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Abstract

The Digital Guitar Effects Pedal assists guitarists in creating music by implementing several useful
functions. The pedal takes an analog input signal from an electric guitar, performs digital operations
on it, and outputs a modified analog signal to an external guitar amplifier. Pedal functions include:
an easy-to-use instrument tuner, a looper which records and plays back music segments, a tap tempo
mode allowing easy synchronization with other instruments, and various guitar effects (distortion,
echo, and vibrato, among other examples). The pedal user interface displays the current selected
function, and allows easy switching between effects.
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Chapter 1: Introduction

Since the beginnings of the electric guitar, guitarists have sought out different guitar effects to
change or improve the sound of their instrument. Before the development of fast, affordable micro-
controllers, all guitar effects were created using analog methods. Some effects, such as distortion
and overdrive, arose from guitarists pushing the limitations of the vacuum tubes in their amplifiers.
Other effects, such as delays or vibrato, used analog circuitry and guitar pedals using these circuits
remain popular today [1]. A guitar pedal is the common term used to describe a device that takes
an analog signal from a guitar, adds effects to the signal, and outputs the signal to an amplifier.
The guitarist usually activates the pedal’s effect using their foot, allowing them to play the guitar
while changing effects. Most analog guitar pedals use only a mix of operational amplifiers, resistors,
and capacitors in their creation, and while this simplifies the design of these devices, it makes it
difficult to add multiple different effects into a single enclosure because of the space required for all
the components.

The first guitar pedal containing transistors appeared in 1962 as the Maestro Fuzz Tone pedal, and
in the 1960’s and 1970’s the number of available guitar effects pedals greatly increased, with effects
such as chorus, wah-wah, and phase pedals becoming available [2]. The first digitized guitar effect
pedals did not appear until 1980’s, however these units have since become much more common due
to widespread availability of powerful microcontrollers.

With the advancements made in modern microcontrollers, implementing guitar effects in the digital
domain becomes much more feasible. Algorithms exist which can implement a wide variety of
effects, including loudness effects, time effects, pitch effects, and timbre effects [3]. With a digital
guitar pedal, the easy collection of multiple effects into a single pedal becomes possible, making it
easier for guitarists to select exactly the effect they desire. In addition, opportunities arise to add
new functions only possible in the digital domain, such as delays greater than 1 second, an accurate
digital tuner, or a looping function to continuously replay segments of music.

This project aims to create an affordable digital guitar pedal with high quality effects. The pedal
contains an accurate tuner, a looping function, and several guitar effects. The implemented guitar
effects include distortion, delay, echo, vibrato, flanger, and chorus [3][4].

Chapter 2 explores the requirements and specifications the Digital Guitar Effects Pedal must meet
to compete with other commercially available pedals.
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Chapter 2: Requirements and Specifications

Determining the requirements and specifications that the pedal should satisfy involves analyzing
different customer needs. A discussion of potential customers appears in appendix A, and analysis
of their needs generates a set of marketing requirements, appearing at the bottom of table I. These
marketing requirements drive the generation of engineering specifications, which follow the guide-
lines set forward in IEEE 1233. The specifications are implementation free, bounded, complete,
unambiguous, verifiable, and traceable [5]. Table I below shows the engineering specifications and
marketing requirements for the Digital Guitar Effects Pedal.

Table I – Digital Guitar Effects Pedal Requirements and Specifications

Marketing
Requirements

Engineering
Specifications

Justification

1 Final production cost < $100 Most commercial digital guitar ped-
als retail for over $250, so main-
taining market viability requires low
production costs.

2 Tuner reports frequency of a pure
sine wave from 60 Hz-350 Hz within
+/- 5 cents

Any variation in tuner accuracy
should remain inaudible to users.
Research shows the average per-
son cannot perceive a difference in
pitch within +/- 5 cents, and mod-
ern pitch detection algorithms can
achieve 1 cent accuracy [6].

3 Looping function can record and
play back over 20 s of sound (at
44.1 kHz sample rate and 16-bit res-
olution)

Recording duration should allow
user to record several measures.

4 Analog-digital and digital-analog
conversion occur with at least
44.1 kHz sample rate and at least 16-
bit resolution

44.1 kHz and 16-bit resolution rep-
resents “CD Quality,” necessary for
high quality sound and to reduce
aliasing effects.

4 Audio input has > 100 kΩ input
impedance measured from 20 Hz-
20 kHz

Electric guitars can have output
impedances ranging up to 10 kΩ,
so the pedal requires high input
impedance to prevent signal atten-
uation [7].

4 Audio output has < 100 kΩ output
impedance measured from 20 Hz-
20 kHz

Guitar amplifiers expect electric
guitar inputs which have up to
10 kΩ output impedance, so the
pedal should have an comparable
output impedance [7].
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4 The total harmonic distortion
(THD) of the output signal from
the input signal with no effects
added should be < 1 % over the
audible range (20 Hz-20 kHz)

Minimal unintended output distor-
tion in the signal preserves sound
quality, and any distortion should
remain inaudible to the user.

5 Device dimensions should not ex-
ceed 20 cm×20 cm×6 cm

Smaller dimensions make the pedal
easier to transport.

5 Device weight should not exceed
1 kg

Lower weight makes the pedal more
portable.

6 Device audio input and output com-
patible with standard 1/4” audio ca-
bles

Electric guitar outputs, guitar am-
plifier inputs, and other guitar effect
pedals all use 1/4” jacks, so this de-
vice must also maintain compatibil-
ity with this standard [8].

6 Device powered from external
9 VDC power supply rated at or
under 500 mA

Most other guitar effects pedals
operate on 9 VDC, so this device
should follow this standard allowing
for users to provide their own power
supplies if desired.

6 Power supply connection compati-
ble with standard 5.5×2.1mm barrel
plug with center negative polarity

Standard power supplies for guitar
pedals use 5.5×2.1mm barrel plugs
with a center negative polarity, so
this product should accept this stan-
dard power input [8].

7 The device follows the standards de-
scribed in UL 60065

Following UL 60065: Standard for
Audio, Video and Similar Electronic
Apparatus ensures product safety
and prevents user injury [9].

Marketing Requirements
1. Cheap
2. Accurate tuner
3. Contains looping function
4. High quality sound
5. Portable
6. Easily interfaces with guitars, amplifiers, and other effects pedals
7. Safe

These requirements and specifications affect the device functional decomposition, explored in chap-
ter 3.
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Chapter 3: Functional Decomposition

This chapter decomposes the project into functional blocks and explains the operation of these
blocks in relation to overall system functionality. This chapter contains both level 0 and level 1
functional decompositions.

3.1 Level 0

The Digital Guitar Effects Pedal takes an input audio signal and outputs a modified audio signal,
with user input determining the output characteristics. Figure 1 below shows the level 0 system
block diagram.

Figure 1 – Level 0 System Block Diagram

Table II shows the level 0 functional requirements, derived from the level 0 block diagram and
specifications. The expected audio input and output voltage levels arise from the electric guitar
pickup output level, which could reach up to 1 Vrms [7].

4



Table II – Level 0 Functional Requirements

Module Digital Guitar Effects Pedal

Inputs • Audio input signal: input from electric guitar, 1 Vrms max.
• Volume control: volume continuously variable from no volume to
maximum volume.
• Function selection control: interface to select active functions
applied to the input signal.
• Power input: 9 V DC power supply, rated 500 mA.
• Power switch: can interrupt power to device to toggle device
operation.

Outputs
• Audio output signal: output to external guitar amplifier, 1 Vrms
max.

Functionality

The device should take an audio signal from an electric guitar,
digitally add effects to it (distortion, delay, and vibrato, among
other examples), and output the original signal plus any effects
added to an external guitar amplifier. The user controls the desired
effects using an interface on the pedal exterior. The user can adjust
the volume continuously from no volume to maximum volume. The
user can also toggle device power using a switch.

3.2 Level 1

The level 1 block diagram in figure 2 expands upon the level 0 block diagram and explains device
inner functionality. The input audio signal passes through an analog-digital converter, and a
microcontroller then processes the digital signal before sending it to a digital-analog converter. A
power supply block takes the input power and converts it to the necessary system power rails. The
microcontroller communicates with system memory to store and retrieve data as necessary.

Figure 2 – Level 1 System Block Diagram

Table III shows the functional decomposition for the analog-digital converter (ADC) block, which
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converts the input audio signal into a digital signal readable by the microcontroller.

Table III – Analog-Digital Converter Functional Requirements

Module Analog-Digital Converter (ADC)

Inputs • Audio input signal: input from electric guitar, 1 Vrms max.
• 5 VDC: regulated power rail from internal power supply for ADC
reference voltage and active filters, 10 mA max.
• 3.3 VDC: regulated power rail from internal power supply for
ADC power, 1 mA max.

Outputs
• Digital input signal: Digitized audio input signal from the ADC.
The ADC communicates the digital signal to the microcontroller
over a serial peripheral interface (SPI) bus.

Functionality

The analog-digital converter takes the input audio signal and
samples it at regular intervals to convert it to a digital signal which
the microcontroller can then modify. Based on the specifications in
table I, the ADC must sample faster than 44.1 kHz and with at least
16-bit resolution. This block filters the analog audio signal input
before converting it to digital to reduce noise and prevent aliasing.
The ADC uses a reference voltage of 5 V to allow sufficient
headroom to prevent signal clipping. The ADC draws its power
from a 3.3 V rail to allow communication with the microcontroller
which also runs on 3.3 V.

Table IV shows the functional decomposition for the microcontroller unit (MCU) block, which
controls all system functions and performs operations on the digital audio signal. The STM32F446
microcontroller from STMicroelectronics has a fast clock speed and a floating-point unit, making
it ideal for the digital operations required in this device [10].
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Table IV – Microcontroller Functional Requirements

Module Microcontroller

Inputs
• Digital input signal: Digitized audio input signal from the ADC,
communicated over SPI.
• Volume control: Volume continuously variable from no volume to
maximum volume.
• Function selection control: interface to select active functions
applied to the input signal.
• 3.3 VDC: regulated power rail for microcontroller power, 200 mA
max.
• Stored data: interface to system memory to store data,
communicated over SPI.

Outputs
• Stored data: interface to system memory to retrieve stored data,
communicated over SPI.
• Digital output signal: modified digital audio signal for the DAC,
communicated over SPI.

Functionality

The microcontroller takes the digital audio input signal and
performs operations on it according to the functions selected by the
user. The user can adjust the signal amplitude continuously, and the
microcontroller can store the input audio signal in system memory
for later recovery. The microcontroller outputs the modified digital
signal to the DAC.

Table V describes the functional requirements for the digital-analog converter (DAC), which takes
the output digital audio signal and converts it to a usable analog output signal.

Table V – Digital-Analog Converter Functional Requirements

Module Digital-Analog Converter (DAC)

Inputs
• Digital output signal: modified digital audio signal from the
microcontroller, communicated over SPI.
• 5 VDC: regulated power rail from internal power supply for DAC
reference voltage and active filters, 10 mA max.
• 3.3 VDC: regulated power rail from internal power supply for
DAC power, 1 mA max.

Outputs
• Audio output signal: output to external guitar amplifier, 1 Vrms
max

Functionality

The DAC takes the digital audio signal from the microcontroller and
transforms it back into an analog signal, then outputs it to an
external guitar amplifier. Like the ADC, the DAC must sample
faster than 44.1 kHz and have at least 16-bit resolution. The DAC
requires the same power rails as the ADC.

Table VI shows the functional decomposition for the stored memory block, which the microcontroller
can communicate with to store data.
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Table VI – Stored Memory Functional Requirements

Module System Memory

Inputs
• Stored data: Data from the microcontroller, communicated over
SPI.
• 3.3 VDC: regulated power rail from internal power supply for
memory power.

Outputs • Stored data: Data from memory, communicated over SPI.

Functionality

System memory stores data from the microcontroller, which may
include segments of audio. The system memory must transmit and
receive data at speeds greatly exceeding 44.1 kHz to prevent
microcontroller internal memory overflow. The memory size must
allow storage of enough audio data to meet the specifications.

Table VII describes the requirements for the power supply, which provides the necessary voltage
rails for system operation.

Table VII – Power Supply Functional Requirements

Module Power Supply

Inputs • Power input: 9 V DC power supply, rated 500 mA.
• Power switch: Can interrupt power to device to toggle device
operation.

Outputs • 5 VDC: regulated power rail, 20 mA max.
• 3.3 VDC: regulated power rail, 200 mA max.

Functionality

The power supply must take the 9 V DC input and transform it into
the necessary system voltages. The system requires 5 V and 3.3 V
rails, which the power supply can generate using either linear
regulators or switching power supplies, depending on system needs.
Users can toggle device operation using a power switch, which
interrupts system power.
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Chapter 4: Design

The design of the Digital Guitar Effects Pedal consists of two distinct aspects: hardware and
firmware. Hardware relates to the physical electronic components that provide the desired function-
ality when assembled together. Firmware describes the code programmed into the microcontroller
which controls the different electronic components and allows for user interaction.

4.1 Hardware

Hardware development on this project consists of creating a schematic to describe the connections
between the different components, and then manufacturing a printed circuit board (PCB) to connect
everything. This project favors the use of individual components instead of pre-made modules
because it allows greater design flexibility and optimization opportunities. This section describes
the design process for each aspect of the circuit. Some subsections include figures with fragments
of the schematic for easier reference, and a full schematic is included in appendix C. A complete
parts list appears in appendix E. Creation of the schematic and layout uses KiCAD, a free and
open-source electronic development environment.

The schematic uses two different ground references: an analog ground represented by the GNDA
net and a digital ground represented by the GND net. Any device in the audio signal path uses
analog ground as its reference, which connects to the digital ground in only one location, preventing
coupling of digital noise into the analog circuitry.

Microcontroller

At the heart of the Digital Guitar Effects Pedal lies the microcontroller unit (MCU), which con-
trols the operation of every device in the circuit. The MCU selected is the STM32F446RC from
STMicroelectronics [10]. This MCU runs at a maximum clock speed of 180 MHz, allowing many
instructions per audio sample. It contains a floating point unit (FPU), which allows fast compu-
tations of complex DSP algorithms like Fast Fourier Transforms (FFTs). The RC version of the
STM32F446 contains 256 kB flash memory and 128 kB SRAM, a sufficient amount to implement
the various desired features. The 64-pin LQFP device package is selected, since 64 pins is enough
for implementing all circuit functions while allowing for more manageable hand-soldering than the
100-pin version.

Programming the MCU takes advantage of the available Joint Test Action Group (JTAG) in-
terface. Programming the MCU from a computer requires using the ST-LINK/V2, an in-circuit
debugger/programmer from STMicroelectronics which provides a USB to JTAG interface [11]. The
ST-LINK/V2 normally requires a 20-pin ribbon cable connector to program the circuit, however,
section 4.2 of [11] describes an option for a 10-pin interface using a proprietary Tag-Connect cable
and adapter. To save space on the PCB, the design uses the 10-pin interface as described in the Tag-
Connect manual [12], however the ST-LINK/V2 attaches to the PCB using jumper wires instead
of the actual Tag-Connect cable. The JTAG standard normally requires external pull-up resistors,
however the MCU provides embedded pull-up and pull-down resistors to reduce the number of
external parts [13].
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A 3.3 V rail powers the MCU, and 0.1 µF capacitors adjacent to each of the four MCU power pins
provide power supply decoupling. A separate 10 µF capacitor placed close to the package provides
additional decoupling.

To provide a stable reference clock for the MCU, the circuit contains an external 25 MHz crystal,
the ABM3-25.000MHZ-D2Y-T [14]. The crystal connects to the MCU as recommended in [15].
Figure 3 shows the fragment of the schematic containing the MCU.

Figure 3 – MCU Schematic
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The circuit contains a 10 kΩ thermistor attached to one of the MCU’s ADC pins, allowing the
circuit to detect the ambient temperature to prevent overheating. The design uses two serial
peripheral interface (SPI) buses, SPI1 for communication with the flash memory chip and SPI2
for communication with the ADC and DAC. The high-speed data lines are series terminated with
33 Ω resistors to reduce signal reflections, and pull-up resistors on chip select lines ensures devices
remain deactivated by default. A surface mount LED attached to one of the GPIO pins acts as the
device’s heartbeat. The MCU firmware manually switches it on and off at a regular interval, and
if the LED stops blinking, something unexpected has happened with the operation of the code.

Power Supply

As noted in table VII in the functional decomposition, the circuit requires both 5 V and 3.3 V rails
to power the analog and digital components. The 3.3 V rail powers the digital circuitry, including
the MCU, the analog to digital converter (ADC), digital to analog converter (DAC), the Flash
memory, and the LCD display. Table VIII below shows the worst case supply current for each
device on the digital rail.

Table VIII – Digital Power Supply Current Requirements

Component Digital Supply Current

MCU 100 mA [10]
ADC Negligible [16]
DAC 240 µA [17]
Flash Memory 25 mA [18]
LCD Display 20 mA [19]

Based on the above requirements, a converter for the digital rail needs to source at least 150 mA.
Since this rail is only provides digital power and not precise analog references, the design can
use a DC-DC switching buck converter, which saves power over using a linear regulator. The buck
converter chosen is the TPS560200, which has an input voltage range of 4.5 V to 17 V, an adjustable
output voltage, and a 500 mA continuous output current capacity [20]. This buck converter has a
high switching frequency of 600 kHz, allowing for smaller external components to achieve the same
performance as slower converters. Figure 4 below shows the buck converter schematic.
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Figure 4 – Buck Converter Power Supply Schematic

The buck converter circuit in the schematic is based directly on the typical application circuit from
the datasheet [20], with output voltage set to 3.3 V. The enable pin is left floating to permanently
enable the converter. The design closely follows the recommended PCB layout to give the best
performance.

The 5 V rail powers the analog circuitry in the device, and so requires there to be less noise on the
power rail than the digital circuits. Because of this, excess switching noise makes a buck converter
not an ideal choice, since the switching noise interferes with the precise analog references required
by the ADC and DAC. The design instead uses a low drop-out linear regulator (LDO), since these
components usually have excellent line and load regulation and do not introduce additional switch-
ing noise. Linear regulators dissipate more power than switching converters, however the current
requirements of the analog device, seen in table IX below, remain low enough to prevent excessive
power dissipation. At max current draw, the linear regulator should only dissipate 120 mW.

Table IX – Analog Power Supply Current Requirements

Component Analog Supply Current

ADC 4.5 mA [16]
DAC 45 µA [17]
Op-amps 4 × 6.5 mA [21]

The design uses the LP2951 LDO, which has an input range up to 30 V and a continuous output
current capacity of 100 mA [22]. Figure 5 shows the LDO circuit, based on the typical application
circuit from the datasheet.
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Figure 5 – LDO Regulator Schematic

A buffered voltage divider creates a 2.5 V bias voltage for the active filters.

Analog to Digital Converter

The analog to digital converter (ADC) takes the audio signal from the electric guitar and converts
it to a digital binary representation. The ADC chosen must meet the sampling rate specification of
44.1 kHz and the resolution specification of 16 bits. The ADS8319 meets both of these specifications,
with a max 500 kSPS sampling rate and 16-bit resolution [16]. This ADC also has separate digital
and analog power supplies allowing for communication at 3.3 V and conversion at 5 V. The ADC
communicates over SPI with a max frequency of 30 MHz. Figure 6 below shows the section of the
schematic covering the ADC and input filter.

Figure 6 – ADC Schematic

The input audio signal passes through a 4th-order unity gain Sallen-Key band-pass filter with
cutoff frequencies of 25 Hz and 16.5 kHz. This preserves the signal over the audible range, while
eliminating signals past the Nyquist frequency which would cause aliasing. The active filters use
the TLV3542 dual operational amplifier, which has 200 MHz gain-bandwidth, high slew rate, and
rail-to-rail input and output [21]. The amplifiers before the ADC require high slew rates because
the ADC input presents a capacitive load, which must charge fast enough to allow for accurate
ADC conversion. After the active filters, the signal passes through a passive RC filter with a cutoff
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frequency of 12 MHz as recommended in the ADS8319 datasheet. Components in the audio signal
path use the analog ground reference to isolate them from digital noise arising from the high-
frequency communication interfaces and digital power supplies. The 5 V rail powers the analog
circuitry, and the ADC uses the same voltage as its reference. The ADS8319 operates in ”3 wire
CS mode without busy indicator,” selected by tying SDI to +VBD.

Digital to Analog Converter

The digital to analog converter (DAC) takes a digital binary representation of the audio waveform
and converts it back into an analog signal. The DAC must meet the same sampling rate and
resolution specifications as the ADC to preserve the signal integrity. The design uses the DAC8551
which has 16-bit resolution, a settling time under 10 µs, and communicates over SPI at up to 30 MHz
[17]. Figure 7 below shows the schematic for the DAC.

Figure 7 – DAC Schematic

A second order low-pass filter follows the DAC output to act as a reconstruction filter, smoothing
the output signal and removing some of the quantization effects. The design uses a corner frequency
of 17 kHz for the filter to preserve signals in the audible range. The DAC cannot generate voltages
greater than its digital supply, so the DAC uses the 2.5 V rail as its reference voltage instead of the
5 V rail. This essentially cuts the signal amplitude in half, so the reconstruction filter has a gain of
2 to bring the signal back to its original amplitude.

A 1 µF capacitor AC couples the audio signal to remove the DC bias from the DAC output, and
the signal then passes through a 100 kΩ logarithmic taper potentiometer. The potentiometer allows
the user to adjust the signal amplitude, and since the human ear detects volume logarithmically,
a logarithmically tapered potentiometer gives linear volume change when rotated. 100 kΩ output
potentiometers reflect the standard on most guitar pedals, so even though they increase output
impedance significantly, the pedal should still operate normally. A 1 kΩ resistor is placed in series
with the output to protect the op-amps from sourcing excess current if the output becomes shorted.

14



Flash Memory

The pedal’s looper function requires the storage and recall of audio data. Since the audio data
is 16-bits at 44.1 kHz, one second of data composes 88.2 kB. The MCU only contains 256 kB of
internal flash memory, enough to store around 3 seconds of data. This does not meet the recording
length specification, so the pedal requires an external memory chip. The design uses flash memory
since it provides the best compromise between cost and speed. The W25Q128JV-DTR 128 MB flash
memory chip has enough storage to hold over 24 minutes of audio data [18]. The chip communicates
over SPI at up to 50 MHz, allowing rapid data transfer. The flash chip communicates with the MCU
using the SPI1 bus, while the ADC and DAC use the SPI2 bus. This allows the MCU to carry out
communication with the flash memory independent of the audio signal processing.

Liquid Crystal Display

The pedal should display the currently selected effect so the user can adjust different parameters.
The pedal uses the NHD-0420H1Z-FSW-GBW-33V3 4x20 character liquid crystal display (LCD)
since it operates from a 3.3 V rail and displays enough characters to convey the necessary informa-
tion [19]. The display communicates with the MCU using an 11-pin parallel interface, with 8 pins
for data and 3 pins for operation selection. A small 10 kΩ linear taper potentiometer controls the
contrast of the display.

User Interface

To allow the user to change different options, the pedal uses 3 small momentary push-buttons and
3 large momentary footswitches. The pushbuttons allow control of different menu options, and
consist of ‘Up,’ ‘Down,’ and ‘OK’ buttons. The footswitches are durable enough for users to press
them with their feet, so options can be changed while still playing the guitar. The footwsitches
consist of ‘Up,’ ‘Down,’ and ‘Effect’ buttons. The original design contains an RC lowpass filter after
each button to debounce the output, however for reasons described in section 4.2, the final product
opts for firmware debouncing instead. The buttons use the MCU’s internal pull-up resistors on the
GPIO ports to reduce external components.

The pedal uses a rotary encoder allowing the user to easily adjust different effect parameters. The
MCU’s timer peripherals contain functionality that allow them to decode the encoder output, so
the encoder’s A and B outputs attach to the TIM2 CH1 and CH2 GPIO pins on the MCU [23]. The
encoder outputs pass through an RC filter with a time constant of 1 ms to debounce the signals.

Input and output 1/4” audio jacks allow attaching external audio cables, and the grounds from the
jacks connect to the analog ground plane through ferrite beads to isolate the ground reference from
radio-frequency (RF) noise picked up on the cables.

A 3PDT power switch turns on the pedal, with one pole switching power and the other two poles
shorting the input to the output with the pedal off. This implements a “true bypass” function, so
sound can pass through the pedal when not powered. Figure 8 below shows a representation of the
3PDT switch underside, and shows the function of each connected wire. The right of the image
shows how the pins map to the actual switch functionality.
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Figure 8 – Power Switch Connections

The pedal uses two external LEDs; one LED indicates the power status and the another indicates
the status of the effects.

PCB Layout

Due to the complexity of the design and extensive use of surface mount components, the creation of
a PCB becomes necessary. The pedal uses a 4-layer PCB as recommended by STMicroelectronics
for designs containing any STM32 microcontrollers [13]. All components and integrated circuits
reside on the top layer, along with most of the signal routing. Any excess signal routing resides
on the bottom layer. The middle layer under the top layer contains solid ground planes for both
analog and digital grounds, and the other middle layer contains solid power planes for 3.3 V and
5 V rails. This scheme provides a low impedance path to power or ground from anywhere on the
PCB. The PCB separates analog and digital circuitry into their own sections on the board. Each
section has its own power and ground plane to reduce the coupling of noise from the digital circuitry
to the sensitive analog circuitry. The analog section contains the the analog ground and 5 V rail,
and the digital section contains the digital ground and 3.3 V rail. The analog and digital ground
planes connect at a single location, with a 0 Ω jumper. The original design called for a ferrite bead
to connect the ground planes for additional noise suppression, however testing revealed the ferrite
causes complications with the high speed current draw from the ADC.

Since noise can easily interfere with the crystal oscillator, the design implements special layout
considerations as recommended by STMicroelectronics [15]. The layout isolates the digital ground
plane directly underneath the crystal from the rest of the ground plane, and a guard trace surrounds
the crystal to stop high frequency signals from coupling across the PCB surface.

The PCB uses 0.25 mm traces for all signal routing and 0.4 mm traces for power routing. All vias
are 0.6 mm diameter with 0.3 mm drill diameter for signals and 0.4 mm drill diameter for power.
The final board dimensions are 78 mm × 38.2 mm. Appendix D contains images of each layer of
the PCB layout.
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Device Assembly

The PCB is fabricated using OSHPark, then components are hand-soldered on. Figure 9 below
shows the front and back of the fabricated PCB. Figure 10 shows a close up of the assembled PCB,
and figure 11 shows an overview of the assembled system.

Figure 9 – PCB Front (Top) and Back (Bottom)

Figure 10 – Assembled PCB
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Figure 11 – Assembled System

To increase the durability of the pedal and provide some resistance to external noise, the electronics
are enclosed in an aluminum diecast enclosure, the 4S1590DD from Mammoth Electronics. The
enclosure has dimensions of 188 mm × 119.5 mm × 33 mm, allowing the spacing of the footswitches
so the user can easily operate them with their feet. The switches, audio jacks, and dials attach to
the enclosure through holes drilled through the aluminum, and the LCD rests in a rectangular hole
cut from the top. Figure 12 shows the top of the final pedal in its enclosure, and figure 13 shows
the enclosure back with the audio and power jacks.
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Figure 12 – Completed Device in Enclosure - Top

Figure 13 – Completed Device in Enclosure - Back

The three footswitches at the bottom of figure 12 are arranged (from the left): ‘Up,’ ‘Down,’ and
‘Effect.’ The three pushbuttons next to the LCD screen are arranged (from the top): ‘Up,’ ‘OK,’
and ‘Down.’ The left dial is the rotary encoder and the right dial controls the volume. The back of
the enclosure in figure 13 contains (from the left): the input jack, the power jack, the power LED,
the power switch, and the output jack.

4.2 Firmware

After assembling the hardware and verifying that it functions, the next step involves writing
firmware to control all the peripherals and give the device its functionality. The integrated de-
velopment environment (IDE) used to develop the code is System Workbench for STM32, which
supports all STM32 microcontrollers and automatically downloads specific driver packages. The
firmware sets the microcontroller’s SYSCLK frequency to 160 MHz, the peripheral PCLK frequency
to 40 MHz, and the timer clock frequency to 80 MHz.
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Developing the firmware involves coding all the peripheral drivers from scratch, since this gives
the most flexibility in designing the program and allows optimization for speed where appropriate.
The firmware uses a finite state machine to control program flow, consisting of five different states
which can switch depending on input from the user. The states are: Default State, Adjust State,
Tuner State, Looper State, and Tap Tempo State.

In all states, the microcontroller continuously samples the audio input using the ADC and outputs
data to the DAC. A hardware timer triggers a software interrupt at 44.1 kHz which starts the
conversion of the ADC. After the minimum conversion time has elapsed, the program initiates
communication over the SPI2 bus to get the data from the ADC. Upon receiving the data, the
program applies any active effects to the signal. A second software interrupt is generated in the
middle of the timer’s count, triggering the program to open communication over the SPI2 bus to
send the last processed sample to the DAC. All these functions run using only interrupts generated
by hardware timers, so the program never waits for communications to complete, and can resume
other tasks in the meantime.

The user interacts with the firmware through the buttons, which attach to GPIO interrupts so the
code does not have to constantly poll them. The program tracks both the pressing and releasing
of the button, and only registers and processes the button press when it releases. This allows
secondary functions when the button remains pressed for a longer period. The original design for
the external debouncing RC filters works on button down presses; however, upon releasing the
button, the capacitor must charge up through the internal pull-up resistor, which is too slow to
accurately detect quick button presses. For this reason, the design opts to remove the external
filter, and the firmware debounces the buttons internally by ignoring subsequent button presses for
a set amount of time after detecting a press.

Select code fragments appear in appendix F. Due to the length and quantity of device peripheral
driver functions, only functions directly related to core program flow appear in the appendix.
Comments in the code explain how different devices functions operate.

Default State

In the default state, the device shows the currently selected effect on the LCD screen, as well as
any parameters that affect the operation of the effect. The user can toggle the effect by pressing
the ‘Effect’ footswitch, which also activates a blue LED to indicate the status of the effect. The
user can change the currently selected effect by pressing either the ‘Up’ or ‘Down’ footswiches, or
by rotating the rotary encoder. Changing to another effect does not deactivate the current effect,
allowing the simultaneous application of multiple effects. Pressing the small ‘Up’ or ‘Down’ menu
buttons cycle through the effect parameters, with an arrow indicating the parameter currently in
focus. Pressing the small red ‘OK’ button switches to the adjust state, allowing the user to change
the currently selected parameter. Figure 14 shows an example of the default state, with an effect
named Effect 2 which has two parameters, Param 1 and Param 2.
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Figure 14 – Default State GUI Example

Adjust State

In the adjust state, the pedal functions similarly to the default state, except the rotary encoder
now changes the value of the currently selected parameter. The LCD screen displays the selected
parameter, as well as a bar graph which visually indicates the parameter value. Pressing the ‘Up’
and ‘Down’ menu buttons cycle through the effect parameters, and pressing the ‘OK’ menu button
again returns the device to the default state.

Tuner State

The device enters the tuner state by holding down the ‘Down’ footswitch for over a second. The
tuner should accurately detect the fundamental frequency of the input signal and display the
corresponding musical note on the LCD so the user can tune their instrument. The simple method
for determining frequency of the signal involves taking the Fourier transform, however to get even
1 Hz resolution in the frequency spectrum would require a 44,100 length fast Fourier transform
(FFT) operation, which would require excessive computational effort and take too much time.

The tuner determines the fundamental frequency using a method called the normalized squared
difference function (NSDF), a detailed explanation of which appears in [6]. The basic principle
involves taking the auto-correlation of the input signal, which for a periodic signal gives peaks at
every period of the fundamental frequency. The algorithm normalizes the auto-correlation result
to give consistent amplitudes regardless of input signal amplitude, allowing a simple peak finding
algorithm to find the correct fundamental frequency and isolate it from any harmonics. This method
allows better than 5-cent accuracy in the frequency range occupied by open guitar strings (60 Hz -
350 Hz), and can determine the frequency of an input signal containing only two full periods of the
the fundamental frequency [6]. This allows for shorter windows, greatly reducing the computation
time. The tuner uses a window size of 1024 samples.

The code calculates the NSDF n′(τ) using equation 4.1 seen below:

n′(τ) =
2r′t(τ)

m′t(τ)
(4.1)

where r′t(τ) represents the auto-correlation function and:
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m′t(τ) =

t+W−τ−1∑
j=t

(x2j + x2j+τ ) (4.2)

with xt as the input samples and W as the length of the window used [6]. The firmware calculates
the auto-correlation using the built in correlation function (arm_correlate_f32()) in the Cortex
Microcontroller Software Interface Standard (CMSIS) library, which takes advantage of the micro-
controller’s floating-point unit to perform a fast calculation. The code calculates m′t(τ) and n′t(τ)
incrementally using a method described in [6], which initially sets both x2 terms equal to r′t(0)
(the auto-correlation result at τ = 0) then subtracts off specific x2t terms as τ increases. The exact
algorithm appears in Appendix F in the Audio_Tuner() function.

After obtaining the NSDF function, a simple peak picking algorithm determines the fundamental
frequency. The fundamental frequency represents the first major peak after the first positive going
zero crossing, so the algorithm cycles through the NSDF function (which starts at 1) and looks
for the first negative going zero crossing, then looks for the first positive going zero crossing.
The algorithm then determines the maximum of the function before the next negative going zero
crossing, and the index of the detected peak represents the period of the fundamental frequency
expressed in number of samples.

The tuner records a number of past results to obtain a better average value. The function sorts
the previous values and only looks at values around the median to throw away outlying data, and
then averages those samples to get a more accurate result. The function then calculates the note
on the MIDI scale from the average period using equation 4.3, and the screen displays the note to
the user [6].

note =
log10(fs ∗ 16/(Taverage ∗ fref ))

log10(
12
√

2)
(4.3)

The above equation uses fref to calculate the note, which for most modern music is 440 Hz. The
user can adjust this value if desired by pressing the ‘Up’ and ‘Down’ menu buttons. fs is the
sampling rate of 44.1 kHz.

Looper State

The device reaches the looper state by holding down the ‘Up’ footswitch for over a second. The
looper records the input data stream and saves it in the external flash memory chip. Upon finishing
recording, the pedal retrieves the data and plays it back in a loop. This allows the user to record
several measures of a backing track to later play over. The ‘Effect’ footswitch controls most of the
looper functionality, and pressing it once when the looper is empty starts the recording. Pressing it
again stops the recording and immediately begins playback. Further presses start and stop playback
at will. Holding the ‘Down’ footswitch for over a second erases the current recording, displaying a
message on the screen while the operation executes.

The flash memory chip allows programming in segments of 256 bytes called pages, and must erase
each page before programming can occur. Since each audio sample requires 16 bits, each write
instruction saves the previous 128 samples. Communication with the flash chip occurs over the
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SPI1 bus, at a speed of 20 MHz. The code can read data from the flash chip at any location and
for any length, but for simplicity the firmware reads 128 samples at a time. Before each write and
erase operation, the device must transmit a write enable instruction to the flash chip, and after
the instruction the chip remains in a busy state until the operation completes. After the erase
instruction, the program periodically reads the chip’s status register to determine when the erase
operation completes.

Because each instruction may consist of multiple separate operations, the program implements a
simple first-in first-out (FIFO) buffer to store future instructions until the program becomes ready
to execute them.

Tap Tempo State

Holding down the ‘Effect’ footswitch for over a second places the pedal in tap tempo mode, which
allows the adjustment of a global ‘Tempo’ parameter that some effects can utilize. Some effects
sound best when synchronized to the beat of the music, so the tap tempo function allows the user
to easily set the tempo. The pedal automatically determines the tempo from the rhythmic tapping
of the ‘Effect’ footswitch, saving the user from having to figure out the tempo manually.

This function simply uses a hardware timer to measure the time between button presses. The code
saves the previous five button press intervals and averages them together to find the frequency in
beats per minute (BPM). The code saves this value in a variable accessible by the different effects,
so any effects that use it becomes synchronized automatically.

Audio and Effects

The basic structure of the audio involves a large circular buffer to store past samples for use in
various effects. The circular buffer is a section of memory where the code places samples one after
the other, and wraps around to the beginning of the buffer when the end is reached. The design
sets the circular buffer size to 88.2 kB, enough to store exactly one second of audio data. The
MCU only contains 128 kB of RAM, so the audio buffer fills the majority of the available memory
space. The effects can access any sample within the buffer by subtracting the desired index from
the current index value.

The user can toggle the activation of each available effect from the default and adjust states. The
program sequentially checks each effect and calls the function that executes the effect if activated.
This allows for the activation of multiple effects if desired, though in practice this does not always
work since when added together some effects take too much time to process and fail to complete
before the next audio sample appears. Each effect has its own set of parameters that adjust the
effect operation.

Code listings for each effect appear in appendix F.

Distortion: The distortion effect remains a staple in many rock and metal songs. The pedal
creates the distortion effect digitally by first amplifying the signal and then clipping off the top and
bottom of the waveform. The program uses an exponential function to accomplish this, as seen in
equation 4.4, where G represents the gain applied to the signal x, and sgn(x) represents the sign
(+1 or -1) of the input signal [24].
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yt = sgn(x) ∗ (1− esgn(x)∗G∗x) (4.4)

However, calculating the exponential function using the built in C exp() function requires excessive
computation time, and the processing time exceeds the available time between audio samples. To
overcome this, the design manually implements a Taylor series approximation to ensure that pro-
cessing completes within the allotted time. Equation 4.5 shows the operation which approximates
the exponential function to a good degree.

yt = 1 +
N∑
n=1

(−sgn(x) ∗G ∗ x)n

n!
(4.5)

The function uses N = 20 which provides a good balance of computation speed and accuracy
over the expected input range. The effect has two parameters, gain and boost, which the function
multiplies together to give the gain G. After calculating the output signal from equation 4.5, the
function divides the output value by the boost parameter to reduce the volume of the signal. The
user can play with different combinations of the boost and gain parameters to give different sounds.
At high gain values, the Taylor series approximation breaks down and the audio quality becomes
significantly impaired, so the design sets maximum values of the parameters to provide the largest
range of usable signal.

Delay: The delay effect simply produces a replica of the input signal but delayed in time. The
function accomplishes this using a basic FIR filter structure, described by equation 4.6:

y(n) = x(n) +G ∗ x(n− L) (4.6)

where G represents the relative amplitude of the delay and L represents the delay length. The
effect’s ‘Level’ parameter describes the relative amplitude G, and ranges from 0 - 1. The ‘Tempo’
parameter changes the delay length, translated from its value in BPM to an index to get the correct
audio sample. The function allows the user to change the ‘Tempo’ parameter using the tap tempo
function, allowing the delay duration to match up exactly with the beat of the music.

Echo: The echo effect appears very similar to the delay effect, except that multiple delayed copies
of the input appear in multiples of the delay time. Equation 4.7 below describes the echo:

y(n) = x(n) +G ∗ x(n− L) +
3

4
G ∗ x(n− 2L) +

9

16
G ∗ x(n− 3L) + ... (4.7)

The ‘Delay’ parameter sets the delay time in units of ms. The ‘Level’ parameter changes the initial
echo amplitude G, and subsequent echos decrease in amplitude by subtracting off the previous
sample’s gain value divided by 4.

Vibrato: The vibrato effect describes the slight variation in time of a musical note’s frequency,
normally created on a guitar by gently rocking the fretting hand back and forth. The pedal creates
this effect digitally by using a periodically varying time delay and only listening to the delayed
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signal. This essentially creates a Doppler shift in the signal which varies the signal’s frequency
slightly [24]. Equation 4.8 shows the creation of this effect:

y(n) = x(n−D ∗ (1 + sin(2πft)) (4.8)

D represents the depth of the effect, controlled by the ‘Depth’ parameter, adjustable between 0 ms
and 2 ms. Higher depth values correspond to more frequency deviation and a more pronounced
effect. The ‘Speed’ parameter sets the frequency of the modulation f, adjustable between 1 Hz and
11 Hz.

Flanger: The flanger effect creates a “swooshing” sound in the output. The effect is almost
identical to the vibrato effect except for the addition of the original signal to the delayed signal, as
shown in equation 4.9:

y(n) = x(n) + x(n−D ∗ (1 + sin(2πft)) (4.9)

Chorus: The chorus effect attempts to replicate the sound of multiple musicians playing the same
notes, simulated by creating copies of the input signal that vary slightly in frequency and time. This
effect uses the same principle as the vibrato and flanger effects, with this particular implementation
using five copies of the input signal. Each delayed signal has the same frequency and depth values,
but they differ in phase to ensure each signal is audible at the output. The frequency of oscillation
is also slower than the other effects, adjustable between 1 Hz and 3 Hz.
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Chapter 5: Testing

While developing the firmware, several unexpected minor issues arose. One problem involved the
ADC getting poorer resolution than expected. The original design called for a ferrite bead to
connect the analog and digital ground planes, however testing revealed this adversely affects the
ADC’s ability to obtain a steady voltage reading. This possibly occurs because the ADC draws
current in rapid pulses when performing conversion, which the ferrite bead may interfere with.
Replacing the ferrite with a 0 Ω jumper helped increase the ADC resolution, but did not solve
the entire problem. Originally, the design used the LMC6482 operational amplifier for the active
filters. However, this op-amp has poor performance when driving capacitive loads such as the ADC
input, so oscillations occurred in the active filters, reducing the effective resolution. Changing the
op-amps to the TLV3542 reduced the oscillations since that amplifier easily drives large capacitive
loads and Texas Instruments recommends it for use with ADCs [21].

One oversight in the original design involved using the power switch to disconnect the negative
lead of the power supply from circuit ground to turn the device off. This only works correctly if
no other ground references exist elsewhere in the circuit, and in this circuit the input and output
audio jack sleeves serve as paths to ground, turning on the device even with the power switch off.
The final design fixed this by having the power switch toggle the positive power supply connection
instead of the negative.

Testing of the design involves ensuring that all specifications are met. Table X reviews the stated
specifications and checks if they have been satisfied by the final product.

Table X – Specifications and Test Results

Specification Met? Explanation

Final production cost < $100 Maybe The device is not optimized for mass
production yet, however total BOM
cost remains under $100, so this speci-
fication could be met if assembly costs
remain low.

Tuner reports frequency of a pure sine
wave from 60 Hz-350 Hz within +/- 5
cents

Yes Testing with various sine waves at fre-
quencies within 60 Hz-350 Hz revealed
consistent readings within 5 cents of
the actual frequency.

Looping function can record and play
back over 20 s of sound (at 44.1 kHz
sample rate and 16-bit resolution)

Yes Ensured by design.

Analog-digital and digital-analog con-
version occur with at least 44.1 kHz
sample rate and at least 16-bit resolu-
tion

Yes Ensured by design.

Audio input has > 1 MΩ input
impedance measured from 20 Hz-
20 kHz

Yes Ensured by design, final design should
have 500 kΩ input impedance.
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Audio output has < 100 kΩ out-
put impedance measured from 20 Hz-
20 kHz

Yes Ensured by design.

The total harmonic distortion (THD)
of the output signal from the input sig-
nal with no effects added should be
< 1 % over the audible range (20 Hz-
20 kHz)

Maybe Not specifically tested, however indi-
vidual components in the design sup-
port low distortion and no audible dis-
tortion recognized during testing.

Device dimensions should not exceed
20 cm×20 cm×6 cm

Yes Final design dimensions: 18.8 cm ×
12 cm × 5.5 cm

Device weight should not exceed 1 kg Yes Final design weight: 0.579 kg

Device audio input and output compat-
ible with standard 1/4” audio cables

Yes Ensured by design.

Device powered from external 9 V DC
power supply rated at or under 500 mA

Yes Ensured by design.

Power supply connection compatible
with standard 5.5x2.1mm barrel plug
with center negative polarity

Yes Ensured by design.

The device follows the standards de-
scribed in UL 60065

Yes Product is inherently safe to use.

Figure 15 below shows an oscilloscope capture of the pedal output when provided with a 440 Hz
sine wave at 600 mV peak-to-peak. The top yellow trace shows the input and the bottom green
trace shows the output after passing through the pedal’s audio signal path. The output copies the
input exactly, showing that the pedal manages to convert the signal from analog to digital and
back to analog without any distortion.

Figure 15 – Oscilloscope Capture of Input (Top) and Output (Bottom)

As seen above, significant noise exists at the output, which becomes audible in the output signal.
Figure 16 below shows a zoomed in view of the output noise with the output potentiometer turned
all the way down (output directly connected to ground). This indicates that the noise most likely
arises from noise on the ground planes, possibly caused by the digital circuitry and high speed
communications.
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Figure 16 – Oscilloscope Capture of Output Noise

An oscilloscope capture of the distortion effect appears in figure 17. The input signal (top, yellow)
is a 440 Hz sine wave at 600 mV peak-to-peak, and the output waveform (bottom, green) shows
the distorted output. The output shows the top and bottom of the input signal clipped off, giving
audible distortion, and proving the distortion effect works as intended.

Figure 17 – Distortion Effect Oscilloscope Capture with Input (Top) and Output (Bottom) Traces

Testing the tuner function involves providing the pedal with sine waves of various frequencies and
checking the reported frequency value against the true value. Testing revealed the tuner remains
accurate within 5 cents for input signals ranging from 60 Hz-350 Hz, proving the tuner works as
expected.

Testing of other pedal functions and effects relied mostly on listening to the output to determine
if the audio signal appears as expected. Testing revealed the looper can record and play back
large segments of music smoothly and without audible distortion, and the tap tempo function can
accurately determine the tempo when tapping the ‘Effect’ footswitch. Every effect sounded similar
to the expected output, proving that the pedal satisfies its main purpose of adding digital guitar
effects to the audio signal.
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Chapter 6: Conclusion and Future Work

Overall, this projects ended up being an incredible success. The final product meets the original
specifications and accomplishes everything that was desired of it. The six effects programmed
onto it at the project completion all sound good and their quality approaches the performance of
commercially available guitar pedals. The looper function works perfectly and allows the user to
record a good amount of music and play it back seamlessly. The tuner can accurately report the
musical note played and allows easy tuning of the instrument. The user interface gives the necessary
data to the user and allows clean and straightforward switching between different functions, effects,
and parameters.

Despite the successes of this project, future versions of the pedal could improve on a number of
features. Better layout and more careful arrangement of components could reduce the presence of
excess noise at the output. The external flash memory chip cannot erase and program fast enough
to keep up with the real time audio processing, so future versions could replace the flash memory
chip with faster memory such as SRAM. This would allow the program to locate the audio buffer
in the external memory. Internal storage limitations currently limit the audio buffer size to only
one second, which could be greatly increased with more external RAM.

Replacing the 4x20 character LCD screen with a screen containing individually addressable pixels
would allow the screen to display additional information in an aesthetically pleasing manner. This
would allow custom icons for each effect and function, making the entire pedal appear more pro-
fessional. This project did not explore this option due to the additional complexity of coding the
graphics for the screen, but future versions can take advantage of the additional display freedom
to improve the user interface.

In conclusion, the Digital Guitar Effects Pedal is a very fun device to play with, and can serve a
useful purpose to guitarists everywhere. Future versions can improve the product even further, and
eventually this device may even become commercially available.
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Appendix A: Senior Project Analysis

1. Summary of Functional Requirements

The Digital Guitar Effects Pedal takes an analog input audio signal from an electric guitar,
performs digital operations on it, and outputs a modified analog audio signal to an external
guitar amplifier. The digital operations performed by the pedal include standard guitar ef-
fects such as distortion, delay, and vibrato. The pedal can also record and play back segments
of music continuously, as well as tune the attached instrument. Users select the desired pedal
function from a simple user interface on the device. Further discussion of functional require-
ments appears in chapter 3.

2. Primary Constraints

The pedal’s processor speed represents the primary system constraint. The pedal must op-
erate fast enough to sample the input audio stream, process and modify it, and output the
modified audio stream. To maintain audio quality, the sample rate should exceed 44.1 kHz,
so processor speed must greatly exceed this to allow time for data transfer and processing.
Audio quality represents another important constraint; the input analog-digital converter and
output digital-analog converter must have 16-bits of resolution, and converter data transfer
speeds must allow for fast communication with the main processor. Maintaining audio quality
also requires careful use of filtering and noise reduction techniques. A summary of the system
constraints and specifications appears in chapter 2.

3. Economic

Manufacturing this product requires the use of fabrication and assembly facilities, which op-
erate using human capital. Assembling and testing this product utilizes human capital by
creating jobs for workers. Development time represents another source of human capital,
as people need to design and program the product. Funding the project consumes financial
capital, as described in the paragraph below. The product’s constituent parts represent man-
ufactured capital, and companies such as ST Microelectronics and Texas Instruments create
the parts used in the design. Creating these parts also consumes natural capital, as IC fab-
rication requires the use of silicon and other natural materials.

Project costs mostly accrue during initial development; however, development can continue
indefinitely to improve existing effects and add new features. Project benefits begin to accrue
once initial development completes and customers can purchase the product. The project is
self-funded, with reimbursement for parts up to $200 available from Cal Poly’s EE depart-
ment. The EE department also provides the test equipment needed to verify proper pedal
operation. The development period should last until June of 2018, when a final product
should become available. Once the project completes, customers may begin purchasing the
product, but product development and support can continue for the product’s lifetime. The
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product’s manufacturing lifetime could last for several years, at which point development may
begin on an updated product. The individual products should have lifetimes over 10 years,
allowing users to continue using it for a long time.

4. If manufactured on a commercial basis:

The pedal could have sales around 10,000 units per year. The pedal manufacturing cost
should remain below $100, as stated in the specifications in table I. A final purchase price
of $200 is competitive with other commercial pedals. This gives an estimated profit of $1M
per year. Assuming the national average electricity cost of 12 cents per kilowatt-hour, and
assuming 2 hours of daily device use, the pedal costs 40 cents per year to operate at maximum
power consumption. This figure should decrease since the pedal’s normal operating power
consumption represents a small fraction of the maximum power.

5. Environmental

Manufacturing this product requires the use of various integrated circuits, whose fabrication
has substantial environmental impacts. The IC fabrication process consumes vast amount
of chemicals and uses substantial electric power, which deplete the earth’s natural resources.
The integrated circuits chosen for this project should originate from companies that strive
to lessen their environmental impact on the world. The finished product does not require
many natural resources to operate; from section 4 above, the product should consume less
than 3 kilowatt-hours per year at maximum power, equivalent to running a typical desktop
computer for 15 hours.

The project directly impacts the environment in the use of electricity to design and test the
product. Shipping required parts also impacts the environment through transportation fuel
requirements. Improper disposal of this product by users could also constitute an environ-
mental concern, and the design should consider the environmental impacts of disposal when
selecting parts. This project should not directly impact other species, but waste from product
fabrication may adversely affect the local ecosystem and therefore other species.

6. Manufacturability

The pedal requires fabrication of a PCB to support the pedal electronics. PCB fabrication
should not present any major difficulties for modern manufacturing facilities. The pedal
enclosure contains the PCB, input and output jacks, power input, and the user interface.
Manufacturing of the enclosure requires hand soldering and wiring, so the design should con-
sider ease of installation when planning product layout. Possible issues in assembly arise from
connecting different wires to the main PCB in the wrong location. The design should ensure
that the wire connection locations are clearly marked and the design should utilize multiply
different connectors to reduce the risk of incorrect installation. The device’s small size should
allow for easy packaging and shipping.
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7. Sustainability

Maintaining the completed system only requires electricity, as users should not need to interact
with the internal electronics. Wear from normal use may inhibit proper device functionality,
however the device design should prevent mechanical failures for a normal device lifetime.
Device manufacturing consumes natural resources which do not return when the product is
disposed, but the design should consider this and attempt to limit the environmental impact.
Future designs may improve the device by making it easier and more sustainable to manu-
facture. Upgrading the design poses problems in development because of firmware rewriting,
but the upgraded version may still copy many aspects of the original design.

8. Ethical

This project follows the doctrine of Ethical Principlism as closely as possible [25]. The main
stakeholders in the project include: the project creators, the end users, manufacturers, Cal
Poly, other effects pedal makers, and the guitarist community. Creating this effects pedal gives
more autonomy to most stakeholders, except for other effects pedal makers, since it may force
them to create new products to compete. End users gain autonomy by having more options to
choose from when purchasing, manufacturers have more autonomy since they now have more
financial capital to expand their business, and Cal Poly has more autonomy since they can
show this project as evidence that they create good engineers. The project strives towards
non-maleficence for the reasons stated in section 9 below, by protecting the health and safety
of its users. The project attempts to not harm its stakeholders in any way. The project strives
toward beneficence by providing a useful product for the guitarist community and end users.
The project follows an idea of justice and treating all stakeholders equally, further discussion
of which follows in section 10.

This project adheres to the IEEE code of ethics wherever possible [26]. The project follows
aspect 1, making decisions consistent with the health, safety, and welfare of the public, by
ensuring that all proper safety measures are taken to protect the users. Further discussion of
this appears in section 9 below. The project follows aspect 2, avoiding conflicts of interest,
by remaining open and transparent about device limitations to prevent false advertising. The
design follows aspect 3, honesty in stating claims or estimates, by undergoing many exper-
iments and reporting the results fairly. The project strives to follow aspect 4 by rejecting
all forms of bribery. The project report satisfies aspect 5, improving the comprehension of
technology, by documenting the entire design process so future students can learn from this
project. The project satisfies aspect 6, improving technical competence, by experimenting and
attempting new ideas. The project undergoes multiple design reviews and receives feedback
from colleagues, which follows aspect 7, accepting honest criticism of technical work. The
project attempts to treat all persons fairly (aspect 8) for the reasons described in section 10
below, however the nature of the product prevents some customers from benefitting as much
as others. The project avoids injuring others (aspect 9) for the reasons stated in section 9
below. The project follows aspect 10, assisting colleagues in their professional development
and adhering to the code of ethics, since other project team can assist in design reviews, and
this project hopefully can help other teams fulfil their goals.
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9. Health and Safety

This product presents a minimal health and safety risk to users, as the product operates from
a low voltage power supply (9 VDC) and users should not have to interact with the internal
electronics. The product design should consider various fault protection strategies such as
internal temperature sensing and fuses to prevent internal shorts and dangerous operating
conditions. All inputs and outputs should have electro-static discharge (ESD) protection to
prevent unintentional damage to the product. The product should consider electromagnetic
interference (EMI) issues, and contain proper filtering and shielding to prevent unwanted
emissions. The device should follow UL 60065: Standard for Audio, Video and Similar Elec-
tronic Apparatus to ensure user safety [9].

10. Social and Political

The direct stakeholders of this project include: the project creators, the end users, various
manufacturers, and Cal Poly. The project creators benefit since they learn valuable skills
by developing the different project aspects. The end users benefit since they can use the
product to improve their guitar playing, and maybe become professional musicians. The
harm to end users comes from the cost of the product, which they must pay before they can
see any benefits. The various manufacturers benefit since the product requires the use of
different components purchased from them, which increases their profits. Cal Poly benefits
from this project since having successful senior projects reflects well on the entire school, and
shows they create good engineers. The indirect project stakeholders may include: friends
and neighbors of customers, manufacturers of other guitar pedals, and the general guitarist
community. Since the product generates an audio output, neighbors of end users may become
annoyed at excessive audio noise levels. The responsibility to use the product in a courteous
manner rests mainly in the hands of the users, since they can adjust the volume to prevent
neighbors becoming annoyed. The manufacturers of other guitar pedals become affected by
this product since it introduces competition to the market, which might force them to adapt
and create new products. The guitarist community benefits from more guitar pedals on the
market, since it gives them more choices when choosing one for their needs.

Most end users benefit equally from the product, if they already own a guitar and amplifier.
Users with higher quality guitars may have a different experience with this product than users
with lower quality guitars, however all users may access all product features regardless of gear
quality. Users who do not own guitars and amplifiers cannot fully utilize this product, how-
ever this product’s marketing should clarify the need for the guitar and amplifier, hopefully
preventing this source of inequality. The product should work for users all over the world,
though the product interface focuses on the English-speaking community. A future product
upgrade may add multiple languages to the interface to allow for a more worldwide market.

11. Development
Developing the pedal requires a knowledge of PCB design software and a knowledge of digital
signal processing. Schematic capture and board layout can be accomplished using KiCAD, an
open source schematic editor. Firmware creation is accomplished using System Workbench
for STM32, a free integrated development environment which allows easy programming of the
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microcontroller chosen. Implementation of the digital effects requires research and testing to
ensure proper and efficient operation. The digital effect algorithms originate from various
papers and books on the topic of audio effects [4][24][27]. Implementation of the tuner also
requires extensive research [6]. Interfacing with flash memory constitutes another design chal-
lenge [18].
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Appendix B: Project Planning

This appendix displays the original project plan as it appeared in the final report for EE 460: Senior
Project Preparation, delivered on November 17th, 2017. A discussion follows which analyzes to
what degree this project plan matched the actual development process.

Gantt Chart

Figure 18 shows the project development schedule in Gantt chart format. The chart contains 3
sections, one for each senior project class: EE460, EE461, and EE462. The EE460 section contains
the overall project planning stage, with a final project planning report due at the end of the quarter.
Hardware design should occur during EE461, with time allotted for two hardware design-build-test
iterations. An intermediate status presentation occurs near the middle of the quarter, and a status
report and demonstration occur near the quarter’s end. The bulk of firmware design should occur
during EE462, with time allotted to write a senior project report draft near the middle of the
quarter. Firmware design should complete by the time of the Senior Project Expo, and the final
senior project report completes soon after.

Figure 18 – Original Project Plan Gantt Chart

Cost Estimates

Labor and materials contribute most to overall project cost. Estimated materials costs derive from
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current best estimates of required parts and number of board revisions. The labor costs derive from
estimates of required hours spend, calculated using a weighted average of a realistic (tr), optimistic
(to), and pessimistic (tp) estimates, according to the PERT formula provided in [28].

te =
4 ∗ tr + tp + to

6
(B.1)

Labor cost equates to project time at $50 an hour, which considers an hourly rate and a small
amount of overhead since the school provides most required test equipment.

The planning stage, which comprises most of EE460, should take 42 hours (40 hours realistic, 30
hours, optimistic, 60 hours pessimistic), which at the stated hourly rate should cost $2100.

The hardware design stage, which occurs mainly during EE461, should take 67 hours (60 hours
realistic, 40 hours optimistic, 120 hours pessimistic). This gives a cost of $3300. The hardware
design stage consists of schematic design, board layout, and mechanical design. Costs may increase
if the design requires more revisions.

The firmware design stage, which occurs mainly during EE462, should take 90 hours (80 hours
realistic, 60 hours optimistic, 160 hours pessimistic), giving a cost of $4500. Firmware design
duration depends on difficulties encountered during development, as well as the number of desired
additional features.

Board fabrication costs and part costs comprise the total project materials cost. Assuming two
board revisions gives an estimated board fabrication cost of $80. Total parts cost includes all neces-
sary integrated circuits, such as the microcontroller, DAC, ADC, and memory IC. The STM32F777
microcontroller costs around $10, the LTC1864 ADC costs $13 per chip, the DAC8551 DAC costs
$7 per chip, and the W25Q128JV-DTR flash memory IC costs $3 per chip. A suitable LCD display
for the user interface could cost $30 for a single prototype unit. Assuming the purchase of two of
each chip, and adding on miscellaneous parts required such as resistors and capacitors, the parts
cost becomes around $160.

Table XI below summarizes the project cost estimates.

Table XI – Project Plan Cost Estimates

Item Expected Cost

Labor

Planning $2100
Hardware Design $3300
Firmware Design $4500
Manufacturing/Testing $1100

Materials
Board Fabrication $80
Parts $160

Total: $11,300

Comparison to Actual Development Process The overall project plan remained on track
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over the project duration, and the project completed before the final deadline. The hardware
development only required a single design-build-test cycle as the majority of the hardware worked
the first time. The hardware development did continue partway into EE462 when it should have
completed at the end of EE461, however this did not hinder firmware development as work could
continue simultaneously. The estimate of development time turned out to be optimistic, with actual
development time taking around 250 hours throughout the entire project. Project material costs
remained lower than expected, due to only needing to fabricate a single PCB and getting several
free samples of components.
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Appendix C: Schematic

Figure 19 – Complete Schematic
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Appendix D: PCB Layout

Figure 20 – PCB Layout (Layers From Top: Front, Back, Ground, Power)
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Appendix E: Parts List and BOM

# Part Name Manufacturer MFR Part Number Quantity Unit Price Price Purchase Place
1 STM32F446RC Microcontroller ST Microelectronics STM32F446RCT6 1 7.15 7.15 Digikey
2 ADS8319 16-bit ADC Texas Instruments ADS8319IDGST 1 10.84 10.84 TI.com
3 DAC8551 16-bit DAC Texas Instruments DAC8551IDGKR 1 6.27 6.27 TI.com
4 128 Mbit Flash Memory Winbond W25Q128JVSIM TR 1 2.46 2.46 Digikey
5 TPS560200 Buck Converter Texas Instruments TPS560200DBVR 1 0.96 0.96 TI.com
6 LP2951 5V Reg Analog Devices LP2951DR 1 0.6 0.6 Digikey
7 4x20 Character LCD Newhaven Display NHD-0420H1Z-FSW-GBW-33V3 1 19.1 19.1 Digikey
8 TLV3542 Op amp Texas Instruments TLV3542IDR 2 2.06 4.12 TI.com
9 0805 Resistors Various Various 50 0.01 0.5 Digikey
10 0805 Capacitors Various Various 40 0.1 4 Digikey
11 5mm LEDs (Blue and Red) Various Various 2 0.05 0.1 Tayda Electronics
12 25MHz Crystal Abracon ABM3-25.000MHZ-D2Y-T 1 0.69 0.69 Digikey
13 Rotary Encoder TT Electronics EN16-H20AF15 1 1.22 1.22 Digikey
14 SPST Stomp Switch PIC PBS-24B-4 3 1.97 5.91 Tayda Electronics
15 SPST Pushbutton Switch PIC PBS-105 3 0.25 0.75 Tayda Electronics
16 100k Potentiometer ALPHA A100K 17mm 1 0.5 0.5 Tayda Electronics
17 Knobs Tayda Electronics TYMF-B00 2 0.5 1 Tayda Electronics
18 2x40 0.1” Header GTK 2x40 Pin Header Strip 1 0.21 0.21 Tayda Electronics
19 1/4” Jacks Tayda Electronics PJ699 2 0.87 1.74 Tayda Electronics
20 DC Power Jack Tayda Electronics DC Power Jack 2.1mm 1 0.16 0.16 Tayda Electronics
21 Power Switch Tayda Electronics Mini Toggle Switch 3PDT On-On 1 0.72 0.72 Tayda Electronics
22 Aluminum Enclosure Mammoth Electronics 4S1590DD 1 8.6 8.6 Mammoth Electronics

Total 77.6
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Appendix F: Selected Firmware Code

1 #inc lude ”main . h”
2
3 in t main ( void )
4 {
5 I n i t i a l i z e P e r i p h e r a l s ( ) ; // Cal l i n i t i a l i z a t i o n func t i on s f o r each pe r i ph e r a l
6 // Erase Flash memory
7 FLASH Erase Blocks IT (LOOPER STARTING FLASH ADDRESS, LOOPER MAX FLASH ADDRESS) ;
8 LED Blink Heartbeat (HEARTBEAT LED PERIOD MS) ; // Set up heartbeat LED
9 Audio Enable ( ) ;

10
11 u i n t 8 t systemState = SYSTEM STATE DEFAULT; // I n i t i a l i z e the s t a t e machine
12
13 //Main program loop , c a l l s s p e c i f i c f unc t i on s f o r d i f f e r e n t system s t a t e s
14 whi le (1 )
15 {
16 switch ( systemState )
17 {
18 case SYSTEM STATE DEFAULT:
19 systemState = Run State Default ( ) ;
20 break ;
21 case SYSTEM STATE ADJUST:
22 systemState = Run State Adjust ( ) ;
23 break ;
24 case SYSTEM STATE TUNER:
25 systemState = Run State Tuner ( ) ;
26 break ;
27 case SYSTEM STATE LOOPER:
28 systemState = Run State Looper ( ) ;
29 break ;
30 case SYSTEM STATE TEMPO:
31 systemState = Run State Tempo ( ) ;
32 break ;
33 }
34 }
35 }
36
37 /∗
38 ∗ I n i t i a l i z e s a l l p e r i ph e r a l s r equ i r ed by the D i g i t a l Guitar E f f e c t s Pedal
39 ∗/
40 void I n i t i a l i z e P e r i p h e r a l s ( void )
41 {
42 HAL Init ( ) ; // Reset o f a l l p e r i ph e r a l s
43 SystemClock Config ( ) ; // Conf igure the system c lock
44 Audio In i t (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e audio p roc e s s i ng func t i on s
45 De l ay In i t (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e i n t e r n a l de lay func t i on s
46 SPI1 In i t ( ) ; // I n i t i a l i z e SPI1 f o r ex t e rna l f l a s h memory
47 SPI2 In i t ( ) ; // I n i t i a l i z e SPI2 f o r ADC and DAC communication
48 ADC Init (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e the ADC
49 DAC Init ( ) ; // I n i t i a l i z e the DAC
50 FLASH Init (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e the ex t e rna l f l a s h memory
51 LEDS Init (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e i nd i c a t i o n LEDs
52 Encoder In i t (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e encoder
53 But tons In i t (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e buttons
54 D i s p l a y I n i t (TIMER CLK FREQ MHZ) ; // I n i t i a l i z e d i sp l ay
55 }
56
57 u i n t 8 t Run State Default ( void )
58 {
59 s t a t i c u i n t 8 t i n i t i a l i z e d = 0 ; // Store i f s t a t e has been i n i t i a l i z e d
60 u i n t 8 t nextSystemState = SYSTEM STATE DEFAULT;
61
62 // I n i t i a l i z e the d i sp l ay i f s t a t e has not been pr ev i ou s l y i n i t i a l i z e d
63 i f ( i n i t i a l i z e d == 0)
64 {
65 Di sp lay Clear ( ) ; // Clear the e n t i r e d i sp l ay
66
67 // Line 1
68 Display Write Number ( Effect Get Current Number ( ) , 2 , 0x01 ,
69 DISPLAY ALIGN RIGHT) ;
70 Display Write Char ( ’ . ’ , 0x02 ) ;
71 Di sp lay Wr i t e St r ing ( Effect Get Current Name ( ) , 0x04 ) ;
72
73 // Line 2
74 Di sp lay Wr i t e St r ing ( Effect Param Get Previous Name ( ) , 0x41 ) ;
75 // Only draw up arrow i f prev ious parameter e x i s t s
76 i f ( s t r l e n ( Effect Param Get Previous Name ( ) ) > 0)
77 Display Write Char (0 x01 , 0x53 ) ;
78
79 // Line 3
80 Display Write Char (0x7E , 0x14 ) ; // Draw r i gh t po in t ing arrow
81 Di sp lay Wr i t e St r ing ( Effect Param Get Current Name ( ) , 0x15 ) ;
82 Display Write Number ( Ef fect Param Get Current Value ( ) , 3 , 0x27 ,
83 DISPLAY ALIGN RIGHT) ;
84
85 // Line 4
86 Di sp lay Wr i t e St r ing ( Effect Param Get Next Name ( ) , 0x55 ) ;
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87 // Only draw arrow i f next parameter e x i s t s
88 i f ( s t r l e n ( Effect Param Get Next Name ( ) ) > 0)
89 Display Write (0 x00 , 1 , 0x67 ) ;
90
91 // Turn on the s ta tu s LED i f the cur rent e f f e c t i s a c t i v e
92 i f ( E f f e c t Get Cur r en t Act iva t ed Sta tu s ( ) )
93 LED Status (1) ;
94 e l s e
95 LED Status (0) ;
96
97 i n i t i a l i z e d = 1 ; // S i gn i f y that s t a t e has been i n i t i a l i z e d
98 }
99 // Check i f user has i n t e r a c t ed with f r on t panel , and proce s s the button pre s s

100 // or encoder r o t a t i on
101 i f ( Front Panel Event ( ) )
102 {
103 u in t16 t buttonStatus = Front Pane l Button Status ( ) ; // Get s t a tu s o f buttons
104 switch ( buttonStatus )
105 {
106 case BUTTON STATUS MENU UP PRESS:
107 Ef fect Param Prev ious ( ) ; // Go to prev ious parameter
108 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
109 break ;
110 case BUTTON STATUS MENU OK PRESS:
111 nextSystemState = SYSTEM STATE ADJUST; // Change to ad jus t s t a t e
112 break ;
113 case BUTTON STATUS MENU DOWN PRESS:
114 Effect Param Next ( ) ; // Go to next parameter
115 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
116 break ;
117 case BUTTON STATUS STOMP DOWN PRESS:
118 Ef f e c t Next ( ) ; // Change to next e f f e c t
119 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
120 break ;
121 case BUTTON STATUS STOMP DOWN HOLD:
122 nextSystemState = SYSTEM STATE TUNER; // Change to tuner s t a t e
123 break ;
124 case BUTTON STATUS STOMP UP PRESS:
125 E f f e c t P r ev i ou s ( ) ;
126 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
127 break ;
128 case BUTTON STATUS STOMP UP HOLD:
129 nextSystemState = SYSTEM STATE LOOPER; // Change to looper s t a t e
130 break ;
131 case BUTTON STATUS STOMP EFFECT PRESS:
132 i f ( E f f e c t Get Cur r en t Act iva t ed Sta tu s ( ) ) // Toggle e f f e c t a c t i v a t i on
133 {
134 E f f e c t Deac t i va t e Cur r en t ( ) ;
135 LED Status (0) ; // Turn o f f LED i f e f f e c t o f f
136 }
137 e l s e
138 {
139 E f f e c t Ac t i va t e Cur r en t ( ) ;
140 LED Status (1) ; // Turn on LED i f e f f e c t on
141 }
142 break ;
143 case BUTTON STATUS STOMP EFFECT HOLD:
144 nextSystemState = SYSTEM STATE TEMPO; // Switch to tempo s t a t e
145 break ;
146 de f au l t :
147 // Change e f f e c t depending on d i r e c t i o n o f encoder r o t a t i on
148 i f ( Front Panel Encoder Rotat ion ( ) == ENCODERCOUNTERCLOCKWISE)
149 {
150 E f f e c t P r ev i ou s ( ) ;
151 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
152 }
153 e l s e i f ( Front Panel Encoder Rotat ion ( ) == ENCODER CLOCKWISE)
154 {
155 Ef f e c t Next ( ) ;
156 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
157 }
158 Front Pane l Reset Encoder Rotat ion ( ) ;
159 break ;
160 }
161 Clear Front Pane l Event ( ) ; // S i gn i f y button pre s s r e g i s t e r e d
162 Reset Front Pane l Button Status ( ) ; // Reset button s ta tu s
163 }
164 i f ( nextSystemState != SYSTEM STATE DEFAULT) // Detect s t a t e t r a n s i t i o n s
165 {
166 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e next time s t a t e i s entered
167 }
168 return nextSystemState ;
169 }
170
171 u i n t 8 t Run State Adjust ( void )
172 {
173 s t a t i c u i n t 8 t i n i t i a l i z e d = 0 ; // Store i f s t a t e has been i n i t i a l i z e d
174 u i n t 8 t nextSystemState = SYSTEM STATE ADJUST;
175
176 // I n i t i a l i z e the d i sp l ay i f s t a t e has not been pr ev i ou s l y i n i t i a l i z e d
177 i f ( i n i t i a l i z e d == 0)
178 {
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179 Di sp lay Clear ( ) ; // Clear the e n t i r e d i sp l ay
180
181 // Line 1
182 Display Write Number ( Effect Get Current Number ( ) , 2 , 0x01 , DISPLAY ALIGN RIGHT) ;
183 Display Write Char ( ’ . ’ , 0x02 ) ;
184 Di sp lay Wr i t e St r ing ( Effect Get Current Name ( ) , 0x04 ) ;
185
186 // Line 2
187 Display Write Char (0x7E , 0x40 ) ; // Draw r i gh t arrow
188 char∗ paramName = Effect Param Get Current Name ( ) ;
189 // Place name at cente r o f s c r een
190 Di sp lay Wr i t e St r ing (paramName , 0x49 − s t r l e n (paramName) /2) ;
191
192 // Line 3
193 Display Write Number ( Ef fect Param Get Current Value ( ) , 4 , 0x1C ,
194 DISPLAY ALIGN LEFT) ;
195 Display Write Number ( Effect Param Get Current Min Value ( ) , 2 , 0x14 ,
196 DISPLAY ALIGN LEFT) ;
197 Display Write Number ( Effect Param Get Current Max Value ( ) , 4 , 0x27 ,
198 DISPLAY ALIGN RIGHT) ;
199
200 // Line 4
201 // Draw bar graph o f parameter value
202 Display Write Bar Graph (0 x54 , 20 , Ef fect Param Get Current Value ( ) ,
203 Effect Param Get Current Min Value ( ) ,
204 Effect Param Get Current Max Value ( ) ) ;
205
206 // Set s t a tu s LED i f cur rent e f f e c t i s a c t i va t ed
207 i f ( E f f e c t Get Cur r en t Act iva t ed Sta tu s ( ) )
208 LED Status (1) ;
209 e l s e
210 LED Status (0) ;
211
212 i n i t i a l i z e d = 1 ; // S i gn i f y that s t a t e has been i n i t i a l i z e d
213 }
214 // Check i f user has i n t e r a c t ed with f r on t panel , and proce s s the c o r r e c t button pre s s
215 // or encoder r o t a t i on
216 i f ( Front Panel Event ( ) )
217 {
218 u in t16 t buttonStatus = Front Pane l Button Status ( ) ;
219 switch ( buttonStatus )
220 {
221 case BUTTON STATUS MENU UP PRESS:
222 Ef fect Param Prev ious ( ) ; // Go to prev ious parameter
223 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
224 break ;
225 case BUTTON STATUS MENU OK PRESS:
226 nextSystemState = SYSTEM STATE DEFAULT; // Return to de f au l t s t a t e
227 break ;
228 case BUTTON STATUS MENU DOWN PRESS:
229 Effect Param Next ( ) ; // Go to next parameter
230 i n i t i a l i z e d = 0 ; // Redraw sc reen
231 break ;
232 case BUTTON STATUS STOMP DOWN PRESS:
233 nextSystemState = SYSTEM STATE DEFAULT; // Return to de f au l t s t a t e
234 break ;
235 case BUTTON STATUS STOMP DOWN HOLD:
236 nextSystemState = SYSTEM STATE TUNER; // Change to tuner s t a t e
237 break ;
238 case BUTTON STATUS STOMP UP PRESS:
239 nextSystemState = SYSTEM STATE DEFAULT; // Return to de f au l t s t a t e
240 break ;
241 case BUTTON STATUS STOMP UP HOLD:
242 nextSystemState = SYSTEM STATE LOOPER; // Change to looper s t a t e
243 break ;
244 case BUTTON STATUS STOMP EFFECT PRESS:
245 i f ( E f f e c t Get Cur r en t Act iva t ed Sta tu s ( ) ) // Toggle e f f e c t a c t i v a t i on
246 {
247 E f f e c t Deac t i va t e Cur r en t ( ) ;
248 LED Status (0) ; // Turn o f f LED i f e f f e c t o f f
249 }
250 e l s e
251 {
252 E f f e c t Ac t i va t e Cur r en t ( ) ;
253 LED Status (1) ; // Turn on LED i f e f f e c t on
254 }
255 break ;
256 case BUTTON STATUS STOMP EFFECT HOLD:
257 nextSystemState = SYSTEM STATE TEMPO; // Change to tempo s t a t e
258 break ;
259 de f au l t :
260 // Change parameter value depending on ro t a t i on o f encoder
261 i f ( Front Panel Encoder Rotat ion ( ) == ENCODERCOUNTERCLOCKWISE)
262 Ef fect Param Decrease Current Value ( ) ;
263 e l s e i f ( Front Panel Encoder Rotat ion ( ) == ENCODER CLOCKWISE)
264 Ef f ec t Param Increase Current Va lue ( ) ;
265 Front Pane l Reset Encoder Rotat ion ( ) ;
266 // Only update the cur rent value to avoid having to redraw the e n t i r e s c r een
267 Disp lay Erase Area (0x1C , 4 ) ;
268 Display Write Number ( Ef fect Param Get Current Value ( ) , 4 , 0x1C ,
269 DISPLAY ALIGN LEFT) ;
270 // Update bar graph
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271 Display Write Bar Graph (0 x54 , 20 , Ef fect Param Get Current Value ( ) ,
272 Effect Param Get Current Min Value ( ) ,
273 Effect Param Get Current Max Value ( ) ) ;
274 break ;
275 }
276 Clear Front Pane l Event ( ) ;
277 Reset Front Pane l Button Status ( ) ;
278 }
279 i f ( nextSystemState != SYSTEM STATE ADJUST) // Detect t r a n s i t i o n s out o f s t a t e
280 {
281 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e next time s t a t e i s entered
282 }
283 return nextSystemState ;
284 }
285
286 u i n t 8 t Run State Tuner ( void )
287 {
288 s t a t i c u i n t 8 t i n i t i a l i z e d = 0 ; // Store i f s t a t e has been i n i t i a l i z e d
289 u i n t 8 t nextSystemState = SYSTEM STATE TUNER;
290
291 // I n i t i a l i z e the d i sp l ay i f s t a t e has not been pr ev i ou s l y i n i t i a l i z e d
292 i f ( i n i t i a l i z e d == 0)
293 {
294 Audio Tuner Activate ( ) ; // Changes the audio p ro c e s s i ng to the tuner s t a t e
295 // Turn on s ta tu s LED depending on whether output has been turned on
296 i f ( Audio Tuner Get Output Status ( ) )
297 LED Status (1) ;
298 e l s e
299 LED Status (0) ;
300 Di sp lay Clear ( ) ; // Clear the e n t i r e d i sp l ay
301
302 // Line 1
303 Di sp lay Wr i t e St r ing ( ”Tuner” , 0) ;
304 Di sp lay Wr i t e St r ing ( ”Ref = ” , 0x09 ) ;
305 Display Write Number ( Audio Tuner Get Reference Freq ( ) , 3 , 0x0F ,
306 DISPLAY ALIGN LEFT) ;
307 Di sp lay Wr i t e St r ing ( ”Hz” , 0x12 ) ;
308
309 // Line 2
310
311 // Line 3
312 Display Write (0 x00 , 1 , 0x1D) ; // Down arrow
313
314 // Line 4
315 // I n i t i a l i z e bar graph to ha l f l ength
316 Display Write Bar Graph (0 x54 , 20 , 50 , 0 , 100) ;
317
318 i n i t i a l i z e d = 1 ; // S i gn i f y that s t a t e has been i n i t i a l i z e d
319
320
321 }
322 // When audio bu f f e r i s f u l l , s t a r t the tuner to c a l c u l a t e the c o r r e c t note
323 i f ( Audio Tuner Get Ready Flag ( ) )
324 {
325 Audio Tuner ( ) ; // Run the tuner func t i on
326 u i n t 8 t note ; // Var iab le to s t o r e detected note
327 i n t 8 t cent s ; // Var iab le to s t o r e number o f cent s
328 char∗ noteName = Audio Tuner Get Note(&note , &cents ) ; // Get the tuner r e s u l t
329
330 // Write the note name to the sc r een
331 Disp lay Erase Area (0 x49 , 2 ) ;
332 Di sp lay Wr i t e St r ing (noteName ,0 x49 ) ;
333
334 // Update the bar graph depending on the cents va r i ab l e
335 Display Write Bar Graph (0 x54 , 20 , ( u i n t 16 t ) ( cents + 50) , 0 , 100) ;
336
337 // Write the number o f cent s to the sc r een
338 Disp lay Erase Area (0 x21 , 3 ) ;
339 // Draw negat ive s i gn i f cent s < 0
340 i f ( cents < 0)
341 {
342 Display Write Char ( ’− ’ , 0x21 ) ;
343 cents = −1 ∗ cents ;
344 }
345 Display Write Number ( ( u in t 16 t ) cents , 2 , 0x22 , DISPLAY ALIGN LEFT) ;
346 Audio Tuner Reset Ready Flag ( ) ;
347 }
348 // Check i f user has i n t e r a c t ed with f r on t panel , and proce s s the c o r r e c t button
349 // pre s s or encoder r o t a t i on
350 i f ( Front Panel Event ( ) )
351 {
352 u in t16 t buttonStatus = Front Pane l Button Status ( ) ;
353 switch ( buttonStatus )
354 {
355 case BUTTON STATUS MENU UP PRESS:
356 Audio Tuner Increase Re fe rence Freq ( ) ;
357 Disp lay Erase Area (0x4F , 3 ) ;
358 Display Write Number ( Audio Tuner Get Reference Freq ( ) , 3 , 0x0F ,
359 DISPLAY ALIGN LEFT) ;
360 break ;
361 case BUTTON STATUS MENU DOWN PRESS:
362 Audio Tuner Decrease Reference Freq ( ) ;
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363 Disp lay Erase Area (0x4F , 3 ) ;
364 Display Write Number ( Audio Tuner Get Reference Freq ( ) , 3 , 0x0F ,
365 DISPLAY ALIGN LEFT) ;
366 break ;
367 case BUTTON STATUS STOMP DOWN HOLD:
368 nextSystemState = SYSTEM STATE DEFAULT; // Return to de f au l t s t a t e
369 break ;
370 case BUTTON STATUS STOMP EFFECT PRESS:
371 // Turn audio output on and o f f , and update s t a tu s LED
372 i f ( Audio Tuner Get Output Status ( ) )
373 {
374 Audio Tuner Disable Output ( ) ;
375 LED Status (0) ;
376 }
377 e l s e
378 {
379 Audio Tuner Enable Output ( ) ;
380 LED Status (1) ;
381 }
382 break ;
383 de f au l t :
384 break ;
385 }
386 Clear Front Pane l Event ( ) ;
387 Reset Front Pane l Button Status ( ) ;
388 }
389 i f ( nextSystemState != SYSTEM STATE TUNER) // Detect t r a n s i t i o n s out o f s t a t e
390 {
391 Audio Tuner Deact ivate ( ) ;
392 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e next time s t a t e i s entered
393 }
394 return nextSystemState ;
395 }
396
397 u i n t 8 t Run State Looper ( void )
398 {
399 s t a t i c u i n t 8 t i n i t i a l i z e d = 0 ; // Store i f s t a t e has been i n i t i a l i z e d
400 s t a t i c u i n t 8 t e ra s e InProg r e s s = 0 ; // Store i f an e ra s e operat ion i s ongoing
401 u i n t 8 t nextSystemState = SYSTEM STATE LOOPER;
402
403 // I n i t i a l i z e the d i sp l ay i f s t a t e has not been pr ev i ou s l y i n i t i a l i z e d
404 i f ( i n i t i a l i z e d == 0)
405 {
406 // I f an e ra s e operat ion i s in progress ,
407 // i nd i c a t e that on the sc r een and cont inue to check
408 i f ( FLASH Get Busy Flag ( ) )
409 {
410 // Only update the sc r een on the f i r s t check
411 i f ( e r a s e InProg r e s s == 0)
412 {
413 Di sp lay Clear ( ) ; // Clear the e n t i r e d i sp l ay
414 Di sp lay Wr i t e St r ing ( ”Looper” , 0) ;
415 Di sp lay Wr i t e St r ing ( ”Erase in prog r e s s . . . ” , 0x14 ) ;
416 e ra s e InProg r e s s = 1 ;
417 }
418 }
419 e l s e
420 {
421 Di sp lay Clear ( ) ; // Clear the e n t i r e d i sp l ay
422 Di sp lay Wr i t e St r ing ( ”Looper” , 0) ;
423 i f ( Audio Looper Get Flash Status ( ) == 0)
424 Di sp lay Wr i t e St r ing ( ”Ready to record ” , 0x14 ) ;
425 e l s e
426 {
427 Di sp lay Wr i t e St r ing ( ”Hold ” , 0x14 ) ;
428 Display Write Char (0 x00 , 0x19 ) ;
429 Di sp lay Wr i t e St r ing ( ”To Erase ” , 0x1B) ;
430 }
431 e ra s e InProg r e s s = 0 ;
432 // Blink LED i f playback i s a c t i v e
433 i f ( Audio Get State ( ) == AUDIO STATE PLAYBACK)
434 LED Blink Status (500) ;
435 e l s e
436 LED Blink Status (0 ) ;
437 i n i t i a l i z e d = 1 ; // S i gn i f y that s t a t e has been i n i t i a l i z e d
438 }
439 }
440 // Check i f user has i n t e r a c t ed with f r on t panel , and proce s s the c o r r e c t button
441 // pre s s or encoder r o t a t i on
442 i f ( Front Panel Event ( ) )
443 {
444 u in t16 t buttonStatus = Front Pane l Button Status ( ) ;
445 switch ( buttonStatus )
446 {
447 case BUTTON STATUS STOMP DOWN HOLD:
448 Audio Looper Stop Record ( ) ; // Stop reco rd ing i f in p rog r e s s
449 Audio Looper Stop Playback ( ) ; // Stop playback i f in p rog r e s s
450 Audio Looper Delete ( ) ; // Delete r e co rd ing
451 LED Blink Status (0 ) ; // Turn o f f b l ink
452 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
453 break ;
454
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455 case BUTTON STATUS STOMP UP HOLD:
456 nextSystemState = SYSTEM STATE DEFAULT; // Return to de f au l t s t a t e
457 break ;
458 case BUTTON STATUS STOMP EFFECT PRESS:
459 switch ( Audio Get State ( ) )
460 {
461 case AUDIO STATE DEFAULT:
462 i f ( Audio Looper Get Flash Status ( ) == 0) // I f f l a s h memory ava i l a b l e
463 {
464 Audio Looper Start Record ( ) ; // Star t r e co rd ing
465 LED Status (1) ; // Status LED on
466 }
467 e l s e
468 {
469 Audio Looper Start Playback ( ) ; // Star t playback
470 LED Blink Status (500) ; // Blink LED
471 }
472 break ;
473 case AUDIO STATE RECORD:
474 Audio Looper Stop Record ( ) ;
475 LED Status (0) ; // Status LED on
476 Audio Looper Start Playback ( ) ;
477 LED Blink Status (500) ;
478 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
479 break ;
480 case AUDIO STATE PLAYBACK:
481 Audio Looper Stop Playback ( ) ;
482 LED Blink Status (0 ) ; // Turn o f f b l i nk
483 break ;
484 }
485 break ;
486 de f au l t :
487 break ;
488 }
489 Clear Front Pane l Event ( ) ;
490 Reset Front Pane l Button Status ( ) ;
491 }
492 i f ( nextSystemState != SYSTEM STATE LOOPER) // Detect t r a n s i t i o n s out o f s t a t e
493 {
494 i f ( Audio Get State ( ) == AUDIO STATE RECORD)
495 Audio Looper Stop Record ( ) ; // Stop reco rd ing
496 LED Blink Status (0 ) ; // Turn o f f LED
497 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e next time s t a t e i s entered
498 }
499 return nextSystemState ;
500 }
501
502 u i n t 8 t Run State Tempo ( void )
503 {
504 s t a t i c u i n t 8 t i n i t i a l i z e d = 0 ; // Store i f s t a t e has been i n i t i a l i z e d
505 u i n t 8 t nextSystemState = SYSTEM STATE TEMPO;
506
507 // I n i t i a l i z e the d i sp l ay i f s t a t e has not been pr ev i ou s l y i n i t i a l i z e d
508 i f ( i n i t i a l i z e d == 0)
509 {
510 Di sp lay Clear ( ) ; // Clear the e n t i r e d i sp l ay
511
512 // Line 1
513 Di sp lay Wr i t e St r ing ( ”Tap To Set Tempo” , 0) ;
514
515 // Line 3
516 Di sp lay Wr i t e St r ing ( ”Tempo = ” , 0x14 ) ;
517 Display Write Number ( Effect Get Tempo ( ) , 3 , 0x1E , DISPLAY ALIGN RIGHT) ;
518 Di sp lay Wr i t e St r ing ( ”BPM” , 0x1F) ;
519
520 LED Blink Status (60000/ Effect Get Tempo ( ) ) ; // Blink s ta tu s LED in time with tempo
521 i n i t i a l i z e d = 1 ; // S i gn i f y that s t a t e has been i n i t i a l i z e d
522 }
523 // Check i f user has i n t e r a c t ed with f r on t panel , and proce s s the c o r r e c t button
524 // pre s s or encoder r o t a t i on
525 i f ( Front Panel Event ( ) )
526 {
527 u in t16 t buttonStatus = Front Pane l Button Status ( ) ;
528 switch ( buttonStatus )
529 {
530 case BUTTON STATUS MENU UP PRESS:
531 Ef fect Increase Tempo ( ) ;
532 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
533 break ;
534 case BUTTON STATUS MENU DOWN PRESS:
535 Effect Decrease Tempo ( ) ;
536 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
537 break ;
538 case BUTTON STATUS STOMP DOWN PRESS:
539 Effect Decrease Tempo ( ) ;
540 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
541 break ;
542 case BUTTON STATUS STOMP UP PRESS:
543 Ef fect Increase Tempo ( ) ;
544 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
545 break ;
546 case BUTTON STATUS STOMP EFFECT PRESS:
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547 Ef fect Calcu late Tempo ( ) ;
548 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e s c r een
549 break ;
550 case BUTTON STATUS STOMP EFFECT HOLD:
551 nextSystemState = SYSTEM STATE DEFAULT; // Return to de f au l t s t a t e
552 break ;
553 de f au l t :
554 // Change tempo depending on encoder r o t a t i on
555 i f ( Front Panel Encoder Rotat ion ( ) == ENCODERCOUNTERCLOCKWISE)
556 {
557 Effect Decrease Tempo ( ) ;
558 i n i t i a l i z e d = 0 ;
559 }
560 e l s e i f ( Front Panel Encoder Rotat ion ( ) == ENCODER CLOCKWISE)
561 {
562 Ef fect Increase Tempo ( ) ;
563 i n i t i a l i z e d = 0 ;
564 }
565 Front Pane l Reset Encoder Rotat ion ( ) ;
566 break ;
567 }
568 Clear Front Pane l Event ( ) ;
569 Reset Front Pane l Button Status ( ) ;
570 }
571 i f ( nextSystemState != SYSTEM STATE TEMPO) // Detect t r a n s i t i o n s out o f s t a t e
572 {
573 LED Blink Status (0 ) ; // Turn o f f LED
574 i n i t i a l i z e d = 0 ; // R e i n i t i a l i z e next time s t a t e i s entered
575 }
576 return nextSystemState ;
577 }
578
579

1 #inc lude ” c l k i n i t . h”
2
3 /∗
4 ∗ System Clock Conf igurat ion
5 ∗/
6 void SystemClock Config ( void )
7 {
8
9 RCC OscInitTypeDef RCC OscInitStruct ;

10 RCC ClkInitTypeDef RCC ClkInitStruct ;
11
12 /∗∗Conf igure the main i n t e r n a l r e gu l a t o r output vo l tage
13 ∗/
14 HAL RCC PWR CLK ENABLE() ;
15
16 HAL PWR VOLTAGESCALING CONFIG(PWR REGULATOR VOLTAGE SCALE1) ;
17
18 /∗∗ I n i t i a l i z e s the CPU, AHB and APB busses c l o ck s
19 ∗/
20 RCC OscInitStruct . Osc i l l a to rType = RCC OSCILLATORTYPE HSE;
21 RCC OscInitStruct . HSEState = RCC HSE ON;
22 RCC OscInitStruct .PLL. PLLState = RCC PLL ON;
23 RCC OscInitStruct .PLL. PLLSource = RCC PLLSOURCE HSE;
24 RCC OscInitStruct .PLL.PLLM = 15 ;
25 RCC OscInitStruct .PLL.PLLN = 192;
26 RCC OscInitStruct .PLL.PLLP = RCC PLLP DIV2 ;
27 RCC OscInitStruct .PLL.PLLQ = 2 ;
28 RCC OscInitStruct .PLL.PLLR = 2 ;
29 i f (HAL RCC OscConfig(&RCC OscInitStruct ) != HAL OK)
30 {
31 // Error Handle r ( FILE , LINE ) ;
32 }
33
34 /∗∗ I n i t i a l i z e s the CPU, AHB and APB busses c l o ck s
35 ∗/
36 RCC ClkInitStruct . ClockType = RCC CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK
37 |RCC CLOCKTYPE PCLK1|RCC CLOCKTYPE PCLK2;
38 RCC ClkInitStruct . SYSCLKSource = RCC SYSCLKSOURCE PLLCLK;
39 RCC ClkInitStruct . AHBCLKDivider = RCC SYSCLK DIV1 ;
40 RCC ClkInitStruct . APB1CLKDivider = RCC HCLK DIV4 ;
41 RCC ClkInitStruct . APB2CLKDivider = RCC HCLK DIV4 ;
42
43 i f (HAL RCC ClockConfig(&RCC ClkInitStruct , FLASH LATENCY 5) != HAL OK)
44 {
45 // Error Handle r ( FILE , LINE ) ;
46 }
47
48 /∗∗Conf igure the Sys t i ck i n t e r rup t time
49 ∗/
50 HAL SYSTICK Config (HAL RCC GetHCLKFreq ( ) /1000) ;
51
52 /∗∗Conf igure the Sys t i ck
53 ∗/
54 HAL SYSTICK CLKSourceConfig (SYSTICK CLKSOURCE HCLK) ;
55
56 /∗ SysTick IRQn in t e r rup t c on f i gu r a t i on ∗/
57 HAL NVIC SetPriority ( SysTick IRQn , 0 , 0) ;
58
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59 // Enable p e r i ph e r a l c l o ck s
60 RCC−>AHB1ENR |= ( RCC AHB1ENR GPIOAEN | // GPIOA
61 RCC AHB1ENR GPIOBEN | // GPIOB
62 RCC AHB1ENR GPIOCEN | // GPIOC
63 RCC AHB1ENR GPIODEN | // GPIOD
64 RCC AHB1ENR DMA1EN | // DMA1
65 RCC AHB1ENR DMA2EN ) ; // DMA2
66 RCC−>APB1ENR |= ( RCC APB1ENR SPI2EN | // SPI2
67 RCC APB1ENR TIM6EN | // TIM6
68 RCC APB1ENR TIM7EN | // TIM7
69 RCC APB1ENR TIM2EN | // TIM2
70 RCC APB1ENR TIM3EN | // TIM3
71 RCC APB1ENR TIM12EN | // TIM12
72 RCC APB1ENR TIM13EN | // TIM13
73 RCC APB1ENR TIM14EN ) ; // TIM14
74 RCC−>APB2ENR |= ( RCC APB2ENR TIM1EN | // TIM1
75 RCC APB2ENR SYSCFGEN | // SYSCONFIG
76 RCC APB2ENR TIM9EN | // TIM9
77 RCC APB2ENR TIM10EN | // TIM10
78 RCC APB2ENR TIM11EN | // TIM11
79 RCC APB2ENR SPI1EN) ; // SPI1
80 }
81

1 void Process Audio ( void )
2 {
3 ∗pInputBuf fer = ADC Get Result ( ) ; // Save the input s i g n a l in bu f f e r
4 switch ( audioState )
5 {
6 // In de f au l t s tate , run input through e f f e c t s and send i t to output
7 case AUDIO STATE DEFAULT:
8 ∗pOutputBuffer = Apply Ef f ec t s ( pInputBuf fer ) ;
9 break ;

10 // In tuner s tate , send the input d i r e c t l y to the output i f output f l a g i s s e t high
11 case AUDIO STATE TUNER:
12 i f ( tunerOutput )
13 ∗pOutputBuffer = ∗pInputBuf fer ;
14 break ;
15 // In record state , apply e f f e c t s to input then save them to loope r bu f f e r
16 case AUDIO STATE RECORD:
17 ∗pOutputBuffer = Apply Ef f ec t s ( pInputBuf fer ) ;
18 ∗pLooperBuffer = ∗pOutputBuffer ;
19 pLooperBuffer++; // Increment bu f f e r po in t e r
20 i f ( pLooperBuffer >= pLooperBufferEnd ) // I f end o f bu f f e r
21 {
22 pLooperBuffer = pLooperBuf ferStart ; // Wrap bu f f e r po in t e r to beg inning
23 // Write the bu f f e r to f l a s h memory at cur rent f l a s h address
24 FLASH Page Write IT ( ( u i n t 8 t ∗) pLooperBuf f e r In s t ruc t i onStar t , looperCurrentFlashAddress ) ;
25 looperCurrentFlashAddress += FLASH PAGE SIZE ; // Increment f l a s h address
26 // Check i f too much data has been s to red in f l a s h
27 i f ( looperCurrentFlashAddress > LOOPER MAX FLASH ADDRESS)
28 {
29 Audio Looper Stop Record ( ) ;
30 }
31 }
32 break ;
33 // In playback state , add the input data to the data from the looper
34 case AUDIO STATE PLAYBACK:
35 // Combine s i g n a l s
36 ∗pOutputBuffer = Apply Ef f ec t s ( pInputBuf fer ) + ∗pLooperBuffer − DC BIAS ;
37 pLooperBuffer++; // Increment bu f f e r po in t e r
38 i f ( pLooperBuffer >= pLooperBufferEnd ) // I f end o f bu f f e r
39 {
40 pLooperBuffer = pLooperBuf ferStart ; // Wrap bu f f e r po in t e r to beg inning
41 // Read data from f l a s h memory in to the bu f f e r
42 FLASH Page Read IT ( ( u i n t 8 t ∗) pLooperBuf f e r In s t ruc t i onStar t , looperCurrentFlashAddress ) ;
43 looperCurrentFlashAddress += FLASH PAGE SIZE ; // Increment f l a s h address
44 // Loop f l a s h address around i f i t ove r f l ows
45 i f ( looperCurrentFlashAddress >= looperEndFlashAddress )
46 {
47 looperCurrentFlashAddress = LOOPER STARTING FLASH ADDRESS;
48 }
49 }
50 break ;
51 }
52
53 pInputBuf fer++; // Increment bu f f e r po in t e r
54 i f ( pInputBuf fer >= pInputBufferEnd )
55 {
56 pInputBuf fer = pInputBuf f e rStar t ; // Wrap po in t e r around
57 tunerReady = 1 ; // Ind i c a t e that tuner can c a l c u l a t e value
58 }
59 }
60
61 void Audio Tuner ( void )
62 {
63 // Change bu f f e r po i n t e r s to ensure they have t h e i r own memory space
64 pTunerInputBuffer = ( f l o a t 3 2 t ∗) pInputBufferEnd + 1 ;
65 pTunerResultBuffer = pTunerInputBuffer + TUNER BUFFER SIZE + 1 ;
66
67 // Convert a l l samples in bu f f e r to 32 b i t f l o a t s
68 i n t i ;
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69 f o r ( i = 0 ; i < TUNER BUFFER SIZE; i++)
70 {
71 pTunerInputBuffer [ i ] = ( f l o a t 3 2 t ) pInputBuf fer [ i ] ;
72 }
73
74 // Take the mean o f the samples to get the DC bia s vo l tage
75 f l o a t 3 2 t dcBias ;
76 arm mean f32 ( pTunerInputBuffer , TUNER BUFFER SIZE, &dcBias ) ;
77
78 // Subtract the DC bia s from each sample
79 a rm o f f s e t f 3 2 ( pTunerInputBuffer , −1 ∗ dcBias , pTunerInputBuffer , TUNER BUFFER SIZE) ;
80 // Perform an au t o c o r r e l a t i on func t i on
81 a rm co r r e l a t e f 3 2 ( pTunerInputBuffer , TUNER BUFFER SIZE, pTunerInputBuffer ,
82 TUNER BUFFER SIZE, pTunerResultBuffer ) ;
83 // Autocor r e l a t i on r e s u l t g i v e s symmetric output , only want r e s u l t s t a r t i n g from cente r
84 pTunerResultBuffer += TUNER BUFFER SIZE − 1 ;
85
86 // I n i t i a l i z e the terms o f the m ’ ( t ) c a l c u l a t i o n to r ’ ( 0 )
87 f l o a t 3 2 t mt term1 = pTunerResultBuffer [ 0 ] ;
88 f l o a t 3 2 t mt term2 = pTunerResultBuffer [ 0 ] ;
89
90 u i n t 8 t peakFinderState = 0 ;
91 u in t16 t temp ;
92 f l o a t 3 2 t maxNSDF;
93 f l o a t 3 2 t maxNSDFPeriod ;
94
95 // Cycle through en t i r e r e s u l t bu f f e r and c a l c u l a t e the NSDF inc r ementa l l y
96 f o r ( i = 0 ; i < TUNER BUFFER SIZE; i++)
97 {
98 // Ca lcu la te the NSDF
99 pTunerResultBuffer [ i ] = 2 ∗ pTunerResultBuffer [ i ] / (mt term1 + mt term2 ) ;

100
101 // Subtract the appropr ia te xˆ2 from terms o f m ’ ( t )
102 mt term1 −= pTunerInputBuffer [TUNER BUFFER SIZE − 1 − i ] ∗
103 pTunerInputBuffer [TUNER BUFFER SIZE − 1 − i ] ;
104 mt term2 −= pTunerInputBuffer [ i ]∗ pTunerInputBuffer [ i ] ;
105
106 // Algorithm to f i nd peaks o f NSDF
107 switch ( peakFinderState )
108 {
109 case 0 : // Detect f i r s t negat ive going zero c r o s s i n g
110 i f ( pTunerResultBuffer [ i ] < 0)
111 {
112 peakFinderState = 1 ;
113 temp = i ;
114 }
115 break ;
116 case 1 : // Detect f i r s t p o s i t i v e going zero c r o s s i n g
117 i f ( pTunerResultBuffer [ i ] > 0 && ( i − temp) > PEAK FINDER BUFFER)
118 {
119 peakFinderState = 2 ;
120 maxNSDF = pTunerResultBuffer [ i ] ;
121 temp = i ;
122 }
123 break ;
124 case 2 : // Detect peak
125 i f ( pTunerResultBuffer [ i ] > maxNSDF)
126 {
127 maxNSDF = pTunerResultBuffer [ i ] ;
128 maxNSDFPeriod = i ;
129 }
130 // Detect second negat ive going zero c r o s s i n g
131 i f ( pTunerResultBuffer [ i ] < 0 && ( i − temp) > PEAK FINDER BUFFER &&
132 maxNSDF > TUNER NDSF THRESHOLD)
133 {
134 peakFinderState = 3 ;
135 }
136 break ;
137 }
138 }
139
140 // Check to see i f detected peak i s a va l i d r e s u l t
141 i f (maxNSDF > TUNER NDSF THRESHOLD && maxNSDFPeriod < 750 && maxNSDFPeriod > 50)
142 {
143 ∗pTunerResultPeriod = maxNSDFPeriod ; // Save the c a l cu l a t ed per iod in bu f f e r
144 pTunerResultPeriod++; // Increment bu f f e r po in t e r
145 // Wrap po in t e r around i f over f low
146 i f ( pTunerResultPeriod > pTunerResultPeriodEnd )
147 pTunerResultPeriod = pTunerResultPer iodStart ;
148
149 // Use s o r t i n g algor i thm to p lace p r ev i ou s l y recorded pe r i ods in order
150 in t i ;
151 i n t j ;
152 f l o a t 3 2 t temp ;
153 f l o a t 3 2 t so r tedPer iod [TUNER RESULT AVERAGES ] ;
154 arm copy f32 ( pTunerResultPeriodStart , &sor tedPer iod [ 0 ] , TUNER RESULT AVERAGES) ;
155 f o r ( i = 0 ; i < TUNER RESULT AVERAGES − 1 ; i++)
156 {
157 f o r ( j = i + 1 ; j < TUNER RESULT AVERAGES; j++)
158 {
159 i f ( so r tedPer iod [ j ] < so r tedPer iod [ i ] )
160 {
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161 temp = sor tedPer iod [ i ] ;
162 sor tedPer iod [ i ] = sor tedPer iod [ j ] ;
163 sor tedPer iod [ j ] = temp ;
164 }
165 }
166 }
167
168 // Ca lcu la te the average period , us ing only the va lues around the median
169 f l o a t 3 2 t averagePer iod ;
170 arm mean f32(&sor tedPer iod [ 0 ] + TUNER RESULT BUFFER,
171 TUNER RESULT AVERAGES − TUNER RESULT BUFFER ∗ 2 , &averagePer iod ) ;
172 // Ca lcu la te the detected note on the MIDI s c a l e
173 detectedNote = log10 (CALIBRATED TUNER SAMPLE RATE ∗ 16 /( averagePer iod ∗
174 tunerReferenceFreq ) ) / NOTE CALCULATION DENOMINATOR;
175 }
176 }
177

1 void Ef fect Calcu late Tempo ( void )
2 {
3 s t a t i c u in t 16 t previousTimerPer iods [TEMPONUMAVERAGES] = {0} ; // Save prev ious va lues
4 s t a t i c u i n t 8 t index = 0 ;
5
6 // Get value from timer and convert to per iod in ms
7 u in t16 t t imerPer iod = ( u in t32 t )TIM3−>CNT ∗ TIM3 PRESCALE / (TIMER FREQ MHZ ∗ 1000) ;
8 TIM3−>EGR |= TIM EGR UG; // Reset t imer
9 TIM3−>SR &= ˜TIM SR UIF ; // Reset f l a g

10 TIM3−>CR1 |= TIM CR1 CEN; // Enable t imer
11
12 // Check i f per iod i s with in l im i t s
13 i f ( ( t imerPer iod < TEMPO MIN PERIOD MS) | | ( t imerPer iod > TEMPO MAX PERIOD MS) )
14 return ;
15
16 // Save per iod in bu f f e r
17 previousTimerPer iods [ index ] = t imerPer iod ;
18 index++;
19 i f ( index >= TEMPONUMAVERAGES) // Wrap index around i f over f low
20 index = 0 ;
21
22 // Ca lcu la te the average per iod from prev ious va lues
23 u i n t 8 t i ;
24 u in t32 t averagePer iod = 0 ;
25 f o r ( i = 0 ; i < TEMPONUMAVERAGES; i++)
26 {
27 averagePer iod += previousTimerPer iods [ i ] ;
28 }
29 averagePer iod = averagePer iod / TEMPONUMAVERAGES;
30 u in t16 t newTempo = 60000 / averagePer iod ; // Ca lcu la te the tempo in BPM
31 // Update tempo va r i ab l e i f v a l i d
32 i f ( ( newTempo > TEMPO MIN VALUE BPM) && (newTempo < TEMPO MAX VALUE BPM) )
33 {
34 tempo = newTempo ;
35 }
36 }
37

1 u in t16 t App ly Ef f ec t s ( u in t16 t ∗ pInputData )
2 {
3 // Cycle through ava i l a b l e e f f e c t s and c a l l t h e i r corresponding func t i on
4 u i n t 8 t i ;
5 u in t 16 t outputBuf fer = ∗pInputData ;
6 f o r ( i = 0 ; i < numEffects ; i++)
7 {
8 i f ( e f f e c t s [ i ] . a c t i va t ed )
9 {

10 outputBuf fer = e f f e c t s [ i ] . e f f e c t (&outputBuffer , &e f f e c t s [ i ] . params [ 0 ] ) ;
11 }
12 }
13 return outputBuf fer ;
14 }
15

1 s t a t i c u in t 16 t d i s t o r t i o n ( u in t16 t ∗ pInputData , Effect Param TypeDef∗ e f f ectParams )
2 {
3 // Save parameters
4 f l o a t 3 2 t gain = ef fectParams [ 0 ] . va lue ;
5 u in t16 t boost = ef fectParams [ 1 ] . va lue ;
6
7 // Get input value as f l o a t from −1 to 1
8 f l o a t 3 2 t x = (∗ pInputData − DC BIAS) /( f l o a t 3 2 t ) 33000;
9

10 f l o a t 3 2 t s i gn = (x > 0) − ( x < 0) ; // Extract s i gn o f number
11 f l o a t 3 2 t temp ;
12 arm mult f32(&x,&gain ,&temp , 1 ) ; // Use FPU to mult ip ly input by gain
13 temp = temp∗(−1)∗ s i gn ∗boost ;
14 f l o a t 3 2 t accumulator = 1 ; // I n i t i a l i z e accumulator
15 f l o a t 3 2 t currentProd = 1 ;
16
17 // Use Taylor s e r i e s approximation f o r exponent ia l func t i on
18 in t i = 0 ;
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19 f o r ( i = 1 ; i <= 20 ; i++)
20 {
21 arm mult f32(&currentProd , &temp , &currentProd , 1 ) ; // Use FPU
22 currentProd = currentProd / i ;
23 accumulator += currentProd ;
24 }
25
26 f l o a t 3 2 t outputData = s ign ∗(1 − accumulator ) / boost ; // Ca lcu la te output data
27 return ( u in t16 t ) ( outputData ∗33000 + DC BIAS) ; // Convert back to i n t e g e r f o r output
28 }
29
30 s t a t i c u in t 16 t delay ( u in t16 t ∗ pInputData , Effect Param TypeDef∗ e f f ectParams )
31 {
32 u in t16 t delay = ( u in t32 t ) 60 ∗ FSAMPLE / tempo ; // Get delay in ms
33 u in t16 t l e v e l = ef fectParams [ 1 ] . va lue ; // Get l e v e l parameter
34 // Ca lcu la te the delay value
35 u in t32 t delayValue = ( u in t32 t )∗Audio Get Previous Sample ( de lay ) ∗ l e v e l
36 / e f fectParams [ 1 ] . maxValue − DC BIAS ;
37 return ∗pInputData + delayValue ; // Add delayed sample to cur rent sample
38 }
39
40 s t a t i c u in t 16 t echo ( u in t16 t ∗ pInputData , Effect Param TypeDef∗ e f f ectParams )
41 {
42 // Ca lcu la te parameters
43 u in t32 t delay = ( e f fectParams [ 0 ] . va lue ∗ FSAMPLE) / 1000 ; // Get delay in ms
44 u in t32 t currentDelay = delay ;
45 u in t16 t decay = ( u in t32 t ) e f f ectParams [ 1 ] . va lue ;
46 u in t16 t outputData = ∗pInputData ;
47 u in t16 t numEchos = 0 ;
48
49 // Only c a l c u l a t e at max 10 echos to keep c a l c u l a t i o n short
50 whi le (numEchos < 10)
51 {
52 // I f echo length i s too long f o r bu f f e r , r e turn from func t i on
53 i f ( currentDelay > AUDIO BUFFER SIZE)
54 break ;
55 // Get delayed sample and add i t to cur rent sample
56 u in t16 t ∗ pEcho = Audio Get Previous Sample ( currentDelay ) ;
57 outputData += ( decay ∗ (∗pEcho − DC BIAS) ) / e f fectParams [ 1 ] . maxValue ;
58 currentDelay += delay ; // Increment delay to get next echo
59 decay −= decay /4 ; // Inc r ea s e decay to make next echo qu i e t e r
60 numEchos++;
61 }
62 return outputData ;
63 }
64
65 s t a t i c u in t 16 t v ib ra to ( u in t 16 t ∗ pInputData , Effect Param TypeDef∗ e f f ectParams )
66 {
67 s t a t i c f l o a t 3 2 t t = 0 ; // Keep track o f time va r i ab l e f o r s i n e wave
68 // Frequency ranges from 1 − 11Hz
69 f l o a t 3 2 t f requency = ( f l o a t 3 2 t ) e f f ectParams [ 0 ] . va lue / 10 + 1 ;
70 // Depth ranges from 0 − 2ms
71 f l o a t 3 2 t depth = ( f l o a t 3 2 t ) e f f ectParams [ 1 ] . va lue ∗ FSAMPLE / 50000;
72
73 // Use FPU to c a l c u l a t e s i n e
74 f l o a t 3 2 t modulation = arm s in f32 (2 ∗ M PI ∗ f requency ∗ t ) ;
75 // Ca lcu la te index us ing s i n e wave r e s u l t
76 u in t16 t delay = ( u in t16 t ) (1 + depth + depth ∗ modulation ) ;
77
78 // Ensure argument o f a rm s in f32 i s from 0 to 2 pi
79 t += 1/( f l o a t 3 2 t )FSAMPLE;
80 i f ( t >= 1/ frequency )
81 t = 0 ;
82
83 // Only return the delayed s i g n a l
84 return ∗Audio Get Previous Sample ( de lay ) ;
85 }
86
87 s t a t i c u in t 16 t f l a n g e r ( u in t 16 t ∗ pInputData , Effect Param TypeDef∗ e f f ectParams )
88 {
89 s t a t i c f l o a t 3 2 t t = 0 ; // Keep track o f time va r i ab l e f o r s i n e wave
90 // Frequency ranges from 1 − 11Hz
91 f l o a t 3 2 t f requency = ( f l o a t 3 2 t ) e f f ectParams [ 0 ] . va lue / 10 + 1 ;
92 // Depth ranges from 0 − 2ms
93 f l o a t 3 2 t depth = ( f l o a t 3 2 t ) e f f ectParams [ 1 ] . va lue ∗ FSAMPLE / 50000;
94
95 // Use FPU to c a l c u l a t e s i n e
96 f l o a t 3 2 t modulation = arm s in f32 (2 ∗ M PI ∗ f requency ∗ t ) ;
97
98 // Ca lcu la te index us ing s i n e wave r e s u l t
99 u in t16 t delay = ( u in t16 t ) (1 + depth + depth ∗ modulation ) ;

100
101 // Ensure argument o f a rm s in f32 i s from 0 to 2 pi
102 t += 1/( f l o a t 3 2 t )FSAMPLE;
103 i f ( t >= 1/ frequency )
104 t = 0 ;
105
106 // Return the cur rent sample added to the delayed sample
107 return ∗pInputData + ∗Audio Get Previous Sample ( de lay ) − DC BIAS ;
108 }
109
110 #de f i n e CHORUS EFFECT SCALE FACTOR 2
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111 s t a t i c u in t 16 t chorus ( u in t 16 t ∗ pInputData , Effect Param TypeDef∗ e f f ectParams )
112 {
113 // Star t each s i n e wave at a d i f f e r e n t po int
114 s t a t i c f l o a t 3 2 t t [ 5 ] = {0 , 1/8 .0 , 1/6 .0 , 1/4 .0 , 1/2 . 0} ;
115 // Frequency ranges from 1 − 3Hz
116 f l o a t 3 2 t f requency = ( f l o a t 3 2 t ) e f f ectParams [ 0 ] . va lue / 50 + 1 ;
117 // Depth ranges from 0 − 2ms
118 f l o a t 3 2 t depth = ( f l o a t 3 2 t ) e f f ectParams [ 1 ] . va lue ∗ FSAMPLE / 50000;
119
120 i n t 3 2 t outputData = ∗pInputData ;
121
122 // Cycle through d i f f e r e n t modulated delay l i n e s
123 u i n t 8 t i ;
124 f o r ( i = 0 ; i < 5 ; i++)
125 {
126 // Ca lcu la te de lay from s in e value
127 f l o a t 3 2 t modulation = arm s in f32 (2 ∗ M PI ∗ f requency ∗ t [ i ] ) ;
128 u in t16 t delay = ( u in t16 t ) (1 + depth + depth ∗ modulation ) ;
129 t [ i ] += 1/( f l o a t 3 2 t )FSAMPLE;
130 i f ( t [ i ] >= 1/( f requency ) )
131 t [ i ] = 0 ;
132 outputData += ∗Audio Get Previous Sample ( de lay ) ;
133 }
134 // Add a l l delayed samples toge the r and d iv ide by a s c a l e f a c t o r to reduce volume
135 return ( u in t16 t ) ( ( outputData − 6 ∗ DC BIAS) / CHORUS EFFECT SCALE FACTOR + DC BIAS) ;
136 }
137
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