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Abstract 

  This project looks into using a genetic algorithm to bias an amplifier to yield the largest 

gain. It looks to tackle the issue that analog amplifying circuits often are specifically setup for a 

particular input signal with a range of values, having fixed bias voltages, but this lacks an aspect 

flexibility in its applications. Using python, a script is run to utilize LTSpice to bias a bipolar 

junction transistor based differential amplifier. The script implements a genetic algorithm to 

continually search different potential biasing voltages, which completes when the gain is largest 

and unchanged for 15 consecutive generations. This specific circuit, a differential amplifier, 

takes 18-25 minutes to fully converge, getting gain values averaging around 650V/V, being able 

to converge within 3% of this point in every running of the algorithm. 
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Introduction 

This project looks into using a genetic algorithm to bias an amplifier to yield the greatest 

value of gain, with the purpose of allowing for more widespread applicability these amplifiers. 

The system will apply a genetic algorithm to bias an amplifying circuit, using 2 bias voltages as 

the children of each generation; the algorithm is applied to the circuit in LTSpice, running 

through Python code, iterating until the best bias voltage pair is determined after 15 consecutive 

generations of being the strongest result. The genetic algorithm generates 20 pairs of children per 

generation, starting with randomly generated pairs; it performs bit-mutation on 10 pairs of 

children, crossover mutations on 4, throws out the worst 4, and keeps the best 2 to make up the 

next generation of 20 children. The algorithm grades on the greatest difference in voltage 

between 2 points on the output, as that is synonymous with the differentiation of the output, 

which is directly related to the amplifying factor. Gain can also be calculated by dividing the 

difference in output voltage from the difference in the input voltage over the same period of 

time. Results from each generation are printed to a file named ‘Results.txt.’ 

Developing a self-biasing circuit is an attempt to better understand genetic algorithms and 

prove concepts of analog circuits. This project is at the intersection of computer science and 

electrical engineering, combining knowledge of complex circuitry and the logic for 

implementing the genetic algorithm in code; as a computer engineer. This project allows me to 

show proof of concepts I’ve learned during undergraduate studies at Cal Poly, while engineering 

a solution to a complex problem in the field of electronic circuits and computing algorithms. 
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Background 

The purpose of this system is to bias an analog differential amplifier with the greatest 

increase in amplification from input to output through LTSpice, being ran via a set of python 

scripts. An analog amplifier takes an analog input waveform asnd modifies the maximum and 

minimum voltages of the signal, as well as the slope with which the voltage is changing at 

(analog amplifiers do not affect a signal’s frequency). The change in amplification is typically 

measured in gain, the output voltage over a short range of time divided by the input voltage over 

a short range of time. This project measures amplification via the largest difference in 2 discrete 

output voltage points; the input voltage doesn’t need to be taken into account, since running of 

the script will bias the circuit based off of a fixed input voltage. 

Analog amplifiers utilize transistors to amplify a signal based on their voltage and current 

equations, and the particular arrangement of the transistors can increase or decrease the overall 

amplification factor. The amplifier in this project uses bipolar junction transistors, or BJTs. BJTs 

are transistors that allow current to flow through them based on the voltages on each node (base, 

collector, emitter). When a voltage is applied to the base node, the other nodes voltages will 

fluctuate with the base node. This project uses a differential amplifier, meaning it has 2 inputs; 

one input is a fixed waveform, and the other is a fixed DC voltage, with both being connected to 

the base of an NPN BJT. The collectors of these BJTs are connected to the collectors of PNP 

BJTs, giving the circuit an active load; their base voltages are equal to each other, which is one 

of the biasing voltages, VB, while the emitter is fixed at a VDD = 5V. Changing VB will change 

the current through those transistors, affecting the collector and emitter voltages, and thus 

affecting gain. A passive load, where the collectors of the NPNs would be connected to resistors, 

was not chosen because active loads, though more difficult to bias, can yield greater gain. 
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The circuit also utilizes a current tail, where 2 NPN BJTs are connected via their base 

nodes and their emitters tied to ground (0V). The collector of one BJT is connected to the 

emitters of the NPN BJTs with the base voltages set to the inputs to the circuit. The other tail 

BJT has its collector and base tied together, connected to a resistor; the other end of that resistor 

is the second biasing voltage, VDB. This voltage will affect the total current flowing through the 

tail, which will affect the current through the other transistors, which changes the gain of the 

circuit. 

A genetic algorithm is an algorithm based off of human biological evolution, utilizing 

properties of natural selection and random mutation of inputs to come to an optimized solution 

[1]. Genetic algorithms work by creating sets of children (inputs to a system), testing them, 

scoring the result, and making changes to the children to create a new set of children, or a new 

generation. A key aspect of genetic algorithms is the blending of randomness and selection off of 

the scoring system; the algorithm in this project seeks to strike a balance between the two.  

The majority of generating new children in the algorithm of this system is bit-based 

mutation, where a bit of the number can be flipped. Each of the sets of children are made up of 

floating-point values, 32-bit numbers, which are composed of a sign bit (positive = 0, negative = 

1), an 8-bit exponent values (the sum of the real exponent and the 2’s complement of the largest 

positive number able to be represented with that many bits), and a 23-bit mantissa (the bits to the 

right of the first 1 in binary representation of the number). Floating points are calculated by 

shifting the decimal of the binary mantissa by the real exponent bits left or right (if positive or 

negative), with the sign added in front at the end. The mantissa’s bits are the values that get 

flipped. 
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The genetic algorithm attempts to find the best biasing voltages to bias the circuit to 

achieve the greatest gain, or a very close approximate, on every running of the script. Since 

different input signals will operate in a region of greatest gain using different biasing voltages, 

the algorithm must be flexible, and have a high success rate for finding the best set of biasing 

voltages for the specific amplifier (VB and VDB). The data flow of the genetic algorithm can be 

found in the appendix. 

The project runs via LTSpice, a simulation tool used for predicting how a circuit would 

ideally behave in real life application. LTSpice provides a user interface that allows users to 

place circuit components in a schematic and simulate them graphically. LTSpice then generates a 

spice deck, or a set of connections between components described in text, and that is what’s ran 

to get a simulation; the simulation creates set of discrete points, which are currents and voltages 

on each node and through each component, and that is what’s graphically displayed. This project 

calls LTSpice to run via python script, which removes the graphical user interface from it, and 

returns a binary file with all the voltages and currents for each point in time. 
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Requirements and Specifications 

The system is designed to work on any differential amplifier, operating with any input 

signal, as long as there are other biasing voltages that can be changed to affect the gain. The 

system should be able to run with LTSpice on a particularly named schematic file, which would 

need to be changed to run with a different schematic file. The two changing biasing voltages 

must be named “VB” and “VDB” so that the script can set these voltages in the spice deck; 

otherwise, the script would need to be rewritten to handle differently named voltages. The 

system should converge around roughly the same gain every run with the same input signal. 

Changing the input signal’s amplitude could change the greatest possible gain and changing the 

DC offset voltage could also have an effect. The script assumes the maximum voltage in the 

circuit is 5V and the minimum voltage is 0V; it generates children using a random number 

generator in a range between 0 and 5V. The script is not expected to run quickly; it takes time to 

collect all the data points for each simulation, run 20 simulations, and continue until the most 

highly graded child has been constant for 15 generations. The script shall run in Windows 

command line using python 2.7; other versions of a terminal will not work, and the script must 

be run in the same directory that python is saved in.  
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Design and Development 

 The idea for the project started as designing and building the digital circuit with the 

analog amplifier, where the digital component would bias the analog circuit to get the greatest 

possible gain. It was decided the amplifier would be a BJT based differential amplifier with an 

active load, and the digital circuit would attempt to work using a genetic algorithm to bias the 

voltage on the base of the active load PNPs. After planning and trying to work out how to do this 

entirely as a circuit, the decision was made that there wouldn’t be enough time to either fabricate 

an integrated circuit from a schematic and manual layout using Cadence tools. Although the 

project would be reformatted, the project goal didn’t change, using a genetic algorithm to bias an 

amplifier. 

 Since the manual layout and schematic design would take too long, energy was focused 

on looking into a way to write code to automate the layout process. System C, a subset of C++ 

that translates code describing a digital circuit into VHDL, appeared to be a viable path to take 

on creating the circuit. It was a good option at the time, as it still offered the chance to use 

Cadence tools get the circuit fabricated. Looking into System C for a while, more questions kept 

popping up about how the translation from C++ to VHDL would take place, and how everything 

would come together, code and simulating via Cadence. It was determined that another approach 

would have to be taken to do this, as the fabrication process would be too time intensive, given 

the remaining time left on the project was less that 10 weeks. 

 At this point, the idea of fabricating a circuit was scrapped for writing code to integrate 

with an analog circuit. LTSpice, a circuit simulation tool that electrical and computer engineers 

at Cal Poly are very familiar with, showed itself as being the most reasonable option. The project 

was then reformatted to writing a script that would run the analog amplifier in LTSpice, gather 
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information about the simulations, and use a genetic algorithm to bias the circuit to achieve the 

highest gain. Since biasing the circuit with one voltage would be too quick, a second voltage to 

bias was added as the voltage on the current sink. 

 The most grueling part of this project was going to be integrating LTSpice to run via 

command line and output valuable data that could be read out; fortunately, this process was 

already completed by someone’s master’s thesis, allowing for integration of this code; the 

original code was written by GitHub user ‘joskvi’ and was available via their GitHub account 

[2]. This code was a lot of python files that ran through command line to operate on a RC low-

pass filter, being able to change the resistor and capacitor values. Using a MacBook Pro, it took a 

few days of trying to get the code to run until realizing that it only runs on Windows. A small 

obstacle, but one nevertheless, led to installing software to dual boot the MacBook with the 

Windows operating system. After setting up the correct execution paths for the script on 

Windows, everything worked as anticipated. 

 The next step was taking the script that worked on the filter and integrating it with the 

differential amplifier from the original plans. Drawing the schematic of it wasn’t difficult, but 

what proved challenging was where to make every change in the code. The names of the 

parameters had to be changed, the correct values needed to be taken from the raw file (containing 

every value at every point in time), and the path of execution needed to be changed. After 

walking through the code and working to understand everything going on with it, making the 

adjustments wasn’t too time intensive. Getting the differential amplifier to run was a milestone, 

but there was still a lot left to integrate. 

 The next step was getting the system to run for a specified number of children and storing 

all the values (VB, VDB, maximum difference in voltages between 2 points in time) from each 
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simulation. The first function call in the script would check if there was a parameter file existing, 

and it would change the values in LTSpice to the values in the file. This original function was 

discarded for the time being, in favor of a new function, that would automatically adjust the VB 

and VDB values for each simulation and run in a loop for 20 children, storing the max difference 

in consecutive voltage points. Getting all 20 differences meant the system could determine which 

pair of voltages yielded the greatest gain. After this, the genetic algorithm needed to be 

integrated. 

 Implementing the genetic algorithm took a long time, as there were many steps involved. 

First, the system need to be iterative, running the 20 children over and over until converging for 

a specified number of generations; this was just running a couple nested while loops. Adding the 

portion in which the code generated the new generation was very time consuming. After 

deciding on the types of manipulation to create the new generation, the functions had to be 

written. Each function takes in a certain number of VB and VDB values (depending on the 

function), performs the evolution, and returns and array of these values to be restored where the 

previous values were stored. These genetic functions wouldn’t be able to perform their purpose if 

they operated on random ordered grades, so the voltages and the maximum difference values all 

needed to get sorted. Writing a sorting function took a while, as it works by taking in an array of 

all the maximum difference voltages and returning an array with the sorted order of the indices 

of the input array. The returned order array is used to sort the VB and VDB values, as well as the 

max diff array, so that the genetic functions can be performed on specific percentages of the 

population of each generation. 

 Testing allowed for optimizing how well the genetic functions were working in getting 

the gain of each running of the system to converge. Until getting consistent results, the algorithm 
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had to be adjusted; this meant, for example, changing what bits would be flipped (how much 

values would change from generation to generation), how many values to save across 

generations and not affect, and how many random new children to be generated every new 

generation. Tweaking these equations took a long time, as simulations couldn’t be ran very 

quickly, but it was a lot of making adjustments and actively seeing how they would pay off. The 

end result is a system that converges to roughly the same gain every simulation, with the 

maximum difference in voltages between adjacent time measurements being well within 100mV 

on every run.  
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Testing 

Testing for this project was making sure that everything ran accordingly and seeing the 

system converge consistently to the same value, and the testing process for this system is fairly 

straightforward. The script runs via the command ‘python run.py -r’ in Windows command line, 

which will run until the system converges. A lot of early testing was checking to make sure that 

the appropriate circuit was running or if it was iterating correctly. Later on, testing transitioned 

into looking at how well the genetic algorithm was working, by looking at each generation’s best 

child and the max difference value. The process of testing the system is very tedious, as each 

generation takes ~38 seconds to run, and waiting for the system to finish converging can take up 

to 25 minutes. Though information is posted about each child running in the command line, it’s 

difficult to extrapolate from the data until the system converges; much of the data displayed was 

manually entered into Excel sheets and information, such as variances and averages, can be 

calculated, along with graphs to display. Ideally this could’ve been performed automatically via 

the script, but there wasn’t enough time to integrate that functionality. Tests were performed on 

the amplifier with an input sine wave with amplitudes of 150mV and 100mV, with seeded 

(specifically chosen) initial children and random children, centered at 2.5V. Utilizing LTSpice 

through the application GUI, it can be confirmed that these are roughly the optimal values after 

sweeping all potential values for VB and VDB. 

The next step for testing would be to test how well these voltages work on an actual, 

physical, differential amplifier. Unfortunately, there was not enough time to test this, so it can’t 

be confirmed that this simulation leads to correct results in real life application. It would be fair 

to assume that simulation would likely be roughly consistent to real life results, as LTSpice is a 

widely respected and used simulation tool. 
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Results and Discussion 

Testing thoroughly showed that the system does converge with great consistency. Test 

runs for the 150mV amplitude sine wave converged within 3% of the average max difference of 

voltage values for every simulation. This convergence was consistent for seeded and random 

initial children values. Figures 1-4 below describe the convergence, and tables of data for each 

simulation can be found in the Appendix along with more graphs.  

 

 

 

 

Figure 1: Graph of Voltages from Convergence of Gain – Random Children #1 
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Figure 2: Graph of Voltages from Convergence of Gain – Random Children #2 

 

 

 

Figure 3: Graph of Voltages from Convergence of Gain – Seeded Children #1 
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Figure 4: Graph of Voltages from Convergence of Gain – Seeded Children #2 

 

Table 1: Averages and Variances of 150mV Sine Wave Input 

 Max Diff 

(V) 

VB (V) VDB (V) # Generations to 

Full Convergence 

Average (Random) 2.930 4.326 4.435 29.67 

Variance (Random) 2.35  E-3 91.0  E -6 0.146 49.57 

Average (Seeded) 2.940 4.327 4.177 27.20 

Variance (Seeded) 288  E -6 13.0  E -6 0.8999 9.360 

Average (Overall) 2.934 4.326 4.274 28.13 

Variance (Overall) 3.39  E -3 105  E -6 1.115 25.86 

 

 

Figures 1-4 describe the evolution of the biasing voltages and the convergence of Max 

Diff, which is proportional to gain. In the seeded-child simulations, VB doesn’t move around 

much, as one of the children is a relatively close solution for the particular amplifier. In 

comparison, the random-child simulations VB starts around 1; this is merely a coincidence, and 

the other figures and data tables in the appendix highlight that these just happened to be identical 

in starting points. VDB varies throughout much of the simulations, and this is explained more in 
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depth later on, but that’s not an unreasonable result. Many of the simulations Max Diff values are 

right around 0V for a few simulations, and from there they either shoot up or slowly increase. 

This behavior is due to the genetic algorithm slowly optimizing on the children that yield better 

values. Once a good child is generated, the system reaches the best biasing child fairly after not 

within 10-15 generations for most simulations. 

Looking at all the averages for the Max Diff value, it’s evident that the averages (random, 

seeded, and overall) are very similar, and their variances are very small. The averages being 

close together indicates that, regardless of whether the initial children are random or seeded, they 

will converge to around the same gain; the small variances indicate that they will converge with 

high precision. This consistency indicates that the algorithm works very well at biasing to the 

maximum gain, which is the goal of the circuit. 

The first biasing voltage, VB, has averages and that are all nearly equal and variances 

that are extremely small. This indicates, similarly to Max Diff, that VB will always converge to 

the same value.  The second biasing voltage, VDB, converges to far less consistent values, with 

large variances, particularly for random and overall. Even though VDB fluctuates between 

different runs of the script, VB and Max Diff are extremely consistent; this shows that the value 

of VDB, though it affects the current through the tail, will have a more minor affect than VB in 

this arrangement. The idea that VB would have a greater impact on the gain than VDB makes 

sense. Looking deeper into this, VDB has an effect on the voltage of the base node of the NPN 

controlling the current of the current sink. VB is going to be biasing the PNP transistors, the 

active loads, which factors into the gain more significantly than the current through each side of 

the amplifier. Looking at the current equation of an NPN BJT, this makes sense: 

IC = IS * e^(VBE/VT) 
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The saturation current, IS, is going to be a constant for a given BJT model, and the same is true 

for the thermal voltage, VT. If the main factors into this equation are IC and VBE, then a small 

change in the collector current will result in an extremely small change in the base-emitter 

voltage; a small change in this voltage is going to have a miniscule impact on any gain. The 

change in current will still affect the gain, but to such a small degree when compared to VB. 
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Conclusion 

Using this genetic algorithm resulted in consistent convergence to maximum gain for 

differential amplifiers given a fixed input waveform. The variance of the maximum difference in 

voltage between 2 adjacent time points was 3.4 mV squared, which is extremely precise. This 

level of consistency in biasing the amplifier with the most gain is significant having implemented 

the system using a genetic algorithm. The gain the system was able to achieve was ~650V/V for 

a sine wave with a 150mV amplitude with a 2.5V offset and a frequency of 100kHz. The system 

was tested on other input waveforms and was able to achieve similar convergence. The second 

bias voltage VDB was less impactful on the overall gain, as it didn’t converge to a consistent 

value, having a variance of 1.115V squared; this was due to its impact on the circuit being 

relatively minor in principle. However, this isn’t a negative, as it didn’t impact the goal of the 

project, biasing the amplifier for the largest possible gain. These results imply that it is possible 

to create systems to self-bias amplifying circuits, and that genetic algorithms are useful tools to 

find optimized solutions to difficult problems. The project would be considered a success as the 

desired solution was achieved. 
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Appendix 

Senior Project GitHub Repository: https://github.com/slwhalen/SeniorProject 

 

 

 

 

Figure 5: Flow of Genetic Algorithm 
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Figure 5: Graph of Voltages from Convergence of Gain – Random Children #3 

 

 

 

Figure 6: Graph of Voltages from Convergence of Gain – Random Children #4 
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Figure 7: Graph of Voltages from Convergence of Gain – Random Children #5 

 

 

 

Figure 8: Graph of Voltages from Convergence of Gain – Seeded Children #3 
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Table 2: Best Child Data Points Corresponding to Graph of Seeded Children #1 

VB (V) VDB (V) Max Diff (V) Generation 

4.4 3.9 0.002888 1 

4.4 3.9 0.002888 2 

4.36 4.49 1.045 3 

4.36 4.49 1.045 4 

4.36 4.49 1.045 5 

4.3375 3.5375 2.367 6 

4.3438 2.559 2.3984 7 

4.3438 2.559 2.3984 8 

4.347 4.347 2.4375 9 

4.347 4.347 2.4375 10 

4.3375 3.916 2.676 11 

4.3375 3.916 2.676 12 

4.3375 3.916 2.676 13 

4.329 4.678 2.916 14 

4.329 4.678 2.916 15 

4.329 4.678 2.916 16 

4.329 4.678 2.916 17 

4.329 4.678 2.916 18 

4.329 4.678 2.916 19 

4.329 4.678 2.916 20 

4.329 4.678 2.916 21 

4.329 4.678 2.916 22 

4.329 4.678 2.916 23 

4.329 4.678 2.916 24 

4.329 4.678 2.916 25 

4.329 4.678 2.916 26 

4.329 4.678 2.916 27 

4.329 4.678 2.916 28 
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Table 3: Data Corresponding to Graph of Seeded Children #2 

VB (V) VDB (V) Max Diff (V) Generation 

4.4 3.9 0.002888 1 

4.4 3.9 0.002888 2 

4.45 1.32 0.01005 3 

4.316 3.769 0.3166 4 

4.316 3.769 0.3166 5 

4.353 3.525 2.306 6 

4.353 3.525 2.306 7 

4.34 4.484 2.854 8 

4.34 4.484 2.854 9 

4.34 4.484 2.854 10 

4.34 4.484 2.854 11 

4.34 4.484 2.854 12 

4.3375 3.588 2.885 13 

4.3375 3.588 2.885 14 

4.3375 3.588 2.885 15 

4.3375 3.588 2.885 16 

4.3375 3.588 2.885 17 

4.3375 3.588 2.885 18 

4.3375 3.588 2.885 19 

4.3375 3.588 2.885 20 

4.3375 3.588 2.885 21 

4.3375 3.588 2.885 22 

4.3375 3.588 2.885 23 

4.3375 3.588 2.885 24 

4.32 3.999 2.926 25 

4.327 4.147 2.948 26 

4.327 4.147 2.948 27 

4.327 4.147 2.948 28 

4.327 4.147 2.948 29 

4.327 4.147 2.948 30 

4.327 4.147 2.948 31 

4.327 4.147 2.948 32 

4.327 4.147 2.948 33 

4.327 4.147 2.948 34 

4.327 4.147 2.948 35 

4.327 4.147 2.948 36 

4.327 4.147 2.948 37 

Continuation of Same Data Point until Generation 40 
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Table 4: Data Corresponding to Graph of Seeded Children #3 

VB (V) VDB (V) Max Diff (V) Generation 

4.4 3.9 0.002888 1 

4.48 2.33 0.003163 2 

4.464 3.831 1.389 3 

4.464 3.831 1.389 4 

4.464 3.831 1.389 5 

4.464 3.831 1.389 6 

4.328 3.019 2.73 7 

4.324 4.48 2.955 8 

4.324 4.48 2.955 9 

4.324 4.48 2.955 10 

4.324 4.48 2.955 11 

4.324 4.48 2.955 12 

4.324 4.48 2.955 13 

4.324 4.48 2.955 14 

4.324 4.48 2.955 15 

4.324 4.48 2.955 16 

4.324 4.48 2.955 17 

4.324 4.48 2.955 18 

4.324 4.48 2.955 19 

4.324 4.48 2.955 20 

4.324 4.48 2.955 21 

4.324 4.48 2.955 22 
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Table 5: Data Corresponding to Graph of Random Children #1 

VB (V) VDB (V) Max Diff (V) Generation 

0.85 0.934 0.000004972 1 

3.68 3.14 0.00004813 2 

3.97 2.65 0.0000561 3 

4.04 3.05 0.00007945 4 

4.04 3.05 0.00007945 5 

4.04 3.05 0.00007945 6 

4.45 4.33 0.002712 7 

4.45 4.33 0.002712 8 

4.45 4.33 0.002712 9 

4.45 4.33 0.002712 10 

4.45 4.33 0.002712 11 

4.4 2.36 0.6921 12 

4.4 2.36 0.6921 13 

4.4 2.36 0.6921 14 

4.4 2.36 0.6921 15 

4.34 2.63 2.643 16 

4.34 2.63 2.643 17 

4.327 3.883 2.947 18 

4.327 3.883 2.947 19 

4.327 3.883 2.947 20 

4.327 3.883 2.947 21 

4.327 3.883 2.947 22 

4.327 3.883 2.947 23 

4.327 3.883 2.947 24 

4.327 3.883 2.947 25 

4.327 3.883 2.947 26 

4.327 3.883 2.947 27 

4.327 3.883 2.947 28 

4.327 3.883 2.947 29 

4.327 3.883 2.947 30 

4.327 3.883 2.947 31 

4.327 3.883 2.947 32 
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Table 6: Best Child Data Points Corresponding to Graph of Random Children #2 

VB (V) VDB (V) Max Diff (V) Generation 

0.944 0.956 0.000004162 1 

4 4.25 0.0001066 2 

4.25 3.64 0.0003741 3 

4.25 3.64 0.0003741 4 

4.25 3.64 0.0003741 5 

4.4 3.06 0.003271 6 

4.41 0.86 0.704 7 

4.35 3.9 2.408 8 

4.328 3.64 2.866 9 

4.328 3.64 2.866 10 

4.328 3.64 2.866 11 

4.328 3.64 2.866 12 

4.33 3.768 2.926 13 

4.33 3.768 2.926 14 

4.33 3.768 2.926 15 

4.33 3.768 2.926 16 

4.33 3.768 2.926 17 

4.33 3.768 2.926 18 

4.33 3.768 2.926 19 

4.33 3.768 2.926 20 

4.33 3.768 2.926 21 

4.33 3.768 2.926 22 

4.33 3.768 2.926 23 

4.33 3.768 2.926 24 

4.33 3.768 2.926 25 

4.33 3.768 2.926 26 

4.33 3.768 2.926 27 
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Table 7: Best Child Data Points Corresponding to Graph of Random Children #3 

VB (V) VDB (V) Max Diff (V) Generation 

0.798 0.952 0.000004017 1 

1.98 4.49 0.00004713 2 

4.26 4.25 0.0005276 3 

4.26 4.25 0.0005276 4 

4.26 4.25 0.0005276 5 

4.38 1.65 1.25 6 

4.35 4.14 2.309 7 

4.35 4.14 2.309 8 

4.35 4.14 2.309 9 

4.323 4.25 2.905 10 

4.323 4.25 2.905 11 

4.323 4.25 2.905 12 

4.323 4.25 2.905 13 

4.323 4.25 2.905 14 

4.323 4.25 2.905 15 

4.323 4.25 2.905 16 

4.323 4.25 2.905 17 

4.323 4.25 2.905 18 

4.323 4.25 2.905 19 

4.323 4.25 2.905 20 

4.323 4.25 2.905 21 

4.323 4.25 2.905 22 

4.323 4.25 2.905 23 

4.323 4.25 2.905 24 
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Table 8: Best Child Data Points Corresponding to Graph of Random Children #4 

VB (V) VDB (V) Max Diff (V) Generation 

0.406 0.992 0.000004177 1 

3.571 4.01 0.00005986 2 

4.45 2.68 0.003081 3 

4.45 2.68 0.003081 4 

4.46 2.6 0.03093 5 

4.348 4.326 2.348 6 

4.341 2.446 2.781 7 

4.341 2.446 2.781 8 

4.341 2.774 2.862 9 

4.33 4.294 2.91 10 

4.33 4.294 2.91 11 

4.33 4.294 2.91 12 

4.33 4.294 2.91 13 

4.33 4.294 2.91 14 

4.33 4.294 2.91 15 

4.33 4.294 2.91 16 

4.33 4.294 2.91 17 

4.33 4.294 2.91 18 

4.33 4.294 2.91 19 

4.33 4.294 2.91 20 

4.33 4.294 2.91 21 

4.33 4.294 2.91 22 

4.33 4.294 2.91 23 

4.33 4.294 2.91 24 
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Table 9: Best Child Data Points Corresponding to Graph of Random Children #5 

VB (V) VDB (V) Max Diff (V) Generation 

0.664 0.802 0.000002217 1 

1.57 3.99 0.00003973 2 

4.11 3.44 0.0001173 3 

4.11 3.44 0.0001173 4 

4.11 3.44 0.0001173 5 

4.42 1.98 0.08068 6 

4.42 1.98 0.08068 7 

4.42 1.98 0.08068 8 

4.42 1.98 0.08068 9 

4.368 3.448 1.253 10 

4.368 3.448 1.253 11 

4.368 3.448 1.253 12 

4.33 3.71 2.936 13 

4.33 3.71 2.936 14 

4.329 3.487 2.943 15 

4.329 3.487 2.943 16 

4.329 3.487 2.943 17 

4.329 3.487 2.943 18 

4.319 4.969 2.962 19 

4.319 4.969 2.962 20 

4.319 4.969 2.962 21 

4.319 4.969 2.962 22 

4.319 4.969 2.962 23 

4.319 4.969 2.962 24 

4.319 4.969 2.962 25 

4.319 4.969 2.962 26 

4.319 4.969 2.962 27 

4.319 4.969 2.962 28 

4.319 4.969 2.962 29 

4.319 4.969 2.962 30 

4.319 4.969 2.962 31 

4.319 4.969 2.962 32 

4.319 4.969 2.962 33 

 


