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global demand for the energy source. The profit of firms that produce LNG, known as transformers, is driven
by the spread between the price of natural gas and LNG. With the launch of LNG futures, transformers now
have the ability to hedge their exposure to this spread, similar to oil refiners hedging the crack spread. This
paper proposes three hedging strategies transformers can utilize to limit their exposure to natural gas and
LNG price movements. Using second-order lower partial moments (LPM2) as a measure for hedging
effectiveness, this paper will show that transformers who do not hedge their exposure to the spread perform
better than those who employ any of the proposed strategies, a result driven in part by 2017 market
conditions.
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ABSTRACT 

  

The launch of liquified natural gas futures in May of 2017 on a major exchange follows a 

dramatic increase in global demand for the energy source. The profit of firms that produce LNG, 

known as transformers, is driven by the spread between the price of natural gas and LNG. With 

the launch of LNG futures, transformers now have the ability to hedge their exposure to this spread, 

similar to oil refiners hedging the crack spread. This paper proposes three hedging strategies 

transformers can utilize to limit their exposure to natural gas and LNG price movements. Using 

second-order lower partial moments (LPM2) as a measure for hedging effectiveness, this paper 

will show that transformers who do not hedge their exposure to the spread perform better than 

those who employ any of the proposed strategies, a result driven in part by 2017 market conditions.    

 
Keywords: Natural gas, LNG, commodity hedging.   
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INTRODUCTION 

  

 While LNG has existed as an energy source for over 70 years, it has not been widely used 

as the costs inherit in producing it were prohibitive. However, recent technological advancements 

and depressed natural gas prices have made LNG a viable global energy source. The launch of 

LNG futures contracts on the Intercontinental Exchange give transformers the ability to hedge 

their exposure to LNG price volatility using exchange traded financial instruments for the first 

time. Drawing on the crack spread for inspiration, this paper proposes three hedging strategies that 

take into account production time and the various inputs/outputs associated with the transformation 

of natural gas into LNG. This study utilizes LPM2 to measure hedging effectiveness as, unlike the 

more commonly used minimum variance statistic, it only penalizes downside deviations of a 

hedging strategy. Thus, LPM2 better captures the risk profile of transformers who prefer hedging 

strategies that are allowed to deviate from market prices if it means an increase in profit. While 

the results of this paper are limited by the available data, it discusses the necessary framework in 

depth required to analyze the relatively new LNG industry for future researchers.  

Natural Gas Overview 

 Natural gas is a fossil fuel used mostly to generate electricity, produce various chemical 

products, and to heat homes. The price of natural gas is quoted per million British thermal units 

(MMBtu), with a single Btu defined as the amount of energy required to heat one pound of water 

by one degree Fahrenheit. In the United States, the natural gas benchmark price is quoted from the 

Henry Hub, a distribution center in Louisiana. Natural gas prices across the United States are 

conventionally quoted by a spread above or below the price at the Henry Hub. The fossil fuel 
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currently accounts for approximately 24% of the world’s total energy consumption, a figure that 

stood at 16% in 1973 (BP, 2016).   

Natural gas can be categorized as either wet or dry depending on its composition. Dry gas 

is primarily composed of methane while wet gas is made up of compounds such as ethane and 

propane in addition to methane. These additional compounds are known as natural gas liquids 

(NGLs) and when wet natural gas is treated, the compounds can be separated and sold 

commercially. As natural gas prices have reached historic lows recently, wet gas is considered 

more valuable than dry gas because NGLs can be sold at a higher price per MMBtu than natural 

gas. Wet natural gas is generally found in shale formations, the target of frackers drilling for crude 

oil. Wet gas is composed of roughly 80% methane, with ethane and propane making up the vast 

majority of the remaining percentage. For comparison, processed natural gas is approximately 90% 

methane and 10% ethane (NAESB, 2003). In 2017, the U.S. produced 28.8 trillion cubic feet of 

wet gas, which directly resulted in the production of 952.6 million barrels of ethane and propane 

(EIA, 2018).    

The growth of natural gas as a global energy source is driven primarily by two factors. 

First, it is considered the cleanest of all fossil fuels, especially compared to the closest comparable 

fossil fuel used to generate power, coal. This has become particularly important as countries 

around the world seek to reduce their carbon emissions and improve air quality. The second factor 

that helps to explain natural gas’s growth is price. Natural gas is significantly cheaper than coal 

with respects to energy production. According to a report from Lazard, in 2017 the estimated 

levelized cost of one megawatt hour (mWh) of electricity generated by coal costs $102. In 

comparison, one mWh generated by natural gas costs just $60 (Ailworth, 2017). The advent of 

fracking has driven natural gas prices to historic lows as natural gas is released as a byproduct of 
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the drilling technique. Fracking has brought what were once previously inaccessible natural gas 

reserves to the market. 

 The infrastructure required to transport natural gas has long been its greatest drawback. 

Natural gas can only be used in locations that are connected to a pipeline, a problem particularly 

relevant for countries without their own natural gas reserves and without pipeline infrastructure 

(e.g. Japan). Such countries have needed to rely on renewables or coal, which can easily be shipped 

around the world, to generate power. However, recent technological developments have made 

LNG a viable option for countries who find themselves unable to import natural gas.   

The Development of LNG 

 LNG is produced by cooling natural gas to -260°F, the temperature at which natural gas 

exists as a liquid. It is then loaded onto specialized cargo ships and sent to its destination port, 

where it is regasified and delivered to its final destination via natural gas pipelines. Firms that 

produce and regasify LNG are known as transformers, the equivalent of oil refiners for LNG. The 

ability to liquify natural gas has the clear benefit of providing natural gas to countries who 

previously had no access to the energy source. In addition, transporting natural gas in its liquified 

form results in less carbon emissions than traditional pipeline transportation, furthering the energy 

source’s reputation as the cleanest fossil fuel available (IGU, 2015). 

 However, the costs associated with transforming LNG are significant. Terminals that 

transform natural gas to LNG must be built on ports that can be accessed by tankers and require 

significant investment to construct, generally over $1 billion. Furthermore, LNG can only be 

shipped on certain specially equipped tankers, that cost a minimum of $300 million to build. LNG 

must be shipped to ports with regassification capabilities, which also require significant 
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investment. In addition, because LNG must be cooled and stored at -260°F utility costs are 

significant, representing 20% of all operational costs of an LNG terminal (Carroll, 2017).  

However technological improvements coupled with growing global demand for natural gas 

has made LNG a viable energy source despite the costs associated with it. These market conditions 

have led to a number of developments within the LNG market. In February of 2017, China signed 

a deal with the United States to import 1.2 million tons of LNG per year from 2023 to 2043 

(Matthews, 2018). Currently, there are three active LNG export terminals in the U.S., with the 

Sabine Pass facility in Louisiana accounting for 75% of total liquefication capacities and is not yet 

fully operational. Five other LNG export terminals are currently under construction with four more 

sites recently being approved by regulators. The total capacity of all projects either under 

construction or approved would increase the U.S. output to 401.8 million tons per annum (mtpa), 

dwarfing current U.S. production of 9 mtpa (Carroll, 2017).    

Perhaps the most significant development in the LNG market for purposes of this paper is 

the launch of LNG futures contracts. On May 4, 2017, the Intercontinental Exchange launched the 

first ever LNG futures contract benchmarked to the Gulf Coast price of LNG in the U.S. The 

launch of an LNG futures contract now allows firms to hedge their risk to LNG price movements 

they could only previously do with the use of forward contracts. The liquid nature of futures 

contracts also allows commodity traders to take positions in LNG that were once impossible. But 

most importantly, it allows transformers to hedge their exposure to the difference between the 

price of natural gas and LNG, much like refiners do with oil and its refined products.     

The Crack Spread 

 Cracking is the process in which the carbon-carbon bonds of complex organic molecules 

are broken to create simpler molecules (Alfke et al., 2007). This is the process refiners use to 
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transform crude oil into its refined products such as gasoline, heating oil, and jet fuel. The 

difference between the price of crude oil and the price of its refined products is thus known as the 

crack spread. In the United States, the crack spread is calculated as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆 =
2 ×  𝑅𝑅𝑅𝑅 +  𝐻𝐻𝐻𝐻 − 3 × 𝐶𝐶𝐶𝐶

3
 

(1) 

Where each variable represents the price per barrel of the following commodities: 

RB = RBOB Gasoline 

HO = New York Harbor ULSD Heating Oil 

CL = WTI Crude Oil 

The proportions are meant to mimic the approximate output of three barrels of light, sweet crude 

oil as it passes through a refiner. In other words, for every three barrels of light, sweet crude oil 

that is cracked, a refiner produces roughly one barrel of heating oil and two barrels of gasoline, 

which is why the crack spread is frequently referred to as the “3:2:1.” There are a number of 

variations on the crack spread, such as the 5:3:2 and the 1:1 (which is just the difference in price 

between gasoline and crude oil), but the most commonly quoted crack spread is the 3:2:1 (EIA, 

2013).  

 The ability to hedge the crack spread using futures contracts is of particular importance to 

oil refiners. Unlike drillers and airlines, who are only impacted by movements on one side of the 

crack spread, refiners face the challenge of being impacted by both. By definition, a refiner’s 

profitability is driven by the difference between the price it can sell oil’s refined products for and 

the cost of purchasing crude oil to refine, i.e. the crack spread. Refiner’s demand for protection 

from crack spread volatility has made the bundle of futures contracts that make it up one of the 

most commonly traded combinations in the world (Liu, et al., 2017). With the launch of LNG 
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futures, natural gas transformers who face the same problem as refiners, can now hedge their 

exposure to the natural gas equivalent of the crack spread.   

 

RESEARCH QUESTION 

  

With the introduction of ICE’s LNG futures contract in May 2017 came the opportunity 

for natural gas transformers to hedge their exposure to the spread between natural gas and LNG 

prices using exchange traded securities. The most relevant research question for transformers asks 

what is the most effective way to hedge the difference in prices of natural gas and LNG? However, 

this question is beyond the scope of this paper due to the advanced technical nature of the topic 

and the resources needed to fully address it. Instead, this paper proposes three different 

combinations of futures contracts meant to mimic this spread and asks of these hedging strategies, 

which one most effectively hedges transformer’s risk to the natural gas-LNG spread?  

Luckily, one question that does not need further research is what to call this difference in 

prices? While natural gas is not cracked, it does need to be cooled to -260°F to be converted to 

LNG. Thus, the difference in prices between LNG and natural gas will be referred to as the cool 

spread throughout the paper (Huemmler, 2017).  

 

SIGNFICANCE 

 

 If the crack spread’s importance to the oil industry is any indicator, the cool spread has the 

potential to become a commonly accepted indicator of market conditions for both natural gas and 

LNG, especially if the forecasted growth of global demand for LNG materializes. Effective 
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hedging of the cool spread will be of particular significance to transformers, institutional market 

makers, and commodity traders. These three groups are discussed below. 

Transformers 

 The cool spread is a key driver of transformer’s operating margin, much in the same way 

the crack spread is for oil refiners. Transformers have a vested interest in securing a stable 

operating margin, which can be accomplished through efficient cool spread hedging. This allows 

transformers to focus on issues they can control, optimization of export terminals, and insulate 

them from those issues they cannot, global commodity prices. As more export terminals are 

approved by regulators and begin operations, the demand for financial instruments to hedge the 

cool spread will increase.  

Market Makers 

Transformers will not enter into futures contracts independently, they will most likely 

purchase the instruments through a financial intermediary, such as a market maker. Large financial 

institutions such as Goldman Sachs and Morgan Stanley compete for fees that come with advising 

clients in complex financial situations, such as what transformers face in determining their hedging 

strategy. Naturally, these market makers will have an interest in designing efficient hedging 

strategies to attract and keep transformers as clients. Knowing what bundle of futures best insulates 

transformers from volatility in the cool spread will be crucial to attracting them as clients. 

Commodity Traders     

The development of the cool spread will provide new opportunities for speculation, which 

makes the bundles of futures contracts that make it up of particular interest to day traders. While 

these traders will not have any interest in the rationale behind the use of certain financial 

instruments to hedge the cool spread, they will care what contracts transformers decide to use. 
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Traders will want to position themselves to take advantage of the increased trading volume and 

open interest, a position that will be dictated by the futures transformers use to execute their hedge. 

Day traders commonly position themselves to take advantage of movements in the crack spread 

and there is no indication that the cool spread would be any different, especially considering natural 

gas futures are the second most traded energy commodity on the CME.  

 

LITERATURE REVIEW 

 

As this paper seeks to compare the effectiveness of various hedging strategies revolving 

around natural gas and LNG futures, relevant literature includes LNG market dynamics, 

established natural gas hedging strategies, and hedging efficiency measurements. These three 

topics are discussed below.  

LNG Market 

 Fifteen years ago, the LNG market was dominated by rigid long-term contracts between 

governments, especially in Asia. Suppliers used rigid such contracts with significant price 

premiums and take-or-pay clauses to guarantee financing for LNG terminals. End consumers were 

willing to take on contracts with such unfavorable terms in order to guarantee a supply of natural 

gas (Choi, Heo, 2017). Due to the rigid nature of these contracts LNG tankers were referred to as 

floating pipelines to reflect the economic reality that such contracts mirrored pipeline contracts for 

natural gas, which notoriously lack flexibility (Ponce, Krone, 2014). The lack of a benchmark 

natural gas price in Asia meant the price of LNG was often tied to the price of crude oil (Stern, 

2012).  
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 The desire for energy independence, driven by European tensions with Russia, one of the 

world’s largest natural gas suppliers, coupled with stricter global emissions standards have driven 

the construction of new LNG terminals in the Baltic States (Serry, 2017). As these European 

terminals have gone online, Asia’s largest LNG supplier, Qatar, has begun to export LNG to 

Europe. The result is LNG prices in Asia are increasingly tied to demand for natural gas in Europe, 

and thus tied to European benchmark natural gas prices (Rozmarynowska, 2012). As the U.S. 

continues to expand its LNG production capabilities, the market for LNG more closely resembles 

that of the oil market instead of a floating pipeline (Bernstein et al., 2016).     

Natural Gas Hedging 

 The use of natural gas futures to hedge exposure to fluctuations in the underlying’s spot 

price is not as effective as other energy futures such as oil, gasoline, and heating oil. This effect is 

magnified during low probability tail events, such as particularly severe hurricanes. This 

inefficiency is driven by natural gas’s limited export capabilities in comparison to other energy 

sources and difficulties in storage and transport (Hanly, 2017). Pipeline infrastructure in the United 

States suffers from regional segmentation, a problem other energy sources do not have as they can 

be transported via rail and trucks. Due to the reliance on pipelines, regional natural gas prices vary 

dramatically because of the transport capacity of each pipeline and abnormal transportation pricing 

(e.g. it may be cheaper to transport natural gas between two primary hubs that are considerable 

distance apart compared to two secondary hubs that are much closer together). As a result, natural 

gas futures can hedge movements in spot prices more effectively for regions connected via pipeline 

infrastructure to the Henry Hub, such as the East Coast, Midwest, and Southeast compared to those 

regions that are not, the Rockies and West Coast (Brinkman, Rabinovich, 1995).  
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 However, recent studies have suggested strategies that the use of natural gas futures to 

hedge changes in spot prices can be made more efficient. For example, adjusting hedging ratios to 

account for seasonal fluctuations in the natural gas market can improve hedging effectiveness. This 

fact holds true regardless of the length of the hedging period (Martinez, Torro, 2015). The hedging 

effectiveness of natural gas futures can be further improved using a non-matching hedging strategy 

that varies the maturity of natural gas futures beyond the hedging horizon (Ghoddusi, 

Emamzadehfard, 2017). In addition, improved pipeline infrastructure coupled with the existence 

of natural gas basis swaps contracts has resulted in regional spot prices in California moving in 

tandem with spot prices at the Henry Hub (Woo et al., 2006).         

Efficient Hedging 

 Conventional wisdom suggests that minimum variance is an appropriate measure of 

hedging effectiveness in energy markets due to the volatile nature of energy prices and ease of use 

when estimating hedge ratios (Alexander et al., 2013). However, observed hedge ratios often differ 

significantly from the efficient hedge ratios implied by minimum variance calculations, suggesting 

minimum variance calculations do not accurately reflect hedgers underlying concerns (Collins, 

1997; Egeland et al., 2013). Recent research suggests that in scenarios that require multi-

commodity hedging, the use of minimum variance hedging offers no meaningful reduction in risk 

criterion (Alexander et al., 2013). When LPM2 is used to calculate optimal hedging ratios in multi-

commodity scenarios hedging ratios are smaller than those computed by minimum variance 

(Power, Vedenov, 2009). Numerous researchers have proposed using second-order lower partial 

moments (LPM2) instead of minimum variance to measure hedging effectiveness (Liu et al., 2017; 

Collins, 2000; Unsher, 2000). Thus, LPM2 more accurately measures the risk profile of certain 

commodity hedgers, such as refiners, who are only concerned with downside protection (Liu et 
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al., 2017). Furthermore, LPM2 is calculated using a given reference level (e.g. expected profits 

without hedging) which allows for flexibility to adjust for a hedgers risk profile (Mattos et al., 

2008).  

 

METHODOLOGY 

 

The methodology for this paper can be divided into three steps. It begins with designing 

multiple combinations of futures meant to mimic the cool spread. The next step becomes collecting 

all relevant price information for these bundles to determine the profitability of each hedging 

strategy. Finally, this paper calculates and compares the LPM2 of each hedging strategy as a proxy 

for hedging effectiveness, with the average profit earned without hedging over the period in 

question serving as the reference level in the calculation of LPM2. 

Designing Hedging Bundles 

 This paper draws on commonly traded futures bundles that mimic the crack spread for 

inspiration in designing hedging strategies meant to insulate LNG transformers from price 

movement in the cool spread. When deciding what securities to incorporate in each hedging 

bundle, this paper only considers futures contracts. The price visibility and low transaction costs 

associated with futures contracts makes the securities an attractive option for any hedging scenario. 

Thus all proposed bundles will exclusively utilize futures as a financial instrument for hedging. 

Only when the data for a pertinent futures contract is unavailable will other financial instruments 

be considered. The factors to consider in each hedging strategy are limited to the underlying asset 

of the futures contract, the position in the futures contract (i.e. long or short), the quantity of futures 

contracts bought or sold, and the maturity of the contracts. When considering which underlying 
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assets to use in a hedging strategy, this paper considers the inputs required for producing LNG and 

the composition of the natural gas being liquefied, which affects the byproducts of liquefaction 

and treatment. Whether a given commodity is an input or output with respects to LNG production 

will determine the long or short position in the corresponding futures contract for all hedging 

strategies. Long positions will represent inputs and short positions will represent outputs. The 

number of contracts bought or sold will be based on quantities of inputs needed and outputs 

generated from the liquefaction process. The ratio of contracts entered into for a given strategy 

will be referred to as the hedging ratio, h.  

 Once the strategies are designed, the paper will calculate the profit π(h) for each hedging 

bundle using historical price data. The spot price, S, future price, F, at the beginning of the hedge 

timeline, t=0, and end, t=1, of every commodity represented in the hedging strategies will be used 

in conjunction with the chosen hedge ratio, to compute the profit of the hedging strategy over the 

period of analysis. For example, using this framework the profit earned from hedging the crack 

spread with the 3:2:1 over a given period can be stated as: 

𝜋𝜋(ℎ3:2:1) =
2
3
𝑆𝑆1𝐺𝐺𝐺𝐺𝐺𝐺 +

1
3
𝑆𝑆1𝐻𝐻𝐻𝐻  − 𝑆𝑆0𝐻𝐻𝑂𝑂𝑂𝑂 + (𝐹𝐹1𝐻𝐻𝑂𝑂𝑂𝑂 − 𝐹𝐹0𝐻𝐻𝑂𝑂𝑂𝑂) +

2
3

(𝐹𝐹0𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐹𝐹1𝐺𝐺𝐺𝐺𝐺𝐺) +
1
3

(𝐹𝐹0𝐻𝐻𝐻𝐻 − 𝐹𝐹1𝐻𝐻𝐻𝐻) 

(2) 

With the coefficient of each term representing that commodities hedge ratio (i.e. hGAS=2
3
). The 

hedging ratio of each bundle this paper proposes is fixed. In reality, this is not always the case, 

however all commonly utilized crack spread hedges employ a fixed hedge ratio and this paper 

utilizes that framework to simplify the analysis (Liu et al., 2017). The following trading strategies 

will serve as the basis for comparison in this paper. 
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Naked (No Hedging) 

This will be the base case, with the average profit earned from a naked position serving as the 

reference level when calculating the LPM2 of the hedging bundles listed below. Profit earned from 

naked hedging will be defined as:  

𝜋𝜋(ℎ0) = 𝑆𝑆1𝑂𝑂𝐿𝐿𝐺𝐺 − 𝑆𝑆0𝐿𝐿𝐺𝐺 

(3) 

Note that this differs from the cool spread in that it takes into account the hedging timeline, which 

is discussed in more detail below. The cool spread is calculated using spot price data when t0=t1. 

Naïve Hedge (The 1:1) 

A naïve hedge refers to any situation in which a hedger uses derivative instruments with the same 

underlying asset as the asset being hedged. The hedging ratio is set to equal the exposure of the 

hedger to the asset in question. Naïve hedging is a commonly employed strategy to hedge the crack 

spread, with hedgers purchasing one crude oil future for every gasoline future they short. A naïve 

hedge with respects to the cool spread is quite similar to its crack spread equivalent, with hLNG 

=hNG = 1. Profit earned from the naïve hedge position is as follows: 

𝜋𝜋(ℎ𝑛𝑛) = 𝑆𝑆1𝑂𝑂𝐿𝐿𝐺𝐺 − 𝑆𝑆0𝐿𝐿𝐺𝐺 + (𝐹𝐹1𝐿𝐿𝐺𝐺 − 𝐹𝐹0𝐿𝐿𝐺𝐺) + (𝐹𝐹0𝑂𝑂𝐿𝐿𝐺𝐺 − 𝐹𝐹1𝑂𝑂𝐿𝐿𝐺𝐺) 

(4) 

NGL Hedge 

The NGL hedge will assume the natural gas being liquefied is wet, thus resulting in the production 

of NGLs while the wet gas is treated before liquefication. Using wet gas production data from the 

U.S. Department of Energy and natural gas chemical composition data from the National American 

Energy Standards Board, the hedging ratio will be set as hLNG =16
20

; hNG =1; hETH =hPRP = 3
20

. The 
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calculations of these ratios can be found in Appendix A. Profit earned from the NGL hedge 

position is as follows   

𝜋𝜋(ℎ𝐿𝐿𝐺𝐺𝑂𝑂) =
16
20

𝑆𝑆1𝑂𝑂𝐿𝐿𝐺𝐺 +
3

20
𝑆𝑆1𝐸𝐸𝐸𝐸𝐻𝐻 +

3
20

𝑆𝑆1𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑆𝑆0𝐿𝐿𝐺𝐺 + (𝐹𝐹1𝐿𝐿𝐺𝐺 − 𝐹𝐹0𝐿𝐿𝐺𝐺) +
16
20

(𝐹𝐹0𝑂𝑂𝐿𝐿𝐺𝐺 − 𝐹𝐹1𝑂𝑂𝐿𝐿𝐺𝐺)

+
3

20
(𝐹𝐹0𝐸𝐸𝐸𝐸𝐻𝐻 − 𝐹𝐹1𝑂𝑂𝐿𝐿𝐺𝐺) +

3
20

(𝐹𝐹0𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐹𝐹1𝑃𝑃𝑃𝑃𝑃𝑃) 

(5) 

Power Hedge 

This hedge adds electricity futures contracts as an input to the naïve hedge strategy outlined above. 

Utility costs associated with power represent a large proportion of the total cost of production of 

LNG. Based on academic literature related to the electricity costs associated with LNG, this paper 

assumes 400 kilowatt hours (kWh) are required to produce one ton of LNG (Dhameliya, Agrawal, 

2016). Converting kWh/ton to mWh/MMBtu leads to a hedge ratio of hLNG =hNG = 1; hELC= 2
250

. 

Profit earned from the naïve hedge with electricity is as follows: 

𝜋𝜋(ℎ𝑃𝑃𝐻𝐻𝑃𝑃) = 𝑆𝑆1𝑂𝑂𝐿𝐿𝐺𝐺 − 𝑆𝑆0𝐿𝐿𝐺𝐺 −
2

250
𝑆𝑆0𝐸𝐸𝑂𝑂𝐸𝐸 + (𝐹𝐹1𝐿𝐿𝐺𝐺 − 𝐹𝐹0𝐿𝐿𝐺𝐺) + (𝐹𝐹0𝑂𝑂𝐿𝐿𝐺𝐺 − 𝐹𝐹1𝑂𝑂𝐿𝐿𝐺𝐺) +

2
250

(𝐹𝐹1𝐸𝐸𝑂𝑂𝐸𝐸 − 𝐹𝐹0𝐸𝐸𝑂𝑂𝐸𝐸) 

(6) 

The hedging ratio of electricity futures being so close to zero reflects the convention of quoting 

electricity futures in dollars per mWh, a measurement of power much larger than the heat energy 

measurement equivalent used in quoting natural gas prices.  

Data 

 Expected profit calculations of the aforementioned hedging bundles require spot and future 

price data of all aforementioned commodities. The period this paper examines begins May 4th, 

2017, when ICE launched its LNG futures contract, to May 2, 2018. The source of the price data 

for these variables is as follows: 
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• Natural Gas Spot Price- Henry Hub daily prices 

• Liquefied Natural Gas Spot Price- North Asian Singapore Exchange Limited LNG Index 

Group (SLING). The Sling is an index that estimates LNG spot prices in China, Korea, 

Japan, and Taiwan by polling asking participants in the Asian LNG market (brokers, 

transformers, buyers, etc.) what they believe is a “fair price” for LNG in the 

aforementioned countries. The Sling is calculated every Monday and Thursday and is 

calculated using a similar methodology as LIBOR (EMC, 2017) 

• Propane Spot Price- North American Spot LPG Price/Mont Belvieu. Mont Belvieu is home 

to Lone Star Gas’s storage facility and functions as the U.S. benchmark for propane prices 

• Ethane Spot- NYMEX Mont Belvieu Ethane 5 Decimal (OPIS) Swap 

• MISO Spot- Midwest ISO Indiana Hub Hourly Day Ahead Off-Peak Averages. MISO 

refers to the Independent System Operator that provides power to much of the Midwest 

and certain Southern states. It is headquartered in Indiana   

• Natural Gas Futures- NYMEX Henry Hub Natural Gas  

• Liquefied Natural Gas Futures- LNG Japan/Korea Marker (Platts) Swap  

• Propane Futures- NYMEX Mont Belvieu LDH Propane  

• Ethane Future- North American Purity Ethane Spot Price/Mont Belvieu non-LST 

• MISO Future- NFX MISO Indiana Hub Real-Time Off-Peak Financial Futures 

All price data was downloaded from a Bloomberg terminal with the exception of Henry Hub 

natural gas spot prices, which is from the EIA.  

The use of the aforementioned price sources was driven in part by design and in part by 

necessity. The decision to source all natural gas price data from the Henry Hub in all hedging 

strategies reflects its importance as a global benchmark for U.S. natural gas and its proximity to 
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the Sabine Pass, the largest operational LNG export terminal in the U.S. The study utilizes MISO 

futures contracts for power because the Sabine Pass is located in the region served by MISO. The 

use of Asian LNG prices is driven more out of necessity. The only resource available to Wharton 

students that has any data on LNG pricing is Bloomberg, which only quotes Asian spot and futures 

prices. S&P Global Platts publishes global daily LNG price data (the NYMEX LNG swap used as 

a proxy for a future uses Platts to price the underlying LNG), but it is not available to retail 

investors or researchers. However, the use of Asian LNG price data is not necessarily an inaccurate 

situation. In 2017, roughly half of all LNG the U.S. exported was sent to Asia. The decoupling of 

Henry Hub natural gas and crude oil prices, to which LNG prices are indexed to in Asia, has driven 

demand for U.S. LNG to record highs. In 2016 the U.S. exported approximately 150 million cubic 

feet of LNG per day to Asia. In 2017 that figure reached 900 million, reflecting the attractiveness 

of U.S. LNG to Asian consumers. Furthermore, the U.S. sells 60% of its LNG on the spot market. 

Even most of the U.S.’s long-term LNG contracts contain clauses that allow the LNG to be 

rerouted anywhere in the world under certain conditions (EIA, 2018). Thus, the use of Asian spot 

prices in calculating transformer profits is representative of current market conditions.  

Hedging Timeline  

 In order to accurately reflect the situation a U.S. transformer faces given the available data, 

the hedging timeline will reflect the transportation time of natural gas from the Permian Basin to 

the Sabine Pass and then to Asia. The result is a hedging timeline of three weeks, based on the 

following calculations. Assuming the transformer’s facility is the Sabine Pass, based on the 

significant percentage it contributes to total U.S. LNG exports, and the natural gas feedstock used 

originates in the Permian Basin, based on the natural gas production data and pipeline 

infrastructure, the natural gas will travel approximately 500 miles before reaching the Sabine Pass. 
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Natural gas travels through pipelines at speeds ranging from 10-20 mph depending on the 

proximity of the nearest compressor station along the pipeline (INGAA, 2018). Assuming a 

constant rate of 15 mph, it will take the natural gas approximately one day to arrive at the Sabine 

Pass after it has been purchased. 

Very little literature exists with respects to the time needed to transform natural gas into 

LNG. However, there is data that discusses the amount of time needed to load LNG onto carries, 

which can take up to an entire day. This paper makes the simplifying assumption that the Sabine 

Pass is not capacity constrained such that once the feedstock natural gas arrives at the terminal it 

is liquefied and loaded onto a carrier within one day.  

As soon as the LNG is loaded onto a carrier, the paper assumes it is transported to an Asian 

port based on U.S. export data and publicly available price information. For simplicity, Tokyo is 

used as the final destination for the LNG due to the country’s growing demand for U.S. LNG and 

the paper’s use of Japanese LNG swap contracts. Estimates from the Oxford Institute of Energy 

Studies show LNG carriers can travel at 19 knots, regardless of whether they use a steam turbine 

or dual fuel diesel electric propulsion system (Rodgers, 2018). Tokyo is 9,200 nautical miles from 

the Sabine Pass, a journey that would last 20 days at speeds of 19 knots. Upon arrival, the LNG 

would be sold on the spot market in Tokyo.  

In aggregation, this scenario assumes that after natural gas feedstock has been purchased 

by a transformer, it will be sold as LNG 22 days later, representing the hedging timeline. This 

paper uses a hedging timeline of 21 days, or three weeks, to simplify the trading dates. In summary, 

when calculating hedging strategy profits, t=0 corresponds to the date natural gas feedstock is 

purchased and t=1 corresponds to the date three weeks later. The transformer would enter into a 

short futures position for all outputs and a long futures position for all inputs at t=0. At t=1, the 
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transformer would cover its short positions and exit the long position. At no point would the 

transformer ever take delivery of the underlying commodity.  

Active Trading Month  

With the three-week hedging timeline in mind, the next consideration becomes what month 

to trade of each futures contract. Generally speaking, the prompt month is also the active month in 

futures trading. As such, this paper uses the prompt month with respects to the actual dates in the 

three-week hedging timeline. While the various futures contracts employed have differing last 

days of trading, NYMEX Henry Hub futures cease trading the earliest in the month of all relevant 

futures contracts at three trading days before first trading day of the delivery month. For example, 

June 2018 NYMEX Henry Hub futures stop trading on May 29th, 2018, three trading days before 

June 1st. To ensure margin requirements do not become burdensome and the prompt month 

contract remains liquid, this paper switches trading months three days before the natural gas futures 

cease trading. This practice is in line with crack spread trading, where hedgers and speculators 

alike cease trading the crack spread of a given month anywhere from seven to three trading days 

before the contract officially ceases trading. To continue the above example, June trading of the 

cool spread would cease on May 24th, three trading days before the contract expires. Here May 

24th would represent t=1, the date the transformer exits all futures positions, and May 3rd would be 

t=0 to make the hedging horizon three weeks.     

 This paper elects not to roll hedges into the next month if a given date’s hedging timeline 

coincides with the expiration of natural gas contracts and instead moves the active month to the 

month following the prompt. A common strategy used by hedgers and traders alike is to roll their 

futures position into the next month at the expiration date. Instead of completely exiting their 

futures position, the trader or hedger would exit their positions in the prompt month and convert 
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them to the same position in the active month. In comparison, if the expiration of the prompt 

month’s contract occurs during the hedging horizon, this paper switches trading to the following 

month to avoid having to roll the contracts. Recent literature suggests the practice of automatically 

rolling a series of futures “creates a saw-tooth pattern in the basis,” a driving factor in this paper’s 

decision avoid the rollover strategy when collecting price data (Nguyen et al., 2017).  

Comparing Hedging Strategies Using LPM2 

 In order to more accurately portray the risk profile of transformers, this paper uses LPM2 

as a measurement for hedging effectiveness. As described in the literature review of efficient 

hedging, LPM2 better reflects the hedging preferences of transformers as it only penalizes 

downside deviations from a reference level while minimum variance penalizes upside and 

downside deviations equally. In other words, LPM2 would not penalize a hedging strategy that 

resulted in a larger profit for transformers than they would have earned without hedging, while 

minimum variance would. LPM2 is defined as: 

𝐶𝐶𝐿𝐿𝐿𝐿2 = � (𝑋𝑋� − 𝑋𝑋)2𝑆𝑆𝐹𝐹(𝑋𝑋)
𝑋𝑋�

−∞
 

(7) 

Where X is a random variable of interest, 𝑋𝑋� is a chosen reference level, and F(X) is the cumulative 

distribution function of the random variable of interest X. This paper uses the profit earned by a 

given hedging strategy as X and the average profit earned by a transformer without hedging during 

the period of observation as the reference level 𝑋𝑋�. By using average profit earned by a transformer 

without hedging as the reference level, this paper’s LPM2 calculation only penalizes hedges that 

earn a profit below the average profit without hedging.  

 In order to actually calculate LPM2 for a hedging strategy, a given hedging strategy’s 

profits over the period of observation will be plotted in a histogram. The next step involves 
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calculating the function within the above integral for each bin in the histogram below the reference 

level. From there, the Riemann sum will be calculated from the tail of the cumulative distribution 

function to the reference level. The Riemann sums will be weighted to account for the size of each 

bin relative to the total observed trading days. The solution to this integration gives the LPM2 

statistic for the hedging strategy in question and serves as the basis for comparing each strategy’s 

effectiveness given the transformer’s risk profile.   

 

HYPOTHESIS 

  

Drawing on prior research cited in the literature review above and knowledge of the process 

of natural gas liquefication, this paper’s initial hypothesis states the naïve hedge will be the most 

effective proposed hedging strategy because it most closely mirrors actual inputs and outputs 

transformers face. A hedge ratio of 1:1 reflects the relatively small quantities of impurities 

removed from natural gas prior to the liquefication process, regardless of the grade of natural gas 

used as feedstock by the transformer.  

 

RESULTS 

 

This paper relies on one year of trading data from May 2017 to May 2018. After accounting 

for limited LNG daily spot price data points available from the SLING (roughly two data points 

per five trading days) and the removal of data points in which the hedge start or end date falls on 

a trading holiday, this study contains 87 observations per trading strategy. In calculating LPM2 

this paper uses bin widths of $0.10 for the construction of histograms of realized profits for each 
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of the hedging strategy. The midpoint rule is utilized when calculating the Riemann sum to 

determine LPM2.  

No Hedging 

 Profit earned without any hedging strategy contains 93 observations, more than each 

hedging strategy due to the availability of spot price data on trading holidays in which futures 

prices are unavailable. Exhibit 1 displays the profit earned by transformers that do not implement 

a hedging strategy.  

Exhibit 1: Profit Earned without Hedging 

 

 

 

 

 

 

The average profit earned without hedging is $5.21 per MMBtu, which will serve as the reference 

level when calculating LPM2. The LPM2 was calculated for the no hedging strategy in the same 

manner as all hedging strategies. The LPM2 of the transformer that does not hedge is 0.1757. 44 

of the 93 observations resulted in a profit below the reference level. The LPM2 of the no hedging 

strategy will serve as the benchmark for the other hedging strategies.  

Naïve Hedging Strategy 

 The average profit earned using the naïve hedging strategy is $4.93 per MMBtu. Exhibit 2 

displays the profit earned by transformers that implement the naïve hedging strategy and Exhibit 

3 displays the profit earned above or below a no hedging strategy over the period of observation. 
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Exhibit 2: Profit earned with the Naïve Hedging Strategy 

 

 

 

 

 

 

Exhibit 3: Naïve Hedging Profit Above the No Hedging Strategy 

 

 

 

 

 

 

Using bin widths of $0.10 in calculating the weighted Riemann sum leads to the creation of 27 

unique bins. The LPM2 of the naïve hedging strategy is 0.2277. 48 of the 87 observations resulted 

in a profit below the reference level. 

NGL Hedging Strategy 

 The average profit earned using the NGL hedging strategy is $3.28 per MMBtu. Exhibit 4 

displays the profit earned by transformers that implement the NGL hedging strategy and Exhibit 

5 displays the profit earned above or below a no hedging strategy over the period of observation. 

Exhibit 4: Profit earned with the NGL Hedging Strategy 
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Exhibit 5: NGL Hedging Profit Above the No Hedging Strategy 

 

 

 

 

 

 

Using bin widths of $0.10 in calculating the weighted Riemann sum leads to the creation of 29 

unique bins. The LPM2 of the naïve hedging strategy is 0.4401. 72 of the 87 observations resulted 

in a profit below the reference level.  

Power Hedging Strategy 

 The average profit earned using the power hedging strategy is $4.74 per MMBtu. Exhibit 

6 displays the profit earned by transformers that implement the power hedging strategy and Exhibit 

7 displays the profit earned above or below a no hedging strategy. 
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Exhibit 6: Profit earned with the Power Hedging Strategy 

 

 

 

 

 

 

Exhibit 7: Profit Above or Below the No Hedging Strategy  

 

 

 

 

 

 

Using bin widths of $0.10 in calculating the weighted Riemann sum leads to the creation of 29 

unique bins. The LPM2 of the power hedging strategy is 0.2638. 52 of the 87 observations resulted 

in a profit below the reference level. A comparison of the results is summarized in Exhibit 8. 
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Exhibit 8: Comparison of Hedging Strategies 

 No Hedge Naïve Hedge NGL Hedge Power Hedge 

Average Profit $5.21 $4.93 $3.28 $4.74 

Max $8.38 $9.05 $5.48 $8.89 

Min $2.30 $2.00 $1.31 $1.83 

Standard Deviation 1.88 1.95 1.37 1.93 

Observations Below 𝐗𝐗� 47.3% 55.2% 90.1% 59.8% 

LPM2 0.1757 0.2276 0.5622 0.2638 

  

 

DISCUSSION 

 

The results show that transformers are better off if they do not implement any hedging 

strategy than they would be if they implemented any of the proposed strategies. These results are 

consistent with market conditions and this paper’s use of LPM2 as a measurement for hedging 

effectiveness, as discussed below.  

Analysis of Hedging Strategies  

 The relatively mediocre performance of the proposed hedging strategies can be explained 

in part by market conditions. Exhibit 9 plots the value of the cool spread during the period of 

observation, clearly showing its expansion in the past year.    
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Exhibit 9: Cool Spread Value in Observation Period 

 

 

 

 

 

 

 

Given these market conditions, it is logical that transformers who did not insulate themselves from 

cool spread volatility would realize more profits than those who did as their operating margins 

increase alongside the cool spread. This is further compounded by the paper’s use of LPM2 as a 

proxy for hedging effectiveness as it only penalizes downside deviations. This was particularly 

severe in the fall of 2017, when the cool spread sustained an extended rally. Only when the cool 

spread began to contract in the spring of 2018 did hedging strategies begin to outperform the no 

hedging strategy. 

 The power hedge’s LPM2 statistic was comparable to naïve hedge, a result consistent with 

expectations. Given natural gas and electricity prices are highly correlated, the use of a power 

futures contract in a hedging bundle should not have produced results significantly different from 

a hedging bundle without it. However, in market conditions in which natural gas prices and 

electricity prices experience decoupling, this strategy could have use for transformers.  

 The NGL hedge’s poor performance relative to the other hedging strategies is also expected 

given current market conditions. Ethane and propane prices are at historic lows, something that 

cannot be said about LNG. As a result, transformers who separate NGLs from wet gas would be 

$0.00
$1.00
$2.00
$3.00
$4.00
$5.00
$6.00
$7.00
$8.00
$9.00

5/4 6/4 7/4 8/4 9/4 10/4 11/4 12/4 1/4 2/4 3/4 4/4

Cool Spread ($ per MMBtu)



Hofstadter29 
 

creating an unfavorable product mix. By separating out ethane and propane, transformers would 

be reducing the quantity of LNG they can produce from the feedstock in order to produce the lower 

margin ethane and propane. While such a hedging strategy could be used for wet natural gas 

producers, obviously without the LNG component, it is not relevant for this paper. Transformers 

who use wet gas as a feedstock would elect to convert the entire quantity to LNG and thus this 

strategy does not reflect their economic realities.   

Limitations 

 While this paper faces a number of limitations, none are so great as the availability of price 

data and the state of the LNG market. As discussed in the data section above, historical price data 

for a number of commodities and futures contracts critical to designing various hedging strategies 

is not publicly available or is updated infrequently. For example, global LNG spot prices are not 

publicly available, forcing this study to rely on the SLING index as a proxy for LNG spot prices. 

The same can be said for ICE’s LNG futures contracts. Another issue inherit in the data is the 

frequency in which the prices of key commodities and futures are updated. Ethane, propane, and 

Louisiana MISO prices (spot and future) are often stale, reflecting the fact these commodities are 

infrequently traded. If the aforementioned commodities were traded in high volumes, in theory the 

hedging strategies this paper compares may effectively hedge the cool spread. However, in practice 

this is not the case.  

   Even if relevant price data was available for all the spot and futures prices of the 

commodities discussed, the hedging ratios and strategies would need to be adjusted substantially 

to reflect the position of each transformer. The variance in global LNG spot prices is much greater 

than in other comparable energy sources. For example, LNG exported to Japan from the U.S. in 

February 2018 was quoted at $7.46 per MMBtu while the equivalent price for export to Turkey 
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was quoted at $4.34. While there is variance in other global energy benchmarks (i.e. WTI versus 

Brent for crude oil), such price discrepancies are not nearly as pronounced. Transformers would 

also need to adjust their hedging strategy to reflect the composition of their natural gas feedstock 

(wet or dry) to determine whether to hedge price fluctuations in NGLs.  

 Another limitation of this paper due to insufficient price data corresponds to the relative 

infancy of the ICE LNG futures contract. Because the ICE’s LNG futures contract began trading 

in May of 2017, there are a limited number of possible data points. While NYMEX has listed an 

LNG futures contract since 2009, open interest and trading volume has been close to zero 

throughout its history. Only since ICE LNG futures officially begin trading did volumes pick up 

(ICE cleared 9,000 LNG contracts in January; NYMEX cleared 256), providing fresher price data. 

Because historical data is so limited it opens the data to idiosyncrasies that may have been avoided 

with more observations. Apart from some sharp contractions in the winter, the cool spread 

underwent dramatic expansion during the period of observation. Naturally in periods of cool 

spread expansion hedging will cut into transformers’ profits and these strategized will be penalized 

in LPM2 calculations.  

 Aside from limited price data on relevant commodities and their derivatives, there exists 

little data on LNG processing time. While there is an abundance of data regarding the refining 

timeline for crude oil, no such timeline exists for LNG, a figure critical for determining a hedging 

horizon. Similarly, transformers such as Cheniere do not disclose the quantity of natural gas 

feedstock they purchase nor, do they discuss relevant capacity constraints at their export terminals 

(Cheniere, 2018). Thus, this paper cannot make an accurate assumption regarding how long natural 

gas feedstock is stored at an export terminal before it undergoes liquefication. This is another 

critical consideration for determining the hedging horizon that is an unknown.    
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Future Considerations  

 Using the framework outlined in this paper, future research should consider the use of crude 

oil prices, spot and future, in designing new hedging strategies. Asian LNG spot prices are 

benchmarked to the crude oil, thus dependent on the price of oil. However, future studies will need 

access to more comprehensive data to determine an appropriate hedge ratio for a bundle of futures 

that includes crude oil. The data necessary, in addition to all relevant future and spot price, will be 

access to the methodology as to how Asian LNG futures prices are calculated using crude oil.  

 Another consideration will to use hedging ratios as outlined by Liu et al. (2016) when 

calculating the profit of each strategy. Instead of comparing strategies that utilize fixed hedging 

ratios, such as this paper does, researches should consider calculating the optimal hedge ratio 

defined as: 

ℎ∗ = 𝐶𝐶𝐶𝐶𝑎𝑎min
ℎ
� [𝜋𝜋� − 𝜋𝜋(ℎ)]2𝑆𝑆𝐹𝐹(𝜋𝜋(ℎ))
𝜋𝜋�

−∞
 

(8) 

Liu et al. (2016) find utilizing dynamic instead of fixed ratios increases hedging effectiveness in 

times of both high and low volatility in prices of the underlying commodity. This method is beyond 

the scope of this paper but an important consideration for future researchers. 

 

CONCLUSION 

 

 While the results of this paper show no benefit to transformers in implementing any of the 

proposed hedging strategies, the value can be found in the framework. If the forecasted growth of 

LNG materializes, more data regarding spot prices will become publicly available and LNG 

futures will trade in higher volumes. In addition, to more accurate pricing data, future studies will 
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be able to take advantage of more data points that will give a more accurate picture of cool spread 

behavior. However, a number of uncertainties loom over LNG’s future. The geopolitical situation 

in Russia, potential export regulations in the U.S., and a slow in the development of liquification 

technology are all situations that could have a profound impact on the LNG market in the near 

future. In summary, this paper does not answer the overarching question of how transformers can 

most efficiently hedge the cool spread. However, the paper’s discussion of LNG market dynamics, 

hedging strategy design, and LPM2 as a measure for efficient hedging may inform future studies 

of the cool spread.       
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APPENDIX 

 

Appendix A: Natural Gas Liquids Hedge Ratio Calculations 

Given: 
• 28,814 billion cubic feet of wet natural gas production in the U.S. in 2017 (EIA, 2018) 
• 2.61 million barrels of ethane and propane produced per day by gas plant production in 

2017 (EIA, 2018) 
• 0.0011 MMBtu per cubic foot of natural gas 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝐶𝐶 𝑁𝑁𝐶𝐶𝐺𝐺 𝐿𝐿𝐴𝐴𝐶𝐶𝐴𝐴𝑃𝑃 𝐿𝐿𝐶𝐶𝑃𝑃𝑆𝑆𝐴𝐴𝐶𝐶𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴 = 952,650,000 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐴𝐴𝐺𝐺   

𝑊𝑊𝑆𝑆𝑃𝑃 𝑁𝑁𝐶𝐶𝑃𝑃𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 𝑁𝑁𝐶𝐶𝐺𝐺 𝑆𝑆𝑆𝑆𝐶𝐶 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐴𝐴 = 30,246.2 𝑓𝑓𝑃𝑃3  

𝐿𝐿𝐿𝐿𝑅𝑅𝑃𝑃𝐴𝐴 𝑆𝑆𝑆𝑆𝐶𝐶 𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 𝑁𝑁𝑁𝑁𝐶𝐶 =  
1/(952,650,000 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐴𝐴𝐺𝐺 30246.2 𝑓𝑓𝑃𝑃3 × 0.0011 𝐿𝐿𝐿𝐿𝑅𝑅𝑃𝑃𝐴𝐴 𝑆𝑆𝑆𝑆𝐶𝐶 𝑓𝑓𝑃𝑃3) × 42 𝑎𝑎𝐶𝐶𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐺𝐺 = 1.26  

𝐻𝐻𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆 𝑅𝑅𝐶𝐶𝑃𝑃𝐴𝐴𝑃𝑃 𝑆𝑆𝑆𝑆𝐶𝐶 𝑁𝑁𝑁𝑁𝐶𝐶 = 1.26 𝐿𝐿𝐿𝐿𝑅𝑅𝑀𝑀𝐴𝐴 𝑆𝑆𝑆𝑆𝐶𝐶 𝑎𝑎𝐶𝐶𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 × 0.1 𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃 𝑁𝑁𝑁𝑁𝐶𝐶 𝑆𝑆𝑆𝑆𝐶𝐶 𝐿𝐿𝐿𝐿𝑅𝑅𝑃𝑃𝐴𝐴 𝑁𝑁𝑁𝑁 = 0.13 
 
Thus: 
 

𝜋𝜋(ℎ𝐿𝐿𝐺𝐺𝑂𝑂) =
16
20

𝑆𝑆1𝑂𝑂𝐿𝐿𝐺𝐺 +
3

20
𝑆𝑆1𝐸𝐸𝐸𝐸𝐻𝐻 +

3
20

𝑆𝑆1𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑆𝑆0𝐿𝐿𝐺𝐺 + (𝐹𝐹1𝐿𝐿𝐺𝐺 − 𝐹𝐹0𝐿𝐿𝐺𝐺) +
16
20

(𝐹𝐹0𝑂𝑂𝐿𝐿𝐺𝐺 − 𝐹𝐹1𝑂𝑂𝐿𝐿𝐺𝐺)

+
3

20
(𝐹𝐹0𝐸𝐸𝐸𝐸𝐻𝐻 − 𝐹𝐹1𝑂𝑂𝐿𝐿𝐺𝐺) +

3
20

(𝐹𝐹0𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐹𝐹1𝑃𝑃𝑃𝑃𝑃𝑃) 

 
Assumption: 

• Only ethane and propane production are considered given these two NGLs make up the 
vast majority of total NGL production (DOE, 2017) 

• Wet natural gas composition ≈ 80% methane, 20% NGLs (NAESB, 2003) 
• Ethane and propane are produced in equal parts, when in reality ethane makes up 54% of 

total ethane and propane production (DOE, 2017) 
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Appendix B: Hedging Horizon Calendar 

Prompt Month Trading Abbreviation Start Date End Date 

July 2017 N7 May 4, 2017 June 2, 2017 

August 2017 Q7 June 5, 2017 July 3, 2017 

September 2017 U7 July 5, 2017 August 3, 2017 

October 2017 V7 August 4, 2017 September 1, 2017 

November 2017 X7 September 4, 2017 October 3, 2017 

December 2017 Z7 October 4, 2017 November 1, 2017 

January 2018 F8 November 2, 2017 November 30, 2017 

February 2018 G8 December 1, 2017 January 3, 2018 

March 2018 H8 January 4, 2018 January 31, 2018 

April 2018 J8 February 1, 2017 March 2, 2018 

May 2018 K8 March 5, 2017 April 2, 2018 

June 2018 M8 April 3, 2017 May 2, 2018 
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