\right) \cup\{q\}$ is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(q r, s_{1}\right) \cap S\right) \cup\{r\}$ by Corollary 2 .

Lemma 9. S is admissible whenever $n=1$.
Proof. To begin with let $q \in \mathcal{I}\left(s_{1} \alpha s_{2}\right)$. Refer to Figure 4(c). Assume, $\mathcal{I}\left(s_{4} p q\right) \cap S$ is nonempty and let $Z=\left(\mathcal{H}\left(p q, s_{1}\right) \cap S\right) \cup\{q\}$. Observe that $|\mathcal{V}(C H(Z))| \geq 4$, and by Corollary 1 either q or s_{4} is 5 -redundant in Z, and the admissibility of S follows.

Otherwise, assume that $\mathcal{I}\left(s_{4} p q\right) \cap S$ is empty. If either q or s_{4} is 5 -redundant in Z, the admissibility of S is immediate. Therefore, it suffices to assume that there exists a 5 -hole in Z with $q s_{4}$ as an edge. This implies that we have a 6 -hole with $p s_{4}$ and $p q$ as edges. Observe that s_{1} cannot be a vertex of this 6 -hole. Hence, there exists a 5 -hole with $p s_{4}$ as an edge, which does not contain s_{1} and q as vertices. Thus, s_{1} and q are 5 -redundant in $\mathcal{H}_{c}\left(s_{4} q, s_{1}\right) \cap S$. This 5 -hole is disjoint from the 5 -hole contained in $\mathcal{H}_{c}\left(s_{1} s_{3}, s_{2}\right) \cap S$.

Fig. 5. $|\mathcal{V}(C H(S))|=4$ with $\left|\mathcal{I}\left(s_{1} s_{2} \alpha\right) \cap S\right|=\left|\mathcal{I}\left(s_{3} s_{4} \alpha\right) \cap S\right|=n=1:$ (a) $q, r \in \mathcal{I}\left(s_{1} s_{4} \alpha\right) \cap S$, and (b) $q \in \mathcal{I}\left(s_{1} s_{4} \alpha\right)$ and $r \in \mathcal{I}\left(s_{1} s_{2} \alpha\right)$.

Finally, suppose $q \in \mathcal{I}\left(s_{1} s_{4} \alpha\right) \cap S$ (see Figure 5(a)). Observe that since Cone $\left(s_{3} p x\right) \cap S$ is empty by Assumption $4, S$ is admissible whenever either p or q is 5 -redundant in $\mathcal{H}_{c}\left(p q, s_{2}\right) \cap$ S. Hence, assume that $\mathcal{I}\left(s_{2} s_{3} p q\right) \cap S \subset \mathcal{I}\left(s_{2} s_{3} \beta\right)$, where β is the point of intersection of the diagonals of the quadrilateral $s_{2} s_{3} p q$. Let r be the first angular neighbor of $\overrightarrow{q y}$ in $\operatorname{Cone}\left(y q s_{1}\right)$,
where y is the point where $\overrightarrow{p q}$ intersects the boundary $C H(S)$. If $r \in \mathcal{I}\left(s_{1} s_{4} \alpha\right) \cap S$, then $\left|\mathcal{V}\left(C H\left(\mathcal{H}_{c}\left(p q, s_{1}\right) \cap S\right)\right)\right|=6$ and both p and q are 5 -redundant in $\mathcal{H}_{c}\left(p q, s_{1}\right) \cap S$ (Figure $5(\mathrm{a}))$. Thus, the partition of S given by $\mathcal{H}\left(p q, s_{1}\right) \cap S$ and $\mathcal{H}_{c}\left(p q, s_{2}\right) \cap S$ is admissible. Otherwise, assume that $r \in \mathcal{I}\left(s_{1} s_{2} \alpha\right) \cap S$, as shown in Figure 5(b). Let γ be the point of intersection of the diagonals of the quadrilateral $s_{1} r p s_{4}$. From Corollary 1, it is easy to see that whenever there exists a point of $\left(\mathcal{H}\left(p q, s_{1}\right) \cap \mathcal{I}\left(s_{1} s_{4} \alpha\right)\right) \cap S$ outside $\mathcal{I}\left(s_{1} s_{4} \gamma\right)$, at least one of p or r is 5 -redundant in $\left(\mathcal{H}\left(p q, s_{1}\right)\right) \cap S \cup\{p\}$, and the admissibility of S is immediate. Therefore, it suffices to assume that $\left(\mathcal{H}\left(p q, s_{1}\right) \cap \mathcal{I}\left(s_{1} s_{4} \alpha\right)\right) \cap S \subset \mathcal{I}\left(s_{1} s_{4} \gamma\right)$. Then $\left|\mathcal{V}\left(C H\left(\mathcal{H}\left(s_{2} s_{4}, s_{1}\right) \cap S\right)\right)\right| \geq 4$ and $\left|\mathcal{H}\left(s_{2} s_{4}, s_{1}\right) \cap S\right|=9$. Hence, the 5 -hole contained in $\mathcal{H}\left(s_{2} s_{4}, s_{1}\right) \cap S$ (Corollary 2), is disjoint from the 5-hole contained in $\mathcal{H}_{c}\left(s_{2} s_{4}, s_{3}\right) \cap S$.

$5.2|\mathcal{V}(C H(S))|=3$

Let s_{1}, s_{2}, s_{3} be the three vertices of $C H(S)$. Let $\mathcal{I}(C H(S))=\left\{u_{1}, u_{2}, \ldots, u_{16}\right\}$ be such that u_{i} is the i-th angular neighbor of $\overrightarrow{s_{1} s_{2}}$ in Cone $\left(s_{2} s_{1} s_{3}\right)$. For $i \in\{1,2,3\}$ and $j \in$ $\{1,2, \ldots, 16\}$, let $p_{i j}$ be the point where $\overrightarrow{s_{i} u_{j}}$ intersects the boundary of $C H(S)$. For example, p_{17} is the point of intersection of $\overrightarrow{s_{1} u_{7}}$ with the boundary of $C H(S)$.

If $\mathcal{I}\left(u_{7} p_{17} s_{2}\right)$ is not empty in $S,\left|\mathcal{V}\left(C H\left(\mathcal{H}_{c}\left(s_{1} u_{7}, s_{2}\right) \cap S\right)\right)\right| \geq 4$ and by Corollary 2 , $\mathcal{H}_{c}\left(s_{1} u_{7}, s_{2}\right) \cap S$ contains a 5 -hole which is disjoint from the 5 -hole contained in $\mathcal{H}\left(s_{1} u_{7}, s_{3}\right) \cap$ S. Therefore, $\mathcal{I}\left(u_{7} p_{17} s_{2}\right) \cap S$ can be assumed to be empty. In fact, we can make the following more general assumption.

Assumption 5 For all $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(p_{i t} u_{t} s_{j}\right) \cap S$ is empty, where u_{t} is the seventh angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right) \cap S$.

Now, we have the following observation.
Observation 2 If for some $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(p_{i t} u_{t} s_{j}\right) \cap S$ is non-empty, where u_{t} is the eighth angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right)$, then S is admissible.

Proof. W.l.o.g., let $i=1$ and $j=2$, which means, $t=8$. Set $T=\mathcal{H}_{c}\left(s_{1} u_{8}, s_{2}\right) \cap S$. Suppose, there exists a point $u_{r} \in \mathcal{I}\left(s_{2} u_{8} p_{18}\right) \cap S$. This implies that $|\mathcal{V}(C H(T))| \geq 4$. When $|\mathcal{V}(C H(T))| \geq 5, u_{8}$ is 5 -redundant in T and $T \backslash\left\{u_{8}\right\}$ contains a 5 -hole which is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(s_{1} u_{8}, s_{3}\right) \cap S\right) \cup\left\{u_{8}\right\}$.

Hence, it suffices to assume $|\mathcal{V}(C H(T))|=4$. Let $\mathcal{V}(C H(T))=\left\{s_{1}, s_{2}, u_{r}, u_{8}\right\}$, with $r \leq 7$, and α the point of intersection of the diagonals of the quadrilateral $s_{1} s_{2} u_{r} u_{8}$. By Corollary 1 , it follows that unless $\mathcal{I}\left(s_{1} s_{2} u_{r} u_{8}\right) \cap S \subset \mathcal{I}\left(s_{2} \alpha u_{r}\right)$, either s_{1} or u_{8} is 5 -redundant in T and hence S is admissible. Therefore, assume $\mathcal{I}\left(s_{1} s_{2} u_{r} u_{8}\right) \cap S \subset \mathcal{I}\left(s_{2} \alpha u_{r}\right)$, which implies $u_{r}=u_{7}$, as shown in Figure 6(a). Suppose, $\operatorname{Cone}\left(s_{1} u_{7} u_{8}\right) \cap S$ is non-empty, and let u_{k} be the first angular neighbor of $\overrightarrow{u_{7} s_{1}}$ in $C o n e\left(s_{1} u_{7} u_{8}\right)$. Then $\mathcal{I}\left(u_{k} u_{7} s_{2}\right) \cap S$ is non-empty, and u_{7} is 5 -redundant in $\mathcal{H}_{c}\left(u_{7} u_{k}, s_{1}\right) \cap S$. Thus, the 5 -hole contained in $\left.\mathcal{H}\left(u_{7} u_{k}, s_{1}\right) \cap S\right) \cup\left\{u_{k}\right\}$ is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(u_{7} u_{k}, s_{3}\right) \cap S\right) \cup\left\{u_{7}\right\}$. However, if Cone $\left(s_{1} u_{7} u_{8}\right) \cap S$ is empty, u_{7} is 5 -redundant in $\mathcal{H}_{c}\left(u_{7} u_{8}, s_{1}\right) \cap S$ by Corollary 1 , and the 5 -hole contained in $\left(\mathcal{H}\left(u_{7} u_{8}, s_{1}\right) \cap S\right) \cup\left\{u_{8}\right\}$ is disjoint from the 5-hole contained in $\left(\mathcal{H}\left(u_{7} u_{8}, s_{3}\right) \cap S\right) \cup\left\{u_{7}\right\}$.

Lemma 10. If for some $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(p_{j t} u_{t} s_{i}\right) \cap S$ is empty, where u_{t} is the seventh angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right)$, then S is admissible.

Fig. 6. (a) Proof of Observation 2, (b) Proof of Lemma 10, and (c) Proof of Lemma 11.
Proof. W.l.o.g., let $i=1$ and $j=2$. This means $t=7$ and $\operatorname{Cone}\left(s_{1} u_{7} p_{27}\right)$ is empty in S. From Assumption $5, \mathcal{I}\left(u_{7} p_{17} s_{2}\right) \cap S$ is empty. Based on Observation 2 we may suppose Cone $\left(s_{2} u_{8} p_{18}\right) \cap S$ is empty. Now, if $\operatorname{Cone}\left(p_{28} u_{8} s_{1}\right) \cap S$ is empty, at least one of s_{1}, s_{2}, or u_{8} is 5 -redundant in $\mathcal{H}_{c}\left(s_{1} u_{8}, s_{2}\right) \cap S$, and admissibility of S is immediate.

Therefore, assume that $\operatorname{Cone}\left(p_{28} u_{8} s_{1}\right) \cap S$ is non-empty, which implies that Cone $\left(p_{27} s_{2} p_{28}\right) \cap$ S is non-empty, since $C o n e\left(s_{1} u_{7} p_{27}\right) \cap S$ is assumed to be empty. Let u_{r} be the first angular neighbor of $\overrightarrow{s_{2} u_{7}}$ in Cone $\left(p_{27} s_{2} p_{28}\right) \cap S$ (see Figure 6(b)). Now, S is admissible unless there exists a 5 -hole in $\mathcal{H}_{c}\left(s_{1} u_{8}, s_{2}\right) \cap S$ with $s_{1} u_{8}$ as an edge. Observe that this 5 -hole cannot have s_{2} as a vertex. Moreover, the remaining three vertices of this 5 -hole, that is, the vertices apart from s_{1} and u_{8}, lie in the halfplane $\mathcal{H}\left(u_{r} s_{2}, s_{1}\right)$. Now, this 5 -hole can be extended to a convex hexagon having s_{1}, u_{8}, and u_{r} as three consecutive vertices. Note that this convex hexagon may not be empty, and it does not contain s_{2} as a vertex. From this convex hexagon, we can get a 5 -hole with $u_{r} s_{1}$ as an edge, which does not contain u_{8} as a vertex and which lies in the halfplane $\mathcal{H}\left(u_{r} s_{1}, s_{2}\right)$. Hence, $\left(\mathcal{H}\left(s_{2} u_{r}, s_{1}\right) \cap S\right) \cup\left\{u_{r}\right\}$ contains a 5-hole which is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(s_{2} u_{r}, s_{3}\right) \cap S\right) \cup\left\{s_{2}\right\}$.

Hereafter, in light of the previous lemma, let us assume
Assumption 6 For all $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(p_{j t} u_{t} s_{i}\right) \cap S$ is non-empty, where u_{t} is the seventh angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right)$.

With this assumption we have the following two lemmas.
Lemma 11. If for some $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(s_{k} u_{t} s_{j}\right) \cap S$ is non-empty, where u_{t} is the eighth angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right) \cap S$, then S is admissible.

Proof. It suffices to prove the result for $i=1$ and $j=2$, which means $t=8$. Refer to Figure 6 (c). Based on Observation 2 we may suppose S is admissible whenever $\mathcal{I}\left(s_{2} u_{8} p_{18}\right) \cap S$ is nonempty. Therefore, assume that $\mathcal{I}\left(s_{2} u_{8} p_{18}\right) \cap S$ is empty. Now, suppose $\mathcal{I}\left(u_{8} s_{3} p_{18}\right) \cap S$ is nonempty, and let $\mathcal{I}\left(u_{8} s_{3} p_{18}\right) \cap S$. Let u_{k} be the first angular neighbor of $\overrightarrow{u_{7} s_{1}}$ in $\operatorname{Cone}\left(s_{1} u_{7} p_{27}\right)$, which is non-empty by Assumption 6. If Cone $\left(u_{k} u_{7} p_{27}\right)$ is empty, from Corollary $1, s_{2}$ is 5 -redundant in $\mathcal{H}_{c}\left(u_{7} u_{k}, s_{2}\right) \cap S$ and the admissibility of S follows. Thus, there exists some point $u_{m}(m \neq k)$ in $\operatorname{Cone}\left(u_{k} u_{7} p_{27}\right) \cap S$. Therefore, $\left|\mathcal{V}\left(C H\left(\left(\mathcal{H}\left(u_{7} u_{k}, s_{3}\right) \cap S\right)\right)\right)\right| \geq 4$, and by Corollary $2, \mathcal{H}\left(u_{7} u_{k}, s_{3}\right) \cap S$ contains a 5 -hole. This 5 -hole is disjoint from the 5 -hole contained in $\mathcal{H}_{c}\left(u_{7} u_{k}, s_{2}\right) \cap S$.

Lemma 12. If for some $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(s_{k} u_{t} s_{j}\right) \cap S$ is non-empty, where u_{t} is the seventh angular neighbor of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right)$, then S is admissible.

Proof. W.l.o.g., let $i=1$ and $j=2$, which means $t=7$. From Assumption 5, $\mathcal{I}\left(u_{7} p_{17} s_{2}\right) \cap S$ is empty. Next, suppose there exists a point u_{a} in $\mathcal{I}\left(u_{7} p_{17} s_{3}\right) \cap S$. Refer to Figure 7(a). Since Cone $\left(s_{1} u_{7} p_{27}\right) \cap S$ is non-empty by Assumption 6 , let u_{k} be the first angular neighbor of $\overrightarrow{u_{7} s_{1}}$ in Cone $\left(s_{1} u_{7} p_{27}\right)$ and α the point of intersection of the diagonals of the convex quadrilateral $u_{7} s_{2} s_{1} u_{k}$. From Corollary 1, it is easy to see that S is admissible unless $\mathcal{I}\left(s_{1} s_{2} u_{7} u_{k}\right) \cap S \subset$ $\mathcal{I}\left(s_{1} s_{2} \alpha\right)$. Now, if u_{7} is the eighth angular neighbor of $\overrightarrow{s_{2} s_{1}}$ or $\overrightarrow{s_{2} s_{3}}$ in Cone $\left(s_{1} s_{2} s_{3}\right)$, then S is admissible from Lemma 11, since $\mathcal{I}\left(u_{7} s_{3} s_{1}\right) \cap S$ is not empty. Since the eighth angular neighbor of $\overrightarrow{s_{2} s_{3}}$ in Cone $\left(s_{1} s_{2} s_{3}\right)$ is the ninth angular neighbor of $\overrightarrow{s_{2} s_{1}}$ in Cone $\left(s_{1} s_{2} s_{3}\right)$, u_{7} cannot be the eighth or ninth angular neighbor $\overrightarrow{s_{2} s_{1}}$ in $\operatorname{Cone}\left(s_{1} s_{2} s_{3}\right)$. Thus there exist at least two points, u_{m} and u_{n} in $\operatorname{Cone}\left(p_{27} u_{7} u_{k}\right) \cap S$, where u_{m} is the first angular neighbor of $\overline{u_{7} u_{k}}$ in $\operatorname{Cone}\left(p_{27} u_{7} u_{k}\right)$. Then, the 5 -hole contained in $\left(\mathcal{H}\left(u_{7} u_{m}, s_{1}\right) \cap S\right) \cup\left\{u_{m}\right\}$ is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(u_{7} u_{m}, s_{3}\right) \cap S\right) \cup\left\{u_{7}\right\}$, since $\mid \mathcal{V}\left(C H\left(\left(\mathcal{H}\left(u_{7} u_{m}, s_{3}\right) \cap S\right) \cup\right.\right.$ $\left.\left.\left\{u_{7}\right\}\right)\right) \mid \geq 4$ (see Figure 7(a)).

Fig. 7. (a) Illustration for the proof of Lemma 12, (b) Diamond arrangement $D\left\{u_{7}, u_{10}\right\}$, (c) Arrangement of diamonds $D\left\{u_{7}, u_{10}\right\}, D\left\{u_{k}, u_{n}\right\}$, and $D\left\{u_{p}, u_{s}\right\}$ in $\mathcal{I}\left(s_{1} s_{2} s_{3}\right)$.

The following lemma proves the admissibility of S in the remaining cases.
Lemma 13. If for all $i \neq j \neq k \in\{1,2,3\}$, Cone $\left(s_{k} u_{\alpha} s_{j}\right) \cap S$ and Cone $\left(s_{k} u_{\beta} s_{j}\right) \cap S$ are empty, where u_{α}, u_{β} are the seventh and eighth angular neighbors of $\overrightarrow{s_{i} s_{j}}$ in Cone $\left(s_{j} s_{i} s_{k}\right)$, respectively, then S is admissible.

Proof. Lemmas 11 and 12 imply that S is admissible unless the interiors of $s_{2} u_{7} s_{3}, s_{2} u_{8} s_{3}$, $s_{2} u_{9} s_{3}$, and $s_{2} u_{10} s_{3}$ are empty in S. Thus, points $u_{7}, u_{8}, u_{9}, u_{10}$ must be arranged inside $C H(S)$ as shown in Figure 7(b). We call such a set of 4 points a diamond and denote it by $D\left\{u_{7}, u_{10}\right\}$. Note that, $\left|\mathcal{I}\left(s_{1} s_{2} u_{7}\right) \cap S\right|=\left|\mathcal{I}\left(s_{1} s_{3} u_{10}\right) \cap S\right|=6$.

Since Cone $\left(s_{1} u_{7} p_{27}\right) \cap S$ is non-empty by Assumption 6, u_{7} cannot be the seventh, eighth, ninth, and tenth angular neighbors of $\overrightarrow{s_{2} s_{1}}$ in Cone $\left(s_{1} s_{2} s_{3}\right)$. Let u_{k} be the seventh angular neighbor of $\overrightarrow{s_{2} s_{1}}$ in $\operatorname{Cone}\left(s_{1} s_{2} s_{3}\right)$. Suppose that $u_{k} \in \mathcal{I}\left(u_{7} s_{2} s_{1}\right)$. Then we have $\left|\mathcal{I}\left(s_{1} u_{k} p_{2 k}\right) \cap S\right| \geq 1$, as $\left|\mathcal{I}\left(u_{7} s_{1} s_{2}\right) \cap S\right|=6$. Hence, $\left|\mathcal{V}\left(C H\left(\mathcal{H}_{c}\left(s_{2} u_{k}, s_{1}\right) \cap S\right)\right)\right| \geq 4$, and since $\left|\mathcal{H}_{c}\left(s_{2} u_{k}, s_{1}\right) \cap S\right|=9$, the admissibility of S, in this case, follows from Corollary 2 .

Therefore, it can be assumed that the seventh angular neighbor of $\overrightarrow{s_{2} s_{1}}$, that is, u_{k} lies in $\mathcal{I}\left(p_{27} u_{7} s_{1}\right) \cap S$. Then Lemmas 11 and 12 imply that the eighth, ninth, and tenth angular neighbors of $\overrightarrow{s_{2} s_{1}}$ are in $\operatorname{Cone}\left(s_{1} u_{7} p_{27}\right)$. Let u_{l}, u_{m}, and u_{n} denote the eighth, ninth, and tenth angular neighbors of $\overrightarrow{s_{2} s_{1}}$ in Cone $\left(s_{1} s_{2} s_{3}\right)$, respectively. From similar arguments as before, these three points along with the point u_{k} form a diamond, $D\left\{u_{k}, u_{n}\right\}$, which is disjoint from diamond $D\left\{u_{7}, u_{10}\right\}$ (see Figure 7(c)).

Let u_{s} be the seventh angular neighbor of $\overrightarrow{s_{3} s_{1}}$ in $\operatorname{Cone}\left(s_{1} s_{3} u_{10}\right)$ as shown in Figure $7(\mathrm{c})$. Again, Assumption 6 and the same logic as before implies S is admissible if u_{10} is the eighth, ninth or tenth angular neighbor of $\overrightarrow{s_{3} s_{1}}$ in $\operatorname{Cone}\left(s_{1} s_{3} u_{10}\right)$. Let u_{r}, u_{q}, and u_{p} be the eighth, ninth, and tenth angular neighbors of $\overrightarrow{s_{3} s_{1}}$ in Cone $\left(s_{1} s_{3} u_{10}\right)$, respectively. As before, these three points along with the point u_{s}, form another diamond $D\left\{u_{p}, u_{s}\right\}$, which disjoint from both $D\left\{u_{7}, u_{10}\right\}$ and $D\left\{u_{k}, u_{n}\right\}$.

Let $R_{1}, R_{2}, R_{3}, R_{4}$ be the shaded regions inside $C H(S)$, as shown in Figure 7(c). To begin with suppose that $\left|R_{1} \cap S\right| \geq 1$. Let u_{z} be the first angular neighbor of $\overrightarrow{u_{p} s 3}$ in $\operatorname{Cone}\left(p_{2 p} u_{p} s_{3}\right)$. Note that $\left|\mathcal{H}_{c}\left(u_{p} u_{z}, s_{3}\right) \cap S\right|=10$ and $\mathcal{I}\left(s_{2} u_{z} u_{p}\right) \cap S$ is non-empty, as $\left|R_{1} \cap S\right| \geq 1$. This implies that u_{p} is 5 -redundant in $\mathcal{H}_{c}\left(u_{p} u_{z}, s_{3}\right) \cap S$. Therefore, the 5 -hole contained in $\left(\mathcal{H}\left(u_{p} u_{z}, s_{3}\right) \cap S\right) \cup\left\{u_{z}\right\}$ is disjoint from the 5 -hole contained in $\left(\mathcal{H}\left(u_{p} u_{z}, s_{1}\right) \cap\right.$ $S) \cap\left\{u_{p}\right\}$. Therefore, assume that $\left|R_{1} \cap S\right|=0$. This implies that $\left|R_{4} \cap S\right|=2$, as $\mid \mathcal{I}\left(s_{2} s_{3} u_{p}\right) \cap$ $S \mid=6$. The admissibility of S now follows from exactly similar arguments by taking the nearest angular neighbor of $\overrightarrow{u_{10} s_{1}}$ in Cone ($\left.s_{1} u_{10} p_{310}\right)$.

Since all the different cases have been considered, the proof of the case $|\mathcal{V}(C H(S))|=3$, and hence the theorem is finally completed.

6 Proof of Theorem 3

Let S be any set of $2 m+9$ points in the plane in general position, and u_{1}, u_{2}, and w_{m} be vertices of $C H(S)$ such that $u_{1} u_{2}$ and $u_{1} w_{m}$ are edges of $C H(S)$. We label the points in the set S inductively as follows.
(i) u_{i} be the $(i-2)$-th angular neighbor of $\overrightarrow{u_{1} u_{2}}$ in $\operatorname{Cone}\left(w_{m} u_{1} u_{2}\right)$, where $i \in\{3,4, \ldots, m\}$.
(ii) v_{i} be the i-th angular neighbor of $\overrightarrow{u_{1} u_{m}}$ in Cone $\left(w_{m} u_{1} u_{m}\right)$, where $i \in\{1,2, \ldots, 9\}$.
(iii) w_{i} be the i-th angular neighbor of $\overrightarrow{u_{1} v_{g}}$ in Cone $\left(w_{m} u_{1} v_{9}\right)$, where $i \in\{1,2, \ldots, m\}$.

Therefore, $S=U \cup V \cup W$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}$, and $W=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$.

A disjoint convex partition of S into three subsets S_{1}, S_{2}, S_{3} is said to be a separable partition of S (or separable for S) if $\left|S_{1}\right|=\left|S_{3}\right|=m$ and the set of 9 points S_{2} contains a 5 -hole. The set S is said to be separable if there exists a partition which is separable for S. For proving Theorem 3 we have to identify a separable partition for every set of $2 m+9$ points in the plane in general position. It is clear, from Corollary 2 , that S is separable whenever $|\mathcal{V}(C H(V))| \geq 4$.

Let $T=V \backslash\left\{v_{9}\right\} \cup\left\{u_{1}\right\}$. If $|\mathcal{V}(C H(T))| \geq 6, u_{1}$ is 5 -redundant in T and $S_{1}=U, S_{2}=V$, and $S_{3}=W$ is a separable partition of S.

Therefore, assume that $|\mathcal{V}(C H(T))| \leq 5$. The three cases based on the size of $|\mathcal{V}(C H(T))|$ are considered separately in the following lemmas.

Lemma 14. S is separable whenever $|\mathcal{V}(C H(T))|=5$.
Proof. Let $\left\{u_{1}, v_{1}, v_{i}, v_{j}, v_{8}\right\}$ be the vertices of the convex hull of T. It suffices to assume that $\mathcal{I}\left(u_{1} v_{1} v_{i}\right)$ and $\mathcal{I}\left(u_{1} v_{1} v_{8}\right)$ are empty in S, otherwise either v_{1} or u_{1} is, respectively, 5 redundant and S is separable. Let the lines $\overline{v_{j} v \delta}$ and $\overrightarrow{v_{i} v_{j}}$ intersect $\overrightarrow{u_{1} v g}$ at the points t_{1}, t_{2}, and $C H(S)$ at the points s_{1}, s_{2}, respectively (Figure 8(a)). Now, we consider the following cases based on the location of the point v_{9} on the line segment $u_{1} s_{5}$, where s_{5} is the point where $\overrightarrow{u_{1} v_{9}}$ intersects the boundary of $C H(S)$.

Fig. 8. Illustrations for the proof of Lemma 14.
Case 1: v_{9} lies on the line segment $u_{1} t_{2}$. This implies, $|\mathcal{V}(C H(V))| \geq 4$ and by Corollary $2, S_{1}=U, S_{2}=V$, and $S_{3}=W$ is a separable partition of S.
Case 2: v_{9} lies on the line segment $t_{2} s_{5}$. Let s_{3} and s_{4} be the points where the lines $\overrightarrow{v_{i} v \overrightarrow{9}}$ and $\overrightarrow{v_{8} v_{9}}$ intersects $C H(S)$, respectively. (Note that if $v_{9}=s_{5}$, then the points s_{3} and s_{4} coincide with the point v_{9}.) If Cone $\left(u_{1} t_{1} s_{1}\right) \cap S$ is non-empty, let w_{q} be the first angular neighbor of $\overline{v_{8} u_{1}}$ in $\operatorname{Cone}\left(u_{1} t_{1} s_{1}\right)$. This implies, $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}\right)\right)\right| \geq 5$ and by Corollary $2 S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is a separable partition of S. So, assume that $\operatorname{Cone}\left(u_{1} t_{1} s_{1}\right) \cap S$ empty.
Case 2.1: Cone $\left(s_{1} v_{j} s_{2}\right) \cap W$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{j} s_{1}}$ in $C o n e\left(s_{1} v_{j} s_{2}\right)$. Then, $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{9}\right\} \cup\left\{w_{q}\right\}\right)\right)\right| \geq 4$, and the partition, $S_{1}=U$, $S_{2}=V \backslash\left\{v_{9}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is separable for S.
Case 2.2: Cone $\left(s_{1} v_{j} s_{2}\right) \cap W$ is empty and $\operatorname{Cone}\left(s_{5} v_{9} s_{4}\right) \cap W$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{9} s_{5}}$ in $\operatorname{Cone}\left(s_{5} v_{9} s_{4}\right)$. Observe that $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right| \geq 4$ and $\mathcal{I}\left(v_{8} v_{9} w_{q}\right) \cap S$ is empty. Now, if $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right| \geq 5$, then v_{1} is clearly 5 -redundant in $V \cup\left\{w_{q}\right\}$. Otherwise, Corollary 1 now implies that v_{1} is 5 -redundant in $V \cup\left\{w_{q}\right\}$. Therefore, the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{u_{1}\right\}$ is separable for S.
Case 2.3: Cone $\left(s_{1} v_{j} s_{2}\right) \cap W$ and $\operatorname{Cone}\left(s_{5} v_{9} s_{4}\right) \cap W$ are both empty. If w_{1}, the nearest angular neighbor of $\overline{u_{1} s_{5}}$ in W, lies in Cone $\left(s_{2} v_{i} s_{3}\right),\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}, w_{1}\right\}\right)\right)\right|=4$ and u_{1} is 5 -redundant in $V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}, w_{1}\right\}$ by Corollary 1. Therefore, $S_{1}=U \backslash\left\{u_{1}\right\} \cup$ $\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{1}\right\}$, and $S_{3}=W \backslash\left\{w_{1}\right\} \cup\left\{u_{1}\right\}$ is separable for S. Finally, consider that $w_{1} \in \operatorname{Cone}\left(s_{4} v_{9} s_{3}\right)$ and let $Z=V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}, w_{1}\right\}$. Observe that $|\mathcal{V}(C H(Z))|=3$ (Figure $8(\mathrm{~b}))$. Now, since $|Z|=10, Z$ must contain a 5 -hole. Note that since $\mathcal{I}\left(u_{1} v_{1} v_{8}\right)$ is assumed to be empty in S, it follows that all the four vertices of the 4 -hole $u_{1} v_{8} v_{9} w_{1}$ cannot be a part of any 5 -hole in Z. Moreover, there cannot be a 5 -hole in Z with the points u_{1}, v_{9}, w_{1} or the points u_{1}, v_{8}, v_{9} as vertices, since $\operatorname{Cone}\left(s_{5} u_{1} w_{1}\right)$ and $\operatorname{Cone}\left(u_{1} w_{1} v_{8}\right)$ are empty in Z. Emptiness of $\operatorname{Cone}\left(s_{5} u_{1} w_{1}\right) \cap Z$ and $C o n e\left(u_{1} w_{1} v_{8}\right) \cap Z$ also implies that there cannot be a 5 -hole in Z with both the points u_{1} and w_{1} as vertices. Thus, either u_{1} or w_{1} is 5 -redundant in Z, and separability of S follows.

Lemma 15. S is separable whenever $|\mathcal{V}(C H(T))|=4$.

Fig. 9. Illustrations for the proof of Lemma 15: Case 1 and Case 2.
Proof. Suppose $\left\{u_{1}, v_{1}, v_{i}, v_{8}\right\}$ are the vertices of the convex hull of T. Let the lines $\overrightarrow{v_{i} v z}$, $\overrightarrow{v_{1} v 8}$, and $\overrightarrow{v_{1} v_{i}}$ intersect $\overrightarrow{u_{1} v 9}$ at the points t_{1}, t_{2}, t_{3}, and $C H(S)$ at the points s_{1}, s_{2}, s_{3}, respectively (see Figure 9(a)). If v_{9} lies on the line segment $u_{1} t_{1}$ or $t_{2} t_{3}$, then $|\mathcal{V}(C H(V))| \geq 4$ and $S_{1}=U, S_{2}=V$, and $S_{3}=W$ is separable for S. So, assume that v_{9} lies on the line segment $t_{1} t_{2}$, or on the line segment $t_{3} s_{6}$, where s_{6} is the point of intersection of $\overrightarrow{u_{1} v 9}$ and $C H(S)$. Now, we consider the following cases.

Case 1: v_{9} lies on the line segment $t_{3} s_{6}$, and $\mathcal{I}\left(u_{1} v_{1} v_{8}\right) \cap S$ is empty. Let s_{4} and s_{5} be the points where $\overline{v_{1} v_{g}}$ and $\overrightarrow{v_{8} v_{g}}$ intersect the boundary of $C H(S)$, respectively.
Case 1.1: Cone $\left(u_{1} v_{8} s_{1}\right) \cap W$ is non-empty. If w_{q} be the first angular neighbor of $\overrightarrow{v_{8} u_{1}}$ in Cone $\left(u_{1} v_{8} s_{1}\right)$, then $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{9}\right\} \cup\left\{w_{q}\right\}\right)\right)\right|=4$. Hence, $S_{1}=U, S_{2}=V \backslash\left\{v_{9}\right\} \cup$ $\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is a separable partition.
Case 1.2: Cone $\left(u_{1} v_{8} s_{1}\right) \cap W$ is empty, and Cone $\left(s_{6} v_{9} s_{5}\right) \cap W$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{986}}$ in Cone $\left(s_{6} v_{9} s_{5}\right)$. Note that $C H\left(V \cup\left\{w_{q}\right\}\right)$ is a quadrilateral and $\mathcal{I}\left(v_{8} v_{9} w_{q}\right) \cap S$ is empty. This implies that v_{1} is 5 -redundant in $V \cup\left\{w_{q}\right\}$ by Corollary 1. Therefore, $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{u_{1}\right\}$ is separable for S.
Case 1.3: Both Cone $\left(u_{1} v_{8} s_{1}\right) \cap W$ and Cone $\left(s_{6} v_{9} s_{5}\right) \cap W$ are empty, but Cone $\left(s_{5} v_{8} s_{2}\right) \cap$ W is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{8} v_{9}}$ in Cone $\left(s_{5} v_{8} s_{2}\right)$. To begin with, assume $w_{q} \in \operatorname{Cone}\left(s_{5} v_{8} s_{2}\right) \backslash$ Cone $\left(s_{5} v_{9} s_{4}\right)$. Then $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right| \geq 4$ and $V \cup\left\{w_{q}\right\}$ contains a 5 -hole. Now, by Corollary 1 , either v_{1} or w_{q} is 5 -redundant in $V \cup\left\{w_{q}\right\}$, and the separability of S is immediate. Otherwise, $w_{q} \in \operatorname{Cone}\left(s_{5} v_{9} s_{4}\right)$, and $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right|=3$ (Figure $\left.9(\mathrm{a})\right)$. Now, $V \cup\left\{w_{q}\right\}$ contains a 5 -hole and at least one of v_{1}, v_{8}, and w_{q} is 5 -redundant in $V \cup\left\{w_{q}\right\}$. If w_{q} is 5 -redundant, the separability of S is immediate. If v_{1} is 5-redundant, the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}$, $S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{u_{1}\right\}$ is a separable partition of S. Finally, if v_{8} is 5 -redundant, then the partition $S_{1}=U, S_{2}=V \backslash\left\{v_{8}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=$ $W \backslash\left\{w_{q}\right\} \cup\left\{v_{8}\right\}$ is a separable partition of S.
Case 1.4: $W \subset \operatorname{Cone}\left(s_{1} v_{8} s_{2}\right)$. Let w_{q} be the nearest angular neighbor of $\overrightarrow{v_{i} s_{1}}$ in Cone $\left(s_{1} v_{i} s_{3}\right)$. If $\mathcal{I}\left(u_{1} v_{1} v_{i}\right) \cap S$ is non-empty, then $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}\right)\right)\right| \geq 4$ and the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is
separable for S. Otherwise, assume $\mathcal{I}\left(u_{1} v_{1} v_{i}\right) \cap S$ is empty. Let w_{1} be the first angular neighbor of $\overrightarrow{u_{1} s_{6}}$ in W. Then, $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}\right\} \cup\left\{w_{1}\right\}\right)\right)\right| \geq 4$, and the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{1}\right\}$, and $S_{3}=W \backslash\left\{w_{1}\right\} \cup\left\{u_{1}\right\}$ is separable for S.

Fig. 10. Illustrations for the proof of Lemma 15: Case 3.

Case 2: v_{9} lies on the line segment $t_{3} s_{6}$, and $\mathcal{I}\left(u_{1} v_{1} v_{8}\right) \cap S$ is non-empty. Let v_{k} be the first angular neighbor of $\overrightarrow{v_{8} u_{1}}$ in $\operatorname{Cone}\left(u_{1} v_{8} v_{1}\right)$, and let s_{0}, s_{4} and s_{a} be the points where $\overline{v_{1} v k}, \overline{v_{1} v g}$ and $\overline{v_{k} v_{g}}$ intersect $C H(S)$, respectively. Note that if $v_{k} \in \overline{\mathcal{H}}\left(v_{9} v_{8}, u_{1}\right) \cap V$, then $|\mathcal{V}(C H(V))| \geq 4$ and the separability of S is immediate. Therefore, assume that $v_{k} \in \mathcal{H}\left(v_{9} v_{8}, u_{1}\right) \cap V$ (see Figure 9(b)). Let α be the point where $\overrightarrow{v_{8} v_{k}}$ intersects $\overrightarrow{u_{1} v_{1}}$. If $\mathcal{I}\left(v_{1} v_{k} \alpha\right) \cap V$ is non-empty, then $|C H(V)| \geq 5$, and the separability of S is immediate. Therefore, assume that $\mathcal{I}\left(v_{1} v_{k} \alpha\right) \cap V$ is empty, that is, $\mathcal{I}\left(v_{1} v_{k} u_{1}\right) \cap V$ is empty.

Case 2.1: Cone $\left(s_{6} v_{9} s_{a}\right) \cap W$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{9} s \sigma_{6}}$ in $\operatorname{Cone}\left(s_{6} v_{9} s_{a}\right)$. Then $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right|=4$ and by Corollary 1 either v_{1} or v_{9} is 5 -redundant in $V \cup\left\{w_{q}\right\}$. The separability of S now follows easily.
Case 2.2: Cone $\left(s_{6} v_{9} s_{a}\right) \cap W$ is empty and Cone $\left(s_{0} v_{k} s_{a}\right) \cap W$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{k} v g}$ in $\operatorname{Cone}\left(s_{0} v_{k} s_{a}\right)$. If $w_{q} \in \operatorname{Cone}\left(s_{0} v_{k} s_{a}\right) \backslash C o n e\left(s_{4} v_{9} s_{a}\right)$ then $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}\right)\right)\right| \geq 4$, and the separability of S is immediate. Otherwise, assume $w_{q} \in \operatorname{Cone}\left(s_{4} v_{9} s_{a}\right)$. Then $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right|=3$ and either v_{1}, v_{k}, or w_{q} is 5 -redundant in $V \cup\left\{w_{q}\right\}$, and the separability of S is immediate.
Case 2.3: Both Cone $\left(s_{6} v_{9} s_{a}\right) \cap W$ and Cone $\left(s_{0} v_{k} s_{a}\right) \cap W$ are empty, but Cone $\left(u_{1} v_{k} s_{0}\right) \cap$ W is non-empty. Now, if Cone $\left(u_{1} v_{8} s_{1}\right) \cap W$ is non-empty, the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup$ $\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{i}\right\}$, and $S_{3}=W \backslash\left\{w_{i}\right\} \cup\left\{v_{9}\right\}$ is separable for S, where w_{i} is the first angular neighbor of $\overrightarrow{v_{8} u_{1}}$ in Cone $\left(u_{1} v_{8} s_{1}\right) \cap W$. Therefore, assume that Cone $\left(u_{1} v_{8} s_{1}\right) \cap W$ is empty. This implies, $W \subset R \cap S$, where R is the shaded region as shown in Figure 9(b). Let w_{q} be the nearest angular neighbor of $\overrightarrow{v_{i} v_{8}}$ in Cone $\left(s_{1} v_{i} s_{3}\right)$. If $\mathcal{I}\left(u_{1} v_{1} v_{i}\right) \cap S$ is non-empty, then $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}\right)\right)\right| \geq 4$ and the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is separable for S. Otherwise, assume $\mathcal{I}\left(u_{1} v_{1} v_{i}\right) \cap S$ is empty. Let w_{1} be the first angular neighbor of $\overrightarrow{u_{1} s_{6}}$ in W. Then, $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}\right\} \cup\left\{w_{1}\right\}\right)\right)\right| \geq 4$, and the partition

$$
S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{1}\right\}, \text { and } S_{3}=W \backslash\left\{w_{1}\right\} \cup\left\{u_{1}\right\} \text { is separable for }
$$ S.

Case 3: v_{9} lies on the line segment $t_{1} t_{2}$. Observe that if either u_{1} or v_{1} is 5 -redundant in $V \cup\left\{u_{1}\right\}$, then the separability of S is immediate. Therefore, from Corollary 1, it suffices to assume that all the points inside $C H\left(V \cup\left\{u_{1}\right\}\right)$ must lie in $\mathcal{I}\left(v_{9} v_{i} \beta\right)$, where β is the point of intersection of the diagonals of the quadrilateral $u_{1} v_{1} v_{i} v_{9}$. Next, suppose that $R \cap S$ is non-empty, where R is the shaded region inside $C H(S)$ as shown in Figure 10(a). Let $u_{j} \in R \cap S$ be the first angular neighbor of $\overrightarrow{v_{i} u_{1}}$ in R. Then $\mid \mathcal{V}\left(C H\left(V \backslash\left\{v_{1}\right\} \cup\right.\right.$ $\left.\left.\left\{u_{1}, u_{j}\right\}\right)\right) \mid=4$ and v_{i} is 5-redundant in $V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}, u_{j}\right\}$, since $\mathcal{I}\left(u_{j} v_{i} v_{9}\right) \cap S$ is nonempty (Corollary 1). Hence, the partition of S given by $S_{1}=U \backslash\left\{u_{1}, u_{j}\right\} \cup\left\{v_{1}, v_{i}\right\}, S_{2}=$ $V \backslash\left\{v_{1}, v_{i}\right\} \cup\left\{u_{1}, u_{j}\right\}, S_{3}=W$ is separable. On the other hand, if $R \cap S$ is empty, then the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{i}\right\}, S_{2}=V \backslash\left\{v_{i}\right\} \cup\left\{u_{1}\right\}$, and $S_{3}=W$ is separable, since v_{i} is 5 -redundant in $V \cup\left\{u_{1}\right\}$ by Corollary 1 (see Figure 10(b)).

Lemma 16. S is separable whenever $|\mathcal{V}(C H(T))|=3$.
Proof. Let $\mathcal{V}(C H(T))=\left\{u_{1}, v_{1}, v_{8}\right\}$. Let v_{i} and v_{j} be the first angular neighbors of $\overrightarrow{v_{8} u_{1}}$ and $\overrightarrow{v_{8} v_{1}}$ respectively in Cone $\left(u_{1} v_{8} v_{1}\right)$. Let $\overrightarrow{v_{j} v_{8}}$ and $\overrightarrow{v_{i} v_{8}}$ intersect $\overrightarrow{u_{1} v_{9}}$ at t_{1} and t_{2}, respectively (Figure 11(a)). If v_{9} lies on the line segment $u_{1} t_{1},\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}\right\}\right)\right)\right| \geq 4$ and by Corollary $2, V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}\right\}$ contains a 5-hole. Thus, $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{u_{1}\right\}$, and $S_{3}=W$ is a separable partition of S. Similarly, if v_{9} lies on the line segment $t_{2} s_{4}$, where s_{4} is the point where $\overrightarrow{u_{1} v 9}$ intersects the boundary of $C H(S)$, then $|\mathcal{V}(C H(V))| \geq 4$, and $S_{1}=U, S_{2}=V$, and $S_{3}=W$ is separable for S.

Fig. 11. Illustrations for the proof of Lemma 16.
Therefore, v_{9} lies on the line segment $t_{1} t_{2}$. Clearly, S is separable unless $|\mathcal{V}(C H(V))|=3$. Let $\mathcal{V}(C H(V))=\left\{v_{1}, v_{k}, v_{9}\right\}$. (Note that v_{k} need not be the point v_{i} as shown in Figure 11(a)). Let s_{1}, s_{2}, and s_{3} be the points where $\overrightarrow{v_{1} v_{9}}, \overrightarrow{v_{8} v_{9}}$, and $\overrightarrow{v_{k} v_{9}}$ intersect $C H(S)$, respectively. Now, we have the following cases:

Case 1: Cone $\left(u_{1} v_{8} t_{1}\right) \cap S$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{8} u_{1}}$, in Cone $\left(u_{1} v_{8} t_{1}\right)$. This implies, $\left|\mathcal{V}\left(C H\left(V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}\right)\right)\right| \geq 4$, and $S_{1}=U \backslash\left\{u_{1}\right\} \cup$ $\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}, v_{9}\right\} \cup\left\{u_{1}, w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is a separable partition of S.

Case 2: Cone $\left(u_{1} v_{8} t_{1}\right) \cap S$ is empty and Cone $\left(s_{4} v_{9} s_{3}\right) \cap S$ is non-empty. Suppose, w_{q} is the first angular neighbor of $\overrightarrow{v_{9} s_{4}}$ in $\operatorname{Cone}\left(s_{4} v_{9} s_{3}\right)$. Since $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right| \geq 4$, either v_{1} or v_{9} is 5 -redundant in $V \cup\left\{w_{q}\right\}$ by Corollary 1. Thus, either $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}$, $S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{u_{1}\right\}$ or $S_{1}=U, S_{2}=V \backslash\left\{v_{9}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{9}\right\}$ is, respectively, separable for S.
Case 3: Cone $\left(u_{1} v_{8} t_{1}\right) \cap S$ and Cone $\left(s_{4} v_{9} s_{3}\right) \cap S$ are empty but Cone $\left(s_{3} v_{9} s_{2}\right) \cap S$ is nonempty. If w_{q} is the first angular neighbor of $\overrightarrow{v_{9} s_{3}}$ in Cone $\left(s_{3} v_{9} s_{2}\right)$, then $v_{1} v_{j} v_{8} v_{9} w_{q}$ is a 5-hole, and $S_{1}=U, S_{2}=V \backslash\left\{v_{k}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{k}\right\}$ is separable for S.
Case 4: The three sets Cone $\left(u_{1} v_{8} t_{1}\right) \cap S$, Cone $\left(s_{4} v_{9} s_{3}\right) \cap S$, and Cone $\left(s_{3} v_{9} s_{2}\right) \cap S$ are all empty, but $\operatorname{Cone}\left(t_{1} v_{8} s_{2}\right) \cap S$ is non-empty. Let w_{q} be the first angular neighbor of $\overrightarrow{v_{k} v \vec{v}}$ in Cone $\left(u_{1} v_{k} v_{9}\right)$. Clearly, $w_{q} \in \operatorname{Cone}\left(t_{1} v_{8} s_{2}\right)$.
Case 4.1: $w_{q} \in \operatorname{Cone}\left(t_{1} v_{8} s_{2}\right) \backslash C o n e\left(s_{2} v_{9} s_{1}\right)$. In this case, $\left|\mathcal{V}\left(C H\left(V \cup\left\{w_{q}\right\}\right)\right)\right|=4$ and v_{1} is 5 -redundant in $V \cup\left\{w_{q}\right\}$ by Corollary 1. Then the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}$, $S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{u_{1}\right\}$ is separable for S.
Case 4.2: $w_{q} \in \operatorname{Cone}\left(s_{2} v_{9} s_{1}\right)$ (see Figure 11(b)). Let $Z=V \cup\left\{w_{q}\right\}$. Observe, $|\mathcal{V}(C H(Z))|=$ 3 and Z must contain a 5 -hole, since $|Z|=10$. Now, either v_{1}, v_{k}, or w_{q} is 5 -redundant in Z. If w_{q} is 5 -redundant, the separability of S is immediate. If v_{1} is 5 -redundant, the partition $S_{1}=U \backslash\left\{u_{1}\right\} \cup\left\{v_{1}\right\}, S_{2}=V \backslash\left\{v_{1}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{u_{1}\right\}$ is a separable partition of S. Finally, if v_{k} is 5 -redundant, then the partition $S_{1}=U$, $S_{2}=V \backslash\left\{v_{k}\right\} \cup\left\{w_{q}\right\}$, and $S_{3}=W \backslash\left\{w_{q}\right\} \cup\left\{v_{k}\right\}$ is a separable partition of S.

This finishes the analysis of all the different cases, and completes the proof of Theorem 3.

7 Conclusion

In this paper we address problems concerning the existence of disjoint 5 -holes in planar point sets. We prove that every set of 19 points in the plane, in general position, contains two disjoint 5 -holes. Next, we show that any set of $2 m+9$ points in the plane can be subdivided into three disjoint convex regions such that one contains a set of 9 points which contains a 5 -hole, and the others contain m points each, where m is a positive integer. Combining these two results we show that the number of disjoint empty convex pentagons in any set of n points in the plane in general position, is at least $\left\lfloor\frac{5 n}{47}\right\rfloor$. This bound has been further improved to $\frac{3 n-1}{28}$ for infinitely many n.

In other words, we have shown that $H(5,5) \leq 19$. This improves upon the results of Hosono and Urabe [15, 16], where they showed $17 \leq H(5,5) \leq 20$. There is still a gap between the upper and lower bounds of $H(5,5)$, which probably requires a more complicated and detailed argument to be settled.

However, we are still quite far from establishing non-trivial bounds on $F_{6}(n)$ and $H(6, \ell)$, for $0 \leq \ell \leq 6$, since the exact value of $H(6)=H(6,0)$ is still unknown. The best known bounds are $H(6) \leq E S(9) \leq 1717$ and $H(6) \geq 30$ by Gerken [12] and Overmars [26], respectively.

References

1. O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C. D. Tóth, Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles, Graphs and Combinatorics, Vol. 23, 481-507, 2007.
2. I. Bárány, Z. Füredi, Empty simplices in Euclidean space, Canadian Math. Bull., Vol. 30, 436-445, 1987.
3. I. Bárány, G. Károlyi, Problems and results around the Erdős-Szekeres convex polygon theorem, $J C D C G$, LNCS 2098, 91-105, 2001.
4. I. Bárány, P. Valtr, Planar point sets with a small number of empty convex polygons, Studia Sci. Math. Hungar., Vol. 41(2), 243-266, 2004.
5. B. B. Bhattacharya, S. Das, Geometric proof of a Ramsey-type result for disjoint empty convex polygons I, Geombinatorics, Vol. XIX(4), 146-155, 2010.
6. B. B. Bhattacharya, S. Das, Geometric proof of a Ramsey-type result for disjoint empty convex polygons II, Geombinatorics, Vol. XX(1), 5-14, 2010.
7. B. B. Bhattacharya, S. Das, On the minimum size of a point set containing a 5-hole and a disjoint 4-hole, Stud. Sci. Math. Hung., to appear.
8. A. Dumitrescu, Planar sets with few empty convex polygons, Stud. Sci. Math. Hung. Vol. 36, 93-109, 2000.
9. P. Erdős, Some more problems on elementary geometry, Australian Mathematical Society Gazette, Vol. 5, 52-54, 1978.
10. P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compositio Mathematica, Vol. 2, 463-470, 1935.
11. P. Erdős, G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 3/4, 53-62, 1960-61.
12. T.Gerken, Empty convex hexagons in planar point sets, Discrete and Computational Geometry, Vol. 39, 239-272, 2008.
13. H. Harborth, Konvexe Funfecke in ebenen Punktmengen, Elemente der Mathematik, Vol. 33(5), 116-118, 1978.
14. J.D. Horton, Sets with no empty convex 7-gons, Canadian Mathematical Bulletin, Vol. 26, 482-484, 1983.
15. K. Hosono, M. Urabe, On the minimum size of a point set containing two non-intersecting empty convex polygons, $J C D C G$, LNCS 3742, 117-122, 2005.
16. K. Hosono, M. Urabe, A minimal planar point set with specified disjoint empty convex subsets, KyotoCGGT, LNCS 4535, 90-100, 2008.
17. K. Hosono, M. Urabe, On the number of disjoint convex quadrilaterals for a planar point set, Computational Geometry: Theory and Applications, Vol. 20, 97-104, 2001.
18. J. D. Kalbfleisch, J. G. Kalbfleisch, R. G. Stanton, A combinatorial problem on convex regions, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La., Congr. Numer., Vol. 1, 180-188, 1970.
19. G. Károlyi, G. Lippner, P. Valtr, Empty convex polygons in almost convex sets, Period. Math. Hungar., Vol, 55(2), 121-127, 2007.
20. G. Károlyi, J. Pach, G. Toth, A modular version of the Erdős-Szekeres theorem, Studia Sci. Math. Hungar. Vol. 38, 245-259, 2001.
21. H. Krasser, Order types of point sets in the plane, Doctoral Thesis, Institute of Theoritical Computer Science, Graz University of Technology, Graz, Austria, October 2003.
22. G. Kun, G. Lippner, Large convex empty polygons in k-convex sets, Period. Math. Hungar. Vol. 46, 81-88, 2003.
23. J. Matoušek, Lectures on Discrete Geometry, Springer, 2002.
24. W. Morris, V. Soltan, The Erdős-Szekeres problem on points in convex position- A survey, Bulletin of the Amercian Mathematical Society, Vol. 37(4), 437-458, 2000.
25. C. M. Nicolás, The empty hexagon theorem, Discrete and Computational Geometry, Vol. 38, 389-397, 2007.
26. M. Overmars, Finding sets of points without empty convex 6 -gons, Discrete and Computational Geometry, Vol. 29, 153-158, 2003.
27. R. Pinchasi, R. Radoičić, M. Sharir, On empty convex polygons in a planar point set, Journal of Combinatorial Theory, Series A, Vol. 113(3), 385-419, 2006.
28. G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM Journal, Vol. 48, 151-164, 2006.
29. G. Tóth, P. Valtr, The Erdős-Szekeres theorem: upper bounds and related results, in J. E. Goodman, J. Pach, and E. Welzl, Combinatorial and Computational Geometry, MSRI Publications 52, 557-568, 2005.
30. M. Urabe, On a partition into convex polygons, Discrete Applied Mathematics, Vol. 64, 179-191, 1996.
31. P. Valtr, A suffcient condition for the existence of large empty convex polygons, Discrete and Computational Geometry, Vol. 28, 671-682, 2002.
32. P. Valtr, On empty hexagons, in J. E. Goodman, J. Pach, R. Pollack, Surveys on Discrete and Computational Geometry, Twenty Years Later, AMS, 433-441, 2008.
33. L. Wu, R. Ding, Reconfirmation of two results on disjoint empty convex polygons, in Discrete geometry, combinatorics and graph theory, LNCS 4381, 216-220, 2007.
34. C. Xu, R. Ding, On the empty convex partition of a finite set in the plane, Chinese Annals of Mathematics B, Vol. 23(4), 487-494, 2002.
