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Abstract
Component sharing—using the same version of a component across multiple products—is an approach
adopted by many assembled-product manufacturers to achieve high final product variety with lower
component variety and cost. This paper presents a methodology for determining which versions of a set of
related components should be offered to optimally support a defined finished product portfolio. We develop
optimization models that determine which versions of each component should be introduced and which of
these versions each product should use to minimize design and production costs. This approach is appropriate
for components with a relatively low impact on consumers’ perceptions about product differentiation, which
can be shared across a set of products if they meet the most stringent performance requirements in the set. We
illustrate our procedure on automotive braking systems, but also discuss its applicability to other components
and industries. We identify three conceptually different organizational approaches to component sharing: a
coordinated projects approach that requires higher-level organizational echelons above the individual project,
a project-by-project approach that does not, and a hybrid partially coordinated approach. We use our model to
examine how the gain from the coordinated projects approach relative to the project-by-project approach
varies with the number of component versions in consideration, warranty costs, complexity costs, and
demand variability. Further, we use our model to highlight the risk of using simplistic heuristics to determine
design sequence within a component system in a partially coordinated approach.
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Managing Variety for Assembled Products: Modeling Component 
Systems Sharing 

 

 

 

Abstract 

 

Component sharing – using the same version of a component across multiple products – 

is an approach adopted by many assembled product manufacturers to achieve high final 

product variety with lower component variety and cost. This paper presents a 

methodology for determining which versions of a set of related components should be 

offered to optimally support a defined finished product portfolio. We develop 

optimization models that determine which versions of each component should be 

introduced and which of these versions each product should use so as to minimize design 

and production costs. This approach is appropriate for components with a relatively low 

impact on consumers’ perceptions about product differentiation, which can be shared 

across a set of products if they meet the most stringent performance requirements in the 

set. We illustrate our procedure on automotive braking systems, but also discuss its 

applicability to other components and industries. Finally, we consider organizational 

issues and identify three conceptually different approaches to component sharing: a 

coordinated projects approach that requires higher-level organizational echelons above 

the individual project, a project-by-project approach that does not, and a hybrid partially 

coordinated approach.  We use our model to show that the gain from the coordinated 

projects approach relative to the project-by-project approach is increasing in the number 

of component versions in consideration and warrantee and complexity costs, but does not 

vary systematically with product demand variability.  Further, we use our model to 

highlight the risk of using simplistic heuristics to determine design sequence within a 

component system in a partially coordinated approach.  We find that this approach is not 

always superior to the project-by-project approach, despite requiring greater coordination. 
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1. Introduction 

Firms in many industries have increased the variety of their offerings in the past few 

decades, with a view to increasing revenues.  Yet variety can also increase the costs of 

product design, manufacturing, distribution and after-sales support (Fisher, Jain and 

MacDuffie 1995; Ramdas 2001).  Thus firms struggle to offer variety cost effectively.  

 

Component sharing – using the same version of a component across multiple products – 

is an approach adopted by many assembled product manufacturers in industries as diverse 

as computers, toys, and automobiles, as a means to achieve high variety at low cost.  For 

example, auto companies have implemented component sharing within their product lines 

both by carrying over component versions from one model year to the next, and by using 

a component version on multiple car models in any model year.  The key questions that 

arise in developing a component sharing strategy for assembled products are: 

A) How should individual products in the firm’s product line be differentiated from 

competitor products, and from one another?  Which component types should be 

shared across models, and which should be used as differentiators? 

B) What underlying product architecture should be used to support the product line? 

C) Once these high-level product line decisions have been made, how many and 

which versions of each component type should be offered to support the entire 

line, and which component versions should each model use?  

Questions A) and B) above are clearly strategic; they define how firms choose to compete 

in the market place.  While C) addresses a more tactical issue, the tradeoffs involved in 

resolving this question are often complex, and the gains from better decision-making 

substantial.  We focus on C), and assume that product-line level variety, and which 

components to differentiate on, are specified.  This hierarchical approach is representative 

of the decision process used in the automobile and other assembled product industries.   

 

In addressing question C), we focus on components (or features) that do not significantly 

affect consumers’ perceptions about product differentiation, as long as they meet certain 

minimum performance requirements – for example, spring clip terminals vs. sturdier 

binding post terminals on a speaker, or the level of liability against theft for a credit card.  
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For such components, a component version can be used on multiple products provided it 

meets the most stringent performance requirements in the set.  Such downward 

substitution, where a “better than adequate” component version is used on some products, 

saves on fixed costs of design, tooling, manufacturing support, distribution, and after-

sales support, but often incurs additional variable costs.  As an example, using a better 

than adequate terminal on a speaker would save on fixed costs but incur additional 

materials cost.  Our model is inappropriate for components that strongly influence 

perceived differentiation, for which sharing can result in products that seem too similar – 

for example body panels of a speaker, or the breadth of stores accepting a credit card. 

 

In focusing on less differentiating components, we use automotive braking systems as our 

primary example. We simultaneously consider all of the component types that comprise a 

component system (for example, an automobile’s braking system is comprised of pedal, 

booster, master cylinder, brake rotors and brake calipers, that work together to stop it) and 

determine which versions of each component type should be introduced to support a 

defined product line and which versions should be used by each model in the line.  

 

We chose to illustrate our modeling approach on braking systems for two reasons.  First, 

based on our discussions with auto company executives, this domain is an excellent 

example of components with a relatively low impact on perceived differentiation, and 

offers substantial potential cost savings from components sharing.  For example, a senior 

Ford executive told us that choosing appropriately between sharing and designing a new 

braking system component could reduce that component’s cost contribution in a vehicle 

by up to 20%.  Second, the braking system is about middle of the scale in terms of the 

inherent complexity of design interactions, both among components within the braking 

system, and between the braking system and other automotive systems.  Parts such as 

tires rank at the low end of the complexity scale, whereas engines rank at the high end.  

The level of complexity of braking systems is high enough so that deciding how and to 

what extent to share different braking system components across vehicles in a firm’s 

product line is not a trivial problem.  We came to this conclusion after speaking to several 
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design managers and brakes design engineers at General Motors and Ford.  Since the 

tradeoffs are known but complicated, modeling is very appropriate.   

 

We first examine in section 2 the organizational and informational factors that influence 

components sharing decision-making.  We argue that organizational echelons above the 

individual project level, such as product platform teams or functional area leaders, enable 

the inter-project coordination required to take a holistic, coordinated projects approach to 

components sharing decisions.  In the absence of such echelons, firms are likely to make 

component-sharing decisions on a narrower, project-by-project basis.  In practice, due to 

the organizational difficulties in creating coordination, component system design is 

sometimes done via a partially coordinated approach, where some decisions are 

coordinated, while others are made on a project-by-project basis.  We posit that in 

addition to organizational requirements, making components sharing decisions also 

requires access to information on what component versions are available.   

 

After a brief review of the mechanics of braking and the braking system design process in 

section 3, we develop in section 4 a modeling framework for component sharing at the 

component system level that enables us to analyze component sharing decisions under 

different organizational regimes.  A major challenge in modeling component sharing at 

the system level is that the performance of a component system is often a complex 

function of its components.  For example, the braking torque of an automobile is a 

complex function of the design parameters of the individual braking components.  This 

creates system-to-product feasibility constraints – system torque must meet each car’s 

stopping requirements.  In addition, there are component-to-product feasibility constraints 

for individual components – e.g., a car’s front brake must fit within its wheel.  Further, 

there are interactivity constraints among components in a system, because only certain 

combinations of component versions of the different types can work together.  We 

develop a model that captures these constraint types, for the automotive braking system.  

The model objective is to select a components-sharing strategy for all braking system 

component types to minimize total fixed and variable costs subject to the relevant design 

constraints and organizational regime.  A powerful characteristic of our modeling 
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approach is that we do not specify engineering design equations, rather only the resulting 

constraints.  For this reason, our model easily translatable to component systems design 

for other assembled products. 

 

We develop an efficient solution procedure to our model that combines lagrangean 

relaxation with a lagrangean heuristic to obtain good feasible solutions.  We illustrate our 

approach on a realistic problem for the auto industry and test it on much larger problems 

that might occur in other industry settings.  We then adapt our modeling framework to 

reflect different organizational regimes, and estimate the benefits from taking the 

coordinated projects approach to components sharing over the more traditional project-

by-project approach, which requires less coordination.  We find that these benefits are 

greatest when there are many component versions in consideration, as with few versions 

coordination is implicitly achieved even in the traditional approach.  These benefits are 

also greater when component proliferation increases complexity and warrantee costs.  We 

also find that the gains from the coordinated approach do not vary systematically with the 

underlying variability in car model demand volumes, and explain why.  In addition, we 

compare the performance of a partially coordinated approach, where some decisions are 

coordinated and others are not, to that of the coordinated approach and the project-by-

project approach.   

 

Finally, section 5 contains concluding remarks. 

 

Our work is related to Fisher, Ramdas and Ulrich (1999), who model the tradeoff 

involved in sharing a single component type, the automotive front brake.  In their model, 

savings in fixed costs accruing from downward substitution are weighed against the 

incremental variable costs due to using over-specified component versions on some cars.  

They used this model to develop several testable hypotheses about components sharing, 

that they verified using data from actual practice. While this model helped build intuition 

about components-sharing decisions, its applicability is limited by the fact that a car’s 

braking performance is in fact determined by the entire braking system, not just its front 

brake.  The model we present in this paper addresses precisely this issue.  Rutenberg 
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(1971) has considered component sharing at the component system level, but in a model 

with narrowly defined component interactions.  Gupta and Krishnan (1999) have also 

considered component sharing at the system level.  In their model, the interaction 

between component types is limited to sharing a supplier.  They do not model any design 

interactions such as system feasibility or interactivity constraints.  

 

Several authors (e.g. Dobson and Yano 1995, Morgan, Daniels and Kouvelis 2001, 

Raman and Chhajed 1995, Ramdas and Sawhney 2001) have examined the higher-level 

issue of how much product line variety to offer.  Others (Ulrich 1995; Baldwin and Clark 

1998; Robertson and Ulrich 1998) discuss architectural decisions that often provide the 

framework within which components sharing decisions are made.  Krishnan and Ulrich 

(2001), Ramdas (2001), and Yano and Dobson (1998) review these research streams. 

 

2. Organizational and Informational Factors that Influence Components Sharing 

Sharing components involves either choosing to design a component version for use in 

multiple concurrent design projects, or reusing a component version, either as is or with 

modifications.  We believe that a firm’s approach to component system design and 

sharing reflects the organization of its design function, and the availability of relevant 

information.  Designing components for use in multiple concurrent design projects 

requires an organizational structure that allows coordination among, not just within 

individual projects.  For example many car companies seek to achieve this type of 

coordination via an organizational echelon described as a product platform, which 

encompasses several related individual car projects.   

 

Senior design executives at Ford indicated to us that the interpretation of such platforms 

has evolved over time.  In the past, car projects within a platform were required to share a 

core set of “platform components” – often including the chassis and drive train, and were 

encouraged to share other non-platform component types as well, such as braking system 

components.  Today, car projects within a platform are required to share certain aspects of 

the production process, known as “fixed points”.  As long as these fixed points – such as 

the method of insertion of a particular component in assembly– remain unchanged, the 
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components themselves need not be standardized, although sharing of many types of 

components is encouraged within a platform.  In either interpretation of a platform, the 

product platform echelon facilitates sharing by allowing coordination across concurrent 

design projects.  For some component types, sharing may even be possible across 

platforms.  This type of sharing is facilitated organizationally when different platform 

groups report to common VPs for platforms engineering and product development.   

 

Designing component versions for use within and across platforms can also be facilitated 

by having component designers on individual projects report to functional leaders for the 

different component systems.  However our discussions with auto industry executives 

reveal that coordination via platform echelons is preferable, because functional leaders 

often do not have a good understanding of the holistic needs of individual car projects.   

 

Given the difficulties in coordinating component design across multiple projects, some 

companies choose to coordinate decisions on some component types, and use a 

decentralized approach for others.  Important issues designers grapple with are for which 

types of components coordinated decision making is most appropriate, and how much is 

lost by using a partially coordinated approach rather than full coordination.   

 

In deciding whether to design new component versions (or modify existing ones) for use 

in multiple projects, designers also need access to information on all available and 

potential component versions and their cost structures.  In the auto industry, car 

companies now have databases of existing component versions that can be accessed by 

designers.  Information on potential component versions being considered by particular 

teams is typically less well documented.  Figure 1 summarizes the organizational and 

informational factors described above, in the auto industry context. 

 

In practice, companies both reuse component versions over time and share among 

multiple models offered concurrently, with varying degrees of supporting organizational 

infrastructure and information access.  As an example from the auto industry, Figure 2 

shows the use of front brake rotors in General Motors’ product line, in the year 2000.  
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Figure 3 shows all General Motors models that used a front brake rotor that was used in 

the year 2000, from the year of introduction of each rotor, up to year 20001.  Rotors are 

often used on cars that differ in weight, due to downward substitution.  Also, cars that use 

a specific rotor are not always contiguous in weight.  The same holds true for other 

braking system components.  

 

3. The Braking System Design Process 

We learned about braking system design by meeting with several automotive design 

managers and brake engineers.  In essence, a braking system is a hydraulic system that 

converts foot pressure applied at the pedal into a much higher braking pressure applied at 

the wheels, via the braking system components.  The pressure applied at the wheels forces 

stationary brake components to rub against rotating components, thus converting the 

kinetic energy of a moving car into heat energy via friction.   

 

Automotive braking system design is initiated only after vehicle design has been broadly 

specified, via “system level parameters” such as vehicle weight, top speed, and stopping 

distance.  Given these inputs, the components of the braking system must be designed so 

as to provide adequate torque to stop a car from top speed within the desired stopping 

distance.  Braking system design parameters like rotor radius, desired pedal force, and 

area of the caliper pistons and master cylinder piston are manipulated to meet this end.  

 

All braking components are designed for "maximum loading" conditions.  For example, 

the brake pedal should not break if the driver steps exceptionally hard on it in a panic 

stop.  These conditions, together with space and layout issues, result in component-to-

product feasibility constraints.  As mentioned earlier, the braking torque requirement 

constitutes a system-to-product feasibility constraint.  Several component interactivity 

constraints also arise.  For example, the hydraulic ratio (ratio of areas of master cylinder 

and caliper pistons) must lie within pre-specified limits to eliminate excessive pedal 

“travel”, which could cause the pedal to hit the floor of the car.   

 

                                                 
1 Data source: an automotive research company. 
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4.  Modeling Component Systems Sharing for Automotive Braking Systems 

We first model two conceptually different approaches to component sharing, reflecting 

whether or not a firm has put in place one or more higher organizational echelons above 

the single project level, to allow joint decisions among multiple individual new product 

projects on what component versions of each type to offer.  We refer to the case where 

such echelons do exist as the coordinated projects approach and the case where they do 

not as the project-by-project approach.  While in practice a firm may implement platform 

echelons and higher coordinating echelons to varying degrees resulting in lesser or greater 

coordination, we find it useful to distinguish conceptually between these two extremes.  

Finally, we model a hybrid, partially coordinated approach where some decisions are 

made jointly across projects while others are made on a project-by-project basis. 

 

Coordinated Projects Approach 

We assume that each individual project team is aware of all existing component versions 

for all braking system components, as well as new component versions that might be 

under consideration by any individual project team.  While we consider all component 

versions available across platforms, the model can be limited to component versions 

within a platform.  We assume that all design teams are aware of the fixed and variable 

costs of all component versions, and of vehicle sales volumes.  We assume that teams 

decide jointly on which component versions to design and what versions each car will 

use, so as to minimize total fixed and variable costs, subject to the relevant constraints.  

 

For each component type, the product line must be partitioned into subsets such that 

vehicles in each subset use the same component version.  This problem is difficult to 

solve because the lowest cost feasible partition of the product line for a specific 

component, say master cylinders, often differs from that for other components, e.g. brake 

rotors or boosters.  Further, component decisions cannot be made independently due to 

system-to-product feasibility and component-interactivity constraints.  We found it useful 

to group component versions into 5-tuples, each representing a braking system, comprised 

of a rotor, caliper, booster, master cylinder and pedal that satisfy interactivity constraints.  
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Whether or not a 5-tuple is feasible for a particular car is a function of system-to-product 

feasibility, and component-to-product feasibility for its comprising component versions. 

Formulation of Coordinated Projects Problem 

Sets 

Symbol Description     Index 

J   Car models in the product line  j 

A   Component versions of all component types a 

K   Component 5-tuples    k 

aK   Component 5-tuples that contain component version a k 

J
jK   Component 5-tuples that are feasible for car model j k  

Parameters 

kjV   Variable cost associated with using component 5-tuple k on car model j 

aF   Fixed cost of introducing component version a 

Variables 

aY   Indicates whether component version a is designed ( aY =1) or not ( aY = 0) 

kZ   Indicates whether 5-tuple k is designed ( kZ  = 1) or not ( kZ =0) 

kjW   Indicates whether 5-tuple k is used on car j ( kjW =1) or not ( kjW =0) 

 

∑∑
∈
∈∈

+

Jj
Kk

kjkj
Aa

aa WVYFMinimize  

Subject to  

kkj ZW ≤      KkJj ∈∈∀ ,  (1) 

1=∑
∈ J

jKk
kjW      Jj ∈∀   (2) 

ak YZ ≤      aKkAa ∈∈∀ ,  (3) 

}1,0{,, ∈akjk YWZ     AaKkJj ∈∈∈∀ ,,  (4) 

This problem shares some features with the simple plant location problem (SPLP).  

Designing a component 5-tuple is analogous to opening a plant, and assigning a 5-tuple to 

a car is analogous to assigning a plant to a customer.  Constraints (1) ensure that a 5-tuple 
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can be assigned to a car only if it has been designed.  Constraints (2) ensure that each car 

is assigned a feasible braking system.  Similarly in the SPLP, a plant can be assigned to a 

customer only if it is open, and each customer must be assigned a plant.  The key 

difference between the above formulation and the SPLP is that in the SPLP, there is a 

fixed cost for opening each plant, whereas above, the cost of designing each 5-tuple is the 

sum of the costs of designing its components. If a component is used in two 5-tuples, its 

design cost is counted only once.  Constraints (3), together with the form of the objective 

function, impose this restriction. As in the SPLP, the kjW  variables in this formulation 

take on integral values even if the corresponding integrality constraints are dropped. This 

formulation is particularly attractive relative to a formulation that models components at 

the individual level, if the number of feasible 5-tuples is small relative to the number of 

possible combinations of the underlying components, as is typical in practice.   

   

If constraints (2) and (3) above are relaxed, the remaining problem can be solved by 

inspection.  The lagrangean relaxation (LR) bound obtained by relaxing these constraints 

equals the linear programming (LP) bound for this problem, as the remaining problem has 

the integrality property.  We solve the coordinated projects problem via lagrangean 

relaxation together with a lagrangean heuristic, both described in Appendix A. 

 

We first tested this method on a realistic size problem for the auto industry, motivated by 

General Motors’ product line in the year 2000.  In 2000, GM offered 32 different models, 

with average sales per model of 70,000 units, and coefficient of variation of sales of 0.92.  

We created a problem of this size for which we simulated normally distributed demand 

with mean and standard deviation based on the company’s year 2000 line, adjusting 

demand upwards to reflect a 2-3 year planning cycle typical for braking components.  In 

our problem, the number of component versions of each type in consideration was set 

similar to the number offered by GM in its year 2000 product line3.  With a total of 64 

component versions in the consideration set A, we simulated realistic component 

                                                 
2 Data source: Automotive News Market Data Book. 
3 We obtained this information from an automotive research company.  Since the number of component 
versions actually considered by GM would have been larger, we also ran sensitivity analyses with a larger 
number of component versions in the consideration set, for which we obtained similar results.   
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interactivity, component-to-product feasibility and system-to-product feasibility 

constraints by limiting the number of feasible 5-tuples, component-to-car assignments 

and 5-tuple-to-car assignments.  We also generated fixed costs and unit costs for the 

component versions of different types, similar in magnitude to those seen in the industry, 

with higher unit costs for more “heavy duty” component versions that were just adequate 

for heavier cars.  Figure 4 depicts pictorially the problem inputs.  Notice that we do not 

require component versions to be feasible on cars that are contiguous in weight, unlike 

Fisher, Ramdas and Ulrich (1999) and Gupta and Krishnan (1999).  We found that on this 

realistic problem, our solution method resulted in a gap of 0.8% between the best feasible 

solution and the best lagrangean relaxation lower bound, in 500 subgradient iterations 

taking 26 CPU seconds on a Pentium 4 processor.   We also tested our solution method 

on much larger problems that might occur in other industrial settings, and found that it 

performed very well.  Table 1 contains representative results.   

 

Project-by-Project Approach 

We assume as before that each individual project team is aware of all existing and 

potential component versions of all components, and that all design teams are aware of 

fixed and variable costs of all components, and sales volume for all models.  However 

unlike previously, we assume that each team decides independently on which component 

versions to use to meet its individual car project’s needs. 

Independent Subproblem Formulation to Select all Components for the jth Car Project: 

∑∑
∈∈

+
Kk

kjkj
Aa

aa WVYFMinimize  

Subject to  

Equation (3) and the constraints from equations (1), (2) and (4) of the coordinated 

projects problem that are relevant to model j. 

 

Let *
kjW denote the optimal value of kjW  in the independent subproblem for the jth car 

project, for each JjKk ∈∈ , .  Also, let indicator *
aY  denote whether component version 

a was used in the optimal solution for any of the individual car projects.  Then the total 



 14 14 

cost over all car projects using a project-by-project approach is ∑∑
∈
∈∈

+

Jj
Kk

kjkj
Aa

aa WVYF ** .  Notice 

that we count the fixed cost for each component version only once, although different car 

project teams may have independently decided to design the same component version.  In 

practice, teams will occasionally duplicate design effort and develop identical component 

versions.  This would further worsen the performance of the project-by-project approach 

relative to the coordinated approach. 

 

In estimating the fixed cost of introducing a new component version, we included the 

costs of designing the component version, engineering and validating the design, and 

designing and building tooling.  Increasing component versions also increases 

manufacturing complexity cost.  Also, in recent years, assembled product manufacturers, 

e.g. auto companies, have identified increased warrantee costs as a major, underestimated 

downside of component proliferation – with low volumes, there is less opportunity to 

improve processes and remove glitches over time.  While the negative impact of 

component proliferation on complexity costs and warrantee costs is hard to estimate, 

conceptually it can be viewed as increasing the fixed cost of a new component version.  

We will analyze this downside of proliferation via sensitivity analysis on fixed costs.   

 

To gain intuition on when the coordinated projects approach is most valuable, we 

compared this approach with the project-by-project approach over a large number of test 

problems generated in a structured fashion.  Starting with our test problem with size, 

demand and cost parameters representative of the auto industry, we generated test 

problems by varying three important parameters that affect design decisions.  The first, 

Fw, is a multiplier applied to the fixed cost of each new component version, to capture the 

impact of complexity and warrantee costs.  We assume at first that Fw is constant across 

all component versions.  The second parameter, Nc denotes the total number of 

component versions in consideration in set A.  In practice, a history of low coordination 

across individual projects often results in an explosion in the number of component 

versions.  The third parameter, cv, represents the coefficient of variation of car demand.  

We considered Fw = 1, 2, 3, and 4 (where Fw = 1 gives us the design costs in the base 
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problem), Nc = b, 1.5b and 2b where b equaled the total number of component versions in 

the base problem, and cv = 0.1, 0.5 and 0.94.  Starting with the base problem, we 

generated 200 test problems for each combination of Fw , Nc and cv.  We first computed 

in each case the average improvement in objective value from using the coordinated 

projects approach over the project-by-project approach, by comparing the best solution 

obtained in the coordinated approach with the optimal solution to the project-by-project 

approach, which was solved manually. 

 

We expected deterioration in performance of the project-by-project approach relative to 

the coordinated projects approach with increasing complexity and warrantee costs (i.e. 

higher Fw), due to higher penalty for myopic decision making.  We expected poorer 

relative performance for the project-by-project approach for problems with a greater 

number of component versions, i.e. with higher Nc.  This is because with many 

component versions, there is a greater chance that the optimal component choice for one 

car will differ from that for another, unlike the case in which there are few component 

versions and coordination is implicitly achieved even in the project-by-project approach.  

 

We also expected deterioration in performance of the project-by-project approach relative 

to the coordinated projects approach with an increase in coefficient of variation of 

demand, cv, for the following reason.  For any level of mean demand, with higher cv there 

would be more cars with either very low or very high demand.  In the project-by-project 

approach, each car design team would independently select a feasible braking system with 

the lowest sum of fixed and variable costs, even if demand were very low.  This would 

lead a team to design a braking system that is “just adequate”, over using a better than 

adequate system, even if the latter would need to be designed in any case, for a heavier 

car.  Doing this ignores potential savings that would accrue if the incremental variable 

cost from using the better-than-adequate system were lower than the fixed cost for the 

just adequate system.  Of course, with high cv we would also see some car models with 

much higher than average demand, in which case this problem would not arise.  

 

                                                 
4 Since the realized coefficient of variation differed in each instance, we examined performance as a 
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Based on our sensitivity analyses, we found, as expected, that other things being equal, 

the performance of the project-by-project approach deteriorated significantly relative to 

the coordinated projects approach for higher values of Fw and Nc.  Unexpectedly, we 

found that other things being equal the relative performance of the project-by-project 

approach could either deteriorate or improve for higher values of cv.  We found that this 

happens because even in the case where a car model has much higher than average 

demand, the incremental variable cost from using a better-than-adequate system that is 

ideal for a heavier car can be lower than the fixed cost for the just adequate system, 

resulting in sharing in the coordinated projects approach.  However in this case the 

improvement from the coordinated projects approach is smaller than in the case where 

the lighter car had below average demand.  The results of the sensitivity analysis are in 

Figure 5.  Since cv has no systematic impact, we report average performance difference 

across different values of cv.  Running sensitivity analyses using our modeling framework 

thus helped confirm our intuition about the impact of complexity and warrantee costs, and 

greater choice of component versions, and refined our intuition about the impact of 

demand variability. 

 

In our sensitivity analyses, we also examined the solutions generated by the two 

approaches with a view to further understanding the implications of coordination.  In 

figure 6, we report differences in these solutions for differing numbers of potential 

component versions (Nc=b, 1.5b, 2b), obtained by averaging over all values of Fw and cv.  

In every test instance, the coordinated projects solution used fewer components versions 

and 5-tuples than the project-by project solution. The percentage reduction in the number 

of component versions used was increasing in Nc, highlighting why the relative 

performance of the coordinated approach improves with larger Nc.  While most of the 

component versions used in the coordinated projects solution were common to the 

project-by-project solution, some were unique.  In the coordinated approach, a component 

version with high design costs that was feasible for multiple products could dominate 

component versions with lower design costs that could serve only one product, whereas 

the project-by-project approach would ignore the possibility of a single component 

                                                                                                                                                 
function of this parameter, rather than the specified coefficient of variation, cv. 
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version serving multiple products.  On average, only a third of the 5-tuples offered in the 

coordinated solution were common to the project-by-project solution, suggesting that the 

same underlying component versions were combined more effectively.  Although the 

proportion of component versions in the coordinated solution that were common to the 

project-by-project solution did not change much with the number of component versions 

in consideration, there was a reduction in the proportion of 5-tuples in the coordinated 

solution that were common to the project-by-project solution, for problems with more 

component versions.  Thus for problems with more component versions, the coordinated 

projects approach was more likely to select system configurations ignored in the project-

by-project approach.  This further explains why the relative performance of the project-

by-project approach deteriorates as the number of component versions in consideration 

increases. 

 

Partially Coordinated Approach 

This approach falls between the organizational extremes of the coordinated approach and 

the project-by-project approach.   We assume as before that each individual project team 

is aware of all existing and potential component versions for all braking system 

components across all platforms, and that all design teams are aware of the fixed and 

variable costs of these component versions.  However, we assume that for some braking 

system components, all teams decide jointly on which component versions to use to 

support the entire product line, whereas for other braking system components, each team 

decides independently on which component versions to use to meet its individual car 

project’s needs.   In what follows, we assume first that decisions for rotors, calipers, 

master cylinders and boosters are made jointly, and that decisions for pedals are made 

independently.  In practice, the coordinated decisions are often made earlier than the 

independent decisions.  This is done by ensuring in the coordinated decision making 

process that for the specific component versions of jointly managed components chosen 

for a car, there would be at least one feasible pedal version.  So, for example, for a given 

car, a rotor, caliper, master cylinder and booster that would require a pedal with excessive 

“travel” to provide the needed torque requirements would be eliminated in the 

coordinated design stage.  Let AAP ⊂  denote the set of all pedal versions, indexed by p, 
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),,,,( kkkkk pbmcrk =  denote the rotor, caliper, master cylinder, booster and pedal 

versions that comprise 5-tuple k, and ka denote any component version in 5-tuple k.  

Further, let jpjbjmjcjrkj kkkkk
vvvvvV ++++= , where jrk

v  denotes the variable cost 

associated with using rotor version kr  on car j, etc.  We model below a coordinated 

master problem and a set of independent subproblems.       

Coordinated Master Problem Formulation 

∑ ∑
−∈

∈
∈

++++
P

kkkk
AAa

Jj
Kk

jbjmjcjrkjaa vvvvWYFMinimize )(  

subject to constraints (1) through (4) of the coordinated projects problem formulation.  

 

Rotor, caliper, master cylinder and booster assignments for each car j are based on the 

optimal solution to the above master problem.  For each k, j, let *MP
jak

T  be an indicator 

denoting whether or not component ka in 5-tuple k is assigned to car j in the optimal 

solution to the master problem.  Next, uncoordinated subproblems are solved as follows 

for each car project j, to determine the pedal assignments that complete the assignment of 

all braking system components to each car.   

Independent Subproblem Formulation to Select Pedal for the jth Car Project: 

jp
Kk

kj
Aa

aa k
J
j

P

vWYFMinimize ∑∑
∈∈

+  

Subject to 

1

,,,
,1*

=∑
=

=∈

kkkkk

MP
jka

K
j

bmcra
TKk

kjW           (6) 

and the constraints from (1), (3) and (4) of the coordinated projects problem formulation 

that are relevant to product j.  

 

Let *MP  denote the optimal objective function value of the coordinated master problem, 
*SP

kjW denote the optimal value of kjW  in the independent subproblem for the jth car 

project, for each JjKk ∈∈ , , and *SP
aY  denote whether or not pedal version PAa ∈ was 

designed in the optimal solution to any of the independent subproblems.  Then the total 
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cost in the partially coordinated approach can be computed as: 

∑∑
∈∈∈

++
J
j

k
P KkJj

jp
SP

kj
Aa

SP
aa vWYFMP

,

*** . 

For our test problem reflecting auto industry size and parameters, we compared the 

partially coordinated approach with the coordinated approach and the project-by-project 

approach, first with pedals designed last, and then with master cylinders designed last.  

Partial coordination resulted in lower total costs than the project-by-project approach.  

However partial coordination via designing pedals last was only slightly better overall 

than via designing master cylinders last even though design costs for master cylinders 

were much higher than for pedals.  If we further increased the design cost for master 

cylinders (this was done by applying the multiplier FW to this component type only), the 

performance of the partially sequential approach with master cylinders designed last 

deteriorated appreciably relative to the coordinated approach (see Figure 7).   However 

we found that this deterioration in performance could be reduced by relaxing the 

stringency of the component-to-product feasibility constraints for master cylinders.  An 

important learning is that simplistic rules of thumb such as “design the component type 

with cheapest design cost last” are not adequate for managing component sharing in a 

complex design process.  While relative design costs for different component types are 

important, other factors, such as the relative stringency of component-to-product 

feasibility constraints, and the impact of different component types on interactivity 

constraints, need also be considered.  The modeling approach we have developed 

provides a way to navigate such sophisticated comparisons.   

 

Components that can be cheaply custom tailored to each product, to fit early choices 

made for other components, are good candidates to design last.  Such components will 

have low design costs and ample “design slack” to absorb constraints imposed by early 

decisions on other system components and still deliver the needed system performance. 

  

Interestingly, despite increasing the degree of coordination needed across projects, it is 

possible to construct theoretical examples in which the partially coordinated approach can 

actually perform worse than the project-by-project approach.   This happens because 

coordinating across projects on some component types while ignoring the cost of the later 
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designed component types can constrain the choice of the latter to expensive alternatives, 

whereas the project-by-project approach would instead consider costs over all component 

types, albeit without coordinating decisions across projects.  However in our test 

problems driven by reasonable cost data, we did not find this to happen.    

 

5. Concluding Remarks 

We developed a very general modeling approach for component sharing at the component 

systems level, for components that do not significantly impact consumers’ perceptions 

about product differentiation.  Our approach is significantly more realistic than previous 

approaches that either model component sharing only for individual components in a 

system, or fail to capture most of the complexities while modeling systems level sharing.  

We identify three conceptually different types of constraints in system level component 

sharing: component-to-product feasibility, system-to-product feasibility, and component 

interactivity constraints.  We illustrate our approach on a problem representative of 

braking systems design in the auto industry, and test it on much larger problems that 

might arise in other settings.  

 

We identify organizational and informational factors that influence component sharing 

decisions, and are able to identify three conceptually distinct organizational regimes: 

• The presence of organizational echelons higher than the individual project level 

facilitates joint decision-making across individual car projects on what component 

versions to design and use to support the entire product line, leading to a 

coordinated projects approach. 

• The absence of such echelons results in component sharing decisions being made 

on a project-by-project basis. 

• For a component system, some decisions may be coordinated and others made 

independently later on, resulting in a partially coordinated approach. 

We use our model to examine the benefits of the coordinated projects approach relative to 

the project-by-project approach, for different levels of costs, number of component 

versions in consideration, and demand variability.  We find that these benefits are 

increasing in design, complexity and warrantee costs, and in the number of potential 
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component versions, but do not vary systematically with demand variability.  The 

coordinated projects approach uses fewer component versions and fewer component 

systems than a project-by-project approach.  Although many specific component and 

system versions may be common across the two approaches, overall fewer versions are 

combined more effectively, to generate lower costs.   

 

We also use our model to examine how partial coordination compares against full 

coordination or an uncoordinated, project-by-project approach.  Thus we are able to show 

how sharing decisions are limited by the organizational and informational infrastructure 

within which they are made.   In addition, we highlight the risks of using simplistic 

heuristics to determine which component types in a system can be designed later.   

 

Estimating the benefits of switching to a coordinated projects approach is important 

because creating the organizational infrastructure to support such an approach can itself 

be quite costly – therefore a firm can use the estimated gains under different scenarios to 

determine whether reorganization is worthwhile.  Interestingly, we find that even 

disregarding coordination cost, coordination is not always beneficial.  If the downstream 

constraints imposed by partial coordination on some components upfront outweigh the 

fixed cost savings, the partially coordinated approach can perform worse than the 

uncoordinated, project-by-project approach.   

 

While we illustrated our modeling approach for automotive braking systems, it is equally 

applicable to systems level component sharing for other physical assembled products and 

also to software products, information products, or financial services that are comprised 

of modular systems.  For the latter product categories, the variable costs of using a better-

than-adequate component version are often disutility costs to the customer: e.g. increased 

service response time due to using a more detailed than needed credit checking process in 

a financial service.  That we do not place any restrictions on the nature of the fixed and 

variable cost functions associated with components and component systems, or the nature 

of the design constraints, provides a wide platform for modeling diverse applications.   
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Our modeling framework is appropriate at the stage in development where high-level 

decisions about differentiating product characteristics and architecture have already been 

made.  A limitation is that we focus on a snapshot of a firm’s variety management 

decisions, while these in fact evolve continually over time.  Future research should 

examine the dynamics of component sharing decisions.   

 

The data requirements for implementing this type of modeling are fairly modest as firms 

typically track demand and cost information, and engineers need to be aware of the 

specifics of the design constraints they face in order to develop new products.  That our 

modeling approach does not require specification of engineering design equations, rather 

only the resulting constraints, greatly reduces information requirements.  We believe that 

a greater challenge in implementing such models is that designers may view them as a 

distraction from the main design task, as noted also by Krishnan, Singh and Tirupati 

(1999).  To overcome this problem, future models must be integrated into existing design 

tools.  Engineers may also be uncomfortable providing the inexact demand and 

engineering cost estimates required for such models – a problem that would be mitigated 

by more reliable data gathering and building confidence in the power of such models. 

 

Acknowledgements 
 
We are grateful to members of the Design Staff and the Brake and Bearings Design 

Center at General Motors, several design executives and managers, automotive engineers 

and car enthusiasts for their assistance.  

 

References 

BALDWIN, C. Y., K. B. CLARK.  1998.  “Managing Modularity”.  Harvard Business Review 
75:5, 84-93. 
 
Delco Moraine.  Brake Systems: Theory and Diagnosis Manual.  April 1987. 
 
DESAI, P., S. KEKRE, S. RADHAKRISHNAN, K. SRINIVASAN. 2001.  “Product 
Differentiation and Commonality in Design: Balancing Revenue and Cost Drivers”. Management 
Science  47:1, 37-51. 
 
DOBSON, G., C. YANO.  1995. “Product Line and Technology Selection with Shared 
Manufacturing and Engineering Design Resources", W.P., Simon Sch, Rochester. 



 23 23 

 
FISHER,M.L., A.JAIN, J.MACDUFFIE. 1995. “Strategies for Product Variety: Lessons from the 
Auto Industry”. B.Kogut & E.Bowman, Eds. Redesigning the Firm. Oxford U. Press, 116-154. 
 
FISHER,M.L., K.RAMDAS, K.T.ULRICH. 1999. “Component Sharing in the Management of 
Product Variety: A Study of Automotive Braking Systems”. Management Science 45:5, 297-315. 
 
GUPTA S., V. KRISHNAN.  1999.  “A Product Family-Based Approach for Integrated 
Component and Supplier Selection”.  Production and Operations Management 8:2, 163-182. 
 
KRISHNAN, V., R. SINGH, D. TIRUPATI. 1999. “A Model-Based Approach for Planning and 
Developing a Family of Technology-Based Products”.  Manuf & Service Oper Mgt 1:2, 132-156. 
 
KRISHNAN, V., K. T. ULRICH. 2001.  “Product Development Decisions: A Review of the 
Literature”.  Management Science 47:1, 1-21. 
 
LANCASTER, K. J.  1990.  “The Economics of Product Variety: A Survey”.  Marketing Science  
9:3,  189-206. 
 
MORGAN, L. O., P. KOUVELIS, R. DANIELS. 2001. “Marketing/Manufacturing Tradeoffs in 
Product Line Management: Insights from a Mathematical Programming Model”, IIE 
Transactions, forthcoming. 
 
PUHN, F.  1985.  Brake Handbook.  HPBooks.  Los Angeles. 
 
RAMAN, N., D. CHHAJED. 1995. “Simultaneous Determination of Product Attributes and 
Prices, and Production Processes in Product-Line Design”. J. of Operations Mgmt. 12, 187-204. 
 
RAMDAS, K. 2001. “Managing Product Variety: An Integrative Review and Research 
Directions”.  Production and Operations Management, forthcoming. 
 
RAMDAS, K., M. SAWHNEY.  2001.  “A Cross-Functional Approach to Designing Multiple 
Line Extensions for Assembled Products”. Management Science 47:1, 22-36. 
 
ROBERTSON, D., K. T. ULRICH 1998.  “Planning for Product Platforms”.  Sloan Management 
Review 39,  19-31. 
 
RUTENBERG, D. P. 1971. “Design Commonality to Reduce Multi-Item Inventory: Optimal 
Depth of a Product Line”.  Operations Research 19:2, 491-509. 
 
ULRICH, K. T. 1995.  The Role of Product Architecture in the Manufacturing Firm, Research 
Policy  24,  419-440. 
 
YANO, C., G. DOBSON. 1998. “Profit Optimizing Product Line Design, Selection and Pricing 
with Manufacturing Cost Consideration”, in Product Variety Mgmt: Research Advances, T.H. 
Ho and C. S. Tang eds., Kluwer Academic Pubs. 



 24 24 

 
Figure 1.  Organizational and Informational Factors that Influence Components 
Sharing Decisions 

 

 
Figure 2.  Usage of All Front Brake Rotors in GM's Year 2000 Product Line 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Note: Three car models with sales volumes below 500 units were excluded.   
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Figure 3.  Usage of All Front Brake Rotors in GM’s Year 2000 Product Line, from 
Time of Introduction of Each Brake up to Year 2000 

Note: The empty white boxes indicate usages of each front brake in the years prior to and 
including year 2000. 

 

Figure 4.  Schematic of Inputs into the Coordinated Projects Problem 
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Figure 5.  Percentage Improvement in Objective Value Using Coordinated Projects 
Approach over Project-by-Project Approach, as a Function of Warrantee and 
Complexity Costs (captured by FW) and Number of Component Versions in 
Consideration (Nc) 
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Figure 6.  Comparison of Solutions Using Coordinated vs. Project-by-Project 
Approach, as a Function of Number of Component Versions in Consideration 
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Figure 7.  Optimal Total Costs as a Function of Organizational Regime and Master 
Cylinder Design Costs, for Base Problem 
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Table 1.  Performance of the Solution Procedure on Larger Test Problems 

Problem 
No. 

Number 
of end 
products 

Total 
number of 
versions 
over all 
component 
types 

Number of 
feasible 
component 
systems 

% gap between 
best 
Lagrangean 
lower bound 
and best 
feasible 
solution 

Time taken 
In CPU 
seconds* 

1 100 150 95 0.34 88.00 
2 100 150 194 1.37 104.19 
3 100 150 378 3.57 126.03 
4 200 300 210 0.24 264.43 
5 200 300 296 0.91 292.43 
6 200 300 386 1.27 319.00 
7 200 300 727 2.84 398.58 
 
 *based on 250 subgradient iterations on a Pentium 4 processor 
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Appendix A: Solution Procedure for System-Level Formulation to the Coordinated 
Projects Problem 

 
Solution Procedure for each Lagrangean Subproblem:  Let akλ and jµ  denote the 
lagrangean multipliers associated with constraints (2) and (3) in the coordinated projects 
formulation, ),,,,( kkkkk pbmcrk = denote the rotor, caliper, master cylinder, booster and 
pedal versions that comprise 5-tuple k, and ka  denote any component version in 5-tuple 
k.  The lagrangean subproblem obtained is: 
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This gives us the optimal solution to the lagrangean subproblem.   
Lagrangean Heuristic:  This heuristic returns a feasible solution to the coordinated 
projects problem.  We first reorder all Jj ∈  by descending sales volume per model.  Let 

h
aY denote the value of aY  returned via the lagrangean heuristic, and indicator h

ajX  denote 
whether or not component version a is assigned to car j in the lagrangean heuristic.  To 
construct a feasible solution, we take advantage of the fact that some components have 
already been designed (i.e. 1* =l

aY for some a) in the lagrangean subproblem.  
Step 1   
Set j = 1.  While Nj <≤1 ,  
Pick J

jkkkkk Kpbmcrk ∈= ),,,,(  such that  

{ }kj
l
pp

l
bb

l
mm

l
cc

l
rr VYFYFYFYFYFArgk

kkkkkkkkkk
+−+−+−+−+−= )1()1()1()1()1(min *****  

For all such 5-tuples k, set 1=h
ak

Y  for all component versions ka  in k. 
Set j = j+1. 
Step 2 
Set j = 1.  While Nj <≤1 ,  
Pick a single J

jkkkkk Kpbmcrk ∈= ),,,,(  such that  

{ }1min =====+++++= h
p

h
b

h
m

h
c

h
rkjpbmcr kkkkkkkkkk

YYYYYVFFFFFArgk . 

Set 1===== h
jp

h
jb

h
jm

h
jc

h
jr kkkkk

XXXXX . 
Set j = j+1. 
Step 3 
For each ,Aa ∈  if 0=∑

∈Jj

h
ajX , set 0=h

aY . 

This gives us a feasible solution to the coordinated projects problem starting with the 
optimal solution to the lagrangean subproblem. 
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